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Abstract

based stories and generates full inference chains describing the stories.

1 Background and Issues

1987).

2 Criteria for a Distributed Semantic Representation

and Kawamoto, 1986] does not meet this criterion.
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120.3.1.

This paper describes construction of distributed semantic representations (DSRs) which have many
symbol-like properties while retaining the nice features of PDP (Parallel Distributed Processing) repre-
sentations. DSRs are formed by encoding structured objects as triples in auto-associative recurrent PDP
networks. DYNASTY is a distributed connectionist model of story paraphraser, which reads script/goal-

A distributed representation that is able to represent conceptual knowledge must have four properties:
(1) Automaticity - The representation must be acquired through an automatic learning procedure, rather
than be set by hand. For instance, the hand-coded microfeature-based representation used in [McClelland

Issues in distributed/holographic and localist/punctate representation of high-level knowledge have received
a lot of attention recently. While [Feldman, 1986] has giveh arguments against both extreme punctate and
extreme holographic representations, PDP researchers, such as [Rumelhart et al., 1986b], have listed nu-
merous advantages that distributed representations have over localist representations. At the same time, a
number of techniques have been developed for forming distributed representations, including back propaga-
tion [Rumelhart et al., 1986a] and extended back-propagation [Miikkulainen and Dyer, 1988], conjunctive
and coarse codings [Hinton et al., 1986], microfeature-based representations [Waltz and Pollack, 1985; Mc-
Clelland and Kawamoto, 1986], and tensor product representations [Dolan and Smolensky, 1989; Smolensky,

Forming distributed representations which are able to support higher-level reasoning and represent con-
ceptual knowledge is not an easy task. Whereas the “von Neumann symbol” -approach starts with random
bit strings {like ASCII code) and builds structural relationships between symbols to represent conceptual
knowledge, the distributed (or so-called “subsymbolic” [Smolensky, 1988]) representation ought to implement
both structure and semantics below the symbolic level as a pattern in an ensemble of neuron-like elements.

{2) Portability - The representation should be global rather than locally confined to its training envi-

- ronment. That is, the representation learned in one training environment must be portable to another task
environment. For example, the representation in Hinton’s family tree example [Hinton, 1986] can be said to
meet the automaticity criterion, but not the portability criterion, since it cannot be used in any other task.
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(8) Structure encoding — [Feldman, 1986] has argued that any conceptual representation must support
answering questions about the structural aspects of the concept. For example, part of the meaning of
“irresponsible” is that there was an obligation established to perform an action and the obligation was
violated. To answer a question about the meaning of “irresponsible” requires accessing these constituent
structures. Any conceptual representation must have structural information in the representation itself about
the constituents of the concept. Purely holographic representations alone do not meet this criterion.

(4) Similarity-based represeniations ~ Distributed representations gain much of their power by encoding
statistical correlations in the training data, and thus forming a characterization of the environment. The
statistical correlations give connectionist models their ability to generalize. To support generalization, dis-
tributed representations should exhibit semantic content at the micro level, i.e. similar concepts should have
similar distributed representations. This criterion provided the original inspiration for microfeature-based
encoding. Representations for similar concepts are similar because they share similar microfeatures.

3 Forming Distributed Semantic Representations (DSRs) of
Words

In this section we show how DSRs are formed and demonstrate their validity for the task of encoding word
meanings. _

There are two alternative views on the semantic content of words: (1) The structural view defines a word
meaning in terms of its relationships to other meanings. (2) The componential view defines meaning as a
vector of properties (e.g. microfeatures). We take an interim view - that meaning can be defined in terms of
a distributed representation of structural relationships, where each relationship is encoded as a proposition.
Examples of propositions are verbal descriptions of action-oriented events in everyday experiences.

3.1 Representing DSRs

The intuition behind DSRs is based on our observation that people sometimes learn word meanings through
examples of their relationships to other words. For example, after reading the 4 propositions below, the
reader easily forms an idea of the meaning of “foo”. ‘

e propositionl: The man drinks foo with a straw.

e propositionZ: The company delivers foo in a carton. |
¢ propositiond: Humans get foo from cows.

e proposition4: The man eats bread with foo.

Apparently, “foo” means something similar to “milk™. An interesting fact is that the meaning of “foo” is
not fixed, rather it is gradually refined as the reader experiences more propositions in varying environments.
To develop DSRs based on propositions, we have to define the structural relationships between concepts with
respect to those propositions. For action-oriented events describing propositions, we use thematic case-role
representation. The case-role theory was originally developed by [Fillmore, 1968}, and it has been extended
in natural language processing systems [Schank and Riesbeck, 1981]. For example, the DSR of “milk” can
be defined as the composition of case-roles using these 4 propositions:

*milk* = F; ( G. {object, *proposition1*), G, (object, *proposition2*), G, (object, *proposi-
tion3*), G, (co-object, *propositiond*),.....)

where *milk* is the representation of the meaning of “milk”; F; is a function that integrates all the
propositions involving the concept of milk, and G, is a function combining the case-role relationships into the
propositions. In the same way, each proposition is temporally defined as the composition of the constituent
case-role components such as: :

*propositionl* = F; ( G. (agent, *man*), G. (verb, *drink*), G, (object, *mitk*}, G. (instru-
ment, *straw*))
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Figure 1: Two XRAAM architectures for learning DSRs. Each network has an input, hidden, output,
and teaching layer. Once a concept (or proposition) in the triple form has been auto-associated, the pattern
of activation in the hidden-layer units is stored in the corresponding global dictionary (or proposition buffer)
as the representation of the concept (or proposition). The concept-encoding network forms a representation
of a symbol by encoding all propositions involved in representing that symbol, while the proposition-encoding -
network forms a representation of a proposition by encoding all the symbols involved in representing that
proposition. Thus, symbols in the global dictionary are fed to the input/output layers of each XRAAM. In
this figure, the dark lines designate the data flow in the concept-encoding procedure.

3.2 Learning DSRs

We have developed XRAAMs for automatically Iearmng DSRs. XRAAMs (extended recursive auto-
associative memory) are based on Pollack’s RAAMs [Pollack, 1988], but have external memory to store
the developed internal representations. The basic idea is to “re-circulate” the internal representation (hid-
den layer of the network) back out to the environment (input and output layers of the network). This idea
has been suggested in various forms, e.g. as FGREP [Miikkulainen and Dyer, 1988], Recursively Reduced
Descriptions [Hinton, 1988], Recursive Auto-Associative Memories [Pollack, 1988], Sequential Connectionist
Networks [Jordan, 1986; Elman, 1988], and it has been used in natural language question-answering [Allen,
1988], parsing [Hanson and Kegl, 1987) and sentence comprehension [St. John and McClelland, 1989).
Figure 1 shows two XRAAM modules in our story processing architecture.

The learning portion of the XRAAM architecture contains two symbolic memories (Global Dictionary
and Proposition Buffers) and two 3-layer ARPDP (auto-associative recurrent PDP) networks. The input
and output layers of each network have 3 banks of units (figure 1). After all 3 banks have been properly
loaded, the DSR emerges in bankl as a result of an auto-associative BP (Backward Propagation) process
[Rumelhart et al., 1986a].

The DSR learning process consists of two alternating cycles: Concept Encoding and Proposition Encod-
ing. Below we informally describe each cycle. In each cycle, all concept and proposition representations start
with a “DON’T CARE” pattern, e.g. 0.5, when the activation value range of each unit in network is 0.0 to
1.0. The case-role representation is fixed using orthogonal bit patterns (for minimizing interference).

Concept Encoding Cycle:

1. Pick one concept to be represented, say CON1,

2. Select all relevant triples for CON1. In the *milk* example, they would be triples like (*milk* object
propositionl), (*milk* object proposition2}, (*milk* object proposition3), etc. For the first triple, load
the initial representation for CON1 into bankl.
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3. Load the case-role representation into bank2, and load its corresponding proposition into bank3. In the
*milk* example, for the first triple, bankl, bank2, and bank3 are loaded with bit patterns for *milk*,
object, propositionl respectively.

4. Run the auto-associative BP algorithm, where the input and output layers have the same bit patterns.

5. Re-circulate the developed {hidden layer) representation into bankl of both the input/output layers
and perform step3 to step5 for another triple until all triples are consumed.

6. Store the developed DSR into the global dictionary and select another word concept to be represented.

Proposition Encoding Cycle: Basically this cycle undergoes the same steps as the Concept Encoding
Cycle, except that now we lead bankl, bank2, and bank3 with the proposition to be represented, the case-
role, and its corresponding concept representation (DSR). The result of the encoding is stored into the
proposition buffer which can be flushed and reused after we acquire all the necessary stable bit patterns for
all concepts.

Now the overall DSR learning process will be:

. 1. Perform the entire concept encoding cycle.
2. Perform the entire proposition encoding cycle.

3. Repeat stepl and step2 until stable patterns are obtained for all concepts.

In this process,the integration function F; is embedded into the dynamics of the Recursive Auto-
Associative Stacking operation [Pollack, 1988] and the combination function G, is a concatenation of two
bit patterns.

3.3 Decoding DSRs into the constituents

The decoding process is the reverse of encoding: We load the concept representation in the hidden layer of
the concept encoding network and perform value propagation until we get the desired case-role in bank2 and
proposition in bank3 of the output layer. Next, we load the resulting proposition in the hidden layer of the
proposition encoding network and get back the constituent case-roles and concept representations. Figure 2
shows the decoding architecture.

3.4 Experiment: Learning DSRs for Nouns and Verbs

We conducted a number of experiments to see how well XRAAM networks learn DSRs for noups and verbs.
Proposition generators similar to the ones used in [McClelland and Kawamoto, 1986 were used to generate
60 propositions. Each category in the generators was replaced by proper fillers for each proposition. We
analyzed each proposition’s case structure in order to load them into our network architecture. Table 1 shows
proposition generators with their case structures and table 2 shows concept categories with their fillers.

In this simulation, both the concept encoding network and the proposition encoding network have a 30
unit input layer (each bank has 10 units), a 10 unit hidden layer, and a 30 unit output layer. The DSRs
and proposition representations are 10 units. Figure 3 shows the DSRs developed for a number of nouns
and verbs. These are snapshots of 120 epochs, where one epoch is 200 cycles of autoassociative BP for each
concept and proposition. Notice that the learned representations show similarities according to the concept
categories. Words in the same semantic category have similar representations because they behave similarly
in the given propositions. Interestingly, words with multiple categories (e.g. dog) develop representations
distinct from words with a single category (e.g. wolf). This is because words with multiple categories can
be considered to have multiple “usages”. For example, the word “dog” is used as both the AGENT and
CO-OBJECT in the proposition generators.

In order to see the similarities more clearly, we have run the merge clustering algorithm {Hartigan, 1975)
on the learned DSRs. Figure 4 shows the clustering analysis results. The DSRs belonging to the same
categories are merged early in the process.
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P numb. P Gen. Case Structures
Pl human ate AGENT-VERE
p2 human ate food AGENT-VERB-OBJECT
p3 human ate food with food AGENT-VERB-OBJECT-COOBJ
p4 human ate food with ntensil AGENT-VERB-CBJECT-INST
p® - animal ate ) ) AGENT-VERB
p6 human broke fragile-object AGENT~YERB-0BJECT
p7 human broke fragile-object with breaker AGENT-VERB-OBJECT-INST
P8 breaker broke fragile-object INST-VERB-OBJECT
9 : animal broke fragile-object AGENT-VERB-OBJECT
pl0  fragile-object bIoke OBJECT-VERB
pil - human hit thing ) AGENT-VERE-CBJECT
pi2 human hit human with possession AGENT-VERB-OBJECT-COOBJ
p13  human hit thing with hitter AGENT-VERB-OBJECT-INST
pi4 - hitter hit thing INST-VERB-OBJECT
p15 : human moved AGENT-VERB
P16 | human moved object AGENT-VERB-OBJECT
i pl7 ~ animal moved AGENT-VERB
‘ pl8 object moved OBJECT-VERE

Table 1: Proposition generato;rs.
bers and case structures. Each category slot (e.g human)
{e.g. man).

proposition generators.

The proposition generators are presented with their proposition num®
can be filled with any of the concepts in the table 2
The OBIECT role ip the case structures is different from the category name “object” in the

‘Catepories

Concept lliers
:human man, womanh
.animal dog, wolf
‘object ball, desk
‘thing human, animal
“food cheese, spaghetti
‘utensil tork, spoon
‘fragile-object plate, window
‘hitter all, hammer
"breaker hammer, rock
possession ball, dog

Table 2: Categories and their filler concepts.
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Figure 3: Learned DSRs of concepts with their categories. The experiment was done using momentum
accelerated backpropagation [Rumethart et al., 1986a, page 330]. Learning rate varied from 0.07 'té 0.02;
momentum factor varied from 0.5 to 0.9. The concepts and propositions were learned in 120 epochs; one

epoch is 200 cycles of auto-associative backpropagation. The values range between 0.0-1.0, shown by the
degree of box shading.
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Figure 4: Merge clustering the learned DSRs. The numbers designate the time step. At each step, the
clusters with the shortest average Euclidean distance were merged.
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Figure 5: DYNASTY top-?level architecture. The figure depicts the systemn during story processing
performance phase. The uni/bi-directional arrows designate the information flow between modules. The GD
contains word symbols and DSRs as commeon vocabularies.

Even if the two DSRs belong to the same category, the clustering steps are different according to the
homogeneity of their usages. For example, the cheese and spaghetti are clustered at early time steps
since they are mainly used as OBJECT, but dog and possession are clustered at later time steps because
dog is also used as AGENT (in animal category) as well as as CO-OBJECT (in possession category). The
somewhat non-intuitive clustering of human with food can be explained in the same way. The human
also has multiple “usages”, that is, human was used as both AGENT and OBJECT (Note human is also
a concept filler for the thing category). Bui since human and food are not in the same category, they are
clustered at a later step (step 13).

Interestingly, the representations of propesitions also exhibit similarity structures, i.e. propositions in-
volving similar case-roles and fillers have similar representations. These representations for the propositions
can also be seen as higher-level representations for event structures. We postulate that this kind of event rep-
resentation could be used in connectionist schema processing systems such as reported in [Dolan and Dyer,
1987; Lee et al., 1989]. DSRs show many similar properties to the Recursive Distributed Representations
(RDR) [Pollack, 1990] with respect o recursiveness and structure encoding/decoding. But unlike RDRs,
DSRs have word-level semantics in themi so that they can be utilized not only in syntactic-level applications
[Chalmers, 1990] but also in conceptual-level applications such as script-based story processing.

4 DYNASTY: Distributed Connectionist Story Paraphraser

DYNASTY {Lee et al., 1990] is a large-scale connectionist system that reads input stories and paraphrases
the stories according to its knowledge of scripts and goals/plans. DYNASTY consists of several connectionist
network modules, each communicating with the global dictionary (GD). Figure 5 shows top level DYNASTY
architecture in the performance phase.

During the training phase, distributed semantic representations (DSR) for word-concepts are developed
by the DSR-learner {discussed in the previous sections), and stored into the GD. During performapce phase,
DYNASTY reads the story word by word, and produces paraphrases of it.

Suppose the input story goes as follows:

John entered Chart-House. John ate steak. John left a tip.

The sentence-to-triple-parser (ST-parser) parses the input sentence into event triple forms such as:
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[ev10 ACT entered], [ev10 AGENT John), [evi0 TO Chart-House].
[evl4 ACT ate], [evl4 AGENT John)], [evl4 OBJECT steak).
[ev16 ACT left], [evi6 AGENT John], [ev16 OBJECT tip).

While the ST-parser is parsing the sentence, it accesses the GD to convert each word-concept symbol into
a distributed pattern (DSR). GD is a symbol table which can be used to convert the symbols to the corre-
sponding DSRs, and DSRs to their corresponding symbols. Next, event triples consisting of the distributed
patterns are input to the script or goal/plan subsystem. In the event triples, the event numbers come from
the training data and have no effect in story processing. If the script subsystem can select the appropriate
script for the input story, it produces script-based paraphrases. If the script subsystem cannot find an ap-
propriate script, it passes the event triples to the goal/plan subsystem where the story is paraphrased using
goal/plan-knowledge. Since the example story is script-based, the script subsystem produces the script-based
paraphrase in event triple forms such as:

[ev1 ACT entered], [evl AGENT John], [evl TO Chart-House].

[ev2 ACT seated], [ev2 AGENT waiter), [ev2 OBJECT John].

[ev3 ACT brought), {ev3 AGENT waiter], [ev3 OBJECT menul).

[ev4 ACT read], [ev4 AGENT John), [evd OBJECT menu).

[ev5 ACT ordered], [ev5 AGENT John), [ev5 OBJECT steak].

lev6 ACT ate], [ev6 AGENT John), [ev6 OBJECT steak].

{ev7 ACT paid], [ev7 AGENT John], [ev7 OBJECT bili).

[ev8 ACT left), [ev8 AGENT John], [ev8 OBJECT tip).

[ev9 ACT left-for], [ev9 AGENT John), [evd FROM Chart-House], [ev9 TO home].

The triple-to-sentence generator (TS-generator) takes each subsystem’s output and converts it to the
surface forms such as: -2

John entered Chart-House. Waiter seated John. Waiter brought the menu. John
read the menu. John ordered a steak. John ate the steak. John paid the bill.
John left a tip. John left Chart-House for home.

The TS-generator accesses the GD network to convert the distributed pattern of each word-concept into its
corresponding symbol while it is generating sentences from the event triples.

4.1 Script-processing subsystem

Figure 6 shows the script-processing subsystem with its intermediate representations.

The event-encoder takes the event triples and builds event representations (10-bit vector with continuous
values). The sequence of event representations is fed to the script-recognizer, which selects an appropriate
script pattern and its role-bindings. In the above example, it selects the restaurant script with customer
bound to John, restaurant bound to Chart-House and food bound to steak. If it cannot select tie proper
script (the output of the script-recognizer is not clear), the event representations are input to the goal /plan-
analysis subsystem to be processed. The selected script pattern goes to the backbone-generator, which
produces the entire paraphrase as a sequence of event representations. The backbone event representations
are decoded using event-encoder, which produces event triples (as shown in the previous section}. The output
of the script subsystem is input to the TS-generator, which generates the script-based paraphrase.

4.2 Goal/plan-analysis subsystem

The goal/plan-analysis subsystem has a similar architecture as the script-processing subsystem. When
DYNASTY reads a goal-based story such as:

John was hungry. John picked up the restaurant-guide. John got into a car

it does not have an appropriate script trained for this sentence, and the event triples of this story go to
the goal/plan subsystem. For this example, the ST-parser’s output looks like the following (all word-concept
symbols are replaced with their DSR patterns):
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[evT STATE hungry], [ev7 AGENT John).
[ev8 ACT picked-up), {ev8 AGENT John}, [ev8 OBJECT restaurant-guide].
[evd ACT got-into], [ev9 AGENT John], [ev9 LOCATION car]. :

The goal/plan subsystem produces a goal/plan inference chain for each action of the planner as output
paraphrases. Figure 7 shows the goal/plan analysis architecture.

The event-encoder produces the event representations {10-bit vector) from the event triples in the same
manner as in the script subsystem. If the event is a state (first event)!, then the GP-recognizer converts it to
a goal representation, and makes the context goal of this story. If the event is an action, the GP-recognizer
selects a proper goal/plan for this event using the first event as a context and passes the selected goal/plan
representation to the GP-rel-associator. For example, for the first action (second event ev8 in above triples),
the GP-recognizer selects the following plan (as a 10-bit plan representation) under the “ev7” context:

[p13 PLAN pb-read], [p13 AGENT John]. {[p13 OBJECT restaurant-guide].

From this plan, the GP-rel-associator produces a goal/plan inference chain (under the satisfy-hynger
context goal which is converted from the first event in the story) and decodes the goal /plan representations
in the chain into the goal/plan triples such as:

[p13 PLAN pb-read), [p13 AGENT John). [p13 OBJECT restaurant-guide].
(g2 GOAL d-know], [g2 AGENT John], {g2 OBJECT restaurant-location].
{pl PLAN pb-drive], [pl AGENT John], [pl TO restaurant].

[g3 GOAL d-cont], [g3 AGENT John)], [g3 OBJECT food].

[p2 PLAN pb-eat], {[p2 AGENT John], [p1 OBJECT food).

[gl GOAL s-hunger], [g1 AGENT John).

The chain production continues until GP-rel-associator produces an inferred (known) goal or plan. For
the above example, the s-hunger goal was inferred from the first event so it is a known goal. From this

output chain, the TS-generator produces the goal/plan-based paraphrase as an explanation for this event
such as:

John will read the restaurant guide. Because John wants to know the
restaurant-location. And then John will drive to the restaurant. Because John

LIn the story, first event is always set up as a description of the planner's state from which we can extract the planner’s

current goal.
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Figure 7: Goal/plan-analysis subsystem architecture.

wants to take control the food. And then John will eat the food. Because John cu
wants to satisfy-hunger.

The fixed word (“because™ and “and then”) is inserted automatically in front of each goal or plan. For
the third event (ev9), the analysis process is the same except that DYNASTY considers all the goals and
plans inferred during the past processes of this story as known goals and plans, and stops processing when
it produces one of these known goals and plans.

4.3 DYNASTY training configuration

In the previous section, we discussed how DYNASTY processes script/goal-based stories. But processing is
only possible after DYNASTY has been properly trained with appropriate training data. During training,
DYNASTY extracts the statistical regularities in the data, which makes it possible to generalize into new
stories. The different modules of DYNASTY are trained separately and in parallel. Training consists of
two steps: (1) the DSRs are developed and stored in a global dictionary, and (2) each processing module is
‘trained with the GD. Each module has its own training data, and is trained parallel using the BSRs in the
GD as a common vocabulary.

5 Conclusion

We have proposed distributed semantic representations (DSRs) as an an adequate foundation for constructing
and manipulating conceptual knowledge. DSRs are developed automatically in an XRAAM-based architec-
ture. Qur experiments indicate that DSRs have many desirable properties for high-level cognitive processing.
We have shown that DSRs can serve as constituents of connectionist cognitive architectures by constructing
an architecture that performs script/goal-based story understanding using recurrent connectionist modules
(autoassociative or heteroassociative).

DYNASTY, a modular connectionist system for high-level inferencing can (1) automatically form dis-
tributed representations of word-concepts, events and goals/plans from the input sentences in the script/goal-
based story understanding task, {2) generate complete script event sequences from fragmentary inputs, and
(3) generate goal /plan inference chains from input actions. Moreover, the high-level representations {DSRs of
concepts, events, scripts, and goals/plans) contain constituent structure that can be decoded and extracted,
making the semantic content available for multiple tasks.
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A lesson to be learned from the DYNASTY project is that many of the problems of the “one gigantic BP
network™-approach in natural language understanding can be overcome with modular network architecture
with suitable distributed representations and symbolic Al constraints.
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