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E�cient routing of information packets in dynamically changing communication net-

works requires that as the load levels, tra�c patterns and topology of the network change,

the routing policy also adapts. Making globally optimal routing decisions would require a

central observer/controller with complete information about the state of all nodes and links

in the network, which is not realistic. Therefore, the routing decisions must be made locally

by individual nodes (routers) using only local routing information. The routing information

at a node could be estimates of packet delivery time to other nodes via its neighbors or

estimates of queue lengths of other nodes in the network. An adaptive routing algorithm

should e�ciently explore and update routing information available at di�erent nodes as

it routes packets. It should continuously evolve e�cient routing policies with minimum

overhead on network resources.

In this thesis, an on-line adaptive network routing algorithm called Confidence-

based Dual Reinforcement Q-Routing (CDRQ-routing), based on the Q learning

framework, is proposed and evaluated. In this framework, the routing information at indi-

vidual nodes is maintained as Q value estimates of how long it will take to send a packet

to any particular destination via each of the node's neighbors. These Q values are updated

through exploration as the packets are transmitted. The main contribution of this work
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is the faster adaptation and the improved quality of routing policies over the Q-Routing.

The improvement is based on two ideas. First, the quality of exploration is improved by

including a con�dence measure with each Q value representing how reliable the Q value

is. The learning rate is a function of these con�dence values. Secondly, the quantity of

exploration is increased by including backward exploration into Q learning. As a packet

hops from one node to another, it not only updates a Q value in the sending node (for-

ward exploration similar to Q-Routing), but also updates a Q value in the receiving node

using the information appended to the packet when it is sent out (backward exploration).

Thus two Q value updates per packet hop occur in CDRQ-Routing as against only one in

Q-routing. Certain properties of forward and backward exploration that form the basis

of these update rules are stated and proved in this work.

Experiments over several network topologies, including a 36 node irregular grid and

128 node 7-D hypercube, indicate that the improvement in quality and increase in quan-

tity of exploration contribute in complementary ways to the performance of the overall

routing algorithm. CDRQ-Routing was able to learn optimal shortest path routing at low

loads and e�cient routing policies at medium loads almost twice as fast as Q-Routing. At

high load levels, the routing policy learned by CDRQ-Routing was twice as good as that

learned by Q-Routing in terms of average packet delivery time. CDRQ-Routing was found

to adapt signi�cantly faster than Q-Routing to changes in network tra�c patterns and net-

work topology. The �nal routing policies learned by CDRQ-Routing were able to sustain

much higher load levels than those learned by Q-Routing. Analysis shows that exploration

overhead incurred in CDRQ-Routing is less than 0.5% of the packet tra�c. Various exten-

sions of CDRQ-Routing namely, routing in heterogeneous networks (di�erent link delays

and router processing speeds), routing with adaptive congestion control (in case of �nite

queue bu�ers) and including predictive features into CDRQ-Routing have been proposed

as future work. CDRQ-Routing is much superior and realistic than the state of the art

distance vector routing and the Q-Routing algorithm.
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Chapter 1

Introduction

Communication networks range from scales as small as local area networks (LAN) such

as a university or o�ce setting to scales as large as the entire Internet (Tanenbaum 1989;

Huitema 1995; Gouda 1998). Information is communicated to distant nodes over the net-

work as packets. It is important to route these in a principled way to avoid delays and

congestion due to over ooding of packets. The routing policies should not only be e�cient

over a given state of the network but should also adapt with the changes in the network

environment such as load levels, tra�c patterns, and network topology.

In this thesis the Q learning framework of Watkins and Dayan (1989) is used to

develop and improve adaptive routing algorithms. These algorithms learn \on-line" as they

route packets so that any changes in the network load levels, tra�c patterns, and net-

work topologies are reected in the routing policies. Inspired by the Q-routing algorithm

by Boyan and Littman (1994), a new adaptive routing algorithm, Confidence-based

Dual-reinforcement Q-routing (CDRQ-Routing), with higher quality and increased

quantity of exploration, is presented. It has two components (�gure 1.2). The �rst compo-

nent improves the quality of exploration and is called the Confidence-based Q-Routing.

It uses con�dence measures to represent reliability of the routing information (i.e. the Q-

values) in the network. The second component increases the quantity of exploration, and is

called the Dual Reinforcement Q-routing (DRQ-Routing) (Kumar and Miikkulai-

1



nen 1997). It uses backward exploration, an additional direction of exploration. These two

components result in signi�cant improvements in speed and quality of adaptation.

The organization of the rest of this chapter is as follows. In section 1.1 the basic

model of communication network used in this thesis is described in detail. Section 1.2 for-

mally de�nes and characterizes the routing problem and various approaches to this problem.

In section 1.3 the motivation for adaptive routing is given. A brief overview of the main

contributions of this work and the organization of the rest of the thesis is given in section

1.4.

1.1 Communication Networks

A communication network is a collection of nodes (routers or hosts) connected to each

other through communication links (Ethernet connections, telephone lines, �ber optic ca-

bles, satellite links etc.) (Tanenbaum 1989; Huitema 1995; Gouda 1998). These nodes

communicate with each other by exchanging messages (e-mails, web page accesses, down-

load messages, FTP transactions etc.). These messages (which could be of any length) are

broken down into a number of �xed length packets before they are sent over the links. In

general, and most often, all pairs of nodes are not directly connected in the network and

hence, for a packet P (s; d) to go from a source node s to a destination node d, it has to take

a number of hops over intermediate nodes. The sequence of nodes starting at s (= x0) and

ending at d (= xl) with all intermediate nodes in between i.e. (x0, x1, x2, ..., xl) is called

the route (of length l) that the packet took in going from s to d. There is a link between

every pair of nodes xi and xi+1 in this route, or in other words, xi is a neighbor of node

xi+1 for all i = 0...l � 1.

The total time a packet spends in the network between its introduction at the source

node and consumption at the destination node is called packet delivery time (TD), and

depends on two major factors (Tanenbaum 1989):

1. Waiting time in intermediate queues, TW : When a node, xi+1, receives the
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packet P (s; d) from one of its neighboring nodes xi, it puts P (s; d) in its packet queue

while it is processing the packets that came before P (s; d). Hence, in going from s to

d, this packet has to spend some time in the packet queues of each of the intermediate

nodes. If qi is the queue length of node xi when the packet arrived at this node, then

the waiting time of the packet in node xi's queue is O(qi). The total waiting time in

intermediate queues is given by:

TW = O(
l�1X
i=1

qi): (1.1)

Thus for optimal routing it is essential that the packet goes through those nodes that

have small queues.

2. Transmission delay over the links, TX : As the packet hops from one node xi to

the next xi+1, depending on the speed of the link connecting the two nodes, there is

a transmission delay involved. If �xixi+1 is the transmission delay in the link between

nodes xi and xi+1, then the total transmission time TX is given by:

TX =
l�1X
i=0

�xixi+1 : (1.2)

Hence the length of the route l is also critical to the packet delivery time, especially

when links are slow. In this work, all �xy are assumed to be same. Transition delays

in actual networks are same for all links if the links are similar. Generalization to

heterogeneous networks when the links have di�erent transmission delays is discussed

in section 7.2.

The total delivery time TD is given by (TW + TX) and is determined by the state of the

network and the overall route taken by the packet.

1.2 The Routing Problem

Depending on the network topology, there could be multiple routes from s to d and hence

the time taken by the packet to reach d from s depends on the route it takes. So the overall
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goal that emerges can be stated as: What is the optimal route from a (given) source node

to a (given) destination node in the current state of the network? The state of the network

depends on a number of network properties like the queue lengths of all the nodes, the

condition of all the links (whether they are up or down), condition of all the nodes (whether

they are up or down) and so on.

If there were a central observer that had information about the current state (i.e.

the packet queue length) of all the nodes in the network, it would be possible to �nd the

best route using the Weighted Shortest Path Routing algorithm (Dijkstra 1959). If

qi is the waiting time in the packet queue of node xi and � is the link delay (same for all

links) then the cost of sending a packet P (s; d) through node xi will add (qi + �) to the

delivery time of the packet. The weighted shortest path routing algorithm �nds the route

for which the total delivery time of a packet from source to destination node is minimum.

The complete algorithm, referred to as Global Routing hereafter, is discussed in chapter

2. It is the theoretical bound for the best possible routing and is used as a benchmark for

comparison.

Such a central observer does not exist in any realistic communication system. The

task of making routing decisions is therefore the responsibility of the individual nodes in the

network. There are two possible ways of distributing this responsibility among the di�erent

nodes:

1. The �rst approach is that the source node computes the best route R to be traversed

by the packet to reach its ultimate destination and attaches this computed route to

the packet before it is sent out. Each intermediate node that receives this packet can

deduce from R to which neighboring node this message should be forwarded. This

approach is called Source Routing and it assumes that every (source) node has

complete information about the network topology. This assumption is not useful,

because knowledge about the network topology alone is not enough. To make an

optimal routing decision one has to also know the queue lengths of all the nodes in

then network. Also in a dynamically changing network, some links or nodes might go

4



down and come up later, meaning that even the topology of the network is not �xed

at all times. Moreover, each packet carries a lot of routing information (its complete

route R) which creates a signi�cant overhead. As a result, this approach is not very

useful for adaptive routing in dynamically changing networks.

2. The second approach is that the intermediate nodes make local routing decisions.

As a node receives a packet for some destination d it decides to which neighbor this

packet should be forwarded so that it reaches its destination as quickly as possible.

The destination index d is the only routing information that the packet carries. The

overall route depends on the decisions of all the intermediate nodes. The following

requirements have been identi�ed for this approach (Tanenbaum 1989; Gouda 1998).

Each node in the network needs to have:

� for each of its neighbors, an estimate of how long it would take for the packet to

reach its destination when sent via that neighbor;

� a heuristic to make use of this information in making routing decisions;

� a means of updating this routing information so that it changes with the change

in the state of the network; and

� a mechanism of propagating this information to other nodes in the network.

This approach has lead to adaptive distance vector routing algorithms. Distributed

Bellman-Ford Routing (Bellman 1958), described in chapter 2, is the state of the

art and most widely used and cited distance vector routing algorithm.

In the framework of the second approach, where all the nodes share the responsi-

bility of making local routing decisions, the routing problem can be viewed as a complex

optimization problem whereby each of the local routing decisions combine to yield a global

routing policy. This policy is evaluated based on the average packet delivery time under the

prevailing network and tra�c conditions. The quality of the policy depends, in a rather

complex manner, on all the routing decisions made by all the nodes. Due to the complexity
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of this problem, a simpli�ed version is usually considered. Instead of a globally optimal

policy, one tries to �nd a collection of locally optimal ones:

When a node x receives a packet P (s; d) destined to node d, what is the best

neighbor y of x to which this packet should be forwarded so that it reaches its

destination as quickly as possible?

This problem is di�cult for several reasons (as will be discussed in more detail later

in this thesis):

1. Making such routing decisions at individual nodes requires a global view of the network

which is not available; all decisions have to be made using local information available

at the nodes only.

2. There is no training signal available for directly evaluating the individual routing

decisions until the packets have �nally reached their destination.

3. When a packet reaches its destination, such a training signal could be generated, but

to make it available to the nodes that were responsible for routing the packet, the

signal would have to travel to all these nodes thereby consuming a signi�cant amount

of network resources.

4. It is not known which particular decision in the entire sequence of routing decisions

is to be given credit or blame and how much (the credit assignment problem).

These issues call for an approximate greedy solution to the problem where the routing policy

adapts as routing takes place and overhead due to exploration is minimum.

1.3 Motivation for Adaptive Routing

As a solution to the routing problem, �rst consider the simplest possible routing algorithm,

the Shortest Path Algorithm (Floyd 1962). This solution assumes that the network

topology never changes, and that the best route from any source to any destination is the

6
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Figure 1.1: 15 node network after (Choi and Yeung 1996). Nodes 12, 13 and 14 are
source nodes, and node 15 is destination node.

shortest path in terms of the number of hops or length (l) of the route. The shortest path

routing is the optimal routing policy when the network load is low, but as the load increases,

the intermediate nodes that fall on popular routes get more packets than they can handle.

As a result, the queue lengths of these intermediate nodes increase, and slowly the TW

component of TD starts to dominate. This increase in queue lengths causes an increase in

the average packet delivery time. Although the shortest path algorithm is simple and can

be implemented in a source routing framework, it fails to handle the dynamics of a real

communication network, as will be shown in section 2.1.

The main motivation for adaptive routing algorithms comes from the fact that as

the tra�c builds up at popular nodes, the performance of the current routing policy starts

to degenerate. Alternative routes, which may be longer in terms of the number of hops but

lead to smaller delivery time, must then be learned through exploration. As the network load

levels, tra�c patterns, and topology change, so should the routing policies. As an example,

consider the network shown in �gure 1.1 (Choi and Yeung 1996). If nodes 12, 13, and 14

are sending packets to node 15, then the routes (12 ! 1 ! 4 ! 15), (13 ! 2 ! 4 ! 15)

and (14 ! 3 ! 4 ! 15) are the optimal routes for small loads. But as the load increases,

node 4 starts getting more packets than it can handle and its queue length increases. Nodes
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1 and 2 should then try sending packets to node 5. The new routes for packets from 12 and

13 to 15 should become (12 ! 1 ! 5 ! 6 ! 15) and (13 ! 2 ! 5 ! 6 ! 15). As tra�c

builds up at node 5, node 2 should start sending packets to node 7, and the overall routing

policy for high loads should become (12 ! 1 ! 5 ! 6 ! 15), (13 ! 2 ! 7 ! 8 ! 9 !
10 ! 11 ! 15) and (14 ! 3 ! 4 ! 15). When the load levels decrease again, the policy

should revert back to the original one.

To implement such adaptive routing, (1) each node needs to maintain routing infor-

mation which it can use for making routing decisions, and (2) there must be a mechanism for

updating this information to reect changes in the network state. Distributed Bellman-Ford

is an example of adaptive routing and is discussed in detail in chapter 2. In this algorithm,

each node in the network maintains two tables: the least COST to reach any destination

node, and a routing table indicating to which neighbor should a packet be forwarded in

order for it to reach the destination with minimum COST. These cost and routing tables

are updated through periodic exchanges of cost tables among neighboring nodes. As shown

in chapter 3, a version of Bellman-Ford, where COST is measured in terms of number of

hops, converges to the shortest path policy at low loads. As the load increases, shortest path

is no more the best policy, and another version of Bellman-Ford where COST is measured

in terms of the packet delivery time, must be used. However, this version fails to learn a

stable policy. Also, due to frequent exchanges of large cost tables among neighbors, there

is a large exploration overhead.

These drawbacks of Bellman-Ford algorithm are addressed successfully by Q-Routing,

as will be shown in chapter 4. In Q-Routing the cost tables are replaced by Q-tables, and the

interpretation, exploration and updating mechanism of these Q-tables are modi�ed to make

use of the Q-learning framework. This thesis improves the Q-Routing algorithm further by

improving its quality and quantity of exploration.
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1.4 Contributions of This Work

The Q learning framework (Watkins and Dayan 1989) was used by Boyan and Littman

(1994) to develop an adaptive routing algorithm called Q-Routing. Q-learning is well suited

for adaptive routing as discussed above. The Q estimates are used to make decisions and

these estimates are updated to reect changes in the network. In Q-Routing, Q tables are

maintained and updated based on the information coming from node xi+1 to node xi when

xi sends a packet to xi+1. In this thesis, two new components are added to Q-Routing;

1. Confidence-based Q-routing (CQ-Routing), where the quality of exploration is

improved by associating con�dence values (between 0 - 1) with each of the Q-values in

the network. These values represent how reliably the corresponding Q values represent

the state of the network. The amount of adaptation for a Q-value, in other words,

the learning rate, depends on the con�dence values of the new and the old Q-values

(whereas in Q-Routing a �xed learning rate is used for all updates). Section 5.1

describes this component of CDRQ-Routing in detail.

2. Dual Reinforcement Q-routing (DRQ-Routing), where the quantity of explo-

ration is increased by including backward exploration (in Q-Routing only forward

exploration is used). As a result, with each packet hop, two Q-value updates take

place, one due to forward exploration and the other due to backward exploration. Es-

sentially, DRQ-Routing combinesQ-routing with dual reinforcement learning, which

was �rst applied to a satellite communication problem (Goetz et al. 1996). Section

5.2 describes this component of CDRQ-Routing in detail.

As shown in �gure 1.4, CDRQ-Routing combines the two components into a single

adaptive routing algorithm. Experiments over several network topologies show that CQ-

Routing and DRQ-routing both outperform Q-Routing. The �nal algorithm, CDRQ-

Routing is superior to both CQ-routing and DRQ-Routing suggesting that both these

features indeed optimize di�erent parts of the problem.

9



DRQ

CDRQ-ROUTING

+ Backward Exploration+ Confidence

Q -ROUTING

CQ -ROUTING -ROUTING

Figure 1.2: Contributions of this Work: Two features are added to Q-Routing, (1) con�dence
values, leading to CQ-Routing, and (2) backward exploration, leading to DRQ-Routing. These features are
combined into the �nal algorithm called CDRQ-Routing.

The rest of the thesis is organized as follows. Chapter 2 describes the conventional

non-adaptive shortest path, weighted shortest path and adaptive Bellman-Ford algorithms.

Chapter 3 describes the Q-Routing algorithm and proves some important properties for the

�rst time which are crucial to its performance. In chapter 4, the Q-Routing algorithm is eval-

uated against shortest path and Bellman-Ford routing algorithms. Chapter 5 describes the

CDRQ-Routing with its two components, the CQ-Routing and the DRQ-Routing. Chapter

6 evaluates CDRQ-Routing comparing it with Q-Routing as well as its components for a

number of tasks like learning an e�ective routing policy from scratch, adaptation to changes

in tra�c patterns and network topology etc. Chapter 7 gives a number of possible future

directions and generalizations of CDRQ-Routing and its components. Chapter 8 concludes

the thesis with main results.
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Chapter 2

Conventional Routing Algorithms

In chapter 1, the distributed routing problem, where all intermediate nodes share the re-

sponsibility of making routing decisions, was formally stated. Features that make adaptive

routing a di�cult problem were highlighted and di�erent conventional non-adaptive and

adaptive routing algorithms were outlined. This chapter presents the details of the conven-

tional routing algorithms. Section 2.1 describes the non-adaptive Shortest Path Rout-

ing (Floyd 1962). Section 2.2 discusses the Weighted Shortest Path Routing (Dijk-

stra 1959) which is a generalization of shortest path routing and provides a benchmark for

the algorithm developed in this thesis. It is a theoretical bound on the best possible routing

one can do. Two versions of the state of the art distance vector adaptive routing algorithm

Bellman-Ford (Bellman 1958; Bellman 1957; Ford and Fulkerson 1962) are discussed in

section 2.3.

The key di�erence between non-adaptive and adaptive routing algorithms is that in

the former, the routing policy of the network does not change with change in the state of

the network. When a node receives a packet for a given destination, it always forwards

that packet to the same neighbor. In adaptive routing, however, the routing decisions of a

node for a particular destination might be di�erent at di�erent times. The adaptation is

based on exploration where routing information at each node is spread to other nodes over

the network as the packets are transmitted (see (Thrun 1992) for the role of exploration
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in learning control). Individual nodes exploit this information by updating their routing

policies.

2.1 Shortest Path Routing

In Shortest Path Routing (Floyd 1962; Ravindra K. Ahuja and Tarjan 1988; Thomas

H. Cormen and Rivest 1990), for any pair (s; d) of source and destination nodes, the route

that takes the minimum number of hops is selected. Any packet from a given source to

a given destination will always take the same route. Let A denote the (n � n) adjacency

matrix ([aij ]), where n is the number of nodes in the network, such that aij =1 if there is

a link between nodes i and j, otherwise it is 0 (note that A is a symmetric matrix). The

shortest path can be obtained from A using the sequence of matrices fAk=([a
(k)
ij ])gnk=1,

obtained by multiplyingA with itself k times. The following property of Ak is used for this

purpose:

a
(k)
ij is the number of paths of length k from node i to node j

Thus the length of the shortest path from node s to node d is given by:

l(s; d) = argmin
k
(a

(k)
sd 6= 0) (2.1)

Shortest path routing can be implemented in the source routing framework as described in

chapter 1, or, it could be implemented as local decisions at intermediate nodes. When a

node x receives a packet P (s; d) for some destination d, it chooses the neighbor y such that:

y = arg min
z2N(x)

l(z; d); (2.2)

where N(x) is the set of all neighbors of node x. This routing policy is not very suitable

for dynamically changing networks because:

� The network topology keeps changing as some nodes or links go down or come up (i.e.

the adjacency matrix of the network changes).
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� When the load is high, nodes falling on popular routes get ooded with packets. In

other words, they receive more packets than they can process, thereby causing:

{ Delays in packet delivery times because of long queue waiting time (TW ).

{ Congestion at these nodes: Their packet queue bu�ers may �ll up, causing them

to drop packets.

� It makes suboptimal use of network resources: Most of the tra�c is routed through

small number of nodes while others are sitting idle.

2.2 Weighted Shortest Path Routing (Global Routing)

The theoretical upper bound on performance can be obtained if the entire state of the

network is considered when making each routing decision. This is not a possible approach

in practice but can be used as a benchmark to understand how well the other algorithms

perform. The complete Global Routing algorithm due to Dijkstra (1959) is reviewed

below.

The current state of the network is completely captured in the Cost Adjacency Matrix

C (= [cij ]) where:

� cii = 0 (no cost for sending a packet to itself).

� cij =1 if:

{ there is no link between node i and j,

{ link between node i and j is down, or

{ node i or node j is down.

otherwise,

� cij = qi + � (i.e., the cost of sending a packet from node i to its neighbor j including

both the queue waiting time and link transmission time.)
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Let Sh(i; j) denote the total cost of a path of h hops from node i to j, and Ph(i; j) denote

the path itself (sequence of nodes). Note that Sh(i; j) =1 and Ph(i; j) = () if there is no

path of h hops from node i to j. Using this notation, the following algorithm can be used

to �nd the weighted shortest path between every pair of nodes (i; j) in the network, where

the weight between any pair of nodes i and j is given by cij of the cost matrix:

1. Initialize:

� S1(i; j) = cij for all nodes i and j.

� P1(i; j) = (i; j) if cij is �nite, else P1(i; j) = ()

� hop index h = 2

2. while h < N do steps 3 through 4

3. for each pair (i; j) of nodes, do the following:

� Find the best index k̂ such that:

k̂ = argmin
k
fSh

2
(i; k) + Sh

2
(k; j)g: (2.3)

� Update Sh(i; j) as follows:

Sh(i; j) = Sh
2
(i; k̂) + Sh

2
(k̂; j): (2.4)

� Update path Ph(i; j) as follows:

{ if Sh(i; j) < Sh
2
(i; j) then

Ph(i; j) = concat(Ph
2
(i; k̂); Ph

2
(k̂; j)): (2.5)

{ if Sh(i; j) � Sh
2
(i; j) then

Ph(i; j) = Ph
2
(i; j): (2.6)

4. h = 2 � h.
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The concat operation takes two sequences of nodes (two paths), say (x1; x2; :::; xm) and

(y1; y2; :::; ym0), and gives a longer sequence of nodes which is formed by concatenation of

these two sequences:

concat((x1; x2; :::; xm); (y1; y2; :::; ym0)) = (x1; x2; :::; xm; y2; :::; ym0) (2.7)

The condition for concatenation is that xm = y1. The time complexity of the weighted

shortest path algorithm is O(n3log2n), where n is the number of nodes in the network.

Each node in the network has the adjacency matrix A and using above algorithm,

it calculates the shortest paths to every other node. When a node x has to send a packet

destined for node d, it �nds the best neighbor y to which to forward this packet as follows:

1. Compute the Sn and Pn matrices as shown above.

2. From Pn, obtain the best route Pn(x; d) from node x to d.

3. The second node in the route Pn(x; d) is the best neighbor to which the packet should

be forwarded (the �rst node is x itself).

This three-step process is executed for every hop of every packet, each time using the entire

cost adjacency matrix C. As mentioned before, the matrix C might change with change in

network topology or load levels. Since, each node in the network is required to maintain

the current state of the network, they should all have the same C. In other words, all nodes

should have the global view of the network. Hence, in the remainder of the thesis, this

algorithm is called Global Routing due to its global nature.

2.3 Distributed Bellman Ford Routing

It is not possible to maintain the current state of the network known to all nodes at all

times. Instead a local view of the network can be maintained by each node and it can

be updated as the network changes. One version of this approach is called the Distance

Vector Routing (Tanenbaum 1989) that is used in modern communication network
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systems. Bellman-Ford routing (Bellman 1957; Bellman 1958; Ford and Fulkerson 1962;

C. Cheng and Garcia-Luna-Aceves 1989; Rajagopalan and Faiman 1989) is one of the most

commonly used and cited adaptive distance vector routing algorithms. In Bellman-Ford

routing, each node x maintains two tables for storing its view of the network:

� A cost table Costx(d) :V!COST which contains the least COST incurred by a

packet in going from node x to destination d (Costx(x) = 0).

� A routing table Rtbx(d) : V! N(x), where N(x) is the set of neighbors of node x,

which contains the best neighbor of x to send the packet for destination d (Rtbx(x)

= x).

V is the set of all nodes in the network. Two versions of Bellman Ford routing are

considered in this thesis because there are two di�erent ways of interpreting the COST of

delivering a packet. In the �rst version, BF1, COST is measured in terms of the number

of hops (cost table is referred to as Hx(d)), while in the second version, BF2, COST is

measured in terms of the total packet delivery time (cost table is referred to as Tx(d)). The

routing table Rtb is referred to as Rx(d) for both BF1 and BF2. Both the cost tables and

the routing tables are updated as the state of the network changes. These updates take

place through frequent exchanges of COST tables between neighbors. The rate of exchange

is given by the parameter f , which is essentially the probability with which a node sends

its COST table to its neighbor at each time step.

2.3.1 Table Updates

Since cost is interpreted di�erently in BF1 and BF2, the update rules for these versions are

also di�erent. In BF1, when node y 2 N(x) sends its cost table Hy(�) to its neighboring

node x the cost is updated by:

8d 2 V;Hx(d)
upd =

8>>>><
>>>>:

0; if x = d

1; if y = d

min(n; 1 +Hy(d)); otherwise;

(2.8)
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where n is the total number of nodes in the network and d is a destination node. The

routing table Rx(�) of node x is updated as follows:

8d 2 V; Rx(d)
upd =

8><
>:

y if Hx(d)
upd < Hx(d)

old

Rx(d)
old otherwise:

(2.9)

The above update rules for cost and routing tables in BF1 have been found to

converge to the shortest path policy even if initially all table entries, other than those with

base case values, are initialized randomly.

The corresponding updates in BF2, when node y 2 N(x) sends its cost table Ty(�)
to its neighboring node x, are given by:

8d 2 V; Tx(d)
upd =

8>>>><
>>>>:

0; if x = d

�; if y = d

(1� �)Tx(d)
old + �(� + qy + Ty(d)); otherwise;

(2.10)

where � is the transmission delay of the link between nodes x and y, qy is the queue length

of node y, and � is the learning rate. The routing table Rx(�) of node x is updated similarly

to 2.9 as:

8d 2 V; Rx(d)
upd =

8><
>:

y if Tx(d)
upd < Tx(d)

old

Rx(d)
old otherwise

(2.11)

2.3.2 Overhead analysis for Bellman-Ford algorithm

Storage and exploration of routing information (i.e. the cost tables) each have their own

overheads. In both BF1 and BF2, the size of the cost table and routing table in every node

is O(n). Hence total storage overhead for Bellman-Ford routing is O(n2). The more impor-

tant overhead is the exploration overhead, which arises from sending cost tables between

neighboring nodes, thereby consuming network resources. Each cost table is of size O(n).

If f is the probability of a node sending O(n) entries of its table to its neighbor, then the

total exploration overhead is O(fBn2) in each time step, where B is the average branching

factor of the network. For large networks (high n), this is a huge overhead. Clearly there

is a tradeo� between the speed at which Bellman-Ford converges to the e�ective routing
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policy and the frequency of cost table exchanges. In chapter 4, Bellman-Ford is evaluated

empirically at various load levels, with respect to its exploration overhead and speed, qual-

ity and stability of the �nal policy learned. It is compared with Q-Routing. It would be

seen that BF1 is suitable for low loads but fails as load increases, while BF2 converges to

inferior and unstable routing policies as compared to the Q-Routing algorithm discussed in

chapter 3. Moreover, the exploration overhead in Bellman-Ford is found to be more than

�ve to seven times that in Q-Routing for similar convergence properties.

2.4 Conclusion

Various conventional routing algorithms were described in this chapter. The two extremes

of the routing algorithms, namely the shortest path routing and the weighted shortest

path routing, were discussed. While shortest path routing is too naive and fails miserably

when the load level increases to realistic values, weighted shortest path is impossible in

practice. The most common adaptive routing algorithm currently is distributed Bellman-

Ford routing, which is a version of distance vector routing. Two versions of this algorithm

were described in this chapter with the update rules and overhead analysis.

The next chapter describes the Q-Routing algorithm, based on Q-learning framework

in detail. Q-Routing forms the basis of the adaptive routing algorithm developed in this

thesis. Both versions of Bellman-Ford algorithm are compared with Q-Routing in chapter

4 and Q-Routing is shown to be superior than Bellman-Ford with regard to speed, quality

and stability of the policy learned and exploration overhead of adaptation.
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Chapter 3

Q-Routing

In chapter 2, various conventional routing algorithms, both non-adaptive (shortest path

routing and weighted shortest path) and adaptive (Bellman-Ford), were discussed in detail.

In this chapter, the �rst attempt of applying Q learning to the task of adaptive network

routing, called Q-routing (Littman and Boyan 1993a; Littman and Boyan 1993b; Boyan

and Littman 1994), is discussed in detail. The exploitation and exploration framework

used in Q-routing is the basis of the routing algorithm proposed in this thesis. After

discussing the basic idea of Q-learning in section 3.1, the syntax and semantics of the routing

information stored at each node as Q-tables is discussed in section 3.2. Means of exploitation

and exploration of these Q-tables is discussed in section 3.3 and section 3.4 respectively. In

section 3.5, the properties that form the basis of the forward exploration update rule are

stated an proved. Section 3.6 summarizes the complete Q-routing algorithm. Section 3.7

is devoted to the overhead analysis due to forward exploration in Q-Routing.

3.1 Q-Learning

There are two approaches to learning a controller for a given task. In model-based approach,

the learning agent must �rst learn a model of the environment and use this knowledge to

learn an e�ective control policy for the task, while in the model-free approach a controller
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is learned directly from the actual outcomes (also known as roll outs or actual returns).

Reinforcement learning is an example of the model-based approach which is used in this

thesis for the task of adaptive network routing.

The main challenge with reinforcement learning is temporal credit assignment. Given

a state of the system and the action taken in that state, how do we know if the action was

good? One strategy is to wait until the \end" and reward the actions taken if the result

was good and punish them otherwise. However, just one action does not solve the credit

assignment problem and many actions are required. But, in on-going tasks like network

routing, there is no \end" and the control policy needs to be learned as the system (com-

munication network) is performing. Moreover, when the system is dynamic, the learning

process should be continuous.

Temporal di�erences (Sutton 1988; Sutton 1996), a model-based approach is an ex-

ample of reinforcement learning. The system is represented by a parametric model where

learning entails tuning of the parameters to match the behavior of the actual system. The

parameters are changed based on the immediate rewards from the current action taken and

the estimated value of the next state in which the system goes as a result of this action.

One temporal di�erence learning strategy is the Adaptive Heuristic Critic(AHC) (Sutton

1984; Barto 1992; A. G. Barto and Anderson 1983). It consists of two components, a critic

(AHC) and a reinforcement-learning controller (RL). For every action taken by the RL in

the current state, a primary reinforcement signal is generated by the environment based on

how good the action was. The AHC converts the primary reinforcement signal into heuristic

reinforcement signal which is used to change the parameters of the RL.

The work of the two components of adaptive heuristic critic can be accomplished

by a single component in Watkins' Q-learning algorithm (Watkins and Dayan 1989). Q-

learning is typically easier to implement. The states and the possible actions in a given state

are discrete and �nite in number. The model of the system is learned in terms of Q-values.

Each Q-value is of the form Q(s; a) representing the expected reinforcement of taking action

a in state s. Thus in state s, if the Q-values are learned to model the system accurately,
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the best action is the one with the highest Q-value in the vector Q(s; �). The Q-values are
learned using an update rule that makes use of the current reinforcement R(s; a) computed

by the environment and some function of Q-values of the state reached by taking action a

in state s.

In general, Q-values can also be used to represent the characteristics of the system

based on s and a instead of the expected reinforcement as mentioned above. The control

action, therefore, could be a function of all the Q-values in the current state. In the Q-

Routing algorithm, Q-learning is used to learn the task of �nding an optimal routing policy

given the current state of the network. The state of the network is learned in terms of

Q-values distributed over all nodes in the network. In the next section an interpretation of

these Q-values for a communication network system is given.

3.2 Routing Information at Each Node

In Q-Routing, Q-learning is used to �rst learn a representation of the state of the network in

terms of Q-values and then these values are used to make control decisions. The task of Q-

learning is to learn an optimal routing policy for the network. The state s in the optimization

problem of network routing is represented by the Q-values in the entire network. Each node

x in the network represents its own view of the state of the network through its Q-table Qx.

Given this representation of the state, the action a at node x is to choose that neighbor y

such that it takes minimum time for a packet destined for node d to reach its destination if

sent via neighbor y.

In Q-Routing each node x maintains a table of Q-values Qx(y; d), where d 2 V, the

set of all nodes in the network, and y 2 N(x), the set of all neighbors of node x. According

to Boyan and Littman (1994), the value Qx(y; d) can be interpreted as

\Qx(y; d) is node x's best estimated time that a packet would take to reach its

destination node d from node x when sent via its neighboring node y excluding

any time that this packet would spend in node x's queue, and including the

21



total waiting time and transmission delays over the entire path that it would

take starting from node y."

The base case values for this table are:

� Qx(y; x) = 1 for all y 2 N(x), that is, if a packet is already at its destination node,

it should not be sent out to any neighboring node.

� Qx(y; y) = �, in other words, a packet can reach its neighboring node in one hop.

In the steady state, when the Q-values in all the nodes represent the true state of

network, the Q-values of neighboring nodes x and y should satisfy the following relation-

ships:

� The general inequality:

Qx(y; d) � qy + � +Qy(z; d) 8y 2 N(x)and 8z 2 N(y): (3.1)

This equation essentially states that if a packet destined for node d, currently at node

x, is sent via x's neighbor y, then the maximum amount of time it will take to reach

its destination is bound by the sum of three quantities: (1) the waiting time qy in

the packet queue of node y, (2) the transmission delay � over the link from node x

to y, and (3) the time Qy(z; d) it would take for node y to send this packet to its

destination via any of node y's neighbors (z).

� The optimal triangular equality:

Qx(y; d) = qy + � +Qy(ẑ; d) (3.2)

This equation is a special case of the above general inequality and it states that the

minimum time taken to deliver a packet currently at node x and destined for node d

and via any of neighbor y 2 N(x), is the sum of three components: (1) the time this

packet spends in node y's queue, (2) the transmission delay � between node x and y,

and (3) the best time Qy(ẑ; d) of node y for the destination d.
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The general inequality is used later to formalize the notion of an admissible (or valid)

Q-value update. The triangular equality is used to compute the estimated Q value for the

update rules.

3.3 Exploiting the Routing Information

Once it is clear what the Q-values stored at each node stand for, it is easy to see how they

can be used for making locally greedy routing decisions. When a node x receives a packet

P (s; d) destined for node d, node x looks at the vector Qx(�; d) of Q-values and selects that

neighboring node ŷ for which the Qx(ŷ; d) value is minimum. This is called the minimum

selector rule. This way, node x makes a locally greedy decision by sending the packet

to that neighbor from which this packet would reach its destination as quickly as possible.

It is important to note, however, that these Q-values are not exact. They are just

estimates and the routing decision based on these estimates does not necessarily give the

best solution. The routing decisions are locally optimal only with respect to the estimates

of the Q-values at these nodes and so is the overall routing policy that emerges from these

local decisions. In other words the control action (the routing decision) is only as good

as the model of the network represented by the Q-values in the network. The closer these

estimates are to the actual values, the closer the routing decision is to the optimal routing

decisions.

The following section shows how these Q-values are updated so that they adapt

to the changing state of the network, in other words, learn a more accurate model of the

network and gradually become good approximations of true values.

3.4 Forward Exploration of the Routing Information

In order to keep the Q-value estimates as close to the actual values as possible and to

reect the changes in the state of the network, the Q-value estimates need to be updated

with minimum possible overhead. Boyan and Littman (1994) proposed the following update
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mechanism, constituting the Q-Routing algorithm.

As soon as the node x sends a packet P (s; d), destined for node d, to one of its neigh-

boring nodes y, node y sends back to node x its best estimate Qy(ẑ; d) for the destination

d:

Qy(ẑ; d) = min
z2N(y)

Qy(z; d): (3.3)

This value essentially estimates the remaining time in the journey of packet P (s; d). Upon

receiving Qy(ẑ; d), node x computes the new estimate for Qx(y; d) as follows:

Qx(y; d)
est = Qy(ẑ; d) + qy + �: (3.4)

Note that this estimate is computed based on the optimal triangular equality (equation 3.2).

Using the estimate Qx(y; d)
est, node x updates its Qx(y; d) value as follows:

Qx(y; d)
new = Qx(y; d)

old + �f (Qx(y; d)
est �Qx(y; d)

old); (3.5)

where �f is the learning rate. Substituting and expanding 3.5, the update rule is given by:

Qx(y; d) = Qx(y; d) + �f (

new estimatez }| {
Qy(ẑ; d) + qy + ��Qx(y; d)): (3.6)

When the learning rate �f is set to 1, the update rule 3.6 reduces to the optimal triangular

equality (equation 3.2). Since the value Qy(ẑ; d) and others from which it was derived (the

Qy(�; d) vector) were not accurate, the learning rate is set to some value less than 1 (e.g.

0.85), and equation 3.6 is an incremental approximation of the optimal triangular equality.

The exploration involved in updating the Q-value of the sending node x using the

information obtained from the receiving node y, is referred to as forward exploration

(�gure 5.1). With every hop of the packet P (s; d), one Q-value is updated. The properties

of forward exploration are highlighted next, before the experimental results on the e�ec-

tiveness of this idea are presented. In the Dual Reinforcement Q-routing (Kumar

and Miikkulainen 1997) algorithm discussed in chapter 5, the other possible direction of

exploration, backward exploration, is also utilized.
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3.5 Properties of Forward Exploration

Two aspects of a Q-value update rule (like that in equation 3.6) are characterized in this

section. First, the update rule should be admissible. An update rule is said to be admissible

if the updated Q-values obeys the general inequality, given that the old Q-values obeyed

the general inequality. The admissibility of the update rule given by equation 3.6 is stated

and proved as the �rst property (property 3.1) of forward exploration. Second, the update

rule should asymptotically converge to the shortest path routing at low loads. The second

property (property 3.2) of forward exploration guarantees the same. Although these results

are original to this thesis, they form the basis of the update rules proposed by Boyan and

Littman (1994). In fact these properties also form the basis of forward exploration update

rule for the CDRQ-Routing and its versions CQ-routing and DRQ-routing described

in the next chapter.

Property 3.1: The update rule given by equation 3.6 guarantees that if the old

value of Qy(x; d) satis�es the general inequality (equation 3.1), then its updated

value also satis�es the general inequality. i.e. update rule 3.6 is admissible.

Proof: Let Qx(y; d)
0 denote the updated value of Qx(y; d) using equation 3.6.

If the old value of Qx(y; d) satis�es the general inequality, then for any neighbor

z of node y and some non-negative �(z),

Qx(y; d) = qy + � +Qy(z; d) � �(z): (3.7)

Also since Qy(ẑ; d) is the best estimate of node y, by de�nition this has to be

the minimum of all other estimates of node y for the same destination d. Thus

for all z 2 N(y) and some non-negative �0(z; ẑ),

Qy(ẑ; d) = Qy(z; d) � �0(z; ẑ): (3.8)

Substituting 3.7 and 3.8 in the update rule and simplifying,

Qx(y; d)
0 = qy + � +Qy(z; d) � [(1� �f )�(z) + �f�

0(z; ẑ)]; (3.9)
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which can be rewritten as:

Qx(y; d)
0 � qy + � +Qy(z; d): (3.10)

Hence the updated Q-value also satis�es the general inequality.

Property 3.2: For low network loads, the routing policy learned by the Q-

Routing update rule given in equation 3.6 asymptotically converges to the shortest

path routing.

Proof: Consider the complete route (x0(= s); x1; :::; xl(= d)) of length l for a

packet P (s; d). The l Q-value updates associated with this packet are given by

the following generic form (i = 0...l � 1):

Qxi(xi+1; xl) = Qxi(xi+1; xl) + �f (Qxi+1(xi+2; xl) + qxi+1 + � �Qxi(xi+1; xl)):

(3.11)

The best Q-value at node xi+1 for the remaining part of the journey to the

destination node d is Qxi+1(xi+2; d); that is why node xi+1 forwards the packet

to node xi+2. This Q-value is sent back to node xi by node xi+1 for updating

Qxi(xi+1; d). The base case for forward exploration for this route, given by

Qxl�1(xl; xl) = �; (3.12)

follows directly from the optimal base cases of Q-values mentioned in section

3.2. For low loads, we can assume all qx are negligible and the main component

of packet delivery time comes from the transmission delay �. The simpli�ed

update rule for any triplet (xi�1; xi, xi+1) is given by:

Qxi�1(xi; xl) = Qxi�1(xi; xl) + �f (Qxi(xi+1; xl) + � �Qxi�1(xi; xl)): (3.13)

If (x0(= s); x1; :::; xl(= d)) were the shortest route between nodes x0 and xl,

then the Q-values at each of the intermediate nodes are given by:

Qxi(xi+1; xl) = (l � i)�: (3.14)
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Equation 3.14 is proved by induction over l � i� 1 below:

Base case: (i = l� 1) follows directly from equation 3.12 by substituting for i

in 3.14.

Induction Hypothesis: Assume 3.14 for some i. Now substituting forQxi(xi+1; xl)

from 3.14 into 3.13 we get:

Qxi�1(xi; xl) = Qxi�1(xi; xl) + �f ((l � i+ 1)� �Qxi�1(xi; xl)): (3.15)

Repeated updates using the update equation 3.15 will asymptotically yield

Qxi�1(xi; xl) = (l � i+ 1)�: (3.16)

Equation 3.16 proves the induction hypothesis for l� i. Hence the property 3.2

holds for all l � i� 1.

3.6 Summary of the Q Routing Algorithm

The complete Q-Routing algorithm can be summarized in two steps. The PacketReceivey(x)

step describes what node y does when it receives a packet from its neighboring node x, and

the PacketSendx(P (s; d)) step describes what node x does when it has to send a packet

P (s; d) for destination d. These two steps for Q-Routing are given in tables 3.1 and 3.2.

1 If (not EMPTY(PacketQueue(x)) go to step 2

2 P (s; d) = Dequeue the �rst packet in the PacketQueue(x).

3 Compute best neighbor ŷ = argminy2N(x) Qx(y; d)

4 ForwardPacket P (s; d) to neighbor ŷ.

5 Wait for ŷ's estimate.

6 ReceiveEstimate(Qŷ(ẑ; d) + qŷ) from node ŷ.

7 UpdateQvalue(Qx(y; d)) as given in 3.6.

8 Get ready to send next packet (goto 1).

Table 3.1: PacketSendx(P (s; d)) at NODE x for Q-Routing (FE=Forward Exploration,
MSR=Minimum selector rule)
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1 Receive a packet P (s; d), destined for node d from neighbor x

2 Calculate best estimate for node d; Qy(ẑ; d) = minz2N(y) Qy(z; d).

3 Send (Qy(ẑ; d) + qy) back to node x.

4 If (d � y) then ConsumePackety(P (s; d)) else goto 5.

5 If (PacketQueue(y) is FULL) then DropPacket(P (s; d)) else goto 6.

6 AppendPacketToPacketQueuey(P (s; d))

7 Get ready for receiving next packet (goto 1).

Table 3.2: PacketReceivey(x) at NODE y for Q-Routing

3.7 Overhead Analysis of Q-Routing

The term overhead refers to the time taken to execute steps in the routing algorithm that

would be either completely missing or executed in constant time in the non-adaptive shortest

path algorithm. The overhead incurred by an adaptive routing algorithm for exploitation

and exploration should be carefully analyzed in order to evaluate how feasible it is. In this

section, overhead due to forward exploration and exploitation in Q-Routing are analyzed

in detail for the �rst time. From the summary of the complete algorithm in the previous

section, there are four distinct overheads associated with each hop of every packet routed

in the network:

1. Decision Overhead (td) is de�ned as the time that the sending node x takes to

decide what its best neighbor is:

td(x) = O(jN(x)j); (3.17)

which is essentially the time taken to �nd the minimum in a vector Qx(�; d).

2. Estimate Computation Overhead (tc) is de�ned as the time taken by the receiving

node y in computing the estimate that it sends back when it receives a packet from

the sender node:

tc(y) = O(jN(y)j); (3.18)

which is essentially the time taken to �nd the minimum in the vector Qy(�; d).
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3. Estimate Transmission Overhead (tr) is de�ned as the time taken by this estimate

to travel from the receiver node x to the sender node y. Let e be the size of the

estimate packet and p be the size of data packets. Now making use of the fact that

the transmission delay over the link is proportional to the length of the packet being

transmitted, and using � as the transmission delay of the data packet, the estimate

transmission overhead is given by:

tr(x; y) = �(
e

p
): (3.19)

4. Q-value Update Overhead (tu) is de�ned as the time node x takes to update its

Q-value Qx(y; d) once the sender node receives the appropriate estimate from the

receiving node. This is essentially an O(1) time operation.

These overheads are generally minor; the only signi�cant one is the estimate trans-

mission overhead (tr). According to equation 3.19, the overhead per packet hop is only e/p,

which is less than 0.1% of the transmission delay of a packet. This is because the estimate

packet contains nothing more than a real number, while the data packets could be as big as

1-10 KB. Hence,the additional overhead due to forward exploration is insigni�cantly small,

while the gains due to the adaptability are very rewarding, as will be shown in the next

chapter.

3.8 Conclusion

In this chapter, the basic framework of Q-Routing was reviewed. Two properties of forward

exploration update rule (equation 3.6), namely (1) admissibility of the update rule (invari-

ance of Q-values with respect to the general inequality) and (2) its convergence to shortest

path policy at low load level, were identi�ed and proved for the �rst time. These properties

form the basis of Q-Routing. Overhead due to forward exploration is analyzed.

In the next chapter, Q-Routing is evaluated empirically for its ability to adapt un-

der various load levels and initial conditions. Comparison of Q-Routing with non-adaptive
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shortest path routing and with the state- of-the-art Bellman-Ford routing are used to high-

light the performance of Q-Routing which forms the basis of CDRQ-Routing.
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Chapter 4

Evaluating Q-Routing

The Q-Routing algorithm is evaluated in this chapter. It is compared with both the non-

adaptive shortest path routing (Section 4.3) and the adaptive Bellman-Ford routing (Section

4.4). Terminology used in the rest of the thesis for experiments is de�ned in section 4.1 and

the experimental setup for all experiments in this chapter is given in section 4.2.

4.1 De�nitions

In this section, terms used in the experiments in this thesis are de�ned. The three main

network properties considered include the network load levels, tra�c patterns, and the

network topology. De�nitions of these properties is followed by the de�nitions of routing

policy and di�erent measures of performance, including speed and quality of adaptation,

the average packet delivery time, and the number packets in the network.

1. Network Load Level is de�ned as the average number of packets introduced in the

network per unit time. For simulation purposes, time is to be interpreted as simulation

time (discrete time steps synchronized for all nodes in the network). Three ranges of

network load levels are identi�ed: low load, medium load, and high load. At low loads,

exploration is very low and the amount of information per packet hop signi�cantly

a�ects the rate of learning. At medium loads, the exploration is directly related to
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the number of packets in the network. Medium load level represents the average load

levels in a realistic communication network. Although the amount of exploration is

high at high loads, there are a large number of packets in the network, and it is actually

more di�cult to learn an e�ective routing policy. When a node's bu�er gets �lled up,

additional incoming packets are dropped leading to loss of information, which is called

congestion. In this thesis, however, in�nite packet bu�ers are used, and �nite packet

bu�ers and congestion control are discussed in chapter 7 as part of the future work.

2. Tra�c Pattern is de�ned as the probability distribution p(s; d) of source node s

sending a packet to node d. This distribution is normalized such that:

X
x2V

p(s; x) = 1 8s 2 V; (4.1)

where V is the set of all nodes in the network. The value of p(s; s) is set to 0 for all

s 2 V. A uniform tra�c pattern is one in which the probability p(s; d) is 1
n�1 where

n is the number of nodes in the network.

3. Network Topology is made up of the nodes and links in the network. The topology

changes when a link goes down or comes up. The following Q-value updates are used

to model the going down of the link between nodes x and y:

Qx(y; d) =1 8d 2 V; (4.2)

and

Qy(x; d) =1 8d 2 V: (4.3)

4. A Routing Policy is characterized by the Q tables in the entire network. Changes

in these Q-values by exploration leads to changes in the routing policy of the network.

The algorithm is said to have converged to a routing policy when changes in Q-values

are too small to a�ect any routing decisions. An indirect way of testing whether

the routing policy has converged is to examine the average packet delivery time or

the number of packets in the network as routing takes place. When average packet
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delivery time or number of nodes in the network stabilize or converge to a value and

stay there for a long time, we can say that the routing policy has converged.

5. The performances of an adaptive routing algorithm can be measured in two ways:

(a) Speed of Adaptation is the time it takes for the algorithm to converge to an

e�ective routing policy starting from a random policy. It depends mainly on the

amount of exploration taking place in the network.

(b) Quality of Adaptation is the quality of the �nal routing policy. This is again

measured in terms of the average packet delivery time and the number of packets

in the network. Quality of adaptation depends mainly on how accurate the

updated Q value is as compared to the old Q value. Hence quality of exploration

a�ects the quality of adaptation.

6. Average Packet Delivery Time: The main performance metric for routing algo-

rithms is based on the delivery time of packets, which is de�ned as the (simulation)

time interval between the introduction of a packet in the network at its source node

and its removal from the network when it has reached its destination node. The

average packet delivery time, computed at regular intervals, is the average over all

the packets arriving at their destinations during the interval. This measure is used

to monitor the network performance while learning is taking place. Average packet

delivery time after learning has settled measures the quality of the �nal routing policy.

7. Number of Packets in the Network: A related performance metric for routing

algorithms is the number of packets in the network also referred to as the amount of

tra�c in the network. An e�ective routing policy tries to keep the tra�c level as low

as possible. A �xed number of packets are introduced per time step at a given load

level. Packets are removed from the network in two possible ways; either they reach

their destination or the packets are dropped on the way due to congestion. Let ng(t),

nr(t) and nd(t) denote the total number of packets generated, received and dropped at

time t, respectively. Then the number of packets in the network np(T ) at the current
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time T is given by:

np(T ) =
TX
t=0

(ng(t)� nr(t)� nd(t)): (4.4)

where time t = 0 denotes the beginning of the simulation. In this thesis, in�nite

packet bu�ers are used therefore no packets are dropped (i.e. nd(t) = 0 8t). The

problem of congestion is dealt with in chapter 7 as part of the future work.

In the rest of this chapter Q-Routing is compared with the non-adaptive shortest

path routing and the adaptive state-of-the-art distance vector routing algorithm namely

distributed Bellman-Ford routing (both versions BF1 and BF2). Experimental setup of

these comparisons is discussed �rst, followed by the two sets of experimental results.

4.2 Experimental Setup

The network topology used in these experiments is the 6�6 irregular grid shown in �gure

4.1 due to Boyan and Littman (1994). In this network, there are two possible ways of

routing packets between the left cluster (nodes 1 through 18) and the right cluster (nodes

19 through 36): the route including nodes 12 and 25 (R1) and the route including nodes 18

and 19 (R2). For every pair of source and destination nodes in di�erent clusters, either of

the two routes, R1 or R2 can be chosen. Convergence to e�ective routing policies, starting

from either random or shortest path policies, is investigated below. There are two sets of

experiments to be performed:

The learning rate of 0.85 in Q-Routing is found to give best results. Learning rate

of 0.95 was found to give the best results for the Bellman-Ford routing (equation 2.10).

Packets destined to random nodes are periodically introduced into this network at random

nodes. LoadLevel is the probability of generating a packet by a node at any simulation time

step. Therefore, the average number of packets introduced in the network in any simulation

time step is n�LoadLevel where n is the number of nodes in the network. Multiple packets

at a node are stored in its unbounded FIFO queue. In one time step, each node removes the

packet in front of its queue, determines the destination and uses its routing decision maker
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Figure 4.1: The 6x6 Irregular Grid (adapted from Boyan and Littman (1994)). The left cluster
comprises of nodes 1 through 18 and the right cluster of nodes 19 through 36. The two alternative routes
for tra�c between these clusters are the route including the link between nodes 12 and 25 (route R1) and
the route involving the link between nodes 18 and 19 (route R2). R1 becomes a bottleneck with increasing
loads, and the adaptive routing algorithm needs to learn to make use of R2.

(Q-tables in case of Q-Routing and routing tables in case of Bellman-Ford routing) to send

the packet to one of its neighboring nodes. When a node receives a packet, it either removes

the packet from the network or appends it at the end of its queue, depending on whether or

not this node is the destination node of the packet. Learning of routing information takes

place as follows. In case of Q-Routing, when a node receives a packet from its neighbor, it

sends back an estimate of the packet's remaining travel time. In Bellman-Ford routing, the

cost tables are exchanged between neighboring nodes in each simulation time step with a

probability f .

Two experiments are discussed in this work. The �rst compares three routing al-

gorithms, namely (1) Shortest Path Routing, (2) Q-Routing with random start (Q-

routing(R)), and (3) Q-Routing with a shortest path start (Q-routing(S)). These ex-

periments are intended to demonstrate the learning behavior of Q-Routing under di�erent

starting conditions and how they compare with the shortest path routing. The second ex-

periment compares the conventional Bellman-Ford routing with Q-Routing, for their speed

and quality of learning.
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Figure 4.2: Average packet delivery time at a low load. While the di�erence between shortest path
andQ-Routing(S) is not statistically signi�cant, the di�erence betweenQ-Routing(R) andQ-Routing(S)
is statistically signi�cant over all time steps.

4.3 Q-Routing vs. Shortest Path Routing

Figures 4.2 and 4.3 show Average Packet Delivery Times at low (1.25 packets per simulation

step) and medium (2.5 packets per simulation step) loads for grid topology. Averages over

50 test runs are shown at all loads. Statistical signi�cance is calculated to 99% con�dence

using standard t-test (W. H. Press 1995).

At low loads (�gure 4.2), shortest path routing is the best routing algorithm. The

average packet delivery time remains at the lowest level for shortest path throughout the

simulation. The Q-Routing algorithm, on the other hand, shows di�erent trends depend-

ing on whether it starts with random initialization (Q-routing(R)) or the shortest path

initialization (Q-routing(S)). In Q-routing(S), as a result of small amount of learning

at low loads, the average packet delivery time shows a small increase in the beginning and

then settles back to the lowest value. However, the increase is not statistically di�erent from

shortest path and is not very obvious in �gure 4.2. The reason for this very small amount

of initial learning phase is that the Q-values are supposed to be proportional to the shortest
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Figure 4.3: Average packet delivery time at a medium load. Di�erence between Q-Routing(S)
and Q-Routing(R) is statistically signi�cant till �rst 2500 time steps but becomes insigni�cant after that
as they both converge to the same routing policy. Shortest path shows clear trends of congestion.

distance and not necessarily equal. The proportionality constant depends on the load itself

and needs to be learned. InQ-routing(R), there is an initial phase of learning in which the

average packet delivery time increases. Initially the delivery time is low because statistics

for packets that take a long time to reach their destinations are not yet available. As these

statistics start pouring in, the average packet delivery time starts increasing. Eventually,

after the learning is complete (1000 time steps), the average packet delivery time settles to

a low value. Q-Routing(R) fails to learn the shortest path routing policy exactly. The

di�erence between Q-Routing(R) and shortest path algorithms is statistically signi�cant

throughout the simulation time while the di�erence between Q-Routing(S) and shortest

path is not signi�cant at any time.

At medium loads (�gure 4.3) the shortest path routing breaks down and the average

packet delivery time grows linearly as the simulation time progresses. This is because the

packet queues at popular nodes 12 and 25 increase without bound. A lot of queue waiting

time is incurred by packets going through these nodes.

It is interesting to note that at medium loads, Q-routing(S) learns slower than
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Q-routing(R). The reason is that Q-routing(S) has to �rst unlearn its shortest path

routing policy before it can learn the e�ective policy, which is di�erent from the shortest

path. Q-routing(R), on the other hand, takes less time to learn the same policy because it

has no initial bias towards any policy and has therefore nothing to unlearn. After an initial

phase of learning, both Q-Routing algorithms settle down to the qualitatively similar stable

routing policy. The di�erence between Q-Routing(R) and Q-Routing(S) is statistically

signi�cant only during the learning phase till 2500 steps after which they both converge to

same policy.

The results in this section are slightly di�erent from those obtained by Boyan and

Littman (1994). This is because Boyan and Littman imposed a limit of 1000 on the total

number of packets in the network. No such limit exists in our simulations. In the rest of

the thesis, only Q-Routing(R) is used for any further comparisons as we are interested in

the learning of routing policies from random policy.

4.4 Q-Routing vs. Bellman-Ford Routing

The state of the art distance vector routing algorithm, Bellman-Ford, is compared with

Q-Routing in four aspects:

1. Speed of learning, which is the time taken for the average packet delivery time of the

routing policies to settle down to a stable value.

2. Quality of the routing policy learned, which is measured in terms of the average packet

delivery time after the learning has settled down.

3. Stability of the �nal policy learned, which is measured in terms of the perturbations

in the average packet delivery time; the more perturbations, less stable the policy is.

4. Exploration overhead, which is measured in terms of the average number of Routing

Information Units (RIU's) sent between neighboring nodes in one time step. The RIU

for Q-Routing is a Q-value and RIU for Bellman-Ford routing is one cost table entry.
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Figure 4.4: Q-Routing vs Bellman-Ford(1) at low loads: Both Q-Routing andBF1 learn the shortest
path routing at a low load level of 1.25 pkt/step. Overhead in Q-Routing is only 23 RIU's as compared to 86
RIU's in BF1 (when f = 0.02) for similar speed of learning. The speed of learning for BF1 can be doubled
(for f = 0.05) resulting in a 10 fold increase in exploration overhead (212 RIU's).

Again, the results shown are averages over 50 test runs and statistical signi�cance is com-

puted with 99% con�dence.

At low loads, both Q-routing and BF1 are initialized randomly and are then allowed

to learn. Figure 4.4 shows the average packet delivery time at a low load (1.25 pkt/step)

as the learning takes place. Q-Routing takes around 800 time steps to converge. The

exploration overhead is very low (just 23 RIU's), and the �nal policy is very e�ective (i.e.,

close to the shortest path routing) and it is highly stable.

In Bellman-Ford routing, the rate of exchange of cost tables between neighboring

nodes, largely determine the speed of learning and the amount of exploration. Therefore the

performance of BF1 with two values of f are shown in �gure 4.5. For f = 0.02, BF1 learns

the optimal policy almost as fast as Q-Routing, but the exploration overhead (86 RIU) is

almost 4 times that of Q-Routing. For f = 0.05, BF1 learns the optimal policy almost

twice as fast as Q-Routing but the exploration overhead is very high (212 RIU), almost

10 times that of Q-Routing. Hence, as mentioned in section 2.3.2, one major drawback of
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Figure 4.5: Q-Routing vs Bellman-Ford(2) at medium loads: Q-Routing learns an e�ective policy
while BF2 is not able to learn a stable policy. All the di�erencese are statistically signi�cant.

Bellman-Ford routing is the exorbitant exploration overhead compared to Q-Routing. The

�nal policies learned by BF1 (both at f = 0.02 and f = 0.05) are optimal and stable.

At medium loads shortest path is not the best policy (as was seen in �gure 4.3).

Therefore, BF1, which converges to shortest path, shows a similar increasing trend as

the shortest path algorithm at medium load (�gures 4.3). Therefore, the BF2 version of

Bellman-Ford routing, where cost T represents the total delivery time (rather than number

of hops), is compared with Q-Routing. Figure 4.5 shows the average packet delivery time

at medium load (2.5 pkt/step) as the learning takes place. Q-Routing learns an e�ective

routing policy by around the 2250th time step and the overhead of exploration incurred is

only 23 RIU's (Load level does not a�ect the exploration overhead).

Again two di�erent values of f are used for BF2. For f = 0.04, the speed of learning

was found to be almost the same as that of Q-Routing, but the exploration overhead (RIU

= 152) is almost seven times that of Q-Routing. Choosing f = 0.08, the learning speed

is further increased but again the overhead (RIU = 294) is more than 12 times that of Q-

Routing. Moreover, Q-Routing learns a much superior and stable routing policy than BF2
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for all values of f tested (only two of which are shown in �gure 4.5). It is worthwhile to

mention that (as pointed out by Boyan and Littman (1994)) Q-Routing fails to revert back

to the original routing once the network conditions (topology/tra�c condition/load) are

reverted back to what they were before. Bellman-Ford routing does not have this problem

because exploration does not depend on the routing tables of various nodes while in Q-

Routing, it is the packet movement which decides which Q-values should be updated. As a

conclusion, there are two main problems with Bellman-Ford. First, its exploration overhead

is very high; second, it is not able to learn an e�ective stable policy at medium and high

loads. However, Bellman-Ford has the advantage over Q-Routing that it can revert back to

the original routing policy.

4.5 Conclusions

This chapter evaluated Q-Routing on two sets of experiments. In the �rst set of experiments

the ability of Q-Routing to learn an e�ective routing policy in terms of average packet

delivery time was demonstrated over di�erent load conditions. The conclusion is that Q-

Routing is capable of adapting to low and medium load conditions but takes a long time

to converge at high load conditions. As we will see later, the policy learned at high load is

not as good as it could be.

In another set of experiments Q-Routing was compared with the state-of-the-art

adaptive distance vector routing, the Distributed Bellman-Ford algorithm. At low loads

the best version of Bellman-Ford (learns the shortest path policy) as will Q-Routing. At

medium loads, the more general version of Bellman-Ford must be used, but even then it

learns an inferior path compared to Q-Routing. Exploration overhead in Bellman-Ford is

7-10 times that of Q-Routing for same speed of learning.

As seen from experiments in section 4.4, higher amount of exploration does increase

the speed of learning. There is room for improving the quantity of exploration in Q-

Routing by making use of the backward direction of exploration. Moreover, the quality

of exploration in Q-Routing is not as good as it could be because the same learning rate
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(0.85) is used for updating Q-values without any regard as to how closely the estimated

Q-value represents the state of the network. The main contribution of this work is to extend

the quality and quantity of exploration of Q-Routing to yield a superior routing algorithm

with regard to the speed of adaptation, the quality of �nal routing policy learned, ability

of the routing policy to handle higher load levels and �nally their ability to adapt quickly

to the changes in network topology and tra�c patterns. The resulting algorithm called

Confidence based dual reinforcement Q-Routing (CDRQ-Routing) is developed

in the next chapter. Since CDRQ-Routing is superior than Q-Routing, Bellman-Ford is

not compared with CDRQ-Routing, only Q-Routing is compared with CDRQ-Routing in

chapter 6.
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Chapter 5

Con�dence-Based Dual

Reinforcement Q-Routing

In chapter 3, the Q-learning framework was applied to the problem of adaptive network rout-

ing, yielding the Q-Routing algorithm (Boyan and Littman 1994). The ability of Q-Routing

to learn an e�ective routing policy starting from a random policy was also demonstrated.

In this chapter, a new routing algorithm based on Q-Routing is developed. The

quality of exploration is improved by attaching con�dence measures to each of the Q-values

in the network. These con�dence values (C-values) are used in determining the learning

rate for the Q-values. Moreover, these C-values are themselves updated in order to reect

how closely the corresponding Q-values represent the current state of the network. The

quantity of exploration is also increased by including backward exploration to the algorithm.

Backward exploration doubles the exploration in terms of the number of Q-value updates

per packet hop. The combination of these two enhancements constitutes the Confidence-

based Dual-reinforcement Q-routing.

Section 5.1 introduces Confidence-based Q-routing (CQ-routing), which con-

sists of Q-Routing together with the con�dence values (see �gure 1.4). Section 5.2 presents

the Dual reinforcement Q-routing, which consists of Q-Routing together with the

backward exploration. In section 5.3 these two extensions are combined into Confidence-
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based Dual-reinforcement Q-routing CDRQ-routing.

5.1 Con�dence-based Q-routing

The quality of the routing policy depends mainly on how closely the Q-values in the network

represent its current state. Therefore, they must be continuously updated. Depending on

the network load and tra�c patterns, however, some of the Q-values may not get updated

for a long time. Decisions based on such unreliable Q-values are unreliable.

In order to quantify the amount of reliability in the Q-values, con�dence measures

are introduced in Q-Routing in this section. For every Q-value in the network, there is

a corresponding con�dence value (C-value) between 0 and 1. The interpretation of these

C-values is discussed formally in section 5.1.1. Essentially, a low C-value implies that we

have low con�dence in the corresponding Q-value because it has not been updated for a

long time. When a Q-value with low con�dence is to be updated, it is advisable to update

it more; in other words, the learning rate for this Q-value should be high. Similarly, if the

con�dence in the new estimate of a Q-value is high then also the learning rate should be

high. Section 5.1.2 describes the use of these con�dence values in deciding the learning rate.

These con�dence values are themselves updated so that they decay exponentially with every

time step if the corresponding Q-value is not updated. On the other hand, if the Q-value

is updated in the last time step then the corresponding C-value should also be updated.

Thus every Q value update is associated with a corresponding C-value update. Section

5.1.3 presents the update rules for con�dence values. Since the learning rate depends on

the reliability (C-value) of the Q-value being updated and that of the estimated Q-value,

the quality of exploration is improved by updating these Q-values more.

5.1.1 Con�dence Measure

Each Q-value Qx(y; d) in the network is associated with a measure of con�dence Cx(y; d),

which is a real number between 0 and 1. A value of 1 means that there is full con�dence in

the corresponding Q-value and that this Q-value reects the current state of the network
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(completely reliable). In other words, this Q-value has recently been updated. A value

of 0, on the other hand, means that the corresponding Q-value is random and does not

necessarily reect anything about the current state of the network (completely unreliable).

In other words, this Q-value has never been updated. With this interpretation, the base case

C-values follow directly from the base case Q-values, that is, Qx(y; y) = � and Cx(y; y) = 1.

In other words, there is full con�dence in all Q-values of the form Qx(y; y). Because all

these Q-values are constant, the corresponding C-values are also held constant.

5.1.2 Using Con�dence Values

There is no way of telling how reliable a Q-value is, in the standard Q-Routing, and, the

learning rate is constant throughout the learning. In CQ-Routing, however, the con�dence

values reect the reliability of Q values, and the learning rate depends on the con�dence of

the Q-value being updated and its new estimate. In particular, when node x sends a packet

P (s; d) to its neighbor y, it gets back not only the best estimate of node y for the remaining

part of P (s; d)'s journey, namely Qy(ẑ; d), but also the con�dence value Cy(ẑ; d) associated

with this Q-value. When node x updates its Qx(y; d) value, it �rst computes the learning

rate �f which depends on both Cx(y; d) and Cy(ẑ; d). The update rule 3.6 is replaced by:

Qx(y; d) = Qx(y; d) + �f (Cx(y; d);Cy(ẑ; d))(

new estimatez }| {
Qy(ẑ; d) + qy + ��Qx(y; d)) (5.1)

The learning rate function, �f (Cold, Cest) is chosen based on the following rule:

Rule 5.1: Learning rate should be high if either:

� Con�dence in the old Q-value is low or

� Con�dence in the new Q-value is high.

A simple and e�ective learning rate function is given by:

�f (Cold;Cnew) = max(Cnew; 1�Cold) (5.2)

Since all the C-values are between 0 and 1, the learning rate is also between 0 and 1.
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5.1.3 Updating the Con�dence Values

The con�dence values (except for the base cases) keep changing with time, in order to reect

the reliability of the corresponding Q-values. Depending on whether a Q-value was updated

in the last time step or not, di�erent update rules for the C-value apply:

Rule 5.2(a): Every C-value except the base cases decays with time if their

corresponding Q-values are not updated in the last time step.

Cx(y; d) = �Cx(y; d); (5.3)

where � 2 (0,1) is the decay constant.

Rule 5.2(b): If a Q-value is updated in the last time step, then the correspond-

ing C-value is updated based on the C-values corresponding to the Q-values used

in the Q-value update:

Cx(y; d) = Cx(y; d) + �f (Cx(y; d);Cy(ẑ; d))(Cy(ẑ; d)�Cx(y; d)) (5.4)

The C-value update equation 5.4 uses the old C-value of the Q-value being updated and

the C-value of the Q estimate coming from neighboring node to �rst compute the learning

rate. This learning rate is used in the Q-value update rule. Same learning rate is then used

to update the C-value. If the learning rate is high, the con�dence in the updated Q-value

is closer to that of the estimated Q-value's con�dence.

5.1.4 Overhead Analysis of CQ-Routing

Three additional overheads are associated with the con�dence values in CQ-Routing are:

1. Con�dence value transmission overhead (tcx): After node x sends a packet

P (s; d) for destination d to node y, node y sends back to node x not only the estimate

Qy(ẑ; d)+qy, but also the con�dence value Cy(ẑ; d). If e is the size of the estimate and

c is the size of the con�dence value then the estimate-con�dence value transmission

overhead is given by:

tcx = �

�
e+ c

p

�
: (5.5)
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2. Learning rate computation overhead (tlr) is de�ned as the time taken by node x

to compute the learning rate once the con�dence value of the Q-value being updated

and that of the estimate is known. Learning rate can be obtained from these two

con�dence values in O(1) time using equation 5.2.

3. Con�dence value update overhead (tcu(x)) is the total time taken to update

all the con�dence values at node x. With every time step, all con�dence values are

updated irrespective of whether the corresponding Q value is updated or not. Either

equation 5.3 or equation 5.4 is applied to each of the con�dence value Cx(�; �) at node
x. Each update itself is O(1). If N(x) is the number of neighbors of node x and n

is the number of nodes in the network then the number of C-values updated in each

time step at node x is (n� jN(x)j)jN(x)j (the base case C-values are not updated at

all). Thus the overhead due to con�dence value updates at node x is given by:

tcu(x) = O(njN(x)j): (5.6)

These overheads are not signi�cant compared to the gain in performance as shown in chapter

6.

5.2 Dual Reinforcement Q-routing

In this section, Dual-reinforcement Q-routing (DRQ-routing) based on the general

idea of Dual Reinforcement Learning (Goetz, Kumar & Miikkulainen 1995), is discussed in

detail. This algorithm is obtained by adding the other direction of exploration, backward

exploration, into Q-Routing. After introducing the basic idea of dual reinforcement learning,

its use in Dual-reinforcement Q-routing is presented in this section.

5.2.1 Dual Reinforcement Learning

The basic element in reinforcement learning is the reinforcement signal. As mentioned

in section 1.2 there is no direct reinforcement signal available for the routing decisions
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taken at individual nodes. Such training signal can be generated at the destination node

but to make it available to all the nodes in the path, signi�cant network resources will

be consumed. Due to this limitation, a straightforward reinforcement learning cannot be

applied to the routing problem. Goetz, Kumar, and Miikkulainen (1995) developed the

Dual Reinforcement Learning algorithm for such situations. Instead of trying to use the

�nal reinforcement signal, an indirect reinforcement signal is extracted from the incoming

information and is used to update the local decision maker.

Goetz et.al. applied dual reinforcement learning to on-line adaptation of channel

predistorters in satellite communication. Consider two distant places A and B connected

by a satellite communication link. Both have a sender and a receiver unit. The sender units

S(A) and S(B) at A and B have predistorters P(A) and P(B). The idea of a predistorter

is to distort the signal before sending it over a communication channel, so that when the

signal is received on the other side, the distortions due to the channel are cancelled out.

When A sends a signal s to B, the signal is �rst predistorted by P(A). When B receives

this signal, a training (reinforcement) signal r(P (A); s), estimating how well the predis-

torter P(A) has done its job on signal s, can be computed at B. In order to update the

predistorter P(A), r(P (A); s) should be made available at A, but sending it from B to A

over the satellite communication link would incur a large overhead and therefore is not

feasible. Both P(A) and P(B) are trying learn the same control action for the same envi-

ronment, that is, the atmosphere. Hence starting from the same P(A) and P(B), it is safe

to assume that P(B) would have generated the same reinforcement for the signal s, that is,

r(P (A); s)=r(P (B); s). Making use of this symmetric property, P(B) can be updated using

s and r(P (A); s).

The problem in network routing is similar to that in satellite communication. The

training signal for any of the local routing decisions is not available directly. In fact a com-

munication network is a more complex system than the two node satellite communication

system discussed above, since (1) there are more than two nodes, and (2) the environment

(i.e., the communication network) is not symmetric in the two directions across a link. The
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Figure 5.1: Forward and backward exploration: Q-value Qx(y; d) of sending node x is updated in
forward exploration, while Q-value Qy(x; s) of receiving node y is updated in backward exploration when a
packet P (s; d) (originated at node s and destined to node d) hops from x to y.

dual reinforcement learning idea can be used in the network routing problem as follows.

When a node x sends a packet to neighboring node y, some additional routing information

can be sent along with the packet. This information can be used to update node y's deci-

sions in the direction opposite to the direction of the packet. This update adds backward

exploration to Q-Routing.

5.2.2 Backward Exploration

The Q-Routing algorithm makes use of forward exploration in updating the Q-values in

the network. It may be recalled that in forward exploration, the Q-value of the sending

node is updated based on the information coming from the receiving node (section 3.4).

DRQ-Routing makes use of backward exploration as well (see �gure 5.1). When a node x

sends a packet P (s; d) to one of its neighbors, y, the packet can take along information

about the Q-values of node x. When node y receives this packet, it can use this information

in updating its Q-values pertaining to the neighbor x. Figure 5.1 summarizes both the

forward and backward exploration in each packet hop. Later when node y has to make a

decision, it can use the updated Q values for x. The only overhead is a slight increase in

the size of the packets.

Let s denote the source node of packet P (s; d), which is currently at node x. This

packet carries to node y the estimated time Qx(ẑ; s) it takes for a packet destined to node
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s to travel from node x:

Qx(ẑ; s) = min
z2N(x)

Qx(z; s) (5.7)

This value is essentially an estimate of the minimum time it would take for the packet to

reach back to its source s from node x. Upon receiving this estimate, node y computes the

new estimate for Qy(x; s) as follows:

Qy(x; s)
est = Qx(ẑ; s) + qx + � (5.8)

Note that this estimate is based on the optimal triangular equality (equation 3.2). Node y

then updates its Qy(x; s) value as follows:

Qy(x; s)
new = Qy(x; s)

old + �b(Qy(x; s)
est �Qy(x; s)

old) (5.9)

where �b is the learning rate for backward exploration. Substituting and expanding 5.9, the

update rule is given by:

Qy(x; s) = Qy(x; s) + �b(

new estimatez }| {
Qx(ẑ; s) + qx + ��Qy(x; s)) (5.10)

The general inequality (equation 3.1) can be restated for backward exploration as:

Qy(x; s) � qx + � +Qx(z; s) 8y 2 N(x) and 8z 2 N(x): (5.11)

for all y 2 N(x) and for all z 2N(x). Similarly, the optimal triangular equality (equation 3.2)

for backward exploration is:

Qy(x; s) = qx + � +Qx(ẑ; s) (5.12)

5.2.3 Properties of Backward Exploration

Three properties of backward exploration, original to this thesis, are stated and proved

in this section. The �rst property shows that the update rule given by equation 5.10 is

admissible (section 3.5). In other words, the general inequality (equation 5.11) is invariant

in the backward exploration update. The second property shows that in this update, Q
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values asymptotically converge to the shortest path routing at low loads. These properties

follow from the update rules proposed in the previous section. The third property argues

that the quality of exploration in backward exploration is better than that in forward

exploration.

Property 5.1: The update rule (equation 5.10) guarantees that if the old value

of Qx(y; s) satis�es the general inequality (equation 5.11), then its updated value

also satis�es the general inequality. i.e. update rule 5.10 is admissible.

Proof: Let Qy(x; s)
0 denote the value of Qy(x; s) updated using equation 5.10.

If the old value of Qy(x; s) satis�es the general inequality, then for any neighbor

z of node y and some non-negative �(z),

Qy(x; s) = qx + � +Qx(z; s)� �(z): (5.13)

Also since Qy(ẑ; d) is the best estimate of node y, by de�nition this has to be

the minimum of all other estimates of node y for the same destination d. Thus

for all z 2 N(x),

Qy(ẑ; d) = Qx(z; s)� �0(z; ẑ) (5.14)

for some non-negative �0(z; ẑ). Substituting 5.13 and 5.14 in the update rule

5.10 and simplifying,

Qy(x; s)
0 = qx + � +Qx(z; s)� [(1� �b)�(z) + �b�

0(z; ẑ)]; (5.15)

which can be rewritten as:

Qy(x; s)
0 � qx + � +Qx(z; s): (5.16)

Hence the updated Q-value also satis�es the general inequality.

Property 5.2: For low network loads, the routing policy learned by the DRQ-

Routing update rule (equation 5.10) asymptotically converges to the shortest path

routing.
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Proof: Consider the complete route (x0(= s); x1; :::; xl(= d)) of length l for

a packet P (s; d). The l Q-value updates due to backward exploration (equa-

tion 5.10) along this route are given by the following generic form (i = 0...l�1):

Qxi+1(xi; x0) = Qxi+1(xi; x0)+�b(Qxi(xi�1; x0)+qxi+��Qxi+1(xi; x0)): (5.17)

Equation 5.17 follows from the fact that if (x0; x1; :::; xl) is the shortest route

between x0 and xl, then the best estimate of node xi to the node x0 would be

Qxi(xi�1; x0), and it is this estimate that goes along with the packet from node

xi to node xi+1, where it is used to update the estimate Qxi+1(xi; x0).

The base case for backward exploration follows from the boundary conditions

in section 3.1:

Qx1(x0; x0) = �: (5.18)

Like in the proof of property 3.2, assume that for low loads, all qxi are small

compared to �. Using these simpli�cations, equation 5.17 can be rewritten as:

Qxi+1(xi; x0) = Qxi+1(xi; x0) + �b(Qxi(xi�1; x0) + � �Qxi+1(xi; x0)): (5.19)

If this were the shortest route between nodes x0 and xl then the following would

hold for the Q-values at each of the intermediate nodes:

Qxi(xi�1; x0) = i�: (5.20)

Equation 5.20 is proved by induction over i:

Base case: (i = 1) follows directly from equation 5.18 by substituting for i in

5.20.

Induction Hypothesis: Assume 5.20 for some i. Substituting Qxi(xi�1; x0)

from 5.20 into 5.19 we get:

Qxi+1(xi; x0) = Qxi+1(xi; x0) + �b((i+ 1)� �Qxi+1(xi; x0)): (5.21)
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Repeated updates using the update equation 5.21 will eventually lead to:

Qxi+1(xi; x0) = (i+ 1)�: (5.22)

Equation 5.22 proves the induction hypothesis for i+1. Hence the property 5.2

holds for all i.

Property 5.3: Q-value updates in backward exploration are more accurate than

Q-value updates in forward exploration.

Proof: A Q-value update is more accurate if the estimate coming from the

neighboring node for the update has been updated more recently. Consider a

route (x0; x1; :::; xl) of a packet from source node x0 to destination node xl.

For this route, forward exploration update of the Q-value Qxi(xi+1; xl) takes

place before the update of the Q-value Qxi+1(xi+2; xl). In other words the Q-

value used for updating Qxi(xi+1; xl) is itself updated afterwards, and hence

is less accurate. In backward exploration, however, the Q-value Qxi+1(xi; x0) is

updated after the update of the Q value Qxi(xi�1; x0). Therefore, the Q-value

used for updating Qxi+1(xi; x0) is itself updated before and is more accurate.

5.2.4 Overhead Analysis of DRQ Routing

The overheads discussed in chapter 3 for forward exploration hold for DRQ-Routing too.

An additional overhead stems from the increased size of the packet being transmitted at

each hop. Using the same notation as before, if p is the size of the original packet and

e is the additional size of the estimate value that is appended to this packet, the total

packet size forwarded in each hop is (p+e). The time taken to transmit this longer packet

also increases. If � is the transmission delay of a packet of size p, and since this time is

proportional to the length of the packet, the time taken to transmit a new packet augmented

with the estimate is given by:

tx = �(1 +
e

p
): (5.23)
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The percentage increase in time is therefore only e/p which is less than 0.1% (see also

section 3.6). Hence the total signi�cant overhead in DRQ-Routing is only 2e/p. As will be

shown in chapter 6, this overhead is acceptable, considering the gains in speed and quality

of adaptation due to backward exploration.

5.3 Con�dence-based Dual Reinforcement Q-routing

In the last two sections, two ways of improving the basic Q-Routing were proposed. In

CQ-Routing, the quality of exploration was improved by learning faster when the Q-values

represent the current state of the network more closely. In DRQ-Routing, on the other

hand, the quantity of exploration was improved by adding another direction of exploration

to Q-Routing. In this chapter, these two features are combined into CDRQ-Routing. Ex-

periments in chapter 6 show that CDRQ-Routing is superior than both CQ-Routing and

DRQ-Routing independently.

5.3.1 Combining CQ and DRQ Routing

CDRQ-Routing combines the features of both CQ-routing and DRQ-Routing. Thus, with

each hop of a packet P (s; d) from node x to node y, the Q and C-values of both nodes x

and y are updated in the forward and backward exploration, respectively. Following is the

summary of the four updates associated with a single hop of a packet from node x to node

y in CDRQ-Routing. The con�dence update rules and variable learning rate based on old

and new C-values for backward exploration are given below:

1. Q-value update of sender node(x) (FORWARD EXPLORATION):

Qx(y; d) = Qx(y; d) + �f (Cx(y; d);Cy(ẑ; d))(

new estimatez }| {
Qy(ẑ; d) + qy + ��Qx(y; d)); (5.24)

2. C-value update of sender node(x) (FORWARD EXPLORATION):

Cx(y; d) = Cx(y; d) + �f (Cx(y; d);Cy(ẑ; d))(Cy(ẑ; d) �Cx(y; d)); (5.25)
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3. Q-value update of receiver node(y) (BACKWARD EXPLORATION):

Qy(x; s) = Qy(x; s) + �b(Cy(x; s);Cx(ẑ; s))(

new estimatez }| {
Qx(ẑ; s) + qx + ��Qy(x; s)); (5.26)

4. C-value updates of receiver node(y) (BACKWARD EXPLORATION):

Cy(x; s) = Cy(x; s) + �b(Cy(x; s);Cx(ẑ; s))(Cx(ẑ; s)�Cy(x; s)); (5.27)

5.3.2 Summary of the CDRQ Routing Algorithm

Like Q-Routing, the complete CDRQ-Routing algorithm can be summarized in terms of two

steps: The PacketReceivey(x) step describes what the node y does when it receives a packet

from one of its neighboring nodes, x and the PacketSendx step describes what node x does

when it has to send a packet. These two steps for CDRQ-Routing are given in tables 5.1

and 5.2:

1 If (not EMPTY(PacketQueue(x)) go to step 2

2 P (s; d) = Dequeue �rst packet from PacketQueue(x)

3 Compute best estimate Qx(ẑ; d) = minz2N(x) Qx(z; s).

4 Append (Qx(ẑ; s)+qx) and Cx(ẑ; s) to the packet P (s; d).

5 Compute best neighbor ŷ = argminy2N(x) Qx(y; d).

6 ForwardPacket P (s; d) to neighbor ŷ.

7 Wait for ŷ's Q estimate and C-value.

8 ReceiveEstimate(Qŷ(ẑ; d) + qŷ) and Cŷ(ẑ; d) from node ŷ.

9 Compute the learning rate �f (Cx(y; d)),Cŷ(ẑ; d)) using 5.2

10 UpdateQvalue(Qx(y; d)) as given in 5.24.

11 UpdateCvalue(Cx(y; d)) as given in 4.4.

12 Update all other C-values using 5.3

13 Get ready to send next packet (goto 1).

Table 5.1: PacketSendx(P (s; d)) at NODE x for CDRQ-Routing
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1 Receive a packet P (s; d) from neighbor x.

2 Extract the estimate (Qx(ẑ; d)+qx) and Cx(ẑ; s) from packet P (s; d).

3 Compute learning rate �b(Cx(ẑ; s)),Cy(x; s)) using 5.2

4 UpdateQvalue(Qy(x; s)) value using equation 5.26.

4 UpdateCvalue(Cy(x; s)) value using equation 4.27.

5 Calculate best estimate for node d, Qy(ẑ; d) = minz2N(y) Qy(z; d).

6 Send (Qy(ẑ; d) + qy) and Cy(ẑ; d) back to node x.

7 If (d � y) then ConsumePackety(P ) else goto 8

8 If (PacketQueuey) is FULL) then DropPacket(P (s; d)) else goto 9

9 AppendPacketToPacketQueuey(P (s; d)).

10 Get ready to receive next packet.

Table 5.2: PacketReceivey(x) at NODE y for CDRQ-Routing

5.4 Conclusion

Exploration is essential to adaptive routing. Two ways of improving the exploration mech-

anism of Q-Routing were discussed in detail in this chapter. These lead to two intermediate

adaptive routing algorithms, namely CQ-routing, which improves the quality of explo-

ration by maintaining C values for every Q-value in the network and using them to compute

the learning rate for the update rules, and DRQ-Routing, which improves the quantity of

exploration through an additional backward exploration, leading to two Q-value updates

per packet hop as against only one in Q-Routing. These two features were combined into a

single adaptive routing algorithm, in CDRQ-Routing.

Experimental evaluation of these algorithms on two di�erent network topologies is

provided in the next chapter. Comparison of speed and quality of adaptation and ability

to adapt to changing tra�c patterns and network topologies for Q-Routing, CQ-Routing,

DRQ-Routing and CDRQ-Routing shows that the quality and quantity of exploration does

improve the overall learning and adapting capabilities of an adaptive routing algorithm.
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Chapter 6

Evaluating CDRQ-Routing

In the previous chapter, the CDRQ-routing algorithm was introduced. Extending the

basic Q-Routing, the complete algorithm has two components, the con�dence part (CQ-

Routing) and the backward exploration part (DRQ-Routing). In this chapter, Q-Routing is

compared with CDRQ-routing and its two components CQ-Routing and DRQ-Routing

over two network topologies.

Section 6.1 describes the experimental setup. This section is followed by four com-

parative results: learning at constant load levels in section 6.2, adaptation to variable tra�c

conditions in section 6.3, adaptation to changing network topology in section 6.4, and sus-

taining high load levels in section 6.5.

6.1 Experimental Setup

The Q tables were initialized with small random Q values, except for the base cases (section

3.2). In CQ-routing and CDRQ-routing, the C values were all initialized to 0 except

for the base cases (section 5.1.1). Learning rate for forward exploration �f , learning rate

for backward exploration �b, and the C value decay constant � are summarized in table 6.1.

Performance of the algorithms was found to be the best with these parameters.

Note that �b > �f in DRQ-Routing. The reason for this di�erence follows from prop-
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Algorithm �f �b �

Q-Routing 0.85 - -

CQ-Routing - - 0.95

DRQ-Routing 0.85 0.95 -

CDRQ-Routing - - 0.90

Table 6.1: Parameters for the Algorithms. In Q-Routing and DRQ-routing, the
learning rates are constant and there are neither C values, nor decay constants. In CQ-
routing and CDRQ-Routing, the learning rates for both the forward and backward explo-
ration depend on the C values hence there are no explicit learning rates.

erty 5.1, which states that Q value updates in backward exploration are more accurate than

those in forward exploration. The performance of DRQ-Routing was also experimentally

found to be better when �b > �f . Also, note that the decay constant in CDRQ-Routing is

smaller than that in CQ-Routing. This is because two Q values are updated per packet hop

in CDRQ-Routing, instead of only one in CQ-Routing, and therefore the Q values in CDRQ-

Routing tend to be more reliable than those in CQ-Routing. With a smaller decay constant

(i.e. with a faster decay), higher penalty for reliability is incurred in CDRQ-Routing. If

some Q value is not updated for a long time, the con�dence in that Q value will decay faster

and when it is updated later on the learning rate will be higher (rule 5.1, equation 5.2). As

a result, the quality of exploration is balanced with the quantity of exploration to keep the

Q values as reliable as possible.

6.2 Learning at Constant Loads

In the �rst set of experiments, the load level was maintained constant throughout the

simulation. Results on two network topologies, namely the 36 node irregular 6�6 grid (�gure
3.1) and a 128 node 7-D hypercube are presented. The speed and quality of adaptation at

three load levels, low, medium and high, were compared. The typical load level values for

the two topologies are given in table 6.2.

The adaptive routing algorithms were found to have relatively similar performance

and learning behaviors (in average packet delivery time) within a given range. The per-
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Topology # nodes Low Load Medium Load High Load

6 � 6 irregular grid 36 0 - 1.75 1.75 - 2.50 2.50 - more

7-D hypercube 128 0 - 5 5 - 8 8 - more

Table 6.2: Load level ranges The number stands for number of packets introduced in
the network per time step. The learning behavior of adaptive routing algorithms remains
roughly similar within a given load range (low, medium or high), but if the load changes from
one range to another, the behavior can change quite dramatically. In real life communication
networks, the load is usually in the medium range, and occasionally changes to low or high
levels.

formance and learning behavior is signi�cantly di�erent from one load level to another for

some routing algorithms. For example, at low load, shortest path performs very well but at

medium and high load levels, it breaks down completely (�gures 4.2 and 4.4). As another

example, learning behavior of Q-Routing shows di�erent behavior at medium and high load

levels (�gure 6.3 and 6.5).

Three representative load levels, one in each of the three ranges, were used in the ex-

periments. For the grid topology, they were 1.25 pkts/step, 2.5 pkts/step and 3.5 pkts/step.

For 7-D hypercube topology, they were 3 pkts/step, 7 pkts/step and 10 pkts/step. The load

level ranges depend on the topology, more speci�cally on the average branching factor and

number of nodes in the network. The 36 node 6 � 6 grid and the 128 node 7-D hyper-

cube have di�erent topologies, hence their load ranges are also di�erent. These ranges were

decided after a number of experiments.

The learning behavior was observed in terms of average packet delivery time and

number of packets in the network during learning. The packet delivery times of all packets

reaching their destination in a window of 25 time steps were averaged. Similarly, the

number of packets in the network were averaged for every successive window of 25 time

steps. Results averaged over 50 simulation runs, each starting with random initializations

of Q values for both network topologies are reported in �gures 6.1 through 6.12. Statistical

signi�cance is computed at 99% con�dence using the standard student's t-test (W. H. Press

1995).

At low load levels, the average packet delivery time for both the grid (�gure 6.1)
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Figure 6.1: Average packet delivery time at a low load level for the grid topology: Di�erence
between Q-Routing and CQ-Routing is statistically signi�cant between 300 to 800 time steps and di�erence
beteween CDRQ-Routing/DRQ-Routing and Q-Routing/CQ-Routing is signi�cant from 50 to 1200 time
steps.

and the hypercube (�gure 6.3) and the number of packets in the network for the grid

(�gure 6.2) and the hypercube (�gure 6.4) shows that DRQ-Routing learns an e�ective

routing policy much faster than CQ-Routing. There is not much gain in the speed of

learning from DRQ-Routing to CDRQ-Routing. Reason for this trend is that at low loads,

what matters the most is the amount of exploration and the algorithm that allows more

exploration per packet hop will learn faster. Adding con�dence values to DRQ-Routing,

leading to CDRQ-Routing, does not help much. CDRQ-Routing learns more than 3 times

as fast as Q-Routing for both topologies.

At medium load levels, the average packet delivery times (�gure 6.5 for the grid

and 6.7 for the hypercube) and the number of packets in the network (�gure 6.6 for the

grid and 6.8 for the hypercube) show that both DRQ-Routing performs slightly better than

CQ-Routing. CDRQ-Routing combines the bene�ts of both the C values and the backward

exploration, thereby achieving increased performance over Q-routing, DRQ-Routing and

CQ-Routing. This result is signi�cant because it highlights the contribution of both the

quality and quantity of exploration in learning. They contribute in two di�erent ways to

increase the performance of CDRQ-Routing.
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Figure 6.2: Number of packets in the network for the grid topology at a low load level:
Di�erence between Q-Routing and CQ-Routing is statistically signi�cant after 300 times steps. Di�erence
between CDRQ-Routing/DRQ-Routing and Q-Routing/CQ-Routing is signi�cant after 175 time step.
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Figure 6.3: Average packet delivery time for 7-D hypercube at low load: Di�erence between
Q-Routing and CQ-Routing is statistically signi�cant between 450 to 850 times steps. Di�erence between
CDRQ-Routing/DRQ-Routing and Q-Routing/CQ-Routing is signi�cant between 175 to 800 time steps.

At high load levels the average packet delivery time (�gure 6.9) and the number of

packets in the network (�gure 6.10) for the grid topology show that while Q-Routing con-

verges to a qualitatively poor routing policy, CQ-Routing shows a signi�cant improvement

in quality of routing policy. DRQ-Routing and CDRQ-Routing converge to qualitatively

similar policies which are signi�cantly better than that to which CQ-Routing converged to.
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Figure 6.4: Number of packets for 7-D hypercube at low load: Di�erence between Q-Routing
and CQ-Routing is statistically signi�cant between 300 to 800 times steps. Di�erence between CDRQ-
Routing/DRQ-Routing and Q-Routing/CQ-Routing is signi�cant after 150 time step.

The speed of convergence of CDRQ-Routing is slightly better than that of DRQ-Routing.

The result again signi�es the independent and complementary contributions of features

from CQ-Routing and DRQ-Routing in improving adaptation speed of CDRQ-Routing high

loads. In case of hypercube topology, Q-Routing learns qualitatively similar routing policy

as CDRQ-Routing but learning is twice as fast in the later.

The learning behavior for Q-Routing and CDRQ-Routing (and its two versions) is

similar in both topologies at low and medium load levels. However, at high loads Q-Routing

fails to converge to a policy qualitatively as good as CDRQ-Routing for grid topology but

this trend is not reected in the hypercube topology. The reason being that the hypercube is

a very symmetric network with not much alternatives to choose from while in grid topology,

there could be multiple routing policies due to no symmetry in the topology. Hence, the

performance improvements might vary with topology but in general CDRQ-Routing was

found in all cases to improve signi�cantly in speed of learning and in some topologies even in

quality of the policy learned. Only grid topology is used in the next two sets of experiments,

evaluating and comparing the performance of adaptive routing algorithms for adaptation

to changes in tra�c pattern and network topology.
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Figure 6.5: Average packet delivery time for the grid topology at a medium load level: Dif-
ference between Q-Routing and CQ-Routing is statistically signi�cant between 900 to 1900 times steps.
Di�erence between DRQ-Routing and CDRQ-Routing is signi�cant between 750 to 1300 time steps. Di�er-
ence between CDRQ-Routing and Q-Routing is signi�cant between 300 to 1900 time steps.
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Figure 6.6: Number of packets in the network for the grid topology at a medium load level:
Di�erences between all pairs of algorithms are signi�cant after 500 time step and remain so for ever.

6.3 Adaptation to Varying Tra�c Conditions

In the second set of experiments, Q-Routing, CQ-Routing, DRQ-Routing and CDRQ-

Routing, are compared with respect to their ability to adapt to variations in tra�c patterns

in the grid topology. All algorithms were �rst allowed to learn an e�ective routing policy at a
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Figure 6.7: Average packet delivery time for 7-D hypercube at medium load: Di�erence between
Q-Routing and CQ-Routing is statistically signi�cant between 1500 to 2750 times steps. Di�erence between
DRQ-Routing and CDRQ-Routing is signi�cant between 200 to 600 time steps. Di�erence between CDRQ-
Routing and Q-Routing is signi�cant between 200 to 2750 time steps.
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Figure 6.8: Number of packets for 7-D hypercube at medium load: Trends are very similar to the
ones in �gure 6.7. The signi�cance limits are also same as in �gure 6.7.

load level of 2 pkts/step and a uniform tra�c pattern, where the probability that each node

generates a packet to any other node is equal. After convergence (in 2000 simulation steps),

the tra�c pattern was changed so that the probability of generating a packet destined to a

node across the cluster becomes 10 times higher than within the cluster (�gure 3.1). Only

single run is shown in this case to depict the variability during adaptation process. Results
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Figure 6.9: Average packet delivery time for grid topology at high load: Di�erence between Q-
Routing and CQ-Routing is statistically signi�cant after 1000 time steps. Di�erence between CDRQ-Routing
and Q-Routing is signi�cant between after 1000 time steps.

from 50 test runs were used to compute statistical signi�cance and are reported below.

The average packet delivery time for each algorithms is shown in �gure 6.13. All four

algorithms converge to an e�ective routing policy for the initial tra�c condition, by time

step 2000. As the tra�c pattern changes at 2000, the old routing policy is no longer e�ective

and all algorithms start updating their Q values to adapt to the change in the pattern. CQ-

Routing converges to the e�ective routing policy faster than the Q-Routing, DRQ-Routing

faster than CQ-routing, and CDRQ-Routing is faster than all others. The di�erences

between CDRQ-Routing, CQ-Routing and DRQ-Routing is not statistically signi�cant, but

there is a signi�cant improvement over Q-Routing between 2600 to 2650 time steps. In fact,

CDRQ-Routing adapts to change in tra�c pattern 50 time steps faster than Q-Routing on

an average. This result shows that adding con�dence values and backward exploration

speeds up the adaptation to changes in tra�c patterns.

6.4 Adaptation to Changing Network Topology

The third set of experiments compared the routing algorithms' ability to adapt to the

changes in network topology. A link was added between nodes 3 and 34 in the 6�6 grid
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Figure 6.10: Number of packets in the network for grid topology at high load: Di�erences
between all pairs are signi�cant during the learning phase from 1000 to 5500 time steps after which di�erences
between CQ-Routing, DRQ-Routing and CDRQ-Routing are insigni�cant, while Q-Routing is signi�cantly
di�erent from CDRQ-Routing.

topology (�gure 6.14) for these experiments. The routing algorithms were �rst allowed to

learn an e�ective routing policy for the new network at a load level of 2.0 pkts/step until

they converged (in 2000 time steps). At time step 2000, the link between node 12 and 25

was removed (�gure 6.15). That is, the Q tables of node 12 and 25 were updated such that

Q12(25; �) and Q25(12; �) were all set to In�nite Cost and the corresponding routing tables

were also updated accordingly. The C values were not changed. Only single run is shown in

�gure 6.16 to depict the variations in adaptation process. However, statistical signi�cance

is computed over 50 runs and is given below.

Figure 6.16 shows the average packet delivery time between time steps 1800 and

3200 for the four algorithms. As soon as the link between nodes 12 and 25 went down

at time 2000, the average packet delivery time of all these algorithms started increasing.

They all tried to adapt to the change in network topology. DRQ-Routing learns a better

routing policy slightly faster than CQ-Routing, while CDRQ-Routing learns even better and

faster than both CQ-Routing and DRQ-Routing. The di�erence between the performance

of CQ-Routing, DRQ-Routing and CDRQ-Routing is not statistically signi�cant while the

improvement from Q-Routing is signi�cant with 99% con�dence in the interval 2400 through
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Figure 6.11: Average packet delivery time for 7-D hypercube at high load: All di�erences are
signi�cant between 2400 to 300 time steps. Q-Routing is signi�cantly di�erent from CDRQ-Routing till 4700
time steps.
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Figure 6.12: Number of packets for 7-D hypercube at high load: The trend is similar to that in
�gure 6.11 both for range of signi�cant di�erences and quality of �nal policy learned.

3200 (and beyond) time steps.

Adaptation behavior of CQ-Routing and DRQ-Routing in �gure 6.16 shows that

the contribution of backward exploration is more signi�cant than that of con�dence values

in adapting to the changes in network topology. The signi�cant improvement in CDRQ-

Routing over Q-Routing is also evident. Q-Routing fails to learn an e�ective routing policy
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Figure 6.13: Adaptation to a change the in tra�c pattern. Single run is shown. Note the vari-
ations in the adaptation process. CDRQ-Routing adapts around 50 time steps faster than Q-Routing.
Di�erence between Q-Routing and CDRQ-Routing is statistically signi�cant between 2600-2650 time steps.
CQ-Routing and DRQ-Routing do not have a signi�cant di�erence from CDRQ-Routing.
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Figure 6.14: Grid topology before link 12
and 25 went down. This topology is di�erent
from the one in �gure 3.1, it has an additional
link between nodes 3 and 34
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Figure 6.15: Grid topology after the link
between nodes 12 and 25 has been removed,
by �xing vectors Q12(25; �) and Q25(12; �) to
In�niteCost.

for the changed topology even in 1000 steps (till step 3200), while CDRQ-Routing has

almost settled to an e�ective routing policy at that time.

Boyan and Littman (1994) observed that Q-Routing fails to revert to the original

routing policy once the network topology is restored. This problem persists in CDRQ-

Routing also. However, Bellman-Ford routing algorithm does not su�er from this problem

and can adapt to changes in network topology very e�ectively. In section 7.4, one possible
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Figure 6.16: Adaptation to change a in the network topology. Q-Routing does not converge to
an e�ective policy while CQ-Routing, DRQ-Routing and CDRQ-Routing all converge to an e�ective policy
very fast.

way of solving this problem is presented.

6.5 Load level Sustenance

In addition to evaluating how fast the routing algorithms learn, it is important to evaluate

how good the �nal policy is. For this reason, the average packet delivery time, after steady

state was reached, was measured for di�erent load levels. These results indicate how much

load the �nal routing policy can sustain.

Figure 6.17 shows the relative performance of six routing algorithms on the 6�6 gird
topology (�gure 3.1). The results were averaged over 20 simulations. The �rst algorithm

is the non-adaptive shortest path routing algorithm discussed in chapter 2. The second is

the GLOBAL routing algorithm, where a central observer makes routing decisions using all

the routing information available at all nodes in the network. This algorithm is a bound on

how well any routing algorithm can perform. In addition to these two extremes, Q-Routing,

CQ-Routing, DRQ-Routing andCDRQ-routing were also evaluated.

The non-adaptive shortest path routing is best at low load levels (0-1.5 pkts/step),

but as the load increases to medium ranges (1.5-2.5 pkts/step), the nodes on popular routes
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Figure 6.17: Average Packet Delivery time after convergence. The quality of the �nal routing
policy is directly related to the amount of load level it can sustain. CDRQ-Routing is much superior than
Q-Routing in its ability to sustain high load levels. The di�erence between the two is statistically signi�cant
over all load levels with 99% con�dence.

start ooding and waiting time increases, degenerating the performance. Q-routing, CQ-

Routing, DRQ-Routing and CDRQ-Routing at low load levels perform very close to the

GLOBAL. Among these, CDRQ-Routing and DRQ-Routing perform signi�cantly better

than Q-Routing and CQ-Routing. This is because the quantity of exploration is more

important than quality at low load levels. At medium load levels, Q-Routing leads to

ooding of packets in the network, and the average packet delivery time increases quickly.

CQ-Routing, DRQ-Routing and CDRQ-Routing can sustain these load levels, with CDRQ-

Routing outperforming the other two. At high load levels (2.5 and higher pkts/step), the

CQ-Routing breaks down rather quickly at 2.5 pkts/step, while DRQ-Routing sustains up

to 2.75 pkts/step and the combination of the two, the CDRQ-Routing, up to 3 pkts/step

before breaking down.

The di�erence between shortest path, DRQ-Routing, CDRQ-Routing and GLOBAL

routing is not statistically signi�cant in low load range (1.25 pkts/sim). Thereafter, shortest

path becomes signi�cantly poor while DRQ-Routing and CDRQ-Routing continue to per-

form close to GLOBAL routing till the load of 2.25 pkt/sim. Di�erence between Q-Routing

and CQ-Routing is signi�cant only at load level 0.5 pkts/sim and after 2.25 pkts/sim. Be-
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tween this interval, the di�erence is not signi�cant. Di�erence between CDRQ-routing and

Q-Routing is statistically signi�cant over all load levels with a 99% con�dence.

This result is a clear indication that both quality and quantity of exploration con-

tribute to the �nal routing policy, quantity being more signi�cant than quality. In the

Q learning framework, CDRQ-Routing is the best adaptive routing algorithm currently

known. The GLOBAL routing results show that there is still a lot of room between the

theoretical upper bound and practical best that has been reached in this work.

6.6 Conclusion

CDRQ-Routing and its components were empirically evaluated in this chapter. They were

compared in (1) their ability to learn an e�ective routing policy at constant load levels

starting from a random policy, both in terms of the speed of adaptation and quality of the

�nal policy learned, (2) their ability to adapt to changing routing tra�c patterns once they

have learned an e�ective routing policy, (3) their ability to adapt to changes in network

topology once they have learned an e�ective routing policy and, (4) the quality of the routing

policy learned in terms for various load levels. The following are some of the conclusions

that can be drawn from these experiments.

� The additional direction of exploration in DRQ-Routing increases the speed of adapta-

tion by a factor of almost 3 at low load conditions, and there is signi�cant improvement

at medium and high loads as well. This improvement is mainly due to higher amount

of exploration due to extra update per packet hop. At low loads, there is a small

number of packet hops, and the number of updates per packet hop makes a large

di�erence in the quantity of exploration. Even at medium and high load levels, the

higher exploration leads to faster adaptation.

� Incorporating the con�dence values and thereby improving the quality of exploration

also leads to signi�cant improvements in the speed and quality of learning at various

load levels. Although the improvement in not as large as that of DRQ-Routing.
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� Combination of the two features into one algorithm, CDRQ-routing, yields an adap-

tive routing algorithm that is superior to DRQ-Routing and CQ-Routing as can be

seen clearly from �gures 6.3 and 6.5 and 6.9. This shows that the role of improving

the quality and quantity of exploration are complementary and contribute di�erently

to the improvement of the �nal algorithm.

� Finally, an overall comparison of these algorithms together with the non-adaptive

extremes leads to the following ordering:

{ GLOBAL (theoretical upper bound)

{ CDRQ-Routing (best)

{ DRQ-Routing

{ CQ-Routing

{ Q-routing

{ Bellman-Ford

{ Shortest Path Routing (worst)

CDRQ-Routing is an improvement over the conventional adaptive routing algorithms

such as BF in a number of ways. First, CDRQ-Routing tries to optimize a more realistic

criteria, the average packet delivery time, while the conventional adaptive routing algo-

rithms (as discussed in chapter 2) try to learn the shortest path. Moreover, the amount

of exploration overhead in CDRQ-Routing is signi�cantly smaller than that in BF which

exchanges complete cost tables between neighboring nodes. CDRQ-Routing strikes a bal-

ance between the amount of overhead incurred and speed of adaptation whether it is from

random policy at �xed loads or to change in tra�c pattern or change in network topology.
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Chapter 7

Discussion and Future Directions

CDRQ-Routing with higher quantity of exploration and better quality of exploration than

Q-Routing was developed in this work. It was evaluated and compared to Q-Routing and

to the two main components of CDRQ-Routing, namely CQ-routing and DRQ-Routing, in

three aspects: the ability to learn an e�ective routing policy starting from a random policy,

the ability to adapt to changes in tra�c patterns, and the ability to adapt to changes in

network topology. In this chapter, possible future directions of this thesis and the general-

ization of the Q learning framework are discussed.

In this thesis, all the transmission links were assumed to incur the same amount

of transmission delay � per packet. Also, all the routers (nodes) were assumed to have

equal processing speeds and hence the waiting time in any node's queue was proportional

to its queue length, and the constant of proportionality was the same for all nodes. These

assumptions are realistic in homogeneous networks like LANs, but in a heterogeneous net-

work as complex as the Internet, they are not valid. Di�erent transmission delays and router

speeds introduce enormous complexity to the routing problem. Formal description of such

heterogeneous networks and the generalization of the forward and backward exploration Q

value update rules (equation 3.4 and 5.6) to such networks is given in section 7.2. Q value

update rules for CDRQ-Routing are also derived in that section.

In this thesis, all packet bu�ers were assumed to be in�nite. This assumption is
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realistic for normal tra�c conditions because the routers in the real communication networks

have a lot of packet bu�er space. When load levels are very high, or the routing policy is very

poor, or a large number of nodes and/or links are down, it is possible that queues become

ooded with more packets than they can bu�er. In such cases, additional incoming packets

are dropped leading to congestion. An adaptive routing algorithm should be able to \sense"

such congestion and adapt e�ective to avoid information loss. In section 7.3, congestion

control in adaptive routing algorithms is addressed. A measure called congestion risk that

characterizes the risk of congestion in taking a particular routing decision is formally de�ned.

The Q value update rules for heterogeneous networks given in sections 7.2 are extended to

incorporate congestion control by making use of congestion risk. Using these update rules,

CDRQ-Routing can be used for adaptive routing and congestion control at the same time.

Uncertainty in how well a Q value represents the current state of the network is

characterized by its con�dence value. CQ-routing is one way of using these con�dence

values. Another way is by de�ning a probability distribution function for each Q value. An

adaptive routing algorithm that makes use of these distributions, referred to as Probabilis-

tic Confidence based Q-routing (PrCQ routing), is discussed in detail in section

7.4. An algorithm similar to CDRQ-Routing where Q values are generated according to a

probability distribution is outlined.

Choi and Yeung (1996) introduced a memory-based Predictive Q routing (PQ-

Routing) algorithm where �rst order information in terms of the rate of change of Q

values is also maintained for each Q value. These two pieces of information, the Q value

at some time before the current time and its rate of change, help predict the actual Q

value at the current time. Only forward direction of exploration was used in PQ-Routing.

An obvious extension to PQ-Routing would be to use the backward exploration as well.

The addition of backward exploration to PQ-Routing yields the Dual Reinforcement

Predictive Q routing (DRPQ-Routing) discussed in detail in section 7.5. Further

extension of DRPQ-Routing by adding con�dence values for each Q value will yield a

predictive version of CDRQ-Routing.
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7.1 Generalizations of the Q Learning Framework

The network routing problem is one of many domains where a complex system comprising

of distributed components tries to optimize a global performance criteria. Examples of such

complex systems range from ant colonies to arti�cial life scenarios with multiple agents, from

road tra�c to network routing and congestion control to scheduling and synchronization in

distributed systems. The behavior of the overall system depends in a rather complex manner

on the behaviors of the individual components, and it is not easy to model the overall system

behavior. Behavior of the individual components depend only on local information available

to them. The overall objective function is divided into local greedy objective functions,

which the components try to learn to optimize. The local information is shared with other

components through exploration, which incurs a non-zero exploration cost proportional to

the amount of information shared and the frequency with which it is exchanged.

The adaptive network routing problem addressed in this thesis has all these char-

acteristics. Q learning framework was used to develop routing algorithms that learn to

optimize a global criterion by making use of only local information. Some of the possible

generalizations of the Q learning framework that would allow applying it to other domains

are:

� Discrete vs. Continuous: In the network routing problem, the decision of choosing
one out of a �nite set of neighbors constitutes search in a discrete space. Using

tables for such discrete systems to store information is a reasonable approach. But

in general, the space of possible options might be continuous. For example in robot

control, the control vector could be a vector of real numbers. In such cases, instead

of maintaining tables and updating them, parametric functions would be more useful.

These functions can be learned and adapted by changing the parameters. A neural

network is a general parametric function that can be used in continuous domains.

The parameters are the weights in the links. Error back propagation can be used to

update these parameters, equivalent to Q value updates in CDRQ-Routing. Boyan
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and Littman observed that using neural networks instead of Q tables for network

routing lead to poor performance (Boyan and Littman 1994). Thus if the search

space is discrete, the tables approach is useful and neural network should be used

only for continuous spaces.

� Heterogeneous systems: The di�erent components of a system might have di�er-

ent capacities. For example in communication network systems, the speeds of links

between nodes or the processing speeds of routers could be di�erent. These di�er-

ences lead to more complex behaviors. Detailed discussion for such generalizations

for network routing problem is given in section 7.2.

� Multiple objective functions: In general, there could be more than one objective

function that the system is trying to optimize. In the network routing problem, for

example, there could be costs associated with using di�erent links. In this case there

are then the two competing objective functions: (1) average packet delivery time, and

(2) average transmission cost over links. A weighted combination of these objective

functions can be de�ned to give the �nal overall objective function. Network routing

generalized for costs of using links is discussed in section 7.2.

� Predictive capabilities: The CDRQ-Routing uses Q values to make routing de-

cisions. These Q values are not always accurate. They reected the state of the

network when they were updated, but at the current time, the state of the network

might be di�erent. If the network had some prediction capabilities it would be pos-

sible to predict the current Q values from the Q values in the table. Choi and Yeung

(1996)'s PQ-Routing discussed in section 7.5.1. is an example of this generalization.

Ideas from PQ-Routing are used to add predictive capabilities in CDRQ-Routing in

section 7.5.2. The rate of change of Q values (i.e. the recovery rate) is an example

of �rst order characteristic of the system. In general, higher order characteristics can

be maintained if the system is of higher order. For example a second order parameter

extending PQ-Routing could be the rate of change of the recovery rate.
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Figure 7.1: Summary of Future Directions: Blocks with bold face boundaries constitute future re-
search. CDRQ-Routing can be generalized for heterogeneous networks (section 7.2) and congestion control
(section 7.3). Probabilistic Q routing (PrCQrouting) (section 7.4) is an extension of CQ-Routing.
Dual Reinforcement Predictive Q Routing (DRPQ-Routing) (section 7.5) is an extension of DQR-
routing. Both PrCQrouting andDRPQ-Routing can be extended to CDRQ-Routing (shown by the dot-
ted lines) into Probabilistic CDRQ-Routing (PrCDRQ-Routing) or Confidence-dual Reinforce-
ment Predictive Q-Routing (CDRPQ-Routing).

When applied to adaptive network routing, these generalizations lead to several

possible directions of future work as will be discussed briey in subsequent sections (�gure

7.1).

7.2 Adaptive Routing in Heterogeneous Networks

In this thesis so far all the nodes have been assumed to have equal speed of processing

packets and all links equal transmission delays (section 1.2). This is a valid assumption for

most LANs where routers of almost equal capacities and similar links between routers are

used, but in large scale networks like the Internet there is a lot of heterogeneity. A network

can be heterogeneous in a number of ways. Three of the most important ways are de�ned
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below:

1. Speed of routers (nodes): Di�erent nodes process packets with di�erent speeds. If

�x is the time taken by node x to process a packet, the de�nition of the total waiting

time in the intermediate queues for a packet traversing the route (x0, x1, ..., xl), given

in equation 1.1, generalizes to:

T 0

W =
l�1X
i=1

�xiqxi : (7.1)

More speci�cally, sending a packet through node xi will add a queue waiting time of

�xiqxi to its total delivery time. Thus an e�ective routing policy should be biased

towards sending packets via faster nodes.

2. Speed of links: The links between nodes are not always equal. For example, �ber

optic links are faster than Ethernet cables which in turn are faster than telephone line

connections. More speci�cally, let �xy be the time taken to transmit a packet from a

neighboring node x to y. Then the total transmission delay over the links for a packet

traversing the route (x0, x1, ..., xl), given in equation 1.2, generalizes to:

T 0

X =
l�1X
i=0

�xixi+1 : (7.2)

Thus sending a packet through node xi to xi+1 will add a transmission delay of �xixi+1

to the total delivery time of the packet from source to destination node, and hence

an e�ective routing policy should be biased towards sending packets over that part of

the network that has faster links.

3. Cost of using links: The cost of using a link was not considered in this thesis at

all, but in general, the costs of alternative links might di�er. For example, satellite

links are more costly than �ber optic connections, which in turn are more costly than

phone lines. The cost and speed tradeo� of these links rede�nes the overall objective

function that the routing policy needs to optimize: What is the best routing policy

which sends the packets in the least amount of time and incurring the least amount of
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cost? More speci�cally, let xy be the cost per packet of the link from x to y, and let

wd be the weight of total packet delivery time (T 0

W + T 0

X), and wc be the weight

of the total transmission cost of sending a packet over a route x = (x0, x1, ..., xl).

Then the combined delay/cost objective function may be de�ned as:

J(x) = wd

 
l�1X
i=1

�xiqxi +
l�1X
i=0

�xixi+1

!
+ wc

l�1X
i=0

xixi+1 (7.3)

As a result of incorporating these costs in the objective function, both the interpre-

tation of the Q values and the update rules for the CDRQ-routing algorithm (equations

4.22 to 4.25) will change. The new interpretation of the Qx(y; d) is now the total value of

sending the packet from node x to destination d via node x's neighbor y, considering both

the total packet delivery time and the total transmission cost. The estimated Q values in the

update rules for forward exploration (equations 3.4) and backward exploration (equation

4.6) now become:

� Q value estimate of sender node(x) (FORWARD EXPLORATION):

Qx(y; d)
est = Qy(ẑ; d) + wd(�yqy + �yẑ) + wcyẑ; (7.4)

� Q value estimate of receiver node(y) (BACKWARD EXPLORATION):

Qy(x; s)
est = Qx(ẑ; s) +wd(�xqx + �xẑ) + wcxẑ: (7.5)

Di�erent settings of the weight parameters wc and wd will yield di�erent objective functions

and hence di�erent routing policies. By setting wc = 0, �x = 1 8 x 2 V, wd = 1 and all �xy

= � for all neighbors x and y in equations 7.4 and 7.5, one gets the equations 3.4 and 4.6 for

Q value estimates for forward and backward exploration. Similarly, by choosing di�erent

values of parameters wc and wd and for a given network (i.e., given the parameters �x,

�xy and xy), di�erent types of optimization functions (equation 7.3) and correspondingly

di�erent update rules can be de�ned.
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7.3 Finite Packet Bu�ers and Congestion Control

In this thesis so far the packet bu�ers have been assumed to be in�nite so that each node

can accommodate all packets coming into it. Because of the increasing size of packet bu�ers

in the existing routers and the decreasing cost of memory, this is a realistic assumption for

most network systems where the load is signi�cantly lower than the capacity of the routers.

However, there are cases where bu�er size is a limitation. In these cases, packet bu�ers

are �nite and when they are full, additional packets have no space to go to and they are

dropped, leading to congestion. The task of a routing algorithm is to route packets not only

in a manner that they reach the destination as soon as possible, but also to make sure that

they do not cause congestion at any nodes.

Consider a node x with a �nite bu�er size Bx. For generality assume that di�erent

nodes have di�erent bu�er sizes. If the queue length of this node is qx � Bx, then one can

associate a congestion risk with this node of the form g( qx
Bx

), which essentially is the risk

or cost of dropping the packet if it is sent through this node. This cost is a monotonically

increasing function of the ratio qx
Bx
. Some of the suggested base case values for this function

are: g(0) = 0 and g(1) =1. An example of such a function is:

g�(�) =
�

(1� �)�
; (7.6)

where � is a parameter that controls how fast the function asymptotes to 1 as � tends

to 1. If wg is the weight of the congestion cost and this cost is to be incorporated into

interpretation and update rules for Q values, then the overall update rules become:

� Q value estimate of sender node(x) (FORWARD EXPLORATION):

Qx(y; d)
est = Qy(ẑ; d) + wd(�yqy + �yẑ) + wcyẑ + wgg�(

qy

By
); (7.7)

� Q value estimate of receiver node(y) (BACKWARD EXPLORATION):

Qy(x; s)
est = Qx(ẑ; s) + wd(�xqx + �xẑ) +wcxẑ + wgg�(

qx

Bx
); (7.8)
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Proper adjustments of the weight parameters wc, wd, and wg, together with the proper

choice of the � parameter for the congestion cost function g, will yield di�erent objective

functions. The basic intuition is that if the packet bu�er of a node x is about to get �lled, its

qx
Bx

ratio will be close to 1 and the g function (congestion risk) will be high using backward

exploration. A packet P going from node x to node y takes this information along with it

and a packet P 0 coming into x from a neighbor y0 also propagates this information to node

y0 using forward exploration. Hence slowly other nodes in the network get the information

that node x is heavily congested and stop sending packets via node x. As a result, the

queue length of node x will become small again. Backward exploration due to the packets

going out of node x will propagate the information about the decreased congestion risk at

node x, allowing other nodes to resume sending packets to x.

CDRQ-Routing can be extended to incorporate the generalized Q estimates given

in equations 7.7 and 7.8, so that it can learn an e�ective routing policy that gives the best

performance depending on the weights wc and wc in a heterogeneous network, and at the

same time performs congestion control depending on the weight wg.

7.4 Probabilistic Con�dence-based Q-Routing

In CQ-Routing, con�dence values are used to quantify the uncertainty in corresponding Q

values. These con�dence values only help deciding how much a Q value should be changed.

They do not a�ect routing decisions directly. That is, the uncertainty is used only in

exploration of Q values and not in exploitation.

In this section an extension of CQ-Routing called Probabilistic Confidence

based Q routing (PrCQ-routing) is introduced. This extension can also be incorpo-

rated into CDRQ-Routing. In PrCQ-routing, the con�dence values are used not only

for exploration as in CQ-Routing, but also in making routing decisions. Instead of treating

Q values as parameters that represent state of the network they are treated as random

variables with Gaussian probability distribution. Such a probabilistic interpretation of Q

values is another way of introducing uncertainties. In CDRQ-Routing, in making a rout-
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ing decision for a packet destined to node d, node x picks the neighbor y for which the

Q value Qx(y; d) in the vector Qx(�; d) is minimum (section 3.3). In PrCQ-routing, in-

stead of comparing the Q values directly, a vector of Q values Q(d) is generated using the

probability distribution associated with the vectors Qx(�; d) and Cx(�; d). The decision of

which neighbor to choose is based on the vector Q(d) of random Q values. This way the

con�dence values are used in making actual routing decisions. Section 7.4.1 describes the

probability function, and 7.4.2 the complete algorithm of picking the neighbor, given the Q

value distributions.

7.4.1 Gaussian Distribution of Q values

In order to incorporate uncertainty, Q values are treated as random variables with a Gaus-

sian probability distribution. The Q value in the Q table is the mean of the Gaussian,

denoted by Q̂, and the corresponding con�dence value is used to compute the variance. Let

�(C)2 be the variance function for the con�dence C. The base case values are �(1)2 = 0 and

�(0)2 = 1. A variance of 0 represents a complete certainty in the Q value (corresponding

to a con�dence value of 1) while a variance of 1 represents a complete uncertainty in the

Q value (corresponding to a con�dence value of 0). An example of such a variance function

is:

�a(C) =
1

Ca
� 1; (7.9)

where parameter a controls the shape of the function (see �gure 7.2).

The amount of uncertainty in the Q value is directly related to the variance of its

Gaussian distribution. If the system is very dynamic or prone to sudden changes, even a

slight decrease in con�dence should incur high uncertainty, in other words, the parameter

a should be high.

Using the above interpretations for the Q and C value, the Gaussian distribution of

Q is given by:

Prob(Q) =
1p

2��(C)
e
�

1
2

�
Q̂�Q
�(C)

�2
: (7.10)
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for Probabilistic Confidence based Q
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Figure 7.3 shows the Gaussian distribution for three di�erent values of �(C). A

Gaussian is centered around the mean. For low variance (high con�dence) the distribution

peaks around the mean sharply and for high variance (low con�dence) the distribution

is spread out. The basic idea for using Gaussian distribution is as follows. When the

con�dence in certain Q value is high, the probability that the Q value in the table is the

true estimate is also high and thus we should pick a random Q value close to that in the

table. In other words, the probability of choosing the Q values close to the mean should

be high and decrease sharply for Q values away from the mean. Since for high con�dence

the distribution peaks sharply around the mean, choice of a Q value according to this

distribution will be close to the mean. For a low con�dence, chances are that the actual

Q value is away from the one in the Q table. That is, the probability of actual Q value

being away from the mean is not very low but decreases slowly as one moves away from the

mean. The Gaussian distribution shown in �gure 7.3 has the property that the probability

decreases slowly as one moves away from the mean.

Thus, the con�dence is used to in quantifying the uncertainty in Q values. The more

uncertainty there is, the higher is the probability that the actual Q value is away from the
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one in the Q table.

7.4.2 Using probabilistic Q-values

At the time of making a routing decision for a packet destined to node d, node x computes

the probable Q values for each of the neighboring nodes. In particular, instead of using the

Q values in the Q table directly to compute the best neighbor, a vector Q(d) of random Q

values is computed using the above probability distributions. Let Q̂x(y; d) and Cx(y; d) be

the entries in the tables then the random Q value for neighbor y in the vector Q(d) that is

Qx(y; d) is drawn from the distribution:

Prob(Qx(y; d)) =
1p

2��(Cx(y; d))
e
�

1
2

�
Q̂x(y;d)�Qx(y;d)

�(Cx(y;d))

�2
(7.11)

These random Q values in the vector Q(d) are used to �nd the best neighbor ŷ for which

Qx(y; d) is minimum.

The main advantage of using random Q values in increased adaptation is as fol-

lows. Choi and Yeung (1996) pointed out that \Q-Routing su�ers from the so-called hys-

teresis problem, in that it fails to adapt to the optimal (shortest) path when the network

load is lowered. Once a longer path is selected due to increase in network load, a minimum

selector is no longer able to notice the subsequent decrease in tra�c along the shortest

path." Moreover, Boyan and Littman (1994) pointed out that \Q-Routing fails to adapt to

the original routing policy once the network topology is restored". All these observations in-

dicate that using random decisions at times would be useful in reverting back to the original

routing policy when the network state (load level, topology or tra�c pattern) is restored.

PrCQ-Routing is doing exactly that. When a Q value is not updated for a long time,

con�dence in that value goes down and probability of choosing a Q value away from the

one in the table increases. Hence with a non-zero probability, those routes will be explored

by PrCQ-Routing that would not have been explored by Q-Routing and CDRQ-Routing

due to the minimum selector rule (Section 3.3).

The issue of exploration versus exploitation is important. If a lot of random packets

are sent then the performance will go down but adaptation will be good and vice versa.
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Hence a proper choice of parameter a is important in PrCQ-Routing. If a high value

for a is chosen, then even for a small decrease in con�dence, the probability distribution of

Q value will become smooth and spread out and will increase chances of making random

decisions. Therefore, PrCQ-Routing could be useful for reverting back to the original

policy when network state is restored.

7.4.3 Updating C and Q values

C values can be updated as speci�ed in equations 5.23 and 5.25. Updating Q values requires

the best Q estimate for the remaining path in the forward exploration (equation 5.24) or

the covered path in the backward exploration (equation 5.26). These Q estimates are also

computed in a probabilistic manner. Thus the Q values in equations 5.24 and 5.26 are

replaced by the probable Q values obtained by Gaussian distribution similar to that in

equation 7.3.

In summary, PrCQ-Routing extends CQ-Routing so that the con�dence values

are not only used in exploration but also play crucial role in the exploitation or actual

decision making. Due to its probabilistic nature, it can be useful in overcoming the problem

of Q-Routing and CDRQ-Routing not being able to revert to original policies once the

network state is restored.

7.5 Dual Reinforcement Predictive Q-Routing

As pointed out before, Q values are not accurate and decisions based on inaccurate Q

values may not be optimal. CQ-Routing and its extension, PrCQ routing try to quantify

these uncertainties in terms of con�dence values and probability distributions. Another

way of dealing with uncertainties is to introduce prediction capabilities that make use of

the rate of change of Q values to predict the correct Q value at the current time step. Choi

and Yeung (1996) proposed a memory-based reinforcement learning approach to adaptive

routing called Predictive Q-routing (PQ-Routing). PQ-Routing is discussed in detail

in section 7.5.1. It makes use of only forward exploration and hence can be extended by
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adding the backward exploration in it. This extension leads to the Dual Reinforcement

Predictive Q-routing discussed in section 7.5.2

7.5.1 Predictive Q-Routing

PQ-Routing is an extension of Q-Routing that maintains and uses a recovery rate of Q

values and the best estimated delivery time to make its routing decisions. The recovery

rate is used to predict the Q value at the current time step. The routing information at

each node (node x) in PQ-Routing comprises of four routing tables:

� Qx(y; d) - the estimated delivery time from node x to node d via a neighboring node

y (same as in Q-Routing);

� Bx(y; d) - the best estimated delivery time from node x to node d via a neighboring

node y so far, that is the minimum value of Qx(y; d) since the routing started;

� Rx(y; d) - the recovery rate for a path from node x to node d via a neighboring node

y; and

� Ux(y; d) - the last update time for a path from node x to node d via a neighboring

node y.

After a packet arrives from node y to node x, the following table updates take place in node

x:

1. Compute �Q = (� + qy + minz Qy(z; d)) � Qx(y; d).

2. Update Q: Qx(y; d)  Qx(y; d) + �
(f)
Q � Q.

3. Update B: Bx(y; d) = min(Bx(y; d), Qx(y; d)).

4. Update R:

if (�Q < 0) then

� �R  �Q / (current time - Ux(y; d))
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� Rx(y; d)  Rx(y; d) + �
(f)
R �R.

else if (�Q > 0) then Rx(y; d)  �
(f)
R Rx(y; d).

5. Ux(y; d)  current time.

The three learning parameters in PQ-Routing are (1) �
(f)
Q , the learning rate for Q value

update in forward exploration, (2) �
(f)
R , the learning rate for R value update in forward

exploration, and (3) �
(f)
R , the decay constant in R value update.

When a packet destined to node d comes to the node x, the best neighbor y is decided

as follows:

ŷ = arg min
y2N(x)

fmaxfQx(y; d)
pred; Bx(y; d)gg; (7.12)

where,

Qx(y; d)
pred = Qx(y; d) + (CurrentT ime� Ux(y; d)):Rx(y; d): (7.13)

That is, �rst Qx(y; d)
pred is computed based on the Q value in the Q table Qx(y; d), the re-

covery rate Rx(y; d) and the time elapsed since the Q value was last updated (CurrentT ime�
Ux(y; d)) using 7.13. If Qx(y; d)

pred is less than the best estimate Bx(y; d) so far, then

Bx(y; d) itself is used. Otherwise, Qx(y; d)
pred is used in making the routing decision.

PQ-Routing, like Q-Routing, makes use of only one direction of exploration and does

not use any measure of con�dence to decide the learning rates. Con�dence measure can also

be incorporated into PQ-Routing but since the uncertainty in Q values is already taken care

of by the recovery rate and prediction mechanism, con�dence values are not expected to

improve the performance signi�cantly. Next subsection extends PQ-Routing to incorporate

backward exploration into PQ-Routing to yield Dual reinforcement predictive Q-

routing. Since both prediction mechanism in PQ-Routing (Choi and Yeung 1996) and

backward exploration in DRQ-Routing (Kumar and Miikkulainen 1997) have been shown

to improve Q-Routing separately, bringing them together into one algorithm is expected to

further improve Q-Routing.
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7.5.2 Backward Exploration in PQ-Routing

PQ-Routing can be extended to include backward exploration. All the updates in PQ-

Routing that are done in the tables at node x when it sends a packet for destination d to

one of its neighbor y can be done in the opposite direction also that is, in node y when

it receives this packet from its neighbor x. The following are the update rules for such

backward exploration. As before, s denotes the source node for this packet.

1. Compute �Q = (� + qx + minz Qx(z; s)) - Qx(y; s).

2. Update Q: Qy(x; s)  Qy(x; s) + �
(b)
Q � Q.

3. Update B: By(x; s) = min(By(x; s), Qy(x; s)).

4. Update R:

if (�Q < 0) then

� �R  �Q / (current time - Uy(x; s))

� Ry(x; s)  Ry(x; s) + �
(b)
R �R.

else if (�Q > 0) then Ry(x; s)  �
(b)
R Ry(x; s).

5. Uy(x; s)  current time.

The dual parameters are (1) �
(b)
Q , the learning rate for Q value update in backward explo-

ration, (2) �
(b)
R , the learning rate for R value update in backward exploration, and (3) �

(b)
R ,

the decay constant in R value update. This way two sets of updates per packet hop will

occur and it is expected that faster adaptability than PQ-Routing will be obtained. As

seen from experiments in chapter 5, adding backward exploration to Q routing increases

the quantity of exploration and thus increases the speed and quality of adaptation. Similar

increase in the speed and quality of PQ-Routing is expected in DRPQ-Routing due to

backward exploration.
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7.6 Conclusion

Figure 7.1 summarizes the �ve main future directions proposed in this chapter: (1) Gen-

eralization of CDRQ-Routing to heterogeneous networks, where processing speed of nodes

and transmission delay and transmission cost of links are incorporated in the interpretation

and update rules of Q values. (2) Generalization to �nite bu�er sizes, where congestion risk

measure for each node is used for adaptive congestion control. (3) An alternative means of

incorporating uncertainties in CQ-Routing by treating Q values as random variables with

Gaussian distributions is proposed. (4) An extension of DRQ-Routing by adding prediction

mechanism or recovery rate from PQ-Routing to it is proposed. While (1) and (2) should

allow the CDRQ-Routing to be applied to more realistic and a wider variety of networks,

further experimentation is required to quantify the e�ects of (3) and (4) and whether they

lead to algorithms with superior performance.
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Chapter 8

Conclusion

In this thesis, a new adaptive network routing algorithm called Confidence based dual

reinforcement Q-routing for on-line adaptation of routing policies in dynamic com-

munication networks was developed and evaluated. It is �rst shown that Q-Routing, upon

which CDRQ-Routing is based, is superior to the state-of-the-art distance vector Bellman-

Ford routing in terms of speed, quality and overhead requirements. Then CDRQ-Routing

is shown to be superior to Q-Routing in two distinct ways:

1. The quality of exploration in CDRQ-Routing is better than in Q-Routing. This result

due to con�dence values associated with each of the Q values in the network. The

con�dence values characterize how reliable the corresponding Q values are. The C

values are themselves updated as routing takes place. They are used in determining

the learning rate so that it is higher if the new estimate of Q value is more reliable

(high con�dence) or old Q value is less reliable (low con�dence). When Q-Routing

is extended with con�dence values, its ability to learn e�ective routing policies from

random policies and to adapt to changing tra�c patterns and topology improves

signi�cantly.

2. The quantity of exploration in CDRQ-Routing is twice as large as in Q-Routing. This

is due to backward exploration, which is additional to the regular forward exploration

90



in Q-Routing. As a result, two Q values are updated per packet hop in CDRQ-

Routing as against just one in Q-routing. When backward exploration is added to

Q-Routing, its ability to learn e�ective routing policies from random policies and to

adapt to changing tra�c patterns and topology improves signi�cantly.

The contributions of these extensions were demonstrated experimentally over di�er-

ent network topologies. For the task of learning an e�ective policy starting from a random

policy, CDRQ-Routing learns the shortest path routing at low load levels almost three times

as fast as Q-Routing. At medium load levels, CDRQ-Routing learns an e�ective routing

policy almost twice as fast as Q-Routing. At high load levels, CDRQ-routing converges to

a much superior routing policy in a signi�cantly shorter time than Q-Routing.

In adapting to changing network topology, where a link goes down, and to chang-

ing tra�c patterns after initial learning has settled down, CDRQ-Routing outperforms

Q-routing in terms of speed of the adaptation. Finally, CDRQ-Routing is found to sustain

much higher network loads than Q-Routing.

In addition to the empirical results demonstrating the superior performance of

CDRQ-Routing, illuminating theoretical properties of forward and backward exploration

were identi�ed and proved in this work. Rules for choosing the learning rate function based

on con�dence values and for con�dence value update were also proposed.

Careful analysis of exploration overhead leads to the conclusion that the cost of

exploration in both forward and backward exploration is less than 0.2% of the overall

tra�c, which is insigni�cant compared to the increase in performance.

With superior exploration mechanisms and low overhead, CDRQ-Routing is both

e�ective and practical adaptive routing algorithm. It can adapt e�ectively to changes in

tra�c patterns, topology and load levels. The network routing algorithms used currently

in the Internet are either very simplistic in nature, or are variants of the distance vector

routing algorithms tested in chapter 4. All the currently used algorithms essentially use

shortest path routing, which is a suboptimal routing policy at the load levels in the Internet.

CDRQ-Routing provides a superior alternative to these algorithms.
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