
1

An Integrated Neuroevolutionary Approach to

Reactive Control and High-level Strategy
Nate Kohl and Risto Miikkulainen

Department of Computer Sciences

University of Texas at Austin

nate@cs.utexas.edu, risto@cs.utexas.edu

Abstract—One promising approach to general-purpose arti-
ficial intelligence is neuroevolution, which has worked well on
a number of problems from resource optimization to robot
control. However, state-of-the-art neuroevolution algorithms like
NEAT have surprising difficulty on problems that are fractured,
i.e. where the desired actions change abruptly and frequently.
Previous work demonstrated that bias and constraint (e.g. RBF-
NEAT and Cascade-NEAT algorithms) can improve learning
significantly on such problems. However, experiments in this
paper show that relatively unrestricted algorithms (e.g. NEAT)
still yield the best performance on problems requiring reactive
control. Ideally, a single algorithm would be able to perform
well on both fractured and unfractured problems. This paper
introduces such an algorithm called SNAP-NEAT that uses
adaptive operator selection to integrate strengths of NEAT, RBF-
NEAT, and Cascade-NEAT. SNAP-NEAT is evaluated empirically
on a set of problems ranging from reactive control to high-
level strategy. The results show that SNAP-NEAT can adapt
intelligently to the type of problem that it faces, thus laying
the groundwork for learning algorithms that can be applied to
a wide variety of problems.

Index Terms—Neuroevolution, NEAT, fracture, control, strat-
egy.

I. INTRODUCTION

The field of artificial intelligence stands to have a significant

impact in coming years through the application of current

algorithms to problems in a variety of different disciplines.

There are many examples of tasks that are suitable for

intelligent automation, ranging from problems that are too

dangerous for humans, such as cleaning and maintaining

nuclear reactor cores, to problems that require advanced and

repetitive calculation, such as stock market analysis.

Encouraging the broad application of AI techniques to these

kinds of problems is vital, both to practitioners in the field and

to society in general. For AI researchers, implementing algo-

rithms on a variety of problems provides pragmatic feedback

about the strengths and weaknesses of current approaches out-

side of laboratory settings. On a larger scale, society benefits

every time AI algorithms can be used to save resources, human

effort, and money.

However, a widespread adoption of AI techniques will

require algorithms that can function robustly in the absence

of experts. Many current approaches work well in controlled

settings, but behave erratically when forced into new envi-

ronments. Disaster can be avoided if an expert familiar with

the algorithm is available to make the necessary adjustments

to fit the new situation. However, it is impractical to assume

that there will be enough expertise to support a widespread

adoption of AI algorithms to all of the problems to which

they might be applied. Such widespread adoption will require

algorithms that can function effectively without an expert to

tune them to the specific conditions at hand.

One promising approach to AI is the class of reinforcement

learning methods known as neuroevolution, which evolve

neural networks using genetic algorithms [14, 38, 45, 62, 63,

22, 64]. NeuroEvolution of Augmenting Topologies (or NEAT)

is one of the most recent successful neuroevolution meth-

ods [49, 50, 47]. While the traditional approach to reinforce-

ment learning involves the use of temporal difference methods

to estimate a value function [55, 31, 33, 34, 41, 52, 54, 56],

NEAT instead relies on policy search to build a neural network

(topology and weights) that maps states to actions directly.

This approach has proved to be useful on a wide variety

of problems and is especially promising in challenging tasks

where the state is only partially observable, such as pole

balancing, vehicle control, collision warning, and character

control in video games [16, 49, 29, 44, 48, 50, 51]. However,

despite its efficacy on such reactive control problems, other

types of problems such as concentric spirals classification,

multiplexer, and high-level decision making in general have

remained difficult for neuroevolution algorithms like NEAT to

solve.

One explanation is the fractured problem hypothesis, which

posits that high-level strategic problems are difficult to solve

because the optimal actions change abruptly and repeatedly

as agents move from state to state [26, 28, 27]. Previous

investigations of NEAT’s performance on fractured problems

have confirmed this hypothesis, showing that biasing the

network toward local decision regions by using radial basis

function (RBF) nodes and constraining its topology to cas-

caded structures can improve performance significantly on

these types of problems [28]. The resulting algorithms, RBF-

NEAT and Cascade-NEAT, have been shown to perform well

on problems that NEAT has difficulty in solving.

Having different algorithms that perform well on different

classes of problems is a step in the right direction, but

still requires expertise in pairing an appropriate algorithm

with a given problem. This paper investigates how these

three approaches to neuroevolution – NEAT, RBF-NEAT, and

Cascade-NEAT – can be integrated together into a single algo-

rithm that can be applied as is to a broad variety of problems.

2

The key idea is to allow evolution to select from unrestricted,

RBF, and cascade mutations based on how effective they are

in the domain.

The next section reviews prior work on fractured problems,

NEAT, RBF-NEAT, and Cascade-NEAT, concluding that while

RBF-NEAT and Cascade-NEAT perform well on problems

that are fractured, the standard NEAT algorithm still works

best on those that are not. Section III introduces an integrated

algorithm, SNAP-NEAT, that combines the strengths of these

three approaches. In Section IV, SNAP-NEAT is evaluated

empirically on a variety of problems, fractured and non-

fractured, ranging from reactive control to high-level strategy,

and found to perform comparably to the best methods in each.

Thus, SNAP-NEAT is a general approach that can be applied

to a variety of problems from reactive control to high-level

strategy.

II. NEUROEVOLUTION AND LOCALITY

This section reviews the standard NEAT algorithm, the def-

inition of fractured problems, and two modifications to NEAT

– RBF-NEAT and Cascade-NEAT – designed to improve its

performance on fractured problems. In addition, an empirical

evaluation of these approaches on a benchmark pole-balancing

problem is described that shows that while there are benefits

to using RBF-NEAT and Cascade-NEAT in problems that are

fractured, the standard NEAT algorithm still works best on

those that are not.

A. NEAT

Neuroevolution algorithms use some flavor of evolutionary

search to generate neural network solutions to reinforcement

learning problems. This section reviews one promising such

algorithm, NEAT [49], which will serve as a focus of investi-

gation for this paper.

Neuroevolution algorithms are frequently divided into two

groups: those that optimize the weights of a fixed-topology

network, and those that evolve both the network topology and

the weights. Most of the early work in neuroevolution focused

on fixed-topology algorithms [14, 38, 45, 62, 63]. This work

was driven by the simplicity of dealing with a single network

topology and theoretical results showing that a neural network

with a single hidden layer of nodes could approximate any

function, given enough nodes [21].

However, there are certain limits associated with fixed-

topology algorithms. Chief among those is the issue of

choosing an appropriate topology for learning a priori. Even

assuming that the general class of network topology is known

(i.e. number of hidden nodes, hidden layers, recurrent layers,

and the associated connectivity between nodes) there is no

clear procedure to choose the network size. Networks that are

too large have extra weights, each of which adds an extra

dimension of search. On the other hand, networks that are too

small may be unable to represent solutions of a certain level

of complexity, which can limit the algorithm unnecessarily.

Neuroevolution algorithms that evolve both topology and

weights (so-called constructive neural network algorithms, or

TWEANNs, i.e. topology and weight evolving artificial neural

4

Parent A

Parent B

Child

A A A A A

B B B B B B

BB

AA

B B

A

4

1

5

2 3

6

4

321

5 6

4

21 3

5

3 4

3 4

excess

1 5 2 5 3 4 5 5 5 4

5 4 3 6 6 42 51 5

1 5 2 5 5 5 5 4 3 6 6 4

disabled

disjoint

Fig. 1. An example of how NEAT evolves network topologies via innovation
numbers, indicated by the color of each gene in this figure. By providing a
principled mechanism to align genetic information between two genomes,
NEAT is able to perform meaningful crossover between networks with
different topologies.

network algorithms) were created to address this problem.

One popular such algorithm is Neuroevolution of Augmenting

Topologies (NEAT; Stanley and Miikkulainen, 2002).

NEAT is based on three key ideas. First, evolving network

structure requires a flexible genetic encoding that allows two

networks with arbitrary topology to be recombined. Each

genome in NEAT includes a list of connection genes, each

of which refers to two node genes being connected. Each

connection gene specifies the in-node, the out-node, the weight

of the connection, whether or not the connection gene is

expressed (an enable bit), and an innovation number, which

allows finding corresponding genes during crossover. Mutation

can change both connection weights and network structures.

Connection weights are mutated in a manner similar to any

neuroevolution system. (In this paper, the probability εW =
0.01 was used for each gene.) Structural mutations, which

allow complexity to increase, either add a new connection or

a new node to the network (with probability εN = εL =
0.05). Through structural mutation, genomes of varying sizes

are created, sometimes with completely different connections

specified at the same positions. In order to perform meaningful

crossover between two networks that may have differing

topologies, NEAT uses the innovation numbers from each gene

to “line up” genes with similar functionality (Figure 1).

Second, NEAT speciates the population so that individuals

compete primarily within their own niches instead of with

the population at large. This way, topological innovations are

protected and have time to optimize their structure before

they have to compete with other niches in the population.

The reproduction mechanism for NEAT is explicit fitness

sharing [12], where organisms in the same species must share

the fitness of their niche, preventing any one species from

taking over the population. In addition, an elitism mechanism

3

Generation 1 Generation 2 Generation N

...

Fig. 2. An example of complexification in NEAT. An initial population
of small networks gradually speciates into a more diverse population. This
process allows NEAT to search efficiently in the high-dimensional space of
network topologies.

preserves the best ̟ = 5 networks in the population.

Third, unlike other systems that evolve network topolo-

gies and weights [17, 64], NEAT uses complexification: It

starts with simple networks and expands the search space

only when beneficial, allowing it to find significantly more

complex controllers than other neuroevolution algorithms can.

More specifically, NEAT begins with a uniform population

(of γ = 50) networks with no hidden nodes and randomly-

initialized weights on the connections from inputs to outputs.

New structure is introduced incrementally as structural mu-

tations occur, and the only structures that survive are those

that are found to be useful through fitness evaluations. In this

manner, NEAT searches through a minimal number of weight

dimensions and finds the appropriate level of complexity for

the problem, making it an attractive method for evolving neural

networks in complex tasks.

B. Performance of NEAT

The three key ideas of NEAT allow it to search quickly and

efficiently through the space of possible network topologies

to find the right neural network for the task at hand. This

approach is highly effective: NEAT has outperformed other

neuroevolution methods on complex control tasks like double

pole balancing [49] and robotic strategy-learning [50]. For in-

stance in pole balancing, NEAT is able to discover surprisingly

small and elegant solutions that utilize network structures, and

in particular recurrence, to achieve smooth control (Figure 3).

However, NEAT is limited to small, incremental changes in

the network structure. While such mutations are useful when

building relatively small networks, tasks that require compli-

cated or repeated internal structure are difficult for NEAT.

Furthermore, any small mutations that are made to network

structure can potentially have a global impact on network

output. If solving a problem requires local adjustments to

network output, NEAT’s performance may suffer [28, 27].

Indeed, it has turned out to be surprisingly difficult to get

NEAT to perform well in problems such as concentric spirals,

multiplexer, and high-level strategy problems in general.

The next section reviews the fractured problem hypothesis,

which posits that such problems are difficult to solve because

the correct action changes frequently and abruptly as the agent

encounters different states.

C. Fractured Problems

For many problems (such as the typical control problems or

the standard reinforcement learning benchmarks), the correct

Out

Cart Long Pole Short Pole
Bias

Pos

Fig. 3. A surprisingly small solution that was evolved by NEAT to
solve the non-Markov double pole balancing problem [49]. Shared recurrent
connections between the two poles allow the network to compute the velocity
of the poles, allowing NEAT to generate a parsimonious solution to this
problem.

Action A

Action B

Action C

Action D

State State

(a) (b)

Fig. 4. A simple example of a 2-d state-action space that is (a) fractured and
(b) unfractured. In (a), the correct actions vary frequently and discontinuously
as an agent moves through the state space. If a learning algorithm cannot
represent these abrupt changes, its performance will be limited.

action for one state is similar to the correct action for neigh-

boring states, varying smoothly and infrequently. In contrast,

for a fractured problem, the correct action changes repeatedly

and discontinuously as the agent moves from state to state.

Figure 4 shows simple examples of a fractured and unfractured

two-dimensional state space.

This definition of fracture, while intuitive, is not precise

enough to be used to measure learning performance. More

formal definitions of difficulty have been proposed for learning

problems, including Minimum Description Length [2, 5],

Kolmogorov complexity [30, 35], and Vapnik-Chervonenkis

(VC) dimension [59]. Unfortunately, these metrics are often

more suited to a theoretical analysis than they are to practical

usage. For example, Kolmogorov complexity depends on the

computational resources required to specify an object, which

sounds promising for measuring problem fracture, but it has

been shown to be uncomputable in practice [36].

Fortunately, previous work has shown that it is possible to

define fracture rigorously using the mathematical concept of

total variation [26]. By treating a solution to a problem as

a function, it is possible to measure the amount of variation

of that function, yielding an estimate of how fractured the

solution space is for that problem. In particular, consider the

optimal solution for a problem to be a function z over a region

of the state space B. The amount of fracture in this solution

can be defined as V (z,B):

V (z,B) =

N−1
∑

m=1

{

Nm
∑

r=1

Vm(z,B(m)
r)

}

+ VN (z,B), (1)

4

where the function VN is defined as

VN (z,B) = sup
Π







n
∑

j=1

|σN (Bj)| : Π = {Bj}
n
j=1 ∈ P







,

(2)

and σN is defined as

σN (Bβ
α) =

1
∑

v1=0

. . .

1
∑

vN=0

(−1)v1+...+vN Λ, (3)

where

Λ = z[β1 + v1(α1 − β1), . . . , βN + vN (αN − βN)]. (4)

More informally, measuring the fracture of a function over

a given area involves summing a number of individual vari-

ation calculations, one for each combination of dimensions

of the state space. For example, for a function over a three

dimensional space, variation would be measured along each

dimension separately, along each pair of two dimensions, and

inside all three dimensions. The sum of all of these individ-

ual measurements reflects how much the function changes

in different directions. This approach to defining fracture

is relatively simple, well-founded mathematically, and can

be used on any functional form (e.g. neural networks). For

details concerning this variation computation as well as several

examples of how it can be applied, see [26, 28].

By the formulation above, fractured problems can be char-

acterized as problems where optimal solutions have high

variation. One strategy for discovering such discontinuous

solutions is to focus on algorithms that are able to make local,

non-disruptive adjustments to policies. The next two sections

review RBF-NEAT and Cascade-NEAT, two recent neuroevo-

lution algorithms that were designed to solve such fractured

problems by taking advantage of the locality introduced by

biasing and constraining the growth of network topologies.

D. RBF-NEAT

Radial basis function networks [18, 37, 40, 42] are well-

known in the supervised machine learning literature for their

ability to construct complex decision regions. This ability

is based on nodes with local activation functions such as

the Gaussian. The first locality algorithm, called RBF-NEAT,

extends NEAT by introducing a new topological mutation that

adds such a radial basis function node to the network. This

mutation is an addition to the normal mutation operators used

by NEAT, giving it the ability to generate networks that have

both sigmoid-based nodes and basis-function nodes.

Like NEAT, RBF-NEAT starts with a minimal topology, in

this case consisting of a single layer of weights connecting

inputs to outputs, and no hidden nodes. In addition to the

normal “add link” and “add node” mutations, RBF-NEAT

also employs an “add RBF node” mutation with probability

εRBF = 0.05 (Figure 5). Each RBF node is activated by an

axis-parallel Gaussian with variable center and size, and is

connected to all input and output nodes by randomly-weighted

Normal Node

RBF Node

Fig. 5. An example of network topology evolved by the RBF-NEAT
algorithm. Radial basis function nodes, initially connected to inputs and
outputs, are provided as an additional mutation to the algorithm. Because the
RBF nodes have local activation functions, the resulting network will be able
to make decisions based on small differences in the input, i.e. on problems
where the decision boundary is fractured.

Frozen Connection

Mutable Connection

Fig. 6. An example of a network constructed by Cascade-NEAT. Only
connections associated with the most recently added hidden node are evolved.
Compared to NEAT and RBF-NEAT, Cascade-NEAT constructs networks with
a regular topology that results in local processing.

connections. All free parameters of the network, including

RBF node parameters (center and width) and connection

weights, are determined by the same genetic algorithm used in

NEAT [49]. Since RBF-NEAT builds on the standard NEAT

algorithm, the only additional parameter that it introduces is

εRBF, the probability of adding an RBF node. The value used

for this additional parameter was determined empirically and

held constant for all experiments described in this paper.

RBF-NEAT is designed to evaluate whether local processing

nodes can be useful in policy-search reinforcement learning

problems. The addition of a RBF node mutation provides a

bias towards local-processing structures, but the normal NEAT

mutation operators still allow the algorithm to explore the

space of arbitrary network topologies. RBF-NEAT is effective

in particular in low-dimensional problems because Gaussian

functions are a simple way to isolate pieces of the input

space and the number of parameters required to define each

dimension of such Gaussian functions remains manageable.

E. Cascade-NEAT

An alternative way to introduce locality is to constrain the

topology search to a specific set of structures that make local

refinements to the decision regions. The cascade-correlation

algorithm [9] is a powerful such approach that has proved to

be useful in many supervised learning problems. The cascade

architecture (shown in Figure 6) is a regular form of network

where each hidden node is connected to inputs, outputs, and

all previously-existing hidden nodes. The second extended

algorithm, Cascade-NEAT, constrains the search process to

topologies that have such a cascaded structure.

5

Like NEAT, Cascade-NEAT starts from a minimal network

consisting of a single layer of connections from inputs to

outputs. Instead of the normal NEAT mutations, however,

Cascade-NEAT uses an “add cascade node” mutation (with

probability εCascade = 0.05) that adds a standard hidden

node to the network. This hidden node receives connections

from all inputs and existing hidden nodes in the network,

and is connected to all outputs. All of these connections

are initialized with random weights. In addition, whenever

a hidden node is added, all pre-existing network structure is

frozen in place. Thus, at any given time, the only mutable

parameters of the network are the connections that involve

the most recently-added hidden node. This freezing process

focuses the search for network weights on a small subset

of the overall network structure, greatly reducing the size

of the search space. Like RBF-NEAT, Cascade-NEAT builds

off of the baseline NEAT algorithm, and therefore shares all

parameters that NEAT has. The only additional parameter

introduced by Cascade-NEAT is εCascade, the probability of

adding a cascade node. Like all NEAT parameters, the value

for this additional parameter was determined empirically and

held constant for all of the experiments in this paper.

The constraint that Cascade-NEAT adds to the search for

network topologies is considerable, given the wide variety of

network structures that the normal NEAT algorithm examines.

The idea is that this restriction results in gradual abstraction

and refinement, which allows the discovery of solutions with

local processing structure useful in fractured problems.

F. Performance of RBF-NEAT and Cascade-NEAT

In prior work, RBF-NEAT and Cascade-NEAT were com-

pared to the standard NEAT algorithm on a benchmark

suite of problems including variation generation, function

approximation, concentric spirals, multiplexer, and keepaway

soccer [28, 27]. Each of these problems were chosen because

they cover a variety of different types of domains, yet are

simple enough such that optimal solutions are known a priori.

It was therefore possible to directly measure the fracture for

these problems by computing the solutions as functions and

measuring the total variation of those functions.

The results of this comparison showed that as the level

of fracture in a problem increases, RBF-NEAT and Cascade-

NEAT perform progressively better than NEAT [26]. Biasing

and constraining the construction of networks allows these ap-

proaches to better model the local decision regions that make

the problem fractured. In effect, RBF-NEAT and Cascade-

NEAT extend the NEAT approach to fractured problems.

But what about other types of problems? The benefits of

biasing network construction that RBF-NEAT and Cascade-

NEAT use could conceivably allow them to dominate the stan-

dard NEAT algorithm on all domains. However, experiments

showed that NEAT still performs better on certain types of

control problems such as pole-balancing [50]. As Figure 3

shows, it is possible to do well on double pole-balancing with a

very small recurrent network. Since the NEAT algorithm starts

with a population of minimal networks, it is well-prepared to

solve problems that have small solutions.

Thus, it would be desirable to combine the strengths of

RBF-NEAT, Cascade-NEAT, and standard NEAT into a single

algorithm that can perform well on both low-level control tasks

and fractured problems. The next section describes how this

goal can be achieved.

III. AN INTEGRATED APPROACH

The combined approach proposed in this section takes

advantage of the fact that NEAT, RBF-NEAT, and Cascade-

NEAT are almost completely identical except in their topo-

logical mutation strategy. The standard NEAT algorithm uses

two topological mutation operators: add-link (between two

unconnected nodes) and add-node (split a link into two links

with a node between them). RBF-NEAT adds a third mutation

operator, add-RBF-node, which adds a special Gaussian basis-

function node and connects it to inputs and outputs. In contrast,

Cascade-NEAT uses only a single structural mutation operator,

add-cascade-node, which adds a normal node that receives in-

put from input and hidden nodes and which sends output to the

output nodes. In addition, this operator freezes the previously-

existing network structure to prevent the effective search space

for connection weights from increasing too quickly. The goal

of this approach is to combine these mutations intelligently

into an algorithm that utilizes each mutation when it is the

most effective.

A. Adaptive operator selection

The problem of choosing the correct mutation operators for

a domain is known as adaptive operator selection [11, 1, 23,

57, 6]. The traditional and by far the simplest approach is to

choose uniformly randomly between all operators. However,

if certain operators are more useful than others, the selection

of poor operators can limit learning performance. The goal

of adaptive operator selection research is to make a more

informed decision about which operators to choose.

Early research in adaptive operator selection collected statis-

tics such as how frequently a chosen operator resulted in an

improvement in score over its parents or resulted in a new best

score for the entire population [7, 23]. In order to give credit to

the operators that led to such individuals, the estimated value

of operators was propagated backwards from an individual

to its parents. Some methods attempted to avoid the whole

credit assignment problem by periodically re-calculating the

value of all operators using only information from the current

population [58]. After the value of the various operators was

estimated using one of these methods, the probability of

choosing an operator was calculated in a process known as

Probability Matching [11, 1]. Such algorithms simply assign

operator probabilities proportionally to expected value, while

also enforcing certain minimum probabilities for each operator.

One of the more popular modern adaptive operator selection

algorithms is Thieren’s Adaptive Pursuit algorithm [57]. At

every timestep, this algorithm attempts to identify the optimal

probability for choosing operator oi, with the goal of maxi-

mizing expected cumulative reward of the algorithm. It keeps

estimates of the value Qoi
for each operator, and then uses

those estimates to weight the probability Poi
of selecting each

6

operator. Adaptive Pursuit is designed to respond quickly to

changes in estimated operator value and emphasize selection of

the highest-valued operator without completely ignoring other

possible operators.

For example, given two operators o1 and o2, rewards Ro1
=

10 and Ro2
= 9, and a minimum probability Pmin = 0.1,

then Probability Matching will assign probabilities of Po1
=

0.52 and Po2
= 0.48 to the operators. It would be arguably

preferable to have an algorithm that assigns probabilities of

Po1
= 0.9 and Po2

= 0.1. Adaptive Pursuit achieves this goal

by increasing the selection probability of the operator with the

highest value, o∗ = argmaxi[Qoi
]:

Po∗(t + 1) = Po∗(t) + β[Pmax − Po∗(t)] (5)

while decreasing the probabilities of all other operators:

∀oi 6= o∗ : Poi
(t + 1) = Poi

(t) + β[Pmin − Poi
(t)] (6)

In these equations, β is a free parameter that controls the

rate at which these probabilities are updated. Another free

parameter, α, serves a similar role in governing how fast the

reward Qoi
is updated. The value of Pmax is constrained to

be 1 − (K − 1)Pmin, where K is the number of operators.

These calculations effectively select the estimated optimal

operator with probability Pmax, while choosing uniformly

among the other operators the rest of the time. This strategy

allows Adaptive Pursuit to place much higher value on the

single best operator than strategies like Probability Matching.

Empirically, this decision has shown to improve performance,

making Adaptive Pursuit an appealing choice for a NEAT-

combination algorithm [57, 6]. However, it is not necessarily

straightforward to integrate Adaptive Pursuit with NEAT, as

will be discussed next.

B. Continuous updates

Previous approaches to adaptive operator selection, includ-

ing Adaptive Pursuit, estimate operator value immediately

after application. For example, after an operator is chosen

and used to create or update a member of the population,

the resulting change in score is noted and applied to that

operator. This approach, while certainly straightforward, is

not necessarily appropriate for algorithms based on NEAT.

One of the tenets of NEAT is that new structural mutations

may require some time to be optimized before they become

competitive with existing structures. The purpose of speciation

in NEAT is to provide temporary shelter for new structures that

arise in the population, giving them a fair chance to compete

with structures that have had more time to be optimized. This

concept of delayed evaluation has proven useful in NEAT [50],

but conflicts slightly with the approach taken by Adaptive

Pursuit. Estimating the value of an operator immediately after

application could result in an inaccurate estimate of the value

of the operator.

An alternative method of estimating operator value is to

keep track of which operator most recently affected each mem-

ber of the population. As a given member of the population

improves, the estimate of the value of the operator that most

recently contributed to it will also be updated. In essence,

every time an individual is updated (regardless of whether or

not it was just modified by a structural mutation operator)

an updated reward signal will be generated for the operator

that most recently contributed to that individual. This process

keeps operator values up-to-date with the current population,

and also utilizes a much larger percentage of the information

that the learning algorithm has available to it. Performing such

continuous updates to operator values also fits nicely with

the NEAT philosophy, where speciation is used to give new

network topologies in the population a chance to compete.

C. Initial estimation

The standard Adaptive Pursuit algorithm uses a winner-

take-all strategy to increase the likelihood of choosing the

best operator at every timestep. This greedy approach is offset

by a minimum probability Pmin for each operator, which is

designed to make it possible for the algorithm to change its

operator selection strategy in the middle of learning. However,

the winner-take-all strategy can still be sensitive to initial

conditions.

If two operators have expected values that are close to

each other, small differences in early evaluations can cause

the Adaptive Pursuit algorithm to greedily choose the wrong

operator. Such a mistake early in learning is not necessarily

lethal — thanks to the minimum probabilities associated with

each operator — but if the learning rate that governs how

quickly probabilities can change is low, it can take a while to

recover from initial errors in probability estimation.

In order to better estimate the initial values Poi
of all

operators oi, another modification to the Adaptive Pursuit

algorithm was developed in this paper. The main idea is that

the first N evaluations will serve as an evaluation period for

all operators, wherein each operator will be evaluated an equal

number of times. During this period, the probability Poi
for

each operator oi will remain fixed and uniform. After the N
evaluations have been completed, the information gained from

those evaluations will be used to compute estimated values

Qoi
for each operator oi. The algorithm then uses these initial

value estimates to compute initial probability estimates Poi

and resumes normal operation for the remaining evaluations.

Of course, since this initial evaluation period is used only

to compute good estimates for operator values and does not

attempt to take advantage of operators that appear to be

performing well, such an approach could prove detrimental to

learning. However, if it is important to start with good initial

values for each operator, taking time for this initial evaluation

could prove worthwhile. An empirical evaluation of how useful

both continuous updates and an initial estimation period are

is presented below.

D. SNAP-NEAT

SNAP-NEAT is a new version of the NEAT algorithm that

uses the adaptive operator selection mechanisms from Adap-

tive Pursuit to integrate the mutation operators from NEAT,

Cascade-NEAT, and RBF-NEAT. The two NEAT operators,

add-node and add-link, are grouped together into a single

7

operator for the purposes of estimating operator value and

probability. When this operator is selected for actual use, a

coin flip determines whether add-node or add-link is actually

run. This grouping forces the NEAT operators to change values

in tandem.

SNAP-NEAT incorporates the two modifications discussed

above, continuous updates and initial estimation. During the

initial estimation period, SNAP-NEAT cycles repeatedly be-

tween the three topological mutation types, noting the scores

associated with each operator. When the initial estimation

period ends, the value for each operator Qoi
is initialized

to one standard deviation above the mean of the values

accumulated for oi. In a manner similar to interval estimation,

this method of initialization incorporates uncertainty about

the true value for oi [24]. For the remaining evaluations, a

structural mutation operator oi is selected according to its

probability Poi
, and both expected values Qoi

and probabilities

Poi
are updated after each evaluation.

Since SNAP-NEAT is built on NEAT, RBF-NEAT, and

Cascade-NEAT, it utilizes the parameters for those algorithms.

In addition, SNAP-NEAT adds parameters defining the initial-

ization period (set to N = 10000 evaluations, i.e. one-fifth

of total T = 50000 evaluations performed during learning)

learning rates α and β (both = 0.05), and a minimum

probability for each operator in adaptive pursuit (ϕ = 0.10).

Values for these additional parameters were determined em-

pirically and held constant for all experiments in this paper.

Psuedocode describing how the SNAP-NEAT algorithm uses

these parameters can be found in Algorithm 1. Note that

implementations of NEAT, RBF-NEAT, and Cascade-NEAT

can be derived from this explanation of SNAP-NEAT by

setting P to a constant value that always selects a specific

structural mutation.

With reasonable values for these parameters, SNAP-NEAT

is able to find an appropriate learning algorithm for the

problem at hand. This allows experimenters to avoid the

unpleasant situation of deciding whether poor performance

during learning stems from a bad choice of parameters or a bad

choice of learning algorithm. Thus, SNAP-NEAT uses a mod-

ified version of Adaptive Pursuit to make intelligent decisions

about whether to favor NEAT, RBF-NEAT, or Cascade-NEAT

for a given problem. The next section evaluates SNAP-NEAT

on a suite of benchmark problems to determine its efficacy.

IV. EMPIRICAL EVALUATION

If SNAP-NEAT works properly, then it should be able

to recognize which NEAT mutation strategy is required for

a given problem. Selecting an appropriate strategy should

improve SNAP-NEAT’s performance relative to algorithms

with a fixed strategy that is not suited to the given problem. In

addition, examining how well the final probabilities for each

operator match the best known algorithm can help determine

how successful SNAP-NEAT is at selecting appropriate oper-

ators. This section evaluates how well SNAP-NEAT can learn

to identify the correct operators for a variety of problems that

require different strategies to solve.

All of the data shown in this section represent averages

of 100 independent runs. The error bars that appear on graphs

Algorithm 1 Pseudocode for the SNAP-NEAT algorithm.

pop = initializePopulation(γ)

Q = {0}
P = { 1

3} // three mutations: NEAT, RBF, Cascade

numEvals = 0

numGens = T
γ

for i = 1 to numGens do

pop′ = {}
for n in pop do

s = evaluate(n)

updateValue(Q, lastOperator(n), s)

updateProbability(Q, P , α, β, ϕ)

if isElite(s, ̟) then

add(pop′, n)

else if rand < Pc then

operator = chooseWeighted(P)

n′ = mutate(n, operator)

add(pop′, n′)

else

n′ = mutateWeights(n)

add(pop′, n′)

end if

end for

pop = pop′

end for

denote standard error of the mean. All conclusions described in

this paper as being significant were confirmed with a Student’s

t-test with a probability of at least p > 0.95 [39]. All of the

parameters used by the learning algorithms were determined

empirically to work well on a variety of problems, and were

not fine-tuned for any particular algorithm or problem. All

of the parameters that were shared between NEAT, RBF-

NEAT, Cascade-NEAT, and SNAP-NEAT were the same for

all experiments.

A. N-Point classification

The first problem is a simple N-Point classification task. The

goal is to classify each of a set of N = 10 alternating points

properly into one of two groups. This problem is interesting

because it can be either fractured or unfractured, depending

on the distance between the two categories of points. Thirteen

different versions of this problem were created to examine

how different amounts of variation (i.e. fracture, as defined in

Section II-F) in optimal policies impact learning performance.

In each version, the two classes of alternating points were

separated by amounts varying from υ = 0.01 to 1.0. When υ
was low, the optimal policy for distinguishing the two groups

required very little variation. As υ increased, so did the amount

of variation required for an optimal policy. For example,

Figure 7 shows two of the 13 problems when N = 5, along

with examples of optimal policies for each problem. When the

two classes of points are relatively close together, the decision

boundary between the two classes can be relatively smooth. As

the two classes are moved farther apart, the boundary becomes

increasingly non-linear, which increases the minimal variation

8

v v

(a) (b)

Fig. 7. Examples of solutions to the N-Points problem when N = 5 and the
separation between the two classes of points is (a) υ = 0.1 and (b) υ = 0.8.
As υ increases, the two classes of points move further away from each other,
and the minimal variation required to describe the boundary between the two
classes increases, making the problem more fractured.

required to describe the boundary. Thus the degree of fracture

grows larger as υ increases.

Each network was evaluated on a series of inputs, each hav-

ing a value in [0, 1] that represented one of the N 1-d points.

Network activation was reset between successive inputs. The

correct output for the network depended on both the class to

which the current point belonged and the separation parameter

υ. When υ was small, there was a large range of values

that the network could produce that would yield a correct

classification. As υ increased, that window shrank, such that

when υ = 1.0, the only correct values that a network could

produce were 0 if the point belonged to the first class and 1

if it belonged to the second class. After being presented with

all N input points, the fitness for a network was defined to be

10 − χ, where χ was the number of misclassified points.

The minimal amount of variation required to solve an

instance of the N-Point classification problem is relatively

straightforward to compute. In order to separate the N alternat-

ing points into two groups, a function must alternate between

producing values at least as large as υ/2 and at least as small

as −υ/2. Since there are N − 1 gaps between adjacent points

that the function must alternate over, the minimum amount of

variation required to properly classify all N points is (N−1)υ.

Because of its relatively low-dimensional input space, RBF-

NEAT generated the best performance in the 10-Point classifi-

cation problem. Figure 8 compares the performance of SNAP-

NEAT to the other algorithms on this problem (averaged

over 100 independent runs for each algorithm) and Figure 9

shows the learned probabilities for SNAP-NEAT. SNAP-NEAT

has learned to heavily favor the add-RBF-node mutation,

confirming its ability to find the appropriate operator for this

problem.

B. Multiplexer

The multiplexer problem is a challenging benchmark from

the evolutionary computation community. An agent must learn

to split the input into address and data fields, then decode

the address and use it to select a specific piece of data.

For example, the agent might receive as input six bits of

information, where the first two bits denote an address and the

remaining four bits represent the data field. The two address

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 0 0.2 0.4 0.6 0.8 1

S
c
o
re

v (separation)

RBF-NEAT
SNAP-NEAT

Cascade-NEAT
NEAT

Fig. 8. The performance of SNAP-NEAT on the 10-point classification
problem. Each point represents the average of 100 independent runs. SNAP-
NEAT is able to take advantage of the add-RBF-node mutation on this
problem, giving it a score comparable to that of RBF-NEAT (p > 0.95).

Fig. 9. The probabilities learned by SNAP-NEAT for each operator for the
10-point classification problem when υ is 0.1, 0.3, and 1.0 . As variation
increases, RBF-NEAT offers the best performance for this problem, and
SNAP-NEAT learns to favor the add-RBF-node mutation.

bits indicate which one of the four data bits should be selected

as output.

This section describes experiments with four versions of the

multiplexer problem, which are shown in Figure 10. These four

problems differ in the size of the input, ranging from three

inputs (one address bit and two data bits) to nine inputs (three

address bits and six data bits). As before, these different con-

figurations of the problem are fractured to different degrees:

the three-input problem is relatively unfractured, whereas the

nine-input problem is relatively fractured. Note that in order

to make the problem tractable, not all inputs involving the

third address bit are used for the two largest versions of the

problem.

Each version of the multiplexer problem effectively defines

a binary function from the input bits to a single output bit.

During learning, every possible combination of binary inputs

(given the constraints on address and data bits) was presented

to each network in turn. As before, network state was cleared

between consecutive inputs. The fitness for each network was

9

var=3 var=9 var=22 var=24

Addr
1

Select

Data

Data

1

2
Out

Data
1

Addr
1

Addr
2

Select
Data

2

Data
3

Data
4

Out

Addr
1

Addr
2

Data
1

Data
2

Data
3

Data
4

Select

Data
5

Addr
3

Out

Addr
1

Addr
2

Data
2

Data
3

Data
4

Data
5

Data
1

Select

Addr
3

Data
6

Out

(a) (b) (c) (d)

Fig. 10. Four versions of the multiplexer problem, where the goal is to use
address bits to select a particular data bit. For (c) and (d), not all of the values
for the third address bit were used. The amount of variation required to solve
the multiplexer problem increases as the number of total inputs (address bits
plus data bits) increases.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25

S
c
o
re

Variation

Cascade-NEAT
SNAP-NEAT

RBF-NEAT
NEAT

Fig. 11. An evaluation of SNAP-NEAT on four versions of the multiplexer
problem. Each point represents the average of 100 independent runs. SNAP-
NEAT’s performance is near that of Cascade-NEAT, and both approaches
are significantly better than RBF-NEAT and NEAT on the more fractured
problems (p > 0.95).

the inverted mean squared error over all inputs.

Results for 100 independent run of four versions of the mul-

tiplexer problem are shown in Figure 11, followed by learned

probabilities in Figure 12. In contrast to N-Point classification,

the utility of the Cascade-NEAT approach is exceedingly clear

for this problem, and SNAP-NEAT correspondingly learns to

heavily emphasize the add-cascade-node mutation. As before,

this result demonstrates SNAP-NEAT’s ability to favor one

operator with near-exclusivity when the problem demands it.

SNAP-NEAT also performs well when compared to other

learning approaches in the multiplexer domain. In particular,

with Gene Expression Programming on the 2-4 multiplexer

problem, nearly twice as many evaluations were required

(100,000 evaluations versus 50,000 for SNAP-NEAT) to

achieve results comparable to those of SNAP-NEAT [10].

C. Concentric spirals

The concentric spirals problem is a classic supervised learn-

ing benchmark task popularized by the cascade-correlation

literature. Originally proposed by Wieland [43], the problem

consists of identifying 2-d points as belonging to one of two

intertwined spirals. Each network to be evaluated is presented

Fig. 12. The probabilities learned by SNAP-NEAT for each operator for the
four versions of the multiplexer problem. When the problem is relatively un-
fractured (the upper problems), the learned probabilities are similar. However,
on the more difficult versions of this problem (near the bottom), SNAP-NEAT
learns to rely heavily on the add-cascade-node mutation.

var = 9 var = 15 var = 27 var = 35

(a) (b) (c) (d)

var = 45 var = 57 var = 87

(e) (f) (g)

Fig. 13. Seven versions of the concentric spirals problem that vary in the
degree to which the two spirals are intertwined. The colored dots indicate the
discretization used to generate data from each spiral. As the spirals become
increasingly twisted, the variation of the optimal policy increases.

with a selection of 2-d input points in the range [0, 1], and

the output of the network represents a binary signal (black

< 0.5, white ≥ 0.5) describing which spiral the network has

assigned to each point. Fitness is defined as the number of

properly classified points. As before, network state was cleared

between consecutive inputs. Solving the concentric spirals

problem involves tagging nearby regions of the input space

repeatedly with different labels, which matches the description

of a fractured problem intuitively.

In order to examine the effect of changing amounts of

fracture on the learning algorithms, seven different versions of

the problem were created, varying the degree to which the two

spirals are intertwined. These versions are shown in Figure 13.

As the spirals become increasingly intertwined, the variation

of the optimal policy (which classifies each point as being on

one spiral or the other) increases, indicating an increased level

of fracture.

The results of 100 runs of each algorithm are shown

in Figure 14. As with the multiplexer problem, Cascade-

NEAT performs consistently better than RBF-NEAT on these

problems. SNAP-NEAT performs similarly to Cascade-NEAT,

demonstrating that it has chosen the right operators for these

problems. However, in several of the low-fracture cases it

10

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 10 20 30 40 50 60 70 80 90

S
c
o
re

Variation

SNAP-NEAT
Cascade-NEAT

RBF-NEAT
NEAT

Fig. 14. Performance of SNAP-NEAT on several versions of the concentric
spirals problem. Each point represents the average of 100 independent runs.
SNAP-NEAT is able to perform comparably to Cascade-NEAT, and in low-
variation cases, actually slightly better (p > 0.95).

manages to outperform Cascade-NEAT, which is surprising.

All of these results are significant with p > 0.95.

The reason is clear from the operator probabilities shown

in Figure 15. In all cases, SNAP-NEAT includes a significant

number of cascade mutations, as is to be expected. However,

in low-fracture cases, it actually favors RBF mutations slightly.

This combination allows it to perform better than any single

approach on these problems, demonstrating the added value

of the SNAP-NEAT approach.

Among previous evolutionary computation approaches to

the concentric spirals problem, Potter and DeJong’s genetic

cascade-correlation algorithm is the best known [43]. Al-

though their experiments are not directly comparable to the

data presented above, genetic cascade-correlation takes nearly

three times as many evaluations as SNAP-NEAT (139,500

evaluations for genetic cascade-correlation versus 50,000 for

SNAP-NEAT) to solve a similar version of the concentric

spirals problem. These results suggest that SNAP-NEAT is

competitive in this benchmark domain as well.

D. Pole balancing

The double pole-balancing problem is a classic reinforce-

ment learning benchmark that has been used to gauge the

performance of many learning algorithms [47, 49]. In this

problem, the goal of the learning algorithm is to find a

controller that can balance two poles of different lengths

that are attached to a cart on a one-dimensional track. The

controller receives input describing the position of the cart

on the track and the angles of the two poles relative to the

cart. In the Markov version of the problem, it also receives

rates of change for these three variables; in the non-Markov

version, it needs to estimate these rates for itself by integrating

information from previous states. The actions available to the

controller provide an impulse to the cart that accelerates it in

either direction on the track. Fitness is proportional to the

amount of time that the poles remain in the air, with the

constraint that the cart must remain on a fixed section of

Fig. 15. Operator probabilities learned by SNAP-NEAT for four versions
of the concentric spirals problem, arranged from least fractured (top) to most
fractured (bottom). SNAP-NEAT combines RBF and cascade mutations in
these problems, resulting in better performance than any single approach.

 40,000

 50,000

 60,000

 70,000

 80,000

 90,000

 100,000

NEAT Cascade−NEAT RBF−NEAT SNAP−NEAT

S
c
o
re

Fig. 16. A comparison of NEAT, Cascade-NEAT, RBF-NEAT, and SNAP-
NEAT on the Markov double pole-balancing problem. Each bar represents
the average of 100 independent runs of each algorithm. SNAP-NEAT learns
that the standard NEAT mutation operators are most useful on this problem,
giving it a performance comparable to that of NEAT (p > 0.95).

the track. As is typical of control problems, the decisions

in double pole balancing are relatively continuous, i.e. it is

a non-fractured problem. As a result, it should be very well

suited for the NEAT approach, and less so for RBF-NEAT and

Cascade-NEAT.

Figures 16 and 17 compare SNAP-NEAT to NEAT, RBF-

NEAT, and Cascade-NEAT on Markov and non-Markov ver-

sions of this problem. In the Markov case, RBF-NEAT and

especially Cascade-NEAT perform poorly, as expected. How-

ever, SNAP-NEAT’s performance is indistinguishable from

that of NEAT (p > 0.95). In the non-Markov case, the

differences are even larger between NEAT and the local

methods. SNAP-NEAT also takes a small performance hit,

apparently because it spends time considering the add-cascade-

node mutation, which is relatively useless in this problem.

However, it still performs well, achieving a level of perfor-

mance near that of NEAT.

NEAT and SNAP-NEAT also perform well when compared

to other pole-balancing algorithms. Although direct compar-

isons between the results in this paper (measuring fitness

11

 0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

NEAT Cascade−NEAT RBF−NEAT SNAP−NEAT

S
c
o
re

Fig. 17. A comparison of several learning algorithms on the non-Markov
double pole-balancing problem, averaged over 100 independent runs. SNAP-
NEAT is able to achieve a performance level near that of NEAT, although
its use of the add-RBF-node and add-cascade-node mutations limits its
performance somewhat compared to NEAT.

achieved within a given number of evaluations) and prior work

(measuring number of evaluations required for a solution) are

not possible, a prior comprehensive comparison by [8] can

be used to put the results in perspective. In that compari-

son, NEAT was found to require two orders of magnitude

fewer calculations than cellular encoding [17] and evolutionary

programming [45], and an order of magnitude fewer than

conventional neuroevolution [63] and Q-Learning [60]. On the

other hand, CMA-ES [19] and CoSyNE [8] performed slightly

better than NEAT. Since SNAP-NEAT performs comparably to

NEAT, it compares similarly to these other methods. However,

CMA-ES and CoSyNE are partly based on techniques that

could be incorporated into SNAP-NEAT as well; such combi-

nations constitute an interesting direction for future work.

Examining the probabilities for each operator that are

learned by SNAP-NEAT is another way to gauge the effec-

tiveness of the integrated approach. Since the standard NEAT

algorithm generates the best performance on this problem, a

successful operator selection algorithm should learn to favor

the NEAT mutation operators.

Figures 18 and 19 show the final average probabilities at

the end of learning for successful runs of the SNAP-NEAT

algorithm. In the Markov case, SNAP-NEAT learns to empha-

size the NEAT mutations. This behavior is reasonable, given

the high performance of the standard NEAT algorithm on this

problem. Interestingly, in the non-Markov case, SNAP-NEAT

does not learn to rely heavily on the NEAT mutations, instead

striking a balance between NEAT and RBF-NEAT mutations.

This result makes some sense, given that the input space is

relatively low-dimensional (as a matter of fact, RBF-NEAT

itself performs moderately well on this problem). Perhaps the

most important concept that it learned was to avoid using

the add-cascade-node operator, which provides little utility

on this problem (as witnessed by the low performance of

Cascade-NEAT). The additional overhead of optimizing the

many connections introduced by this operator outweigh the

benefits of being able to isolate local regions of the input

space. However, because SNAP-NEAT does not learn to de-

emphasize the RBF operator to the same extent as it does the

Fig. 18. The learned operator probabilities for SNAP-NEAT in Markov
double pole-balancing. SNAP-NEAT discovers that the NEAT mutations are
the most useful for this problem, allowing it to perform at a level comparable
to NEAT.

Fig. 19. The learned operator probabilities for SNAP-NEAT in non-
Markov double pole-balancing. SNAP-NEAT’s ability to de-emphasize the
add-cascade-node mutation allows it to find solutions almost as good as those
found by NEAT. However, an over-reliance on the add-RBF-node operator,
although not entirely unreasonable, results in lower performance than in the
Markov version of the problem.

cascade operator, its performance remains slightly below that

of NEAT. Determining how to further improve the accuracy of

SNAP-NEAT’s operator evaluations is an important direction

for future work that will be discussed further in Section V-B.

E. Half-field Soccer

The results presented above provide evidence that SNAP-

NEAT can discover which operators work best for problems

that are fractured, like point classification, multiplexer, and

concentric spirals, as well as for reactive control problems like

pole-balancing. These test problems were chosen primarily be-

cause they are easy to understand and analyze. An interesting

question is to what extent do the same conclusions apply to

“real” fractured high-level decision problems that may include

elements of both. The next section addresses this question

by evaluating how well NEAT, RBF-NEAT, Cascade-NEAT,

and SNAP-NEAT perform in the challenging reinforcement

learning problem of half-field soccer [25]. This problem is

interesting because it is a control problem with significant

fracture.

The version of half-field soccer used in this paper features

five offenders, five defenders, and a ball. A game starts with

a random configuration of players on a rectangular field, as

shown in Figure 20. One of the defenders is designated as the

“goalie”, and is tasked with defending a goal on the right side

12

(a) (b)

Fig. 20. (a) An example configuration of the half-field soccer domain, where
five offenders (darker players) attempt to score goals on five defenders (lighter
players with crosses). (b) An illustration of which actions would be successful
for an offender with the ball at various points on the field, given a configuration
shown in (a) for the other players. Each color represents one of the 26 subsets
of actions (holding the ball, shooting on goal, or passing to one of four
teammates) that, if executed, would not immediately result in the end of
an episode. Deciding which actions to use is a difficult high-level control
problem that requires modeling a fractured decision space.

d <
ball

Intercept

yes

Choose action

(learned)

Player close?

Hold Pass to B Pass to CPass to A Pass to DShoot on goal

no

Get Open

no yes
for the ball?

Responsible

Fig. 21. The decision tree used to control the offensive players in the half-
field soccer problem. Most of the behaviors are simple and are therefore
hand-coded. However, the decision most crucial for the game (i.e. which one
of the several possible actions to perform with the ball) needs to be learned.

of the field. The other defenders follow a hand-coded behavior

designed to cover the field, prevent goals, and intercept the ball

from the offending team.

The offenders are controlled by a hierarchy of hand-coded

and learned behaviors (Figure 21). Their objective is to gain

control of the ball, keep it away from the defenders, and score

a goal. When a game starts, the offensive player nearest to the

ball is designated as responsible for the ball. If this player

is not close enough to the ball, it executes a pre-existing

intercept behavior in an effort to get control of the ball. The

other offensive players not responsible for the ball execute a

pre-existing get-open behavior, designed to put them in good

positions to both receive passes and to score goals.

However, when the responsible offender has control of the

ball (defined by being within φ meters of the ball) it must

choose between pre-existing behaviors of holding the ball,

kicking the ball at the goal, or attempting a pass to one

of its four teammates. The goal of learning is to make the

appropriate decision given the state of the game at this point.

This decision is both difficult and crucial for the game, making

it a good test for learning algorithms [25, 53, 61, 52].

To make this decision, the network controlling the respon-

sible offender receives 14 continuous inputs (Figure 22). The

D

D

D
D

D

D

D

D

2

3

T

T

T

y

x

a

D1

Da

a

b b

b d

d

c
c

Tc

d 4

Fig. 22. A graphical depiction of the 14 state variables that an offensive
player observes when making decisions in the half-field soccer problem. The
inputs represent position on the field as well as distances and angles between
teammates and opponents, normalized into the range [0, 1].

first two inputs describe the player’s position on the field.

The network also receives three inputs for each of its four

teammates: the distance to that teammate, the angle between

that teammate and the nearest defender, and the distance to that

nearest defender. All angles and distances are normalized to

the range [0, 1]. The network has one output for each possible

action (hold, shoot, or pass to one of the four teammates).

The output with the highest activation is interpreted as the

offender’s action.

If the offender chooses to pass, the teammate receiving

the pass is designated the new responsible offender. After

initiating the pass, the original offender begins executing the

get-open behavior.

Each network was evaluated in τ = 50 different randomly

chosen initial configurations of defenders and offenders. In

each configuration, the ball is initially placed near one of the

offensive players. Each of the players executes the appropriate

hand-coded behavior. When the player responsible for the

ball needs to choose between holding, shooting, and passing,

the current network is used to select an action. The game

is allowed to proceed until a goal is scored, a timeout is

reached (after 1000 timesteps), the ball goes out of bounds,

or a defender achieves control of the ball (by getting within

φ meters of it). The score for a single game is the number of

timesteps that the game takes, or, if a goal is scored, a fixed

reward of 10,000. The overall score for the network is the sum

of the scores for all τ games.

In order to evaluate the performance of the NEAT-related

algorithms, several other learning methods that have shown

promise on domains like half-field soccer were also evaluated.

The first one is the standard reinforcement learning approach

known as SARSA, which was the best learning approach in

the original half-field soccer study [25]. This type of classic

reinforcement learning approach has been shown to work

well on challenging problems like keepaway and half-field

soccer [53]. The version used for this comparison employs

the same system of shared updates and parameter settings

described by Kalyanakrishnan et al. [25], which was found to

offer better performance than the baseline SARSA approach.

Similarly, a CMAC function approximator was used to model

the value function during learning, because it also was shown

13

 260,000

 270,000

 280,000

 290,000

 300,000

 310,000

 320,000

 330,000

 340,000

 350,000

 360,000

NEAT Cascade−NEAT Linear RBF−NEAT SNAP−NEAT SARSA

S
c
o

re

 GA ESP

Fig. 23. A comparison of several learning algorithms on the half-field
soccer problem. Cascade-NEAT is well suited for this problem and results
in the best performance on this problem to date (p > 0.95). SNAP-NEAT
is close behind, statistically similar to SARSA+CMAC (p > 0.95). The
results provide evidence that combining NEAT with the ability to model local
decision regions is a powerful approach for learning high-level control.

to generate the best results in previous work.

In addition to the NEAT variants, the ESP neuroevolution

algorithm [15, 13] was evaluated on this problem. ESP has

been shown to be effective in the past at generating solutions

for non-linear control tasks such as rocket stabilization [16],

often outperforming other reinforcement learning approaches.

Since ESP relies on a fixed network topology to be chosen

a priori by the experimenter, several different recurrent and

non-recurrent network topologies were examined. The best

approach ended up using a network with five hidden nodes

with fully recurrent connections and the default parameter

settings described in [15].

A third comparison was performed with a hand-coded

policy optimized by a vanilla genetic algorithm. This policy

is based on linear combinations of evolved parameters to

make decisions about the chances of success for shooting,

holding, and passing. The genetic algorithm used to evolve

these parameters was the same algorithm that was used to

optimize the weights of networks in the NEAT variants.

Performance of each algorithm was evaluated over 50 differ-

ent start states. Figure 23 shows the scores for NEAT, Cascade-

NEAT, RBF-NEAT, SARSA, ESP, the hand-coded/GA, and

a linear baseline version of NEAT (which optimized a fixed

topology consisting of a single layer of weights with no

complexification operators), averaged over 100 runs.

NEAT is able to do reasonably well on this problem, out-

performing ESP and the hand-coded/GA approaches. SNAP-

NEAT performs statistically as well as the SARSA+CMAC

approach. However, Cascade-NEAT generates the highest level

of performance by a clear margin. These results suggest that

combining NEAT with an ability to model local decision

regions is a promising approach for learning high-level control.

They also show that such control can be learned by a general

method that works both with high and low fracture.

It should be noted that because an optimal solution is

not known for either the pole-balancing or half-field soccer

problems, the precise level of fracture for these problems is

also unknown. However, the empirical results show that these

problems are fundamentally different: NEAT performs best

on pole-balancing, whereas Cascade-NEAT performs best on

half-field soccer. One explanation that fits this data is that

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

AP AP+Init AP+Cont SNAP−NEAT

S
c
o
re

Fig. 24. A comparison of the different versions of Adaptive Pursuit and
SNAP-NEAT on the most difficult version of the multiplexer problem from
Section IV-B. Initialization periods and continuous updates both increase
performance over the baseline Adaptive Pursuit. However, SNAP-NEAT
performs much better, demonstrating that these extensions leverage eachother.

the high-level soccer task is fractured, whereas the reactive

pole-balancing problem is not. But regardless of whether that

explanation is correct, the main result that this paper presents is

that SNAP-NEAT is able to intelligently combine the strengths

of both NEAT and Cascade-NEAT to perform well on both

problems.

F. Evaluation of Operator Selection

Recall that SNAP-NEAT augments the baseline Adaptive

Pursuit algorithm with two modifications: continuous evalua-

tions and a period of initial estimation. These changes make

intuitive sense, and make it easier to integrate Adaptive Pursuit

with NEAT. However, it is worthwhile to examine how useful

these modifications to the baseline Adaptive Pursuit algorithm

actually are.

The multiplexer tasks described in Section IV-B represent

a spectrum of fractured problems suitable for algorithms

like RBF-NEAT and Cascade-NEAT. Figure 24 compares the

performance of SNAP-NEAT to three versions of Adaptive

Pursuit. The first version (labeled “AP”) is baseline Adaptive

Pursuit with no modifications. The second two versions (la-

beled “AP+Init” and “AP+Cont”) represent Adaptive Pursuit

augmented with either the initialization period or continuous

evaluation modification described above. The main result is

that SNAP-NEAT outperforms Adaptive Pursuit by a large

margin. That is, the performance of Adaptive Pursuit can be

significantly increased by including continuous updates and

an initialization period. Individually, the two modifications to

Adaptive Pursuit offer modest improvements in performance.

The learned probabilities for this multiplexer problem are

shown in Figure 25. The baseline Adaptive Pursuit algorithm

has difficulty in favoring the add-cascade-node operator, which

is most useful for this problem. When modified to include

continuous evaluations, Adaptive Pursuit makes much better

use of the cascade mutation. However, SNAP-NEAT favors

the add-cascade-node operator even more heavily, and as a

result does very well on this problem.

Figure 26 revisits the non-Markov version of the dou-

ble pole-balancing problem described in Section 3, where

14

Fig. 25. The learned operator distributions for the Adaptive Pursuit variants
and SNAP-NEAT for the most challenging multiplexer problem. When
modified to include continuous evaluations, Adaptive Pursuit learns to rely
on the add-cascade-node operator. However, SNAP-NEAT also achieves this
effect while maintaining a better mix of the other two operators, giving it a
higher performance. This result shows that when used together, continuous
evaluations and an initial evaluation period are important in estimating
operator values accurately.

 0

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

 35,000

 40,000

 45,000

 50,000

AP AP+Init AP+Cont SNAP−NEAT

S
c
o
re

Fig. 26. A comparison of three different versions of Adaptive Pursuit
and SNAP-NEAT on the non-Markov double pole-balancing problem. Inter-
estingly, both continuous updates and the initialization period decrease the
performance of Adaptive Pursuit when used alone. However, their combination
in SNAP-NEAT does very well, suggesting that they work synergistically.

NEAT mutations were found most useful. The results show

that SNAP-NEAT out-performs the standard Adaptive Pursuit

algorithm and that interestingly enough, either of these to

modifications by themselves actually decreases performance,

suggesting that a synergy exists between them. A better

understanding of this interaction is an important area for future

work, and is discussed in Section V-A.

Figure 27 compares the operator probabilities for SNAP-

NEAT and the Adaptive Pursuit algorithms. The differences

in the learned operator probabilities are small, but significant.

In particular, the Adaptive Pursuit algorithms do not learn

to avoid the add-cascade-node mutation. Since the Adaptive

Pursuit methods perform poorly compared to SNAP-NEAT,

it is reasonable to conclude that their distribution of operator

probabilities is not appropriate for the pole-balancing problem.

On the other hand, SNAP-NEAT learns to suppress the add-

cascade-node mutation, instead favoring the NEAT and RBF-

NEAT mutations. Thus, using both continuous updates and a

Fig. 27. A comparison of the learned probabilities for three versions of
Adaptive Pursuit and SNAP-NEAT on the double pole-balancing problem.
SNAP-NEAT is able to de-emphasize the add-cascade-node mutation as
needed for this problem.

period of initial estimation allows SNAP-NEAT to discover

this distribution of operator probabilities and outperform the

Adaptive Pursuit algorithms significantly.

The results in these two example domains demonstrate

that SNAP-NEAT utilizes both continuous evaluations and an

initialization period to learn to favor the appropriate operators

for a given problem, whether it be fractured or unfractured.

V. DISCUSSION AND FUTURE WORK

The results described above show that SNAP-NEAT is a

good way to combine the strengths of NEAT, RBF-NEAT,

and Cascade-NEAT into a single algorithm that is effective on

both reactive control and high-level strategy problems. This

section discusses these results and describes several avenues

for future work.

A. Extending Adaptive Pursuit

The generic Adaptive Pursuit algorithm described by

Theirens [57] makes several assumptions about the nature of

the learning process that are not consistent with the ideas

behind NEAT. In order to incorporate Adaptive Pursuit into

NEAT effectively, continuous updates and initial estimation

were added. On problems like the multiplexer, each of these

extensions individually provide a moderate increase in per-

formance over the baseline Adaptive Pursuit algorithm (Fig-

ure 24). Experiments in other domains yielded similar results.

On pole-balancing, however, each extension alone actually

decreases performance; each works well only when combined

with the other.

These results show that there is a synergy between continu-

ous updates and initial estimation. On most problems, the net

effect is larger than the sum of their individual contributions.

To some extent, this result is intuitive: When the operator

values are initialized accurately, the best operators tend to be

chosen. If the correct operators offer more consistent feedback

than the worst operators, continuous updates will pull operator

values in the right direction. In contrast, without accurate

initialization, a poor choice of operators could result in noisy

15

evaluations. Using continuous updates in this case could make

the algorithm sensitive to noise early in the learning process,

and run the risk of pulling operator values away from the

correct distribution. On the other hand, using only initial

estimation and avoiding continuous updates could set the

algorithm on the right path initially, but make it too slow at

responding to changing operator values.

However, it is still surprising that each extension individu-

ally could decrease performance, as they do in pole-balancing.

It is possible that the dynamics of this problem — which are

different from those of fractured problems, since they favor

the NEAT algorithm — make these individual contributions

more dependent on each other. It is also possible that without

a period of initial estimation, the continuous updates might

use noisy data to change operator values too quickly, which

could cause learning to diverge. It is less clear why initial

estimation would only work when coupled with continuous

updates. Further investigation of the interaction between these

two modifications is an interesting direction for future work.

B. Evaluating SNAP-NEAT

Section III introduced SNAP-NEAT as an example of

adaptive operator selection. This class of algorithms explores

how to employ a set of operators best during the learning

process, usually making few or no assumptions about the

nature of those operators. The operator selection mechanisms

are relatively independent of the actual operators available,

perhaps with the exception that performance could suffer from

poor sampling if the number of operators becomes too large.

One interesting avenue for future work is to examine the

role of operators other than add-node, add-link, add-cascade-

node, and add-RBF-node. There are many different types of

network topologies that have been explored in the neural

network literature: networks with varying numbers of hidden

layers, with or without recurrency, receptive fields that model

those found in biology, etc. Also of interest are various

fixed-topology approaches, like the multiple neuron population

approach used by ESP [16]. A large array of operators inspired

by these various topologies and organizational principles could

provide an excellent base for an algorithm like SNAP-NEAT,

allowing it to be applied to a broad spectrum of problems.

It is also interesting that on several different problems

(e.g. concentric spirals) SNAP-NEAT is able to actually out-

perform its constituent algorithms. This result suggests that

the best strategy for some problems involves the application of

multiple operators. Since SNAP-NEAT (like Adaptive Pursuit

on which it is based) is designed to heavily exploit the best

performing operator, it may be possible to improve SNAP-

NEAT’s performance by allowing it to explore combinations

of multiple operators more easily. Determining what kinds of

problems might benefit from such a mix is also an interesting

and challenging avenue for future work.

As demonstrated on the non-Markov pole balancing prob-

lem (Figure 19), SNAP-NEAT does not always discover the

best operators for a given problem. Improving the accuracy of

SNAP-NEAT’s operator value estimation is thus one way to

improve it in the future. One possibility is to run multiple

independent learning instances, each of which has a fixed

association with one or more operators. By avoiding the

application of different operators in succession, the individual

merit of an operator or set of operators may be more clear.

Incorporating ideas such as this into SNAP-NEAT’s operator

estimation is an interesting direction for future work.

C. Extending Network Construction

The results in this paper suggest that RBF-NEAT works best

in low-dimensional settings. This result is understandable —

as the number of inputs increases, the curse of dimensionality

makes it increasingly difficult to set all of the parameters

correctly for each basis function. This limitation suggests

that a better method of incorporating basis functions into a

constructive algorithm would be to situate those basis nodes

on top of the evolved network structure. The lower levels of

such a network can be thought of as transforming the input

into a high-level representation, similar to the kernel transfor-

mation used by support vector machines [4]. The high-level

representation is likely to be of smaller dimensionality than

the original representation and basis nodes operating at this

level may be effective at selecting useful features. Determining

how to evolve such a multi-stage network effectively is an

interesting direction for future work.

In addition to the cascade architecture and basis functions,

there are other useful ideas from supervised machine learning

that could be applied to neuroevolution. One such idea is to

use an initial unsupervised training period to initialize a large

network, similar to the initial step of training that happens

in deep learning [20, 3, 32]. Using unsupervised learning to

provide a good starting point for the search process could

have a dramatic effect on learning performance. Conversely,

the adaptive pursuit algorithm on which SNAP-NEAT is based

is a general-purpose approach for choosing intelligently be-

tween multiple mutation operators, and is applicable to many

different types of evolutionary algorithms. The generality of

this approach suggests that it could be used to improve the

performance of a wide variety of evolutionary algorithms.

D. Extending Evaluation and Applications

The data presented in this paper were drawn from a variety

of different problems, ranging from simple but easy-to-analyze

domains to challenging high-level strategy problems. The goal

in examining such a broad spectrum was to obtain solid

empirical evidence in support of the hypothesis that a single

algorithm can work well across a variety of problems without

explicit knowledge.

However, the current analysis only scratches the surface.

There are countless challenging and interesting problems

that learning algorithms currently can not solve, and the

exploration of any of these problems could yield valuable

insight into the strengths and weaknesses of algorithms like

SNAP-NEAT. There are ways in which a problem might be

considered difficult other than fracture; empirical evaluation

like the kind presented in this paper is one of the most direct

ways to identify these axes of difficulty and to determine which

problems feature them.

16

In particular, it would be useful to evaluate the lessons

learned in this paper on other high-level reinforcement learning

problems. One potential candidate is a multi-agent vehicle

control task, such as that examined in [46]. Previous work

showed that algorithms like NEAT are effective at generating

low-level control behaviors, like efficiently steering a car

through S-curves on a track. Evolving higher-level behavior to

reason about opponents or race strategy has proven difficult,

but may be possible with algorithms like Cascade-NEAT,

RBF-NEAT, and SNAP-NEAT.

VI. CONCLUSION

While previous neuroevolution algorithms such as NEAT,

RBF-NEAT, and Cascade-NEAT have been shown to work

well on specific classes of problems, their performance can

suffer when they are applied to certain types of new domains.

The results in this paper show how one approach to neu-

roevolution, SNAP-NEAT, can be successfully used to solve a

variety of different types of problems without a priori domain

knowledge. SNAP-NEAT is a hybrid approach that uses a

modified version of Adaptive Pursuit to combine the strengths

of NEAT, RBF-NEAT, and Cascade-NEAT. This approach

is evaluated empirically on a set of problems, ranging from

reactive control to high-level strategy. The results show that

SNAP-NEAT is able to intelligently select the best operators

for the problem at hand, allowing it to change how it behaves

depending on the type of problem that it faces. This kind of

general approach is crucial in encouraging the broad applica-

tion of AI techniques to real-world problems, where domain

expertise is not always available.

REFERENCES

[1] H. J. C. Barbosa and A. M. Sa. On adaptive operator

probabilities in real coded genetic algorithms. In In Proc.

XX International Conference of the Chilean Computer

Science Society, 2000.

[2] A. Barron, J. Rissanen, and B. Yu. The minimum de-

scription length principle in coding and modeling. IEEE

Trans. Information Theory, 44(6):2743–2760, 1998.

[3] Yoshua Bengio. Learning deep architectures for ai. Tech-

nical Report 1312, Dept. IRO, Universite de Montreal,

2007.

[4] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N.

Vapnik. A training algorithm for optimal margin clas-

sifiers. In COLT ’92: Proceedings of the fifth annual

workshop on Computational learning theory, pages 144–

152, New York, NY, USA, 1992. ACM.

[5] G.J. Chaitin. A theory of program size formally identical

to information theory. Journal of the ACM, 22:329–340,

1975.

[6] Luis DaCosta, Alvaro Fialho, Marc Schoenauer, and

Michle Sebag. Adaptive operator selection with dynamic

multi-armed bandits. In Proceedings of the 10th annual

conference on Genetic and evolutionary computation,

pages 913–920, 2008.

[7] L. Davis. Adapting operator probabilities in genetic

algorithms. In Proc. 3rd International Conference on

Genetic Algorithms, pages 61–69, 1989.

[8] J Schmidhuber F. Gomez and R. Miikkulainen. Accel-

erated neural evolution through cooperatively coevolved

synapses. Journal of Machine Learning Research, 9:937–

965, 2008.

[9] S. E. Fahlman and C. Lebiere. The cascade-correlation

learning architecture. In D. S. Touretzky, editor, Ad-

vances in Neural Information Processing Systems, vol-

ume 2, pages 524–532, Denver 1989, 1990. Morgan

Kaufmann, San Mateo.

[10] C. Ferreira. Gene Expression Programming: Mathemat-

ical Modeling by an Artificial Intelligence. 2002.

[11] David Goldberg. Probability matching, the magnitude of

reinforcement, and classifier system bidding. 5(4):407–

426, 1990.

[12] David E. Goldberg and J. Richardson. Genetic algorithms

with sharing for multimodal function optimization. In

Proceedings of the Second International Conference on

Genetic Algorithms, pages 148–154, 1987.

[13] F. Gomez and R. Miikkulainen. Incremental evolution of

complex general behavior, 1997.

[14] F. Gomez and R. Miikkulainen. Solving non-markovian

control tasks with neuroevolution. In In Proceedings

of the 16th International Joint Conference on Artificial

Intelligence, 1999.

[15] Faustino Gomez. Robust Non-Linear Control Through

Neuroevolution. PhD thesis, Department of Computer

Sciences, The University of Texas at Austin, 2003.

[16] Faustino Gomez, Juergen Schmidhuber, and Risto Mi-

ikkulainen. Efficient non-linear control through neu-

roevolution. In Proceedings of the European Conference

on Machine Learning (ECML-06, Berlin), 2006.

[17] Frederic Gruau, Darrell Whitley, and Larry Pyeatt. A

comparison between cellular encoding and direct en-

coding for genetic neural networks. In John R. Koza,

David E. Goldberg, David B. Fogel, and Rick L. Riolo,

editors, Genetic Programming 1996: Proceedings of the

First Annual Conference, pages 81–89. MIT Press, 1996.

[18] H.M. Gutmann. A radial basis function method for global

optimization. Journal of Global Optimization, 19:201–

227, 2001.

[19] N. Hansen and A. Ostermeier. Completely derandomized

self-adaptation in evolutionary strategies. Evolutionary

Computation, 9:159–195, 2001.

[20] G. E. Hinton and R. R. Salakhutdinov. Reducing the

dimensionality of data with neural networks. Science,

313(5786):504–507, 2006.

[21] K. M. Hornik, M. Stinchcombe, and H. White. Multi-

layer feedforward networks are universal approximators.

Neural Networks, pages 359–366, 1989.

[22] C. Igel. Neuroevolution for reinforcement learning us-

ing evolution strategies. In Congress on Evolutionary

Computation 2003 (CEC 2003), 2003.

[23] B. A. Julstrom. What have you done for me lately?

adapting operator probabilities in a steady-state genetic

algorithm. In Proceedings of the Sixth International

Conference on Genetic Algorithms, pages 81–87, 1995.

[24] Leslie P. Kaelbling. Learning in Embedded Systems. MIT

Press, 1993.

17

[25] Shivaram Kalyanakrishnan, Yaxin Liu, and Peter Stone.

Half field offense in RoboCup soccer: A multiagent

reinforcement learning case study. In Gerhard Lake-

meyer, Elizabeth Sklar, Domenico Sorenti, and Tomoichi

Takahashi, editors, RoboCup-2006: Robot Soccer World

Cup X, pages 72–85, Berlin, 2007. Springer Verlag.

[26] Nate Kohl. Learning in Fractured Problems with Con-

structive Neural Network Algorithms. PhD thesis, De-

partment of Computer Sciences, University of Texas at

Austin, 2009.

[27] Nate Kohl and Risto Miikkulainen. Evolving neural

networks for fractured domains. In Proceedings of

the Genetic and Evolutionary Computation Conference,

pages 1405–1412. July 2008.

[28] Nate Kohl and Risto Miikkulainen. Evolving neural

networks for strategic decision-making problems. Neural

Networks, 22:326–337, 2009. Special issue on Goal-

Directed Neural Systems.

[29] Nate Kohl, Kenneth Stanley, Risto Miikkulainen,

Michael Samples, and Rini Sherony. Evolving a real-

world vehicle warning system. In Proceedings of the

Genetic and Evolutionary Computation Conference 2006,

pages 1681–1688, July 2006.

[30] A.N. Kolmogorov. Three approaches to the quantitative

definition of information. Problems of Information Trans-

mission, 1:4–7, 1965.

[31] R.M. Kretchmar and C. Anderson. Comparison of cmacs

and radial basis functions for local function approxima-

tors in reinforcement learning. In Proceedings of the

International Conference on Neural Networks, 1997.

[32] Y. LeCun and Y Bengio. Scaling learning algorithms

towards ai. Large-Scale Kernel Machines, 2007.

[33] J. Li and T. Duckett. Q-learning with a growing rbf

network for behavior learning in mobile robotics. In Pro-

ceedings of the Sixth IASTED International Conference

on Robotics and Applications, 2005.

[34] Jun Li, T. Martinez-Maron, A. Lilienthal, and T. Duckett.

Q-ran: A constructive reinforcement learning approach

for robot behavior learning. In Proceedings of IEEE/RSJ

International Conference on Intelligent Robot and Sys-

tem, 2006.

[35] M. Li and P. Vitanyi. An Introduction to Kolmogorov

Complexity and Its Applications. Springer-Verlag, 1993.

[36] J. M. Maciejowskia. Model discrimination using an

algorithmic information criterion. Automatica, 15:579–

593, 1979.

[37] J. Moody and C. J. Darken. Fast learning in networks of

locally tuned processing units. Neural Computation, 1:

281–294, 1989.

[38] D. E. Moriarty and R. Miikkulainen. Efficient reinforce-

ment learning through symbiotic evolution. Machine

Learning, 22:11–32, 1996.

[39] Michael O’Mahony. Sensory Evaluation of Food: Statis-

tical Methods and Procedures. 1986.

[40] J. Park and I. W. Sandberg. Universal approximation us-

ing radial-basis-function networks. Neural Computation,

3:246–257, 1991.

[41] T. Peterson and R. Sun. An rbf network alternative

for a hybrid architecture. In IEEE International Joint

Conference on Neural Networks, volume 1, pages 768–

773, 1998.

[42] John Platt. A resource-allocating network for function

interpolation. Neural Computation, 3(2):213–225, 1991.

[43] Mitchell A. Potter and Kenneth A. De Jong. Cooperative

coeveolution: An architecture for evolving coadapted

subcomponents. Evolutionary Computation, 8(1):1–29,

2000.

[44] Joseph Reisinger, Erkin Bahceci, Igor Karpov, and Risto

Miikkulainen. Coevolving strategies for general game

playing. In Proceedings of the IEEE Symposium on

Computational Intelligence and Games, 2007.

[45] N. Saravanan and D. B. Fogel. Evolving neural control

systems. IEEE Expert, pages 23–27, 1995.

[46] Kenneth Stanley, Nate Kohl, Rini Sherony, and Risto

Miikkulainen. Neuroevolution of an automobile crash

warning system. In Proceedings of the Genetic and Evo-

lutionary Computation Conference 2005, pages 1977–

1984, 2005.

[47] Kenneth O. Stanley. Efficient Evolution of Neural

Networks Through Complexification. PhD thesis, De-

partment of Computer Sciences, University of Texas at

Austin, 2003.

[48] Kenneth O. Stanley, Bobby D. Bryant, and Risto Mi-

ikkulainen. Real-time neuroevolution in the NERO video

game. IEEE Transactions on Evolutionary Computation,

9(6):653–668, 2005.

[49] Kenneth O. Stanley and Risto Miikkulainen. Evolving

neural networks through augmenting topologies. Evolu-

tionary Computation, 10(2), 2002.

[50] Kenneth O. Stanley and Risto Miikkulainen. Competitive

coevolution through evolutionary complexification. Jour-

nal of Artificial Intelligence Research, 21:63–100, 2004.

[51] Kenneth O. Stanley and Risto Miikkulainen. Evolving

a roving eye for go. In Proceedings of the Genetic and

Evolutionary Computation Conference, 2004.

[52] Peter Stone, Gregory Kuhlmann, Matthew E. Taylor, and

Yaxin Liu. Keepaway soccer: From machine learning

testbed to benchmark. In Itsuki Noda, Adam Jacoff,

Ansgar Bredenfeld, and Yasutake Takahashi, editors,

RoboCup-2005: Robot Soccer World Cup IX, volume

4020, pages 93–105. Springer Verlag, Berlin, 2006.

[53] Peter Stone, Richard S. Sutton, and Gregory Kuhlmann.

Reinforcement learning for RoboCup-soccer keepaway.

Adaptive Behavior, 2005.

[54] Richard S. Sutton. Generalization in reinforcement learn-

ing: Successful examples using sparse coarse coding. In

Advances in Neural Information Processing Systems 8,

pages 1038–1044, 1996.

[55] Richard S. Sutton and Andrew G. Barto. Reinforcement

Learning I: Introduction. 1998.

[56] Matthew Taylor, Shimon Whiteson, and Peter Stone.

Comparing evolutionary and temporal difference meth-

ods for reinforcement learning. In Proceedings of the Ge-

netic and Evolutionary Computation Conference, pages

1321–28, July 2006.

[57] Dirk Thierens. An adaptive pursuit strategy for allocating

18

operator probabilities. In Proceedings of the 2005 con-

ference on Genetic and evolutionary computation, pages

1539–1546, 2005.

[58] A. Tuson and P. Ross. Adapting operator settings in

genetic algorithms. Evolutionary Computation, 6(2):161–

184, 1998.

[59] V. Vapnik and A. Chervonenkis. On the uniform

convergence of relative frequencies of events to their

probabilities. Theory of Probability and its Applications,

16:264–280, 1971.

[60] C.J.C.H. Watkins and P. Dayan. Q-learning. Machine

Learning, 8:279–292, 1992.

[61] Shimon Whiteson, Nate Kohl, Risto Miikkulainen, and

Peter Stone. Evolving keepaway soccer players through

task decomposition. Machine Learning, 59:5–30, May

2005.

[62] D. Whitley, S. Dominic, R. Das, and C. W. Anderson.

Genetic reinforcement learning for neurocontrol prob-

lems. Machine Learning, 13:259–284, 1993.

[63] A. Wieland. Evolving neural network controllers for

unstable systems. In In Proceedings of the International

Joint Conference on Neural Networks, pages 667–673,

1991.

[64] Xin Yao. Evolving artificial neural networks. Proceed-

ings of the IEEE, 87(9):1423–1447, 1999.

