
Grounding Robotic Control with Genetic

Neural Networks

Diane Law and Risto Miikkulainen
Department of Computer Sciences

The University of Texas at Austin, Austin, TX 78712

dianelaw,risto@cs.utexas.edu

Technical Report AI94-223

May 1994

Abstract

An important but often neglected problem in the �eld of Arti�cial Intelligence is that of grounding
systems in their environment such that the representations they manipulate have inherent meaning
for the system. Since humans rely so heavily on semantics, it seems likely that the grounding
is crucial to the development of truly intelligent behavior. This study investigates the use of
simulated robotic agents with neural network processors as part of a method to ensure grounding.
Both the topology and weights of the neural networks are optimized through genetic algorithms.
Although such comprehensive optimization is di�cult, the empirical evidence gathered here shows
that the method is not only tractable but quite fruitful. In the experiments, the agents evolved a
wall-following control strategy and were able to transfer it to novel environments. Their behavior
suggests that they were also learning to build cognitive maps.

1 Introduction

In his Chinese Room thought experiment, John Searle (1980) posed a serious challenge to Arti�cial
Intelligence. He argued that the real problem with the computational theory of mind as espoused by
AI Functionalism is that it leaves out semantics, since this theory implies that intelligence requires
only the right kind of symbolic manipulation (i.e., syntax alone). His article provoked a spate of
replies. Although most of them make important points, none have really addressed Searle's main
objection. In order to answer his argument directly we must stipulate causal connections between
the environment and the system. If we do not, there can be no referents for the symbol structures
that the system manipulates and the system must therefore be devoid of semantics. This is not
only a philosophical problem; the lack of semantics in traditional AI programs has given rise to
serious practical problems as well. Cases in point are the well-known frame problem (McCarthy and
Hayes, 1969), the ability to react appropriately in novel situations and the problem of scalability
in general.

How can we address this requirement for Arti�cial Intelligence? In a LISP program, the symbol
obstacle means no more to the machine than does G1089, although it means something to the
programmer or to a human user. As Harnad (1990) puts it, "How can the semantic interpretation of



a formal symbol system be made intrinsic to the system, rather than just parasitic on the meanings
in our heads?" In order to meet this requirement, �rst, it is necessary for the system to be able
to interact causally with its environment. This implies embedding the system in a robotic agent.
Secondly, there seems at present to be no alternative to using neural networks, since this is the only
computational method available that can map sensory inputs directly to internal representations
without the explicit intervention of the programmer. Lako�, arguing for the necessity of using
neural networks in conjunction with a sensorimotor system connects these two requirements:

One cannot just arbitrarily assign meaning to activation patterns over neural networks
that are connected to [a] sensorimotor system. The nature of the hookup to the body
will make such an activation pattern meaningful and play a role in �xing its meaning
(1988).

If we can agree that the knowledge that an agent eventually has must be learned, rather than
hard-coded, then we will also want to avoid building too much a priori knowledge into the neural
network that represents its processor. However, we still require a network that is compact and that
is su�ciently organized to do the job. We want the demands of the task itself to impose structure on
the network and we want the network to learn from the environment, rather than from an explicit
teacher. These prerequisites leave us with evolution as a guiding principle and thus, the natural
choice for developing such a network is the use of a genetic algorithm (Holland, 1975; Goldberg,
1989), which optimizes the networks both in terms of connection strength and topology.

This project is a �rst step towards building such a grounded system, starting from the most
basic capabilities. Since the �rst requirement for a mobile robotic agent is merely to be able to move
about in a reasonable fashion, it is necessary to begin with basic control strategies. It is important
that the robot be able to roam its environment without getting stuck up against obstacles and to
have some strategy for determining (at least roughly) where it is, as well as a strategy for moving
reliably from one point to another. The idea is similar to one presented as the Critter Problem,
originally formulated by Ron Rivest in 1984 (Kuipers 1985). The agent is placed in an environment
with a set of sensors and e�ectors, but without any a priori knowledge of the relationship between
its sensors, e�ectors and surroundings. The task is to learn by experience what those relationships
are and to learn to respond appropriately in a wide range of situations.

While there are several groups doing similar research, all di�er in some respects from the current
approach. Brooks' (1991) subsumption architecture is an attempt to control robot behavior by
reaction to the environment, but the emphasis is not on learning the relation between sensors and
e�ectors and much more knowledge must be built into the system. Pfeifer and Verschure (1992)
are interested in grounded robotic agents, but they specify the network architecture, explicitly
building in several assumptions and basic control strategies. Similarly, Patel and Schnepf (1992)
also start with basic control rules, proposing the use of modular parallel learning classi�er systems
to elicit controlled robotic behavior. In the area of tabula rasa learning, Rivest and Schapire
(1993) have approached the problem with deterministic �nite state automata that depend on a
discrete environment, while Pierce and Kuipers(1991) have used reinforcement learning. Collins
and Je�erson's Ant Farm (1990) is closest in spirit to the present study, since they also rely on neural
networks developed by genetic algorithms to simulate foraging behavior, but the environment and
movement are discrete, and wandering behavior is entirely random during the search phase, while it
is directed by explicit pheromone paths during the recruitment phase. The approach developed here,
in contrast, explicitly rejects built-in task-speci�c knowledge, works within a continuous (simulated)
environment and leaves the entire structure of the processing machinery up to evolution. Behavior

2



Figure 1: Screen image showing the environments for six of the robots.The robots are represented

as small circles, each with a white radius to show current orientation. The small black dots around the

perimeters are markers used to measure wall-following behavior.

is not elicited through any sort of external feedback, such as that provided by supervised learning
techniques, but by a much more general, unsupervised method.

2 Task description and representation

This project was essentially a feasibility study to see whether neural networks developed through
genetic algorithms would be able to learn the connection between the input they receive from the
environment and the appropriate motor outputs that would allow them to pursue a wall-following
strategy. Wall-following is one of the basic control mechanisms for robotic agents and is a non-trivial
task, since walls must simultaneously attract and repel the robots. This ability is fundamental,
since unless the agents can move systematically, they cannot begin to map their environments, nor
pursue higher-level goals.

2.1 The robots and their environment

There were 196 simulated agents per generation and each was placed in a random location in a
separate room-like environment with a random initial orientation (�gure 1). During training, this
room was a simple rectangle. The agents themselves are represented as a circle with a diameter of 5
pixels and are equipped with a bump sensor and 10 ray-tracing range-�nders, arranged at 20-degree
increments in a semi-circle around the front of the robots. These sensors were chosen because they
are common on physical robots. The agents produce three numbers as output, determining the
agents' movement. The �rst speci�es the change in angular direction (between 0 and 180 degrees),
the second determines the distance to travel and the last indicates whether the change in direction
should be positive or negative (i.e., a turn to the left or to the right). The cell for each robot
measures 72 by 54 pixels and the range-�nders can detect an object within no more than 15 pixels,
so this area quali�es as large-scale space. The agents must move between two and fourteen pixels
on each iteration. This variability in distance allows the agents to move to a nearby wall without
colliding with it from virtually any starting position. A continuous environment is simulated as
closely as possible by allowing the agents to change direction by one-degree increments and travel
distances varying by one pixel.

3



0

1

2

3

0 1 2 3

4

5

6

4 5 6

7

7
0

1

2

34

5

6

000 0

0

000 0

1

1

1

1

1

000

0

0

0

00

0

0

0

0

1

1

1

1

1

11

1

1

1

1

1 0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

inputoutputsource neuron

de
st

in
at

io
n 

ne
ur

on

Figure 2: Network encoding. To the left is a small sample connectivity matrix, where grayed cells

represent an unused node. To the right is depicted the corresponding network topology. Node 0 is designated

as input and node 6 as output in this network.

2.2 Network representation

The neural networks are represented genetically in three parts. The �rst is a bit string interpreted
as a two-dimensional array (�gure 2). This array speci�es the connectivity and overall topology of
the network. The neural units are numbered and connections go from column to row. Thus if the
bit in row i, column j is set, it speci�es a connection from node j to node i. Using this method
provides for arbitrary connectivity, speci�cally allowing for recurrent connections, including self-
reinforcing or inhibiting connections from a unit back to itself, which is important if the task can
be performed more e�ciently using memory. Figure 2 shows a small example matrix and the
corresponding network. The �rst units are designated as input units and the last as output units.

The second part of the encoding consists of the weights, which are kept as a parallel two-
dimensional array. They are stored as 16-bit integers (scaled to small real numbers in the pheno-
type). The third part of the encoding is an integer which gives the number of nodes, which may
be less than the size of the topology and weight arrays. If this is the case, part of the arrays are
unused. The actual size of the networks is determined randomly when two networks are mated and
is restricted to be in the closed interval speci�ed by the sizes of the two parent networks. If the size
of the child is larger than that of one of the parents, then a formerly unused part of the bit-string
will become part of the encoding. This previously unused information provides for genetic diversity.
There is an upper bound of 208 units in the network. This relatively low number of units so far
has not proved limiting, since all of the e�ective networks have been considerably smaller.

The encoding outlined above is not the only one possible; others may prove to be e�ective. Still,
it has several properties that make it well suited for the current task. Theoretically, the longer the
bit string to be optimized, the more di�cult the genetic optimiazation (Goldberg, 1989). Since any
string which completely speci�es a non-trivial neural network is inevitably quite long, it becomes
important to conserve wherever possible. Using integers rather than real numbers makes the weight
representation fairly compact, while the topology array obviates the need for node identi�ers, which
are usually required in topology-optimizing network encodings such as the marker-based method
used by Fullmer and Miikkulainen (1992). Furthermore, since the bit string is only divided into
two parts during mating (one part from each parent), large pieces of the parent networks remain
intact in the o�spring. This keeps the search process of the genetic algorithm more focused on
promising genetic material. In contrast, with methods such as the marker based encoding, the

4



o�spring may not signi�cantly resemble the parents, the search process is much more exploratory,
and was actually found to converge more slowly in a similar task.

2.3 The genetic algorithm

The generations for the genetic algorithm span 25 time steps each. In each time step, inputs are
clamped for each agent, the input is propagated through the network and the agents are moved
according to their outputs. Time is represented discretely, since each robot must be processed
in turn. Twenty-�ve time steps is enough to distinguish which agents are doing well, but at the
same time, limits the waste of time that would otherwise be incurred by agents that are unable
to produce useful output. Such a short generation time was found empirically to speed up the
optimization process .

The �tness function determines what behavior will emerge from evolution. One goal of this
project was to develop a general method for deriving �tness functions, given a rough description
of the desired movement. Since the idea is not for the agents to learn to follow an explicit path, it
is enough to get a rough measure of whether they are in the right part of the environment.. Such
a measure is implemented in terms of markers to be picked up by the agent. For this experiment,
where wall-following behavior was the goal, a ring of 16 evenly spaced markers was placed just
inside the perimeter of the room. The agents cannot sense these markers and must spatially cover
more than half of a marker to pick it up. Once all markers are retrieved the ring of markers is
replaced. The agents should avoid collisions with walls, but since the main purpose was to evolve
wall-following behavior, the number of collisions was given much less weight than the number of
markers retrieved. The �tness function was de�ned as

f(n) = 3m
n
� c

n
; (1)

where m
n
is the number of markers retrieved and c

n
is the number of collisions for agent n . If

collisions are costly, the weighting factors for these parameters can be adjusted.

When the time span for a generation is up, the 28 best agents are chosen to reproduce and
furnish the population for the new generation. According to the usual practice, this elite group
is also carried over unchanged into the next generation. The pairing of the robots is done with a
nested loop which allows each agent to mate with each other agent while still favoring those with
the highest rank, since the best mate �rst and therefore most often. Genetic operators consist of
crossover and mutation. The cut-point for crossover is chosen randomly and the probability of a
mutation is 0.004. Both the connectivity matrix and the weight matrix are involved in these genetic
operations.

3 Performance and results

The wall-following task proved to be relatively easy to learn, given the network and task encoding
described above. Initially, the agents were able to pick up a few markers just by random wandering,
but the number nearly quadrupled during 2000 generations of evolution (�gure 3). The number
of collisions was quite low in the beginning because the agents were not yet consistently trying to
get near the walls, but increased as they began to remain close to them. By the 500th generation,
the number of collisions stabilized at a level that represents a tradeo� between moving faster to
pick up more markers and avoiding the penalty for collisions. The greatest number of markers

5



0

10

20

30

40

50

60

70

80

fitness value

markers

0

10

20

30

40

50

60

70

80
quantity

collisions

generation generation
0 500 1000 1500 2000 0 500 1000 1500 2000

Figure 3: Evaluation of wall-following behavior. Each data point represents the best agent out of each

100 generations. The graph to the left shows the increase in �tness and the graph to the right shows the

increase in the number of markers the agent picked up along with the number of collisions.

33.8 41.6 40.4 37.8 39.6avg. fitness

circle square square-gap long rectangle triangle

Figure 4: Average �tness for an agent placed in a new environment. The numbers represent an

average over 10 trials, starting from random positions and random orientations. The dotted lines indicate a

typical path taken in each environment.

that can picked up during any generation is 31. To do this, the agent must be initially placed on
the periphery of the room in a position that allows it to move the maximum distance most of the
time (i.e., it cannot start too close to a wall). It must then immediately begin a perfect clockwise
or counterclockwise perambulation of the room. Given these constraints, along with the random
initial placement of the robots, it is impossible to achieve it consistently. The best �tness score
of 80 occurred at generation 1961, with the agent picking up all 31 markers, which is remarkably
good performance.

To con�rm that the agent had indeed evolved a general wall-following control strategy, it was
then tested in �ve new environments (�gure 4). These included a circle, a perfect square, a square
with a 12 pixel gap in the wall, an elongated rectangle, and a triangle. In order to get a fair
comparison with the original environment, all the rooms had the same perimeter as the the original
one and contained the same number of markers. Statistics were kept over 10 runs of 25 time steps
each.

In both squares and in the triangle, the agent did quite well, regularly picking up more than
20 markers per run, although collisions were more frequent in all the new environments. The
more acute angles of the triangle were more di�cult for the robot to negotiate, since it had not
previously experienced a corner sharper than 90 degrees. Not surprisingly, the circle proved to
be the most problematic. Since the robot cannot follow a curved trajectory, it must either move
shorter distances to approximate the curve or collide more often with the walls. The run in the
room with a gap in the wall con�rmed the hypothesis that the agents were following the wall, since

6



the path showed a slight outward bump as the robot passed the gap. The elongated rectangle
runs showed another e�ect which at least partially explains the increase in collisions. The robot
tended to cut the rectangle slightly short on several runs, which suggests that not only are the
robots merely following the walls, but are also learning a map of the environment and have certain
expectations of how far to travel along each trajectory before having to make a turn.

4 Conclusions and future work

The success of this experiment shows that the genetic symbol grounding approach is a fruitful one.
The agents successfully evolved the desired wall-following behavior and this behavior generalized
to novel environments. They also showed evidence of learning a map of their environment. The
next step will be to open a door between neighboring cells. This will serve two purposes. Not only
does the environment become more complex, but the creatures will also have to deal with moving
obstacles in the form of other agents. Once the agents have learned to wander successfully in this
expanded environment, they will be required to begin in one cell, �nd a goal in another cell and
return to their home cell. Using di�erent colored oors (detectable by light sensors) as landmarks,
the robots must learn to build rough topological maps of their environment to aid them in this task.
If this can be done successfully (and current work indicates that it can), then the environment can
become increasingly complex and the cognitive maps that the agents must build should become
correspondingly more complex as well. Such an adaptive mapping ability will be an important
contribution to the problem of robot navigation (Kuipers and Levitt, 1988).

Based on the results so far, using genetically determined neural networks as processors for
robotic agents seems to be a very feasible approach to the tabula rasa learning problem. Most
importantly, the agents that are a product of this system will be undeniably grounded in their
simulated world, since they will have begun from ground zero, knowing nothing at all. The internal
representations of the walls that delimit their world have referents and thus, inherent meaning
and causal power. As a result the robots should be well equipped to respond appropriately in
unexpected circumstances. This should make them extremely robust and immune to many of the
problems which plague ungrounded agents when confronted with novel situations.

References

Collins, R. J. and D.R. Je�erson, 1990. Ant-Farm: Towards Simulated Evolution. UCLA-AI-90-
10. AI Laboratory, UCLA.

Fullmer, B. and Miikkulainen, R. 1992. Using Marker-based Genetic Encoding of Neural Networks
to Evolve Finite-state Behavior. In Varela, F.J. and P. Bourgnine (eds.), Proceedings of

the First European Conference on Arti�cial Life. Cambridge, MA: Cambridge University
Press/Bradford Books, pp. 285{262.

Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Read-
ing, MA: Addison-Wesley.

Harnad, S. 1990. The Symbol Grounding Problem. Physica D 42:1{3 pp. 335{346.

Holland, J. H. 1975. Adaptation in Natural and Arti�cial Systems. Ann Arbor: University of
Michigan Press.

7



Kuipers, B. J. 1985. The Map-Learning Critter. AITR-17. AI Laboratory, University of Texas at
Austin.

Kuipers, B.J. and T. Levitt, 1988. Navigation and Mapping in Large-Scale Space. AI Magazine,
9:2, pp. 25{43.

Lako�, G. 1988. Smolensky, Semantics and the Sensorimotor System. Behavioral and Brain

Sciences 11:1 pp. 39{40. Cambridge University Press.

McCarthy, J. and P.J. Hayes, 1969. Some Philosophical Problems from the Standpoint of Arti-
�cial Intelligence. In B. Meltzer and D. Michie (eds.) Machine Intelligence 4. Edinburgh:
Edinburgh University Press.

Patel, M.J. and U. Schnepf, 1992. Concept Formation as Emergent Phenomena. In F. J. Varela
and P. Bourgnine (eds.), Proceedings of the First European Conference on Arti�cial Life.
Cambridge, MA: MIT Press/Bradford Books, pp.11{20.

Pfeifer, R. and P. Verschure 1991. Distributed Adaptive Control: A Paradigm for Designing Au-
tonomous Agents. In F. J. Varela and P. Bourgnine (eds.), Proceedings of the First European
Conference on Arti�cial Life. Cambridge, MA: MIT Press/Bradford Books, pp. 21{30.

Pierce, D. and B.J. Kuipers, 1990. Learning Hill-climbing Functions as a Strategy for Generating
Behaviors in a Mobile Robot. AI90-137. AI Laboratory, University of Texas at Austin.

Rivest, R.L. and R.E. Schapire, 1993 Inference of Finite Automata Using Homing Sequences.
Information and Computation, 103:2, pp. 299{347.

Searle, J.R. 1980. Minds, Brains and Programs. Behavioral and Brain Sciences 3, pp. 417{58.

8


