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ABSTRACT
A challenge in evolutionary computation is to create repre-
sentations as evolvable as those in natural evolution. This
paper hypothesizes that extinction events, i.e. mass extinc-
tions, can significantly increase evolvability, but only when
combined with a divergent search algorithm, i.e. a search
driven towards diversity (instead of optimality). Extinctions
amplify diversity-generation by creating unpredictable evo-
lutionary bottlenecks. Persisting through multiple such bot-
tlenecks is more likely for lineages that diversify across many
niches, resulting in indirect selection pressure for the capac-
ity to evolve. This hypothesis is tested through experiments
in two evolutionary robotics domains. The results show that
combining extinction events with divergent search increases
evolvability, while combining them with convergent search
offers no similar benefit. The conclusion is that extinction
events may provide a simple and effective mechanism to en-
hance performance of divergent search algorithms.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—connectionism
and neural nets, concept learning
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1. INTRODUCTION
Biological organisms are evolvable, i.e. they have signifi-

cant capacity to evolve further [6, 30]. In contrast, evolvabil-
ity remains an ambitious challenge in evolutionary compu-
tation (EC) [4, 18, 30], hinting that some important mecha-
nisms of natural evolution may be missing. Confounding the
issue, some such mechanisms may be synergistic and provide
little benefit in isolation. In such cases, the usual method-
ology of introducing and testing mechanisms individually
may fail to identify promising modifications to evolutionary
algorithms (EAs).
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This paper hypothesizes that extinction events, i.e. mass
extinctions, are such a mechanism. Extinctions can increase
evolvability, but only when coupled with a divergent re-
ward scheme, which is another non-canonical EA mecha-
nism. That is, most EAs aim to optimize towards an un-
derlying fixed objective, which leads to convergence to a
single phenotype. In contrast, natural evolution inherently
diverges, accumulating a growing diversity of novel solutions
to the problems of surviving and reproducing [27]. Extinc-
tion events may enhance the effectiveness only of EAs that
similarly diverge.

Although well-studied in evolutionary biology, extinction
events are rarely included in EAs [8, 14]. One reason is that
in the short term they are often idiosyncratic and destruc-
tive, selecting individuals arbitrarily or for reasons uncharac-
teristic of its evolutionary history as a whole. In this view,
extinction events may act merely as upheavals or impedi-
ments to the evolutionary process. Thus beyond increased
biological accuracy, there is little reason to model them.

However, although extinction events exterminate stochas-
tically a large proportion of ways of life, they may still pro-
duce beneficial evolutionary regularities. In particular, ex-
tinction events can create unpredictable evolutionary bottle-
necks by filtering out most pre-existing phenotypic niches.
Lineages that are able to diversify more quickly than oth-
ers, i.e. those that are more evolvable, may have a greater
chance of persisting across multiple such bottlenecks. By
radiating through multiple niches, such evolvable lineages in
effect have multiple tickets in the lottery of extinction. Thus
extinction events indirectly select for evolvability.

Interestingly, diversity-driven EAs also select for evolv-
ability, but through a different mechanism. For instance,
if selection rewards novelty, those lineages that consistently
produce diversity over time will be selected. In this way,
adaptations enabling evolvability hitchhike through the im-
mediate advantage they provide in selection.

Because extinction events and divergent EAs encourage
evolvability in a different manner, there may be an additive
benefit when they are combined. In contrast, convergent
search, such as a traditional objective-seeking EA, does not
necessarily encourage evolvability [18]. Thus the hypothesis
of this paper is that combining extinction events with diver-
gent EAs can increase evolvability, whereas no such benefit
may arise when extinctions are combined with a traditional
convergent EA.

To test this hypothesis, representative divergent and
convergent search methods are augmented with extinction
events and compared to unaugmented ones in two evolution-
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ary robotics (ER) domains. The results demonstrate that
when divergent EAs are combined with extinction events,
the result is more evolvable populations and more effective
solutions. In contrast, the tested convergent EA shows no
similar benefit. In this way, extinction events may provide a
simple and powerful mechanism to enhance divergent EAs.

2. BACKGROUND
This section first reviews the neuroevolution technique

and the measure of evolvability applied in the experiments.
Extinction in EC and divergent search are then described.

2.1 NeuroEvolution of Augmenting Topolo-
gies (NEAT)

In experiments in this paper, behaviors are evolved that
are controlled by artificial neural networks (ANNs). Thus
a neuroevolution (NE; [32]) method is needed to implement
these experiments. The NEAT method is appropriate be-
cause it is widely applied [1, 2, 28, 29] and well understood.

The NEAT method was originally developed to evolve
ANNs to solve difficult control and sequential decision tasks
[28, 29]. Evolved ANNs control agents that select actions
based on their sensory inputs. Like the SAGA method [12]
introduced before it, NEAT begins evolution with a popula-
tion of small, simple networks and complexifies them. The
population expands into diverse with diverse ANN topolo-
gies over generations, leading to increasingly sophisticated
behavior. A similar process of gradually adding new genes
is seen in natural evolution [21]. This section briefly re-
views the NEAT method; for comprehensive introductions
see Stanley and Miikkulainen [28, 29].

To keep track of which gene is which while new genes
are added, a historical marking is assigned uniquely to each
new structural component. During crossover, genes with the
same historical markings are aligned, producing meaningful
offspring efficiently. Speciation in NEAT protects new struc-
tural innovations by reducing competition among differing
structures and network complexities, thereby giving newer,
more complex structures room to adjust. Networks are as-
signed to species based on the extent to which they share
historical markings. Complexification, which resembles how
genes are added over the course of natural evolution [21],
is thus supported by both historical markings and specia-
tion, allowing NEAT to establish high-level features early in
evolution and then later to elaborate on them.

Note that speciation and crossover in NEAT are disabled
in this paper’s experiments to simplify the EA. This simpli-
fication facilitates integration of NEAT with the behavioral
grid search algorithm described later, which allows uniform
comparison between all implemented search algorithms. Ad-
ditionally, NEAT is augmented in all experiments with self-
adaptive mutation rates, as supported by Lehman and Stan-
ley [18]. Such self-adaptation was found to enhance perfor-
mance in initial experiments.

To implement self-adaption, each genome is augmented
with a list of three pairs of mutation settings, and each con-
nection is augmented with an integer parameter that indexes
within the list. Typically, when an individual is mutated, ev-
ery one of its connections are altered by adding to its weight
a random number chosen from the same uniform distribu-
tion. In contrast, with self-adaptation, each connection can
be exempted from mutation with probability determined by
a floating point parameter in its associated mutation set-

tings. If it is not exempted from mutation, the uniform dis-
tribution from which the weight is perturbed is scaled by a
separate floating point parameter in its associated mutation
settings. In this way, an individual can encode an architec-
ture of mutation that potentially complements its evolved
representation, thus making it more evolvable.

2.2 Measuring Evolvability
Natural evolution has produced flexible, highly evolvable

representations that facilitate its prolific discovery of diverse
organisms. An important question that could inform EC is:
What properties of natural evolution led to such evolvabil-
ity? Investigating this question is aided by quantitative mea-
sures of evolvability. Such measures enable empirical studies
of how different evolutionary features affect evolvability.

While there is no overall consensus on evolvability’s defi-
nition or its measurement [26], one common conception is to
consider evolvability as an organism’s phenotypic variability
[3, 7, 13, 30]; that is, the capacity of an organism’s lineage
to generate novel phenotypic traits captures some significant
part of what enables some lineages to adapt more quickly
than others, although there exist alternative definitions that
focus on different or overlapping aspects of evolvability [26].
This conception (of evolvability as phenotypic variability) is
adopted in this paper, as in previous related studies [18, 19].

The evolvability measure used in this paper was originally
proposed by Lehman and Stanley [18]. At regular intervals
during evolution, a sample of individuals is taken from the
population and their evolvability is estimated in the follow-
ing way: First, the mutational neighborhood of that indi-
vidual is approximated through creating 1, 000 clones and
mutating each clone independently once. Second, each clone
is evaluated in the experimental domain and its behavior is
quantified. Third, a regular grid is superimposed over the
entire space of such quantified behaviors, and each of the
mutated clones is mapped into the grid square that contains
its behavior. The original individual’s evolvability is then
the number of populated grid squares, i.e. a quantification
of the propensity of the genotype’s offspring to realize di-
verse behaviors.

This measure is applied in this paper’s experiments to test
whether evolvability is enhanced by algorithmic extinction,
which is described in the next section.

2.3 Extinction in Evolutionary Computation
Because on their surface extinction events appear simply

destructive, they are not often integrated into EAs. When
extinction-like mechanisms are included in EAs, they often
serve to focus search [9, 11, 14, 31] and remove seemingly un-
promising classes of solutions [8, 28]. As a result, extinctions
are often initiated when the search for higher performance
stagnates [11, 28]. Overall, typical incarnations of algorith-
mic extinctions implicitly or explicitly protect the overall
best-performing individual [8, 11, 14, 20].

In contrast, the implementation of extinction events in
this paper does not inherently favor any particular behav-
ior in the population over any other and is not triggered by
stagnating performance. Instead, extinctions wipe out par-
ticular classes of behaviors irrespective of performance. The
idea is to shift the focus from particular high-performing
individuals to the overall evolvability of the population as
a whole. Giving credence to this idea, Palmer and Feld-
man [25] demonstrated in an abstract model that indiscrim-



inate extinctions acting upon spatially-divided populations
can lead to increasing evolvability, which is similar to the
approach in this paper.

A more typical example of extinction-like strategies in EC
is burst mutation [9, 11]. Burst mutation (which is similar to
delta-coding [31]), is initiated when performance stagnates
for a fixed number of generations, and extinguishes all but
the highest performing solution. Evolution then focuses on
the neighborhood in the search space centered on this solu-
tion. Weight mutations are applied from the Cauchy distri-
bution, which result in mainly small tweaks, with occasional
large changes. The overall idea is that sometimes greater
precision is needed to solve some tasks, which is facilitated
by corresponding greater focus on promising individuals.

Another relevant approach is random restarts [10], which
can be seen as total extinction. The entire population is
re-initialized if the task is not solved within a fixed number
of evaluations. The hope is that a random restart may al-
low evolution to uncover a different (and more promising)
attractor. The approach in this paper is somewhat similar
to random restarts in that nearly all individuals are extin-
guished; however, a critical difference is that a small diverse
set of individuals persists extinction.

Importantly, the effect of adding extinctions to an EA
may depend on characteristics of the underlying EA. In par-
ticular, while most EAs converge as they seek to optimize
towards a fixed objective, other EAs are instead driven to ex-
plore many divergent possibilities simultaneously. The next
section reviews such divergent EAs.

2.4 Divergent Evolutionary Algorithms
A signature characteristic of natural evolution is its ten-

dency to accumulate diversity over time [27], expanding
through niches and discovering a wide range of solutions
to the problems of life. In this way, natural evolution is di-
vergent, i.e. it is inherently driven to explore many divergent
possibilities in parallel. In contrast, optimization algorithms
are most often convergent, i.e. they are driven to seek the
singular highest value of a provided objective function. Sim-
ilarly, most EAs apply an abstraction of natural evolution
as an optimizer, i.e. the concept of biological fitness is often
abstracted as a static fitness function that the EA optimizes.
Thus, in a striking contrast to their natural inspiration, EAs
themselves are often convergent [15, 16].

However, while dominant in EC, abstracting evolution as
an optimizer is only one out of many possible foundations for
creating an EA. By focusing on different aspects of natural
evolution, other abstractions may produce EAs with differ-
ent characteristics, e.g. those that agree with natural evolu-
tion’s tendency towards divergence. For example, EAs that
abstract nature as an accumulator of novelty [16, 19, 24] di-
verge as they continually uncover novel forms. Because these
kinds of algorithms are not inherently driven towards opti-
mization, they are less susceptible to deception (often out-
performing objective-based search on such problems [16]),
and are more likely to increase evolvability [18]. Interest-
ingly, even when objective-based search is as efficient, rep-
resentations provided by divergent search are often more
evolvable [15].

3. APPROACH
Just as there are many ways to perform convergent search,

there are also many ways to create an EA with a drive to-

wards diversity [5, 16, 19, 24]. Two representative methods,
novelty search and behavioral grid search, will be used in
this paper. They are each reviewed in this section, followed
by a description of how extinction events are implemented.

3.1 Novelty Search
Novelty search is inspired by natural evolution’s drive to-

wards novelty, and rewards novel behavior directly instead of
progress towards a fixed objective [16]. Tracking novelty re-
quires little change to any evolutionary algorithm aside from
replacing the objective-based fitness function with a novelty
metric. Such a metric measures how different an individ-
ual is from other individuals, thereby creating a constant
pressure to produce something new. The key idea is that
instead of rewarding performance on an objective, novelty
search rewards diverging from prior behaviors. Therefore,
novelty in behavior needs to be measured.

The novelty metric characterizes how far away the new
individual is from the rest of the population and its prede-
cessors in behavior space, i.e. the space of unique behaviors.
A good metric should thus compute the sparseness at any
point in the behavior space. Areas with denser clusters of
visited points are less novel and therefore rewarded less.

A simple measure of sparseness at a point is the average
distance to the k-nearest neighbors of that point. Intuitively,
if the average distance to a given point’s nearest neighbors
is large then it is in a sparse area; if the average distance is
small, it is in a dense region. The sparseness ρ at point x is
given by

ρ(x) =
1

k

k∑
i=0

dist(x, µi), (1)

where µi is the ith-nearest neighbor of x with respect to
the distance metric dist, which is a domain-dependent mea-
sure of behavioral difference between two individuals in the
search space. Candidates from more sparse regions of the
behavior space thus receive higher novelty scores.

With fixed probability an individual is entered into the
permanent archive that characterizes the distribution of
prior solutions in behavior space. The current generation
plus the archive constitute a comprehensive sample of where
the search has been and where it currently is; that way, by
attempting to maximize the novelty metric, the gradient of
search is simply towards what is new, with no other explicit
objective. However, even without an explicit objective, nov-
elty search is still driven by meaningful information; that is,
behaving in a novel way often requires learning the structure
of the domain.

Once objective-based fitness is replaced with novelty, the
underlying EA operates as usual, selecting the most novel
individuals to reproduce. Over generations, the population
spreads out across the space of possible behaviors.

Another divergent search algorithm used in this paper is
behavioral grid search, described next.

3.2 Behavioral Grid Search
Behavioral grid search represents grid-based divergent

search algorithms such as those described in Lehman and
Stanley [19] and Cully et al. [5], and is tested in the experi-
ments to demonstrate that the results are not specific to one
particular divergent search algorithm.

Similar to novelty search, behavioral grid search is in-
spired by natural evolution’s tendency to explore many



niches in parallel. One simple way to facilitate diversity
is to divide search resources explicitly across a variety of
behavioral niches. Instead of encouraging behavioral diver-
sity directly as in novelty search, a regular grid can be su-
perimposed over the space of behaviors, wherein each grid
square acts as a discrete niche. That is, each new individual
is mapped to the grid square that contains the behavior it
demonstrates. If each grid square only supports a limited
capacity of organisms then the search as a whole will not
converge, but will be driven to expand through the space of
niches [19]. Note that this algorithm is in effect a steady-
state version of the limited capacity niche model explored
by Lehman and Stanley [19]; it is also similar to the MAP-
ELITES algorithm of Cully et al. [5, 23].

While each such niche could impose competitive selec-
tion pressure among organisms with similar behavior (as in
MAP-ELITES [5, 23] or novelty search with local competi-
tion [17]), for simplicity both divergent search algorithms in
this paper are driven only by diversity. In particular, be-
havioral grid search applies steady-state replacement that is
biased towards less-populated niches. Selection chooses an
individual to reproduce asexually by picking one at random
from a populated niche that is also chosen at random. To
replace this new offspring, a randomly-chosen individual is
removed from the most populous niche. Thus individuals in
less-populated niches are more likely to be chosen to repro-
duce and will not be replaced. The overall effect is that the
EA is driven to colonize unoccupied niches through evolving
diverse behaviors, resulting in divergent search.

3.3 Extinction Events
The approach in this paper is to augment EAs with extinc-

tion events. The idea is that mass extinctions may indirectly
select for the ability to diversify quickly. That is, if extinc-
tions vacate a large proportion of occupied niches stochas-
tically, then lineages that radiate through many niches are
more likely to survive repeated such extinctions.

Thus, while there are many ways to implement extinc-
tion events [8, 14, 20], the one in this paper is motivated
by extinction events as probabilistic filters biased towards
evolvable lineages. In particular, the approach is at regular
intervals to extinct a large proportion of evolved behaviors,
without any consideration for their performance. That is,
even the current champion is not immune from extinction.

From this general idea, the concrete implementation of
extinctions is separately fitted to the three search methods
applied in the experiments: behavioral grid search, novelty
search, and traditional objective-based search. The idea is
to implement extinctions to respect the distinct features of
each search method.

Behavioral grid search defines explicit discrete niches.
Thus in that model, an extinction event acts to vacate all
but a fixed number of randomly-chosen niches; one individ-
ual from each selected niche is randomly-chosen to survive.
Because each niche supports a different set of similar pheno-
typic behaviors, evolvable lineages (with higher phenotypic
variability) that colonize many such niches are more likely
to persist. Individuals from these few surviving niches are
amplified as they repopulate vacated niches.

In contrast, there are no discrete niches in the novelty
search and objective-based fitness EAs. To establish a sim-
ilar effect, a greedy algorithm chooses a few surviving indi-
viduals spread across the space of behaviors. First, a set of

accumulated survivors is initialized with a random member
of the population. Then, the set is augmented incrementally
until it is of the desired size. To decide which individual to
add to the set, the population is sorted by each individual’s
minimum behavioral distance to an existing member of the
set; an individual is then chosen at random from the top 20%
of the sorted list. In this way, a small but diverse set of be-
haviors will survive each extinction. The stochasticity of the
greedy algorithm ensures that extreme behaviors that are
ranked highest will not always persist multiple extinctions;
otherwise, because the underlying EA is a steady-state one,
the same extreme behavior might always survive extinctions
regardless of its evolvability or ability to diversify.

In all search methods, after the population is decimated,
replacement is disabled temporarily until the population is
replenished to its previous size. The experiments utilizing
these techniques will be described next.

4. EXPERIMENTS
To explore whether EAs augmented with extinction events

produce more evolvable populations, experiments were con-
ducted in two representative ER domains: maze navigation
[18] and biped locomotion [16]. These domains will be de-
scribed first, followed by experimental setup and results.

4.1 Maze Navigation Domain
In the maze navigation domain, a simulated wheeled robot

(figure 1) is embedded in a two-dimensional maze (figure 2).
The objective for the robot is to traverse the maze and ar-
rive at a fixed goal point. Thus, the fitness f of an individ-
ual for objective-based search is f = bf − dg, where bf is
a constant bias and dg is the distance of the robot to the
goal at the end of the evaluation. For novelty search and
behavioral grid search, evolution instead requires a charac-
terization of behavior. Because ending location is a critical
factor in navigating mazes, the behavior of a robot is de-
fined as its location in the maze at the end of the evaluation
[16, 22]. For behavioral grid search, each grid square within
a regular grid superimposed over all ending locations acts a
discrete niche. Individuals are mapped into the niche that
contains the behavior they exhibit when evaluated.

The particular instantiation of the domain is the frag-
ile hard maze of Lehman and Stanley [18]. It was chosen
because it is one of the well-studied hard maze domains
[16, 18, 19, 24] that offer significant capacity for increased
evolvability relative to random initial populations [18, 19].

In the hard maze’s original conception [16], a robot is not
penalized when it collides with a wall. However, in the frag-
ile version, a robot’s evaluation is immediately terminated
in such a case. For objective-based search, a colliding robot
receives a fitness value flow which is a minuscule value that
is lower than otherwise possible. For novelty search, such
a robot receives a minimal novelty score, nlow. For behav-
ioral grid search, a colliding robot is mapped to a special
niche that fills up quickly and renders colliding behavior in-
viable after the first few evaluations. The motivation for
such penalties is to make the domain more fragile, i.e. more
sensitive to mutation. That way the domain accentuates the
challenge of discovering evolvable representations [18].

4.2 Biped Locomotion Domain
As the second domain, the biped domain of Lehman and

Stanley [16] is adapted for these experiments (figure 3). In
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Figure 1: A Maze-Navigating Robot. The artificial neural
network that controls the maze navigating robot is shown in (a).
The layout of the sensors is shown in (b). Each arrow outside
of the robot’s body in (b) is a rangefinder sensor that indicates
the distance to the closest obstacle in that direction. The robot
has four pie-slice sensors that act as a compass towards the goal,
activating when the goal falls within the infinite projection of that
pie-slice. The solid arrow indicates the robot’s heading.

Figure 2: Maze Navigation Map. In this map, the larger
circle represents the starting position of the robot and the smaller
circle represents the goal. To solve the task, the robot must navi-
gate a circuitous path, which requires the evolution of non-trivial
behavior. Further complicating the task, colliding with any wall
immediately terminates the evaluation and renders the individual
inviable. In this way, the domain presents a significant challenge
for discovering evolvable representations.

this domain, the goal is to evolve a controller for a simu-
lated biped robot that results in a stable walking gait. The
problem is challenging because both balance and oscillation
are needed. Like the maze domain it is also fragile: Most
mutations to controllers are fatal and cause the robot to fall
over quickly [18]. Thus biped locomotion provides a natural
challenge domain for exploring how to increase evolvability
and performance of EAs.

The domain works as follows (for more details see [16]). A
biped robot in a physically realistic three-dimensional sim-
ulation is controlled by an ANN for a fixed duration (15
seconds). The evaluation is terminated if the robot falls or
after the allocated time expires. The objective is for the
robot to travel the greatest possible distance from the start-
ing location.

The fitness of a biped controller for objective-based search
is evaluated as the squared distance the robot walks before
it falls. Its behavior for calculating novelty is derived from
sampling its center of gravity each second it walks. The ad-
ditional information provided by temporal sampling allows
novelty search to differentiate two gaits that end up at the
same location by different means.

For behavioral grid search, behavior is characterized sim-
ply by the robot’s center of gravity at the simulation’s com-
pletion. Such simplification is applied because the size of the
grid of niches grows exponentially with increasing dimen-
sionality. As in the maze domain, a regular two-dimensional

Left Foot Right Foot Bias

LK LH1 LH2 RK RH1 RH2

Evolved Topology

(a) Neural Network (b) Visualization

Figure 3: Biped Robot. In the biped locomotion domain,
the ANN in (a) controls the biped robot that is visualized
in (b). The robot has motors that apply forces to achieve
the joint angles that are output by the ANN. In particular,
there are motors for each of the six degrees of freedom: One
in its left and right knees (LK and RK), and two in each
hip (LH1, LH2, RH1, and RH2). Additionally, the robot’s
ANN receives input from sensors in its feet that activate
when they touch the ground. The challenge for the robot is
to locomote as far as possible.

grid is superimposed over this behavior space, where each
grid square defines a discrete niche shared by robots demon-
strating behaviors encompassed by that square.

4.3 Experimental Setups
Across these two domains, three representative search al-

gorithms are applied. Divergent search is represented by
behavioral grid search and novelty search, while convergent
search is represented by a traditional objective-based EA.
While behavioral grid search is based on a geometric space of
niches, novelty search and objective-based search share the
same underlying steady-state EA and differ only in their
underlying incentive scheme. All three search algorithms
evolve ANNs represented by NEAT.

For each search method, four experimental setups are con-
sidered. In the Control setup there are no extinction events,
i.e. the underlying EA operates as usual. In the Extinction
100k, Extinction 200k and Extinction 400k setups, extinc-
tion events occur every 100,000, 200,000, and 400,000 eval-
uations, respectively. The idea is to explore the effect of
varying the inclusion and frequency of extinctions on the
resulting evolvability of the different EAs.

In the maze domain, the population size was 250, while in
the biped domain it was 500. Novelty search and objective-
based search both used the same underlying steady-state EA
with tournament selection and tournament size of five. Over
both search algorithms and both domains, evolution ran for
3,000,000 evaluations and extinction events spare only 10
individuals; 40 independent runs were conducted for each
combination of domain, setup, and algorithm.

For behavioral grid search, the resolution of the grid that
was superimposed over the space of behaviors in the maze
domain was 20×20. The resolution was 40×40 in the biped
domain over possible ending positions between [−8.0, 8.0]
meters for both planar coordinates. In both domains these
same grids served to calculate evolvability, i.e. for all meth-
ods the evolvability of an individual was measured by the
amount of unique grid squares exhibited by mutants of that
individual. In particular, the evolvability of the population
was estimated every 250,000 evaluations by applying the
evolvability measure to 200 individuals chosen at random
from the population.



4.4 Results
Figure 6 shows how the evolvability of final populations is

distributed in all setups. Supporting this paper’s hypothesis,
the main result is that extinction events result in increased
evolvability only when combined with divergent search al-
gorithms. A representative comparison of the temporal dy-
namics of evolvability increase between convergent and di-
vergent search is shown in figure 4. Additionally, figure 5
visualizes how increasing evolvability allows evolution to re-
bound more quickly. (Corresponding figures for the maze
domain and behavioral grid search are shown in the supple-
mental website http://nn.cs.utexas.edu/downloads/papers/
lehman.gecco2015-supplement.html). Reflecting its label,
in all experimenter observations across domains and setups
the convergent objective-based search algorithm consistently
converged to a single champion behavior.

Beyond evolvability, extinction events also affect the per-
formance of search methods. Figure 7 highlights differences
in evolutionary success, showing that extinction events lead
to more effective adaptation when combined with divergent
search. Independently of setup, objective-based search never
solved the maze. This result is likely due to the deceptive
nature of this domain [16]. Additionally, with objective-
based search in the biped domain no significant differences
in performance result from introducing extinction events.
In contrast, extinctions increase performance of divergent
search: In nearly all combinations of domains and divergent
search algorithms, performance is highest with the Extinc-
tion 100k setup, suggesting that more frequent extinction
events are the most effective. In the maze domain, differ-
ences between the divergent algorithms are not significant,
while in the biped domain, each novelty search setup signifi-
cantly outperforms its corresponding behavioral grid search
setup (Mann-Whitney U-test; p < 0.05). The likely reason
is that biped behaviors are differentiated better by the high-
dimensional behavior characterization used in novelty search
than with the simplified behavior characterization necessary
for behavioral grid search.

5. DISCUSSION
This paper provides evidence for the counter-intuitive in-

sight that repeated short-term destruction may enhance the
long-term potential of an evolutionary process. Such robust-
ness through upheaval is reminiscent of creative destruction
in business and wildfires in ecosystems. Thus such events
can serve as simple and effective enhancements to EAs.

However, echoing previous results with self-adaptation
[18], the results also demonstrate that extinction events
accelerate evolution only when combined with divergent
search. In this way, powerful mechanisms of natural evo-
lution may often be interdependent, and some such mecha-
nisms may provide little benefit in isolation. In particular, a
search reward scheme facilitating divergence (e.g. as in be-
havioral grid search or novelty search) may prove a critical
ingredient enabling many mechanisms seen in natural evolu-
tion. Furthermore, differential benefit of this kind suggests
that best practices learned for convergent search may not ap-
ply to divergent search. Thus, the conclusions forged in the
context of the more dominant convergent search paradigm
may need to be re-evaluated for divergent search.
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Figure 4: The Change in Evolvability over Evolu-
tion. The average (mean) evolvability of individuals in the
population is shown for objective-based search (labeled Obj)
and novelty search (labeled Nov) in the biped domain. Ex-
tinction setups combined with novelty search result in in-
creased evolvability and an overall increasing trend. Ex-
tinction setups combined with objective-based search result
in decreased evolvability and an overall stagnating trend.
The conclusion is that there is a qualitative difference in
how evolvability changes over time between the two search
methods.
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Figure 5: Dynamics of Niche Occupation. The average
(mean) number of niches occupied over evolution is shown
for behavioral grid search in the biped domain. The Con-
trol setup accumulates niches monotonically, whereas the
Extinction setups are decimated at regular intervals. Be-
cause each extinction event spares only 10 niches, increas-
ingly quick repopulation in the Extinction setups suggest
that the representations are more evolvable in these setups
than in the others. Note that each extinction always brings
the model to exactly 10 niches, although this is not visible
due to sampling error.

6. CONCLUSION
This paper forwards the hypothesis that extinction events

can accelerate evolution in divergent search algorithms. The
hypothesis is supported by results from two evolutionary
robotics domains, in which extinction events benefit diver-
gent search but not a more traditional convergent objective-
based search. Thus extinction events may provide a simple
and effective mechanism for improving the long-term perfor-
mance of divergent EAs.
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Figure 6: Distribution of Evolvability in Final Populations. The box plots show the evolvability of individuals in
final populations for the four setups of the three search methods in the maze and biped domains. First, protective one-way
ANOVA tests showed that there were significant differences between the extinction setups and the control with divergent search
methods (i.e. behavioral grid search and novelty search; p < 0.05), but not with objective-based search. Second, pairwise
Mann-Whitney U tests showed that with the divergent search algorithms, the average final evolvability in the extinction
setups was significantly higher than in the control in 11 of the 12 pair-wise comparisons (those indicated with “*”; p < 0.05).
The conclusion is that extinction events enhance evolvability only when paired with divergent search.
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Figure 7: Performance of Evolved Solutions. The ability of evolution to generate well-adapted solutions is shown for the
four setups of the three search methods in the maze and biped domains. In the maze navigation domain, a successful robot can
navigate the full extent of the maze. In the biped domain, better solutions walk a longer distance. First, protective one-way
ANOVA tests showed that there were significant differences between the extinction setups and the control with divergent
search methods (i.e. behavioral grid search and novelty search; p < 0.05), but not with objective-based search. Second,
pairwise Mann-Whitney U tests showed that with each divergent search method in each domain, the Extinction 100k setup
significantly outperformed the control (those indicated with “*”; p < 0.05; the lines indicate standard error), and no extinction
setups significantly underperformed the control. The conclusion is that extinction events enhance divergent search’s ability
to uncover well-adapted solutions, but provide no comparable enhancement for convergent search.
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