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ABSTRACT
When scaling neuroevolution to complex behaviors, cogni-
tive capabilities such as learning, communication, and mem-
ory become increasingly important. However, successfully
evolving such cognitive abilities remains difficult. This pa-
per argues that a main cause for such difficulty is deception,
i.e. evolution converges to a behavior unrelated to the de-
sired solution. More specifically, cognitive behaviors often
require accumulating neural structure that provides no im-
mediate fitness benefit, and evolution often thus converges
to non-cognitive solutions. To investigate this hypothesis,
a common evolutionary robotics T-Maze domain is adapted
in three separate ways to require agents to communicate, re-
member, and learn. Indicative of deception, evolution driven
by objective-based fitness often converges upon simple non-
cognitive behaviors. In contrast, evolution driven to explore
novel behaviors, i.e. novelty search, often evolves the de-
sired cognitive behaviors. The conclusion is that open-ended
methods of evolution may better recognize and reward the
stepping stones that are necessary for cognitive behavior to
emerge.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—connectionism
and neural nets, concept learning

General Terms
Algorithms

Keywords
Diversity Maintenance; Evolutionary Robotics; Cognition;
Deception

1. INTRODUCTION
A goal of neuroevolution research is to evolve artificial

neural networks (ANNs) able to solve increasingly complex
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tasks. So far, most tasks have been largely reactive, i.e.
behaviors that can result from reacting to current sensory
input without persistent state or computation. It is still
challenging to solve tasks that require cognitive behaviors
such as communication, remembering previous states, or
learning from experience. When such behaviors have been
successfully evolved, artificial domain constraints [19, 26],
specialized domain knowledge in the reward scheme driving
evolution [13, 18], or specialized encodings [28] were often
needed. Yet such special knowledge is difficult to come by
and a more general solution would be desirable.

While it is easy to design fitness functions that recognize
a successful instance of a cognitive behavior, it is more dif-
ficult to craft a fitness function that paves the path towards
it [10]. In particular, to realize a cognitive behavior through
an ANN often requires significant scaffolding structure, i.e.
additional neurons and connections adapted to provide cog-
nitive functionality. Yet building only one part of such scaf-
folding may provide no immediate fitness benefit, particu-
larly if fitness is measured narrowly by how closely a behav-
ior resembles evolution’s target. As a result, evolution may
often converge to locally optimal reactive policies, and there
may be no performance gradient connecting such a reactive
policy to the desired cognitive one. In such cases, evolution
may remain deceived by non-cognitive local optima. This
observation leads to the main hypothesis explored in this
paper: deception is a significant factor making evolving cog-
nitive behaviors difficult.

Previous studies have explored evolving cognitive behav-
iors such as communication [19, 26], memory [13, 28], and
learning [17, 27]; yet overall, evolving sophisticated cogni-
tive behaviors remains difficult. Importantly, some such
studies support the idea that evolving cognitive behaviors
may be deceptive [13, 17] and further suggest that meth-
ods that are based on novelty rather than fitness may be
beneficial [17]. In particular, novelty search [8] rewards be-
haviors relative only to how different they are from those
previously encountered during the search. Risi et al. [17]
shows that novelty search succeeds significantly more often
than objective-based search in evolving learning behavior.

This paper builds upon such previous results to evolve
three separate cognitive behaviors. A T-Maze domain, sim-
ilar to those used in previous evolutionary robotics (ER)
studies [13, 17, 18, 28], is varied to form three separate tasks
that require evolving communication, short-term memory,
and learning from experience. Across such tasks, the perfor-
mance of a variety of objective-based methods is compared
to that of novelty search. To probe how such methods scale



with increased complexity, a more difficult extended T-Maze
domain is also tested. The goal is to verify that deception
is problematic across a spectrum of cognitive behaviors, and
determine how it is exacerbated by increased problem com-
plexity.

The results support the hypothesis that deception is a
significant factor in cognitive tasks. The conclusion is that
the stepping stones towards cognitive behaviors may not be
identified by traditional objective-based fitness functions.
Instead, methods that open-endedly discover structure in
a domain, thereby potentially accumulating such stepping
stones, are needed.

2. BACKGROUND
This section first reviews previous approaches to evolving

cognitive behaviors, then describes the NEAT and novelty
search methods applied in this paper’s experiments.

2.1 Evolving Cognitive Behaviors
The evolution of various cognitive behaviors has been stud-

ied in artificial life and ER [12, 13, 17, 19, 26–28]. It is helpful
first to review mechanisms applied in these experiments to
make evolution more tractable.

First, domains are often artificially restricted to isolate
and encourage cognitive behavior’s evolution [19, 26]. With-
out such restrictions, evolution may often converge to sim-
pler non-cognitive policies that either fail to solve the task
or solve the task in trivial or unintended ways [19]. For
example, Werner and Dyer [26] introduced an experimental
setup in which female animals are stationary but can pro-
duce signals, whereas male animals can sense signals from
females but cannot produce them nor can they perceive the
environment. The advantage of such an unrealistic setup is
that communication offers the only way to solve the task,
thereby reducing the potential for convergence to simpler
non-communicative solutions.

Other experiments demonstrated that injecting additional
knowledge can improve performance in cognitive domains.
Such approaches include applying incremental evolution [21],
refined fitness functions [18], more complicated neural mod-
els [28] or additional helper objectives [12, 13]. Ideally, how-
ever, it would not be necessary to uncover technical domain
knowledge specific to new applications.

Similarly, the benefit of encouraging higher-level (e.g. be-
havioral) diversity has been demonstrated in several cog-
nitive tasks [12, 13, 17, 25]. In particular, Risi et al. [17]
demonstrated that driving search only towards behavioral
novelty can sometimes more effectively evolve learning poli-
cies than evolution driven by an objective-based fitness func-
tion. By directly comparing diversity-driven and objective-
driven search in this way, deception can be effectively iso-
lated [8, 17]; the same approach is applied in this paper.

Overall, previous results demonstrate that it is possible to
evolve cognitive behaviors, but it is difficult to do so without
domain knowledge or specialized approaches. Furthermore,
some such studies directly implicate deception as the main
obstacle [13, 17].

2.2 NEAT
In experiments described in this paper, behaviors are evolv-

ed for robots that are controlled by artificial neural networks
(ANNs). Thus a neuroevolution (NE) method is needed to
underpin these experiments. The NEAT method is appro-

priate because it is widely applied [1, 8, 17, 22–24] and well
understood.

The NEAT method was originally developed to evolve
ANNs to solve difficult control and sequential decision tasks
[22–24]. Evolved ANNs control agents that select actions
based on their sensory inputs. Like the SAGA method [5]
before it, NEAT begins evolution with a population of small,
simple networks and complexifies the network topology into
diverse species over generations, leading to increasingly so-
phisticated behavior. A similar process of gradually adding
new genes has been documented in natural evolution [11].
This section briefly reviews the NEAT method; for compre-
hensive introductions see e.g. [23, 24].

To keep track of which gene is which while new genes
are added, a historical marking is uniquely assigned to each
new structural component. During crossover, genes with the
same historical markings are aligned, producing meaningful
offspring efficiently. Speciation in NEAT protects structural
innovations by reducing competition among differing struc-
tures and network complexities, thereby giving newer, more
complex structures room to adjust. Networks are assigned
to species based on the extent to which they share historical
markings. Complexification, which resembles how genes are
added over the course of natural evolution [11], is thus sup-
ported by both historical markings and speciation, allowing
NEAT to establish high-level features early in evolution and
later elaborate on them. Further, NEAT’s ability to evolve
increasingly complex ANNs fits well with this paper’s moti-
vation of evolving cognitive behaviors, which require poten-
tially complex evolved structure.

Note that as originally described, NEAT speciates the
population to encourage genotypic diversity. Because some
experiments in this paper explore the effects of diversity
maintenance on search, NEAT is extended to run without
speciation as a baseline, and speciation is also replaced in
some setups by the age-layered population structure (ALPS;
[6]), a diversity maintenance technique encouraging diversity
among the age of genomes instead of among ANN topologies.

Additionally, in some experiments in this paper NEAT is
also extended with a mechanism for lifetime adaptation. In
particular, in the learning task described later, ANNs are
augmented with neuromodulated plasticity, a biologically-
plausible [3] method for behavioral plasticity applied in sim-
ilar previous learning experiments [17, 21]. In this model,
an unsupervised learning rule modifies connection weights
based on postsynaptic activity. In addition, special neu-
romodulatory neurons can be added to the ANN by ran-
dom mutations; their role is to modulate the magnitude of
weight changes for the neurons to which they connect. In
particular, for each non-modulatory neuron, the sum of in-
coming activation from modulatory neurons (which do not
contribute to the non-modulatory neuron’s traditional ac-
tivation level) determines the magnitude of weight changes
for the non-modulatory node’s incoming connections. In this
way, neuromodulatory neurons can allow an ANN itself to
decide not only how to adapt connection weights but also
when. Following Risi et al. [17], the particular plasticity rule
is:

∆wji = tanh(mi/2) ∗ 35.95ai, (1)

where wji is the weight of the connection from neuron j to
i, mi is the sum of incoming modulatory activation, and ai
is the activation of neuron i.



2.3 Novelty Search
In contrast to most EAs, which tend to converge the pop-

ulation, novelty search is a divergent evolutionary technique.
It is inspired by natural evolution’s drive towards novelty. In
novelty search, novel behavior is rewarded directly instead
of progress towards a fixed objective [7, 8]. The idea is that
novelty can act as a proxy for many creative forces in nat-
ural evolution. In this way, rewarding only novelty allows
investigating the impact of such creative forces independent
of adaptive pressure to better fit a particular niche. This
paper applies novelty search both as a means of illustrating
deception when compared with objective-driven search, and
as a potential practical alternative to such objective-driven
search when evolving cognitive behaviors.

Tracking novelty requires little change to an evolutionary
algorithm aside from replacing a fitness function with a nov-
elty metric. Such a metric measures how different an indi-
vidual is from other individuals, thereby creating a constant
pressure to do something new. The key idea is that instead
of rewarding performance on an objective, divergence from
prior behaviors is rewarded.

In order to implement novelty search, novelty needs to be
measured. A novelty metric characterizes how far away the
new individual is from the rest of the population and its
predecessors in behavior space, i.e. the space of unique be-
haviors. A good metric should thus compute the sparseness
at any point in the behavior space. Areas with denser clus-
ters of visited points are less novel and therefore rewarded
less.

A simple measure of sparseness at a point is the average
distance to the k-nearest neighbors of that point. Intuitively,
if the average distance to a given point’s nearest neighbors
is large then it is in a sparse area; it is in a dense region if
the average distance is small. The sparseness ρ at point x is
given by

ρ(x) =
1

k

k∑
i=0

dist(x, µi), (2)

where µi is the ith-nearest neighbor of x with respect to
the distance metric dist, which is a domain-dependent mea-
sure of behavioral difference between two individuals in the
search space. Candidates from more sparse regions of the
behavior space then receive higher novelty scores.

If novelty is sufficiently high at the location of a new in-
dividual, i.e. above some minimal threshold ρmin, then the
individual is entered into the permanent archive that charac-
terizes the distribution of prior solutions in behavior space.
The current generation plus the archive give a comprehen-
sive sample of where the search has been and where it cur-
rently is; that way, by attempting to maximize the novelty
metric, the gradient of search is simply towards what is new,
with no other explicit objective.

However, even without an explicit objective, novelty search
is still driven by meaningful information. Behaving in a
novel way often requires exploiting the structure of the do-
main. For example, if the novelty of a robot’s behavior is
measured across many independent trials, learning from ex-
perience in any way (i.e. not necessarily such that it improves
objective performance) may help a robot to differentiate it-
self from previous behaviors that behave uniformly when
exposed to repeated trials in the same environment. Impor-

tantly, such learning behavior, first evolved without objec-
tive benefit, may later facilitate evolving the task’s solution.

Once objective-based fitness is replaced with novelty, the
underlying evolutionary algorithm operates as normal, se-
lecting the most novel individuals to reproduce. Over gen-
erations, the population spreads out across the space of pos-
sible behaviors.

3. THE T-MAZE DOMAIN
The approach in this paper is to compare the effectiveness

of different reward schemes in variants of an ER domain
designed to require evolving different cognitive abilities.

The common experimental setup consists of a simulated
mobile robot embedded in a T-Maze domain typical of ER
experiments [13, 17]. In the T-Maze, the robot begins in a
corridor and travels to the corridor’s end, where the path
splits into two branches. At the end of one branch there is a
high reward, while the other branch contains a low reward.
The imposed time limit prevents a robot from traversing
both branches, and the robot cannot differentiate rewards
until one is collected. Thus a successful robot can only
maximize collecting the high reward by intelligently deciding
which branch to traverse.

An advantage of the T-Maze is that it offers a simple
mechanism for isolating cognitive properties of robot behav-
iors through repeated trials of binary decision making. If the
ANN controlling the robot is flushed between trials (i.e. each
neuron’s activation is reset), information from a robot’s pre-
vious trials can affect successive trials only through explicit
allowances in experimental design. For example, in exper-
iments with communication, the goal is to evolve networks
that extract information from a given trial and communicate
it to the robot attempting the same task in the following
trial. A task-specific output of the evolved ANN is recorded
at a trial’s end and is interpreted as a communication signal,
which is given as an additional input to the robot at the be-
ginning of the next trial. The task-specific output and input
together constitute a single continuous-valued communica-
tion channel spanning trials; no other information can leak
between trials. In this way, any systematic changes in behav-
ior between such trials can be attributed to utilization of the
communication channel. Thus if trials are sequenced such
that success depends upon intelligently modulating behav-
ior, a successful outcome ensures that the desired cognitive
behavior has actually been evolved.

In contrast, when information is not isolated in such a way,
evolution often discovers mechanisms simpler than intended.
For example, it is often possible to exploit the environment
as a form of external memory or to leverage neural activation
between trials to differentiate behavior instead of through
synaptic learning or explicit communication.

The robot and its ANN controller are shown in figure 1,
and the two T-Maze maps such robots must explore in this
paper’s experiments are shown in figure 2. The Standard
T-Maze map (figure 2a) is similar to the classic T-Maze im-
ported from experiments in animal cognition [14], and has
been previously explored in previous ER studies [13, 17, 21].
Note that in the Standard T-Maze map, to navigate from
the starting point to one of the branches requires a relatively
simple behavior: the robot must be able to go forward and
decide which way to turn at the junction.

In contrast, in the Extended T-Maze map (figure 2b) the
required behavior is more complex: The robot must success-
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Figure 1: The T-Maze Robot. In the T-Maze domain stud-
ied in this paper, the ANN in (a) controls the robot. The envi-
ronmental sensors of the ANN are augmented with task-specific
inputs and outputs. In the Memory task, such inputs enable the
robot to perceive external stimuli. In both the Communication
and Learning tasks, such inputs allow the robot to perceive which
reward it collects. Additionally, in the Communication task such
neurons provide a channel through which to communicate and
receive information between trials. The layout of the robot’s sen-
sors is shown in (b). Each arrow outside of the robot’s body in (b)
is a rangefinder sensor that indicates the distance to the closest
obstacle in that direction. The solid arrow indicates the robot’s
heading.

R R 

(a) Standard T-Maze

R R 

(b) Extended T-Maze

Figure 2: T-Maze Maps. In both maps, an unfilled circle
represents the starting position of the robot and the R symbols
represent the two reward locations. In each T-Maze instance,
a high and a low reward will appear at the end of the maze’s
branches. The goal of a robot is to collect the high reward as
often as possible over all of its trials. The Standard T-Maze is
shown in (a), while (b) extends the T-Maze slightly to require an
additional turn, interfering with the optimal turn decision later
on in the maze. Note that while in both maps the high reward
is depicted on the left, the rewards’ locations will swap multiple
times across the repeated trials of a robot’s evaluation.

fully move forward, turn right, move forward to the junction,
and only then decide whether to turn left or right. Thus
while the extension to the maze may appear minor, the re-
quired behavior is much more complex. In this way, the
idea is to explore the scalability of approaches and to deter-
mine whether deception is exacerbated as problem difficulty
increases.

4. COGNITIVE TASKS
The three separate cognitive tasks tested in the underlying

T-Maze domain are designed to require evolution of commu-
nication, memory, and learning (figure 3). In all three tasks,
a robot is placed in either the Standard or Extended T-Maze
for many independent trials (figure 4), with the goal of col-
lecting the high reward as often as possible. However, the
high reward switches branches systematically such that con-
sistently collecting it requires evolving a particular cognitive
behavior. Note that the robot’s ANN is flushed between tri-
als to control information flow between trials, and that to

prevent overfitting, in each trial the robot’s initial location
and heading are slightly perturbed.

The Communication and Learning tasks are similar, but
differ in the mechanism by which information from one trial
can affect a robot’s behavior in successive trials. In both
tasks, robots are augmented with two sensors indicating
which reward the robot reaches at the end of an evalua-
tion. This reward information, combined with a mechanism
for information transfer, makes it possible to modulate be-
havior intelligently in the future.

In the Communication task, such information transfer is
provided by augmenting the robot’s ANN with an additional
output and input. Through such added neurons, the robot
can communicate information to itself in the following trial
(i.e. the added output is queried at the end of each trial,
and is supplied to the robot as an additional input in the
following trial). The communication input is set to 0 for the
first trial because in that trial there is no previous communi-
cation to relay. Note that because the robot sends the signal
to an identical ANN, the experiments do not investigate the
evolution of language. Instead, the task tests the ability to
distill information into a communication signal and to ef-
fectively modulate behavior through interpreting the signal.
Thus a successful communicating agent will observe when it
collects the low reward and communicate the need to visit
the opposite branch to itself in the following trial.

In contrast, in the Learning task, networks are augmented
with the ability to change network weights through neuro-
modulated plasticity as in several previous ER learning ex-
periments [17, 21]. That is, NEAT in this particular task
is extended with a model allowing the ANN to change its
weights through modulated learning rules. While network
activation is cleared between trials, connection weight mod-
ifications remain throughout an evaluation. Thus, a suc-
cessful learning agent, after observing which reward it has
collected at the end of a trial, can change its synaptic weights
if necessary to guide it to the high reward in the following
trial.

For the Communication and Learning tasks, how the re-
ward location varies over the trials that constitute an in-
dividual’s evaluation is shown in figure 4a. The idea is to
keep the reward’s location fixed long enough for adaptation
to be beneficial; that is, if reward location is constant for
at least three trials, an agent can consistently outperform a
policy always taking the same branch by adapting to take
the opposite branch whenever it collects the low reward.

The Memory task, unlike the Communication and Learn-
ing tasks, does not require learning between trials. As a
result, no information from one trial of the robot is allowed
to influence the next trial. The reason is that the tested be-
havior is to store information over the course of a single trial,
as in [13]; in particular, the task is inspired by the AX-CPT
working memory test [2] where two stimuli are presented
in succession. Thus, to behave differentially over combina-
tions of presented stimuli the ANN must remember the first
one; such memory is possible in NEAT’s ANNs through re-
current connections that maintain signals over time through
feedback loops.

In the beginning of each trial in the Memory task, the
ANN first receives as input either the A or the B stimulus.
The ANN is then activated (without the robot being allowed
to move) for 25 timesteps before the first stimulus is cleared.
The ANN’s inputs are cleared and it is then activated for 25
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Figure 3: Separate Cognitive Tasks within the T-Maze Domain. In all three tasks a robot’s goal is to collect the high reward
as often as possible. (a) In the Communication task, the robot must communicate between trials to consistently collect the high reward.
An output added to the ANN is queried at the end of an evaluation, and communicated as an input in the following trial. (b) In the
Memory task, a robot is first presented with time-delayed stimuli before it navigates the map. To consistently collect the high reward,
the ANN must develop short-term memory through recurrent connections. (c) In the Learning task, the ANN model is extended such
that a robot can modify its ANN’s connection weights to maximize collecting the high reward before it switches locations again.

(a) Communication and Learning Tasks

(b) Memory Task

Figure 4: Schedule of Reward Locations for Different
Cognitive Tasks. The locations of the high and low reward
vary over the trials composing a robot’s evaluation. Figure (a)
shows the locations for the 50 successive trials of the Communi-
cation and Learning tasks and figure (b) the locations for the 24
successive trials of the Memory task. Filled rectangles indicate
that the high reward is on the left branch of the T-Maze, while
unfilled rectangles indicate that it is on the right branch. Note
that the schedule is the same for the Communication and Learn-
ing tasks, and the number of trials before the reward switches is
varied to prevent overfitting. In the Memory task, the presented
stimuli cycle every four trials between AX, AY, BX and BY. Be-
cause the test is to distinguish AX from the other stimuli, in the
first trial and every fourth succeeding trial the high reward is on
the left branch, and for all others it is on the right branch.

additional timesteps without any stimulus. Then the ANN
receives as input either the X or Y stimulus for 25 timesteps.
Following the presentation of the stimuli, the robot is then
allowed to navigate through the T-Maze. If the stimuli pre-
sented in a particular trial are A and X, then the high reward
is placed on the left branch of the T-Maze; in the other three
situations (i.e. AY, BX, and BY) the high reward is placed
on the right branch. Thus when presented with either the
X or Y stimulus, only by remembering whether the A or B
stimulus had been presented previously can the robot con-
sistently choose the correct branch. The schedule of reward
locations for each trial in an individual’s evaluation is shown
in figure 4b.

5. METHODS COMPARED
For all experiments in this paper the underlying NEAT

neuroevolution algorithm [23] is applied. However, the evo-
lutionary incentive and type of diversity maintenance are
varied to explore the degree of deception in cognitive do-
mains. In particular, several objective-driven methods are
compared to a non-objective search method.

For the objective-driven methods, the main evolutionary
incentive is provided by an objective-based fitness function
typical of such domains. In each trial a robot’s fitness is
0 if it fails to collect any reward, 250 if it collects the low

reward, and 500 if it collects the high reward. A robot’s
overall fitness is the sum of its fitness score over all of its
trials. The intuitive motivation for this fitness function is
that it reflects the desirability of outcomes and is similar to
those applied in previous ER T-Maze domains [13, 17, 21].

The motivation for the objective-based methods is to ap-
ply a range of representative techniques. In total, four object-
ive-based methods are evaluated:

• The Baseline method is a neuroevolution algorithm
without any diversity maintenance. That is, for the
baseline runs NEAT’s standard diversity maintenance
method, speciation, is disabled. The motivation is to
determine whether a more sophisticated technique is
necessary to solve the tasks, and to provide a baseline
against which to compare more sophisticated methods.

• In the High Mutation method, mutation rates are in-
creased to make adding neurons and connections to the
ANN more likely; such increased structural mutation
rates may encourage evolving more complex ANNs.
This method follows a common practical principle of
simply increasing mutation rates as remedy for prema-
ture convergence.

• The Speciation method is identical to the Baseline
setup except genotypic speciation is enabled, i.e. this
method is the standard NEAT algorithm as described
in Stanley and Miikkulainen [23]. The purpose of geno-
typic speciation is to encourage exploring ANNs with
diverse topologies. In this way, speciation may aid
evolving cognitive behaviors because realizing them
may require evolving more complex ANNs.

• Finally, the ALPS method augments NEAT with an
implementation of ALPS [6], which is a popular ER
diversity maintenance technique. The basic idea in
ALPS is to protect younger genotypes from competing
with older genotypes by segregating genomes based on
their age. This method is complemented by regular in-
fusion of randomly-generated genotypes. In this way,
search never completely converges to a single local op-
timum. For a more complete description of ALPS, see
Hornby [6]. Note that speciation is also disabled in this
method so that there is only one diversity-maintenance
mechanism being tested.

With the aim of illustrating deception, a non-objective-
driven setup is also evaluated. In particular, the Novelty



method rewards only behavioral novelty (through novelty
search), instead of progress towards the desired objective.
Note that NEAT’s speciation is disabled in this method be-
cause preliminary experimentation showed that it decreased
performance.

Applying novelty search requires defining a space of be-
haviors through which it can search. The approach taken in
this paper is to define such a space from high-level summary
properties of a robot’s behavior across the trials of a cogni-
tive task. The idea is to create a tractable space of behaviors
that is similar in spirit to how a human might summarize a
robot’s performance. In this way the resulting measure of
novelty might grossly reflect a human’s measure of behav-
ioral distance. For example, in the Memory task, one might
summarize a robot’s behavior according to which branches
the robot most often visits and how often it collects the high
and low rewards. Thus novelty search’s behavioral charac-
terization in this task includes four values: what fraction of
trials the robot visits the left branch, visits the right branch,
collects the high reward, and collects the low reward.

In the Communication and Learning tasks a human ob-
server would likely pay special attention to a robot’s be-
havior in the trials when the location of the high reward
switches branches, and in the trial immediately following
such a switch. Such trials are informative because they en-
compass when the robot is expected to make a mistake and
then adapt its behavior. Thus in both these tasks, beyond
the four fractions measured in the Memory task, four addi-
tional fractions are added to the behavioral characterization:
the fraction of trials in which the robot reaches the high and
low rewards, for both trials in which the rewards switch lo-
cations and the trials that immediately follow such a switch.

Note that when novelty search explores such a space, it
is rewarded for finding combinations of such fractions differ-
ent from those the search has encountered in the past, with
no fixed objective. In other words, if neither behavior has
yet been encountered, a behavior maximizing the robot’s
ability to crash without collecting any rewards is as viable
as a behavior that consistently collects the high reward. A
more granular behavioral characterization was explored in
initial experimentation consisting of concatenating together
the outcomes of each trial. However, it performed worse
than the coarse behavioral characterization described in this
section, which was then adopted for the experiments.

6. EXPERIMENTS
All experiments were run for 500, 000 evaluations. For

all methods except ALPS, the steady-state rtNEAT algo-
rithm was applied with a population size of 500. For ALPS
a generational algorithm based on Hornby [6] was imple-
mented, with five age-layers of 100 individuals each (for a
total population size of 500) with a polynomial aging scheme
and an age gap of 20. For all methods except High Muta-
tion, NEAT’s add node mutation probability was 0.03 and
its add link probability was 0.15. In High Mutation, these
probabilities were raised to 0.1 and 0.3, respectively. For
all methods, the weight mutation power was 2.5 and the
survival threshold was set to 0.4.

Figure 5 compares the performance of the objective-based
search methods with that of novelty search across the three
cognitive tasks in the Standard T-Maze map. Indicative of
deception, in these tasks novelty search evolves solutions in
more than half of all runs, while the objective-based meth-

ods taken together evolve solutions in less than 20% of all
runs. In particular, in every pair-wise comparison between
novelty search and the objective-based variants in each do-
main, novelty search solves the task significantly more often
(Fisher’s exact test; p < 0.01). Additionally, of the 150 runs
of novelty search in the Standard T-Maze map, only one
failed to evolve a behavior that exceeded the performance
of the simplest purely-reactive controller (i.e. one that al-
ways turns the same direction at the end of the T-Maze). In
contrast, objective-based search more often failed to do so,
particularly in the Memory task.

Figure 6 similarly compares performance in the more dif-
ficult Extended T-Maze. In every pair-wise comparison be-
tween novelty search and the objective-based variants, nov-
elty search both solves the task more often and is more likely
to evolve a policy outperforming purely reactive behavior
(Fisher’s exact test; p < 0.01). Overall, performance of all
methods declines in this more difficult version of the T-Maze.
However, novelty search still consistently evolves behaviors
outperforming the basic reactive policy, and evolves solu-
tions in a significant percentage of runs. In contrast, the
only combination of objective-based method and cognitive
task to be solved in more than two out of 50 runs was High
Mutation evaluated on the Communication task. Perfor-
mance degradation was particularly acute in the Memory
task, where the objective-based methods never solved the
task and novelty search solved it in only 16% of runs.

Based on a pair-wise comparison over all tasks and do-
mains, Speciation was most effective out of the objective-
based methods in exceeding the performance of a reactive
agent (Fisher’s exact test; p < 0.01). However, Specia-
tion did not evolve solutions to tasks more consistently.
Thus while directly encouraging accumulating ANN struc-
ture may sometimes help narrowly to increase performance
it may not always be enough to overcome deception.

7. DISCUSSION AND FUTURE WORK
The results in this paper support the hypothesis that de-

ception is a central factor underlying the difficulty to evolve
cognitive behaviors. Such a result is important because it
indicts objective-focused selection pressure rather than the
encoding or evolutionary algorithm itself, which are more of-
ten the focus of refinement. The tendency of objective-based
search to converge to reactive behaviors highlights that the
necessary stepping stones leading to solving a cognitive task
often may not lie conveniently on the gradient of increasing
behavioral similarity to a task’s solution. For example, Risi
et al. [17] illustrated that the stepping stones towards evolv-
ing learning behavior often perform worse according to the
task objective than the population so far. Similarly, figure 7
plots the objective fitness scores for the lineage of a solution
for the Communication task in this paper: The innovations
facilitating the desired cognitive behavior are not recognized
by the objective-based fitness function. While deception has
previously been shown to become increasingly problematic
as problems become more complex [9, 10], this study is the
first to show that deception may be systemic when evolving
cognitive behaviors in particular. To overcome such decep-
tion likely requires refining selection. However, the results
here show that diversity maintenance techniques alone are
not always sufficient. The reason is that large digressions
from the gradient of objective-based fitness are needed to
establish the neural structure that enables cognitive behav-
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Figure 5: Performance in the Standard T-Maze across Cognitive Tasks. The ability for different methods to exceed the
performance of a reactive agent that traverses the same branch every trial, and to successfully solve the task, is shown for (a) the
Communication task, (b) the Memory task, and (c) the Learning task. Indicative of deception, novelty search solves each of the tasks
more consistently, and the objective-based methods fail to consistently evolve policies outperforming a purely-reactive one.
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Figure 6: Performance in the Extended T-Maze across Cognitive Tasks. The ability for different methods to exceed the
performance of a reactive agent that traverses the same branch every trial, and to successfully solve the task, is shown for (a) the
Communication task, (b) the Memory task, and (c) the Learning task. Illustrating that deception is worse in this more complex T-Maze
variation, all of the objective-based methods struggle to consistently evolve solutions outperforming reactive policies. Novelty search’s
performance also degrades, although it still solves each task in a significant percentage of runs.

ior. In particular, cognitive behavior often requires inte-
grating multiple independent adaptations that taken alone
do not increase performance in benchmark tasks like those
studied in this paper. For example, for communication to
improve performance in the T-Maze the information neces-
sary for correctly adapting behavior in the following trial
must be first distilled, such information must then be prop-
agated to the communication output of the ANN, and the
information from the communication input must be used to
actually modify behavior in the following trial. In this way,
developing any of these adaptations in isolation will not im-
prove performance, which may undermine their evolution by
objective-driven search.

In contrast, novelty search rewards fledgling instances of
cognitive ability that enable novel behavior in the T-Maze
even if it serves no objective purpose. The performance ad-
vantage of novelty search in this paper both highlights decep-
tion and points to the importance of open-ended search pro-
cesses in general when tackling problems requiring higher-
complexity behaviors. Beyond novelty search, other exam-
ples of more open-ended searches, such as multi-objectiviza-
tion [12, 13, 25], artificial life virtual worlds [16], and meth-
ods driven by curiosity [15, 20] are thus also promising ap-
proaches for generating complex cognitive behaviors. In
particular, combining pressure towards behavioral diversity
with pressure towards an objective is often an effective ap-
proach in practice [10, 13, 25]; however, searching only for
novelty (i.e. without any objective-based optimization [8]) is
used in this paper to isolate the role of deception.

In addition to open-ended search processes, more open-
ended domains may also be necessary to scale to increas-
ingly complex cognitive tasks. The problem is that do-
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Figure 7: Deceptive Stepping Stones in the Communi-
cation Task. The objective fitness scores are shown for the
ancestors of the eventual solution evolved in a representative run
of novelty search in the Standard T-maze for the Communication
task (crossover was disabled for this particular run to enable a sin-
gle line of descent). Key innovations that facilitate the eventual
solution receive lower fitness scores than their predecessors, and
therefore would be unlikely to be preserved by objective-based
search – yet novelty search can build on them because they are
deemed more novel than their predecessors. For example, the an-
cestor highlighted by the arrow receives a fitness score of 12, 750,
which is a significantly worse than the one received by the simple
reactive policy of always going to the same branch of the T-maze
(18, 750), discovered earlier in evolution (by the fifth individual in
the lineage). Yet because the lower scoring policy reacts when the
reward location changes, it proves to be a better stepping stone
to an effective solution policy.

mains imported from animal cognitive tests, like the T-
Maze, narrowly constrain possible agent behavior to a sin-
gle highly-structured task. In doing so, such domains simi-
larly constrain evolution’s creativity, which may often pro-
ceed through exapting structures evolved for one purpose



to suit another [4]; if every behavior must relate to navi-
gating through a T-Maze, there is little to exapt. In other
words, both objective-based search and constrained domains
may serve to focus evolution, when what may sometimes be
needed is less directed focus.

An interesting direction for future work is to apply novelty
search to a single task that requires integrating multiple cog-
nitive behaviors. For example, evolved agents able to com-
municate and learn could potentially enable effective teams
for Robocup soccer or other complex group-based tasks.

8. CONCLUSION
This paper explored the hypothesis that deception com-

plicates evolving ANNs capable of cognitive behavior. Ev-
idence for such a hypothesis was provided through experi-
ments contrasting objective-driven search with novelty search
in tasks requiring communication, memory, and learning.
Overall, novelty search more effectively evolved solutions
across the tested tasks, although the performance of all
tested methods declined in the harder domain variant. The
conclusion is that evolving cognitive behaviors may require
both increasingly open-ended search processes and domains.
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