
Evolving a Real-World Vehicle Warning System

Nate Kohl
Department of Computer Sciences

University of Texas at Austin

1 University Station, C0500

Austin, TX 78712-0233

nate@cs.utexas.edu

Kenneth Stanley
School of Electrical Engineering and

Computer Science

University of Central Florida

Orlando, Florida 32816

kstanley@cs.ucf.edu

Risto Miikkulainen
Department of Computer Sciences

University of Texas at Austin

1 University Station, C0500

Austin, TX 78712-0233

risto@cs.utexas.edu

Michael Samples
Center for the Study of Complex

Systems

University of Michigan

Ann Arbor, MI 48109

msamples@umich.edu

Rini Sherony
Technical Research Department

Toyota Technical Center

Ann Arbor, MI 48105

rini.sherony@tema.toyota.com

ABSTRACT
Many serious automobile accidents could be avoided if drivers
were warned of impending crashes before they occur. Creat-
ing such warning systems by hand, however, is a difficult and
time-consuming task. This paper describes three advances
toward evolving neural networks with NEAT (NeuroEvolu-
tion of Augmenting Topologies) to warn about such crashes
in real-world environments. First, NEAT was evaluated in
a complex, dynamic simulation with other cars, where it
outperformed three hand-coded strawman warning policies
and generated warning levels comparable with those of an
open-road warning system. Second, warning networks were
trained using raw pixel data from a simulated camera. Sur-
prisingly, NEAT was able to generate warning networks that
performed similarly to those trained with higher-level in-
put and still outperformed the baseline hand-coded warning
policies. Third, the NEAT approach was evaluated in the
real world using a robotic vehicle testbed. Despite noisy and
ambiguous sensor data, NEAT successfully evolved warning
networks using both laser rangefinders and visual sensors.
The results in this paper set the stage for developing warn-
ing networks for real-world traffic, which may someday save
lives in real vehicles.

Categories and Subject Descriptors: I.2.6 [LEARN-
ING]: Connectionism and neural nets

General Terms: Experimentation

Keywords: neuroevolution, vehicle, real world, NEAT

Track: Real-World Applications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

1. INTRODUCTION
For the average person, the drive to work may be the most

dangerous thing they do all day: in 2004, driving-related
accidents in the U.S. were responsible for more than 104
deaths and 5,101 injuries every day, with an estimated yearly
economic cost of $230.6 billion [1]. While the proliferation of
automobiles over the last century has played a pivotal role in
advancing society, the improvements have clearly not come
without a cost.

If cars could warn their drivers that a crash is imminent,
it is possible that many accidents could be avoided. One
approach for building such a warning system is to ask an
expert to describe as many dangerous situations as possible
and formalize that information in an automated reasoner.
However, such expert systems may fail when exposed to sub-
tle changes in noisy sensor data. Moreover, it may not be
possible to predict a crash from a static snapshot of the road;
the recent history of the car and other objects on the road
should be taken into account as well. It is difficult to know
how long such a history should be or what objects it should
track.

Yet if the car could learn on its own what objects to track
and how long to keep salient events in memory, these chal-
lenges could be overcome. In addition, cars could be trained
with different drivers under different circumstances, creating
more flexible warning systems.

Teaching a car to predict crashes is the goal of the auto-
mobile warning system project at the University of Texas
at Austin, started in November 2003 and funded in part
by Toyota. The NeuroEvolution of Augmenting Topologies
(NEAT; [9, 10]) method was used to evolve crash prediction
neural networks. NEAT is a natural choice for the learning
method because it evolves the network topology in addition
to the weights, and therefore can develop arbitrary recur-
rent neural networks that keep a variable length of prior
history in memory. In other words, an expert does not need
to decide how long the warning window should be or what
it should take into account, because evolution makes this
determination in selecting the appropriate recurrent topol-
ogy. In addition, NEAT has shown promise in control tasks

that involve noisy, continuous inputs such as pole balancing
and a simulated robot duel, suggesting it could make effec-
tive judgments about the danger of vehicle circumstances
[9, 10]. Because NEAT matches the complexity of the neu-
ral network with the complexity of the task, it can find the
right level of representation for warning under different con-
ditions. Teaching networks to predict crashes does offer new
challenges for NEAT, however, given the potential for a large
number of real-world inputs.

In an earlier version of this work, NEAT was shown to
be effective at evolving warning systems in simulated open
road driving where only collisions with the edge of the road
occurred [7]. This paper extends these results in three ways
that suggest that this approach will be effective in the real
world. The first extension is to include other moving cars in
the simulation. The warning task is much more difficult and
realistic because it requires predicting the behavior of several
moving objects at once. The warning networks that NEAT
generates are evaluated empirically and found to perform
better than several hand-coded strawman warning policies.

The second extension demonstrates that the warning net-
works can work with simple visual input. Instead of us-
ing expensive and delicate laser rangefinders, simulated low-
resolution digital camera data is fed into the evolving net-
works. Digital cameras are cheap, easy to work with, and
provide a veritable deluge of information, making them prac-
tical for real-world applications. However, visual data can
be very ambiguous and is often of much higher dimension-
ality than readings from a laser rangefinder. Surprisingly,
NEAT performs almost equally well with visual data, and
again outperforms the hand-coded baseline policies.

The third contribution is a real-world evaluation of the ap-
proach using a robotic vehicle testbed. The lessons learned
from the above experiments are applied to the task of train-
ing a warning system for a real robot that interacts with a
cluttered training environment. Preliminary results suggest
that NEAT is able to generate successful warning networks
despite noisy real-world training data. These three results
set the stage for developing warning networks for real-world
traffic, which may someday save lives in real vehicles.

The next section describes the RARS driving simulator
used in the simulation experiments and the NEAT neuroevo-
lution method used to train warning networks. Section 3
describes how NEAT performs with other cars. Section 4
compares warning networks evolved with laser rangefinder
data to networks evolved with raw pixel data from a cam-
era. Section 5 describes a real-world implementation of this
approach in a robotic vehicle testbed, and evaluates future
prospects at transferring the system to real cars.

2. BACKGROUND
This section describes the simulator (the Robot Auto Rac-

ing Simulator, or RARS), the learning algorithm (NeuroEvo-
lution of Augmenting Topologies, or NEAT), and the exper-
imental method by which NEAT was used to train warning
networks.

2.1 The Robot Auto Racing Simulator (RARS)
Since learning requires experience, it is necessary for the

learning system to gain experience through driving and pre-
dicting crashes. Because crashing cars in the real world with
an untested approach would be dangerous and expensive, it

is necessary to start in simulation. RARS1 (Figure 1), a
public domain racing simulator designed for testing Artifi-
cial Intelligence (AI) methods for real-time control, is ideally
suited for this purpose.

RARS is supported by an active community that provides
documentation and software maintenance. The software was
written with AI in mind, so it is easy to modify existing
drivers and introduce new ones. Vehicle dynamics are accu-
rately simulated, including skidding and traction. Multiple
automobiles controlled by different automated drivers can
interact in the environment at the same time. The soft-
ware automatically provides information like the distance
between the driver and other vehicles and the direction of
the road that can be used as the basis for simulated sensors.

The basic type of sensor used for the experiments in this
paper is a simulated laser rangefinder, which provides both
information about the edge of the road and the location of
other cars. Two sets of laser rangefinder data are generated.
One set casts seven beams forwards from the front of the car
that stop at the edge of the road, giving the car an indication
of its position and heading relative to the sides of the road,
and also of the curvature of the road. The second set consists
of six wide beams that stop when they hit an obstacle on
the road, like a car (Figure 2).

It is sensible to ask whether this sensor configuration is a
reasonable approximation of the real world, i.e. can similar
information be extracted from real sensors? In fact, signif-
icant research has gone into vehicle trackers and detecting
lanes in the real world [2, 5, 11]. Data from such systems
could be processed and fed into the neural networks in a sim-
ilar form to the sensors used in these experiments. However,
such sensors are difficult to build and maintain, which is why
visual sensors will also be tested in this paper (Section 4).

RARS provides a virtual gas pedal, brake, and steering
wheel that can receive their values from the outputs of a
neural network. The gas pedal and brake are interpreted
as a requested tire speed relative to the bottom of the car.
There is no limit to how high the request can be, and RARS
tries to match the request within the physical constraints
of the car. If the request is lower than the current speed,
RARS attempts to slow the car down by braking. The steer-
ing request is treated similarly: the lateral force generated
by the same turn angle request increases the higher the cur-
rent speed. Thus, the driving controls in RARS work like a
real automobile, and excessive inputs cause the car to lose
traction and skid or spin out of control.

2.2 Neuroevolution of Augmenting Topologies
(NEAT)

It is not known how complex a warning neural network
needs to be or even what kind of topology it should have.
Searching in too large a space, i.e. a space of highly complex
networks, would be intractable while searching in too sim-
ple a space would limit solution quality. Moreover, it is not
known which recurrent connections should exist in the net-
work to allow it to react to past states. For example, if the
car is skidding to one side, each snapshot of the sensory in-
put looks perfectly normal. A skid can only be identified by
combining the observations over the last several time steps.

The NeuroEvolution of Augmenting Topologies (NEAT)
method [9], which automatically evolves network topology

1http://rars.sourceforge.net

(a) (b) (c)

Figure 1: Three views of the RARS environment. In (a), a driver is shown avoiding other cars while a
warning system collects data. The output of the warning system (described in Section 2.3) is shown in red
in the upper-left corner of the image. In (b), a similar situation is shown, but from the perspective of the
driver. (c) A 2-D overhead view of the “clkwis” track used for the experiments. All of these views represent
the same environment, which can include any number of cars operated by independent controllers. Because
RARS is a popular platform that accurately simulates vehicle physics and supports multiple simultaneous
drivers, it makes a good simulation testbed for evolving warning systems.

(a) Sensing the edge of the road in RARS

(b) Sensing other cars in RARS

Figure 2: The two types of simulated laser
rangefinder sensors. (a) Seven beams that intersect
with the edge of the road give the car a sense of
its position and the road’s curvature. (b) To detect
obstacles, the area in front of the car is divided into
six sections. Multiple beams that stop when they
hit obstacles are cast in each section, and the lowest
becomes the value for that section. These two types
of laser rangefinder input provide the warning net-
works with realistic egocentric input data about the
road and other cars.

to fit the complexity of the problem, is designed to solve
these problems. NEAT combines the usual search for the ap-
propriate network weights with complexification of the net-
work structure. It starts with simple networks and expands
the search space only when beneficial, allowing it to find
significantly more complex controllers than fixed-topology
evolution. This approach is highly effective: NEAT out-
performs other neuroevolution (NE) methods on complex
control tasks like the double pole balancing task [9, 8] and
the robotic strategy-learning domain [10]. These properties
make NEAT an attractive method for evolving neural net-
works in complex tasks. In this section, the NEAT method is
briefly reviewed; see [9, 8, 10] for more detailed descriptions.

NEAT is based on three key ideas. First, evolving net-
work structure requires a flexible genetic encoding. Each
genome in NEAT includes a list of connection genes, each of
which refers to two node genes being connected. Each con-
nection gene specifies the in-node, the out-node, the weight
of the connection, whether or not the connection gene is ex-
pressed (an enable bit), and an innovation number, which
allows finding corresponding genes during crossover. Muta-
tion can change both connection weights and network struc-
tures. Connection weights are mutated in a manner similar
to any NE system. Structural mutations, which allow com-
plexity to increase, either add a new connection or a new
node to the network. Through mutation, genomes of vary-
ing sizes are created, sometimes with completely different
connections specified at the same positions.

Each unique gene in the population is assigned a unique
innovation number, and the numbers are inherited during
crossover. Innovation numbers allow NEAT to do crossover
without the need for expensive topological analysis. Genomes
of different organizations and sizes stay compatible through-
out evolution, and the problem of matching different topolo-
gies [6] is essentially avoided.

Second, NEAT speciates the population so that individ-
uals compete primarily within their own niches instead of
with the population at large. This way, topological innova-
tions are protected and have time to optimize their structure
before they have to compete with other niches in the pop-
ulation. The reproduction mechanism for NEAT is explicit
fitness sharing [3], where organisms in the same species must

share the fitness of their niche, preventing any one species
from taking over the population.

Third, unlike other systems that evolve network topologies
and weights [4, 13], NEAT begins with a uniform population
of simple networks with no hidden nodes. New structure is
introduced incrementally as structural mutations occur, and
the only structures that survive are those that are found to
be useful through fitness evaluations. In this manner, NEAT
searches through a minimal number of weight dimensions
and finds the appropriate complexity level for the problem.

2.3 Training Warning Networks
Each warning network that NEAT generates receives in-

put that describes the current state of the world. This input
is normalized into the range [0, 1] and is described in further
detail in Sections 3 and 4. The output of each network is
a prediction whether and when a crash is going to happen.
This prediction is based on the sensor inputs over several
time steps, describing the dynamics of the situation. If the
predictor has a good model of the driver’s behavior, it can
make realistic predictions about what the driver is likely to
do in the current situation, and therefore predict whether a
crash is likely to happen.

Importantly, the topology of each warning network de-
termines how many timesteps in the past it will be able to
reason about. Since NEAT evolves both the topology and
weights of the warning networks, it is able to determine on
its own how many timesteps in the past are necessary to ob-
serve. The recurrent structures are selected during evolution
based on how well they support the predictions.

The simplest kind of prediction is a binary output that
predicts whether or not a crash will happen in some fixed
number of timesteps. While such a system is useful, a more
sophisticated prediction can be made if a network also de-
termines when it expects the crash. By predicting a time,
a network is in effect constantly outputting a danger level:
the sooner the predicted crash, the more dangerous the sit-
uation. Such a graded warning system is likely to be more
useful to human drivers, allowing e.g. different warning sig-
nals to be used depending on their urgency.

Hence, the network has a single output that is interpreted
as a predicted time to crash between zero (i.e. imminent
crash) and a maximum time m. In general, when the net-
work outputs the maximum value, it means that the current
situation is not dangerous. Fitness is computed as the mean
squared error E, accumulated while a driver drives around
the track and encounters dangerous situations. Let It be
the correct prediction at timestep t and ot be the prediction
output by the network. In the event a crash is more than m

timesteps in the future, It is set to m. In computing E, It

and ot, which range between zero and m, are scaled between
zero and one. The mean squared error E over n timesteps
is then:

E =

P

n

t=1
(ot − It)

2

n
. (1)

For the experiments in this paper, warning networks are
evaluated offline from prerecorded training data from a hu-
man driver. All of the crashes in this data are hand-labeled
by an experimenter. Before being used by NEAT for train-
ing, this data is parsed by a script so that each timestep is
assigned the correct warning level It. To obtain this value
for timestep t, the parser simply looks ahead to when the

Figure 3: The initial locations of the six moving cars.
Each car is evenly spaced along the backstretch of
the “clkwis” track and given a small random offset
and orientation. This setup provides ample oppor-
tunity for a warning system to experience moving
traffic.

next crash occurs. If the next crash happens more than
t+m timesteps in the future, the warning level for timestep
t is set to m. Otherwise, the warning level for timestep t is
simply the number of timesteps until the next crash. Since
each timestep of the training data is now associated with
an ideal prediction, E can be computed by comparing each
prediction of the warning network to this precomputed set
of ideal prediction targets I1 through In.

Using this training paradigm, it is possible to evolve net-
works that vary their warning level. See Appendix A for
more details on the NEAT parameters used in these exper-
iments. The following sections describe three advances that
scale up this approach and might eventually allow it to be
implemented in real cars.

3. WARNING WITH MOVING OBSTACLES
In previous work, NEAT was shown to be able to suc-

cessfully evolve warning networks in a sparse environment,
where the only collisions that could occur were with the edge
of the road [7]. But how does NEAT fare in more realistic
driving environments? In order to answer this question, the
RARS domain was extended to include other moving cars,
and warning networks were trained to predict collisions with
them.

A total of six cars were added to the long straightaway
of the “clkwis” track (Figure 3). They were spaced evenly
along the track and were assigned a random offset from the
center of the road. Each car was oriented to align with the
clockwise direction of traffic, but a small offset was added to
ensure that some of the cars would move across the road. All
of these cars were instructed to move at a moderate constant
velocity in a straight line.

In order to generate training data, a human experimenter
drove a car around the track, occasionally colliding with the
other cars. It proved very important for this experimenter
to collect data from a variety of situations; if too few or too
many crashes occurred, the networks would learn to never
warn or to warn all of the time. At each timestep during
this process, the rangefinder data, the velocity of the car,
and any crashes were recorded. Hence, there were a total of
14 inputs: seven edge-of-road rangefinder readings, six car

rangefinder readings, and the current velocity of the car.
This entire data set (consisting of 16,360 timesteps) was
parsed to assign target warnings to each timestep before be-
ing divided into training and testing groups (75% for train-
ing, 25% for testing). NEAT was trained and evaluated on
this data for 200 generations using four-fold cross-validation.

Figure 4 depicts a network that was evolved by NEAT for
this task, and figure 6 compares the mean squared error for
the evolved warning networks on the test data with several
fixed warning policies:

• Always warn: The warning system always issues the
maximum warning.

• Never warn: The warning system never issues a warn-
ing.

• Warn randomly: The warning system chooses a ran-
dom warning for each timestep.

The evolved networks average a low 0.028 mean squared er-
ror across the different sets of test data, performing more
than twice as well as the best hand-coded policy. When
NEAT was previously used to evolved networks to warn
about collisions on the open road, similar performance lev-
els were reached [7]. Subjectively, when driving a car with a
joystick, the warnings appear meaningful and early enough
to avoid collisions. These results suggest that despite a chal-
lenging environment with moving obstacles, NEAT is able
to successfully evolve warning networks.2

4. LEARNING FROM VISUAL INPUT
The above results show that NEAT is able to evolve warn-

ing networks in complex environments using input from a
laser rangefinder. It is difficult to work with laser rangefind-
ers in the real world, however, because they are rather deli-
cate and expensive. Low-resolution CCD digital cameras, on
the other hand, are comparatively cheap and robust. Such
cameras can also provide a much larger (albeit less precise)
array of inputs, and can include color data. Given these
benefits, digital cameras are an attractive source of input
for a vehicle warning system.

Compared to laser rangefinder input, however, raw visual
data is of much higher dimensionality and is much more diffi-
cult to interpret. For example, a processed laser rangefinder
will return values that correspond to the nearest obstacles in
the plane of the rangefinder with a high degree of certainty.
A camera, however, can be fooled by textured and colored
objects. Furthermore, a single camera image does not pro-
vide enough information to reliably extract depth informa-
tion; such information must be inferred from the observed
movement over several frames. Given these drawbacks, it is
not clear that the learning algorithm can generate warning
networks based on raw visual inputs.

To test the efficacy of evolving networks that use camera
data, similar experiments to those described above in Sec-
tion 3 were performed. Instead of using rangefinder sensors,
however, warning networks were supplied with raw pixel
data from a first-person driver’s view through the wind-
shield. The 280 pixels from a 20× 14 image were converted
to grayscale intensity values between 0 and 1 before being
fed to an input array on the network (Figure 5).

2Video of these results can be found at
http://nn.cs.utexas.edu/keyword?vehicle-warning

1

25

30

52 126

244353

2

19109

16

3

54

72169 203

4

53

176

5

22

309

6

18

153

78

17

9

64

239

10

27

11

34

56

251 354

12

225 230

13

35

490

14

264

15

58

129

223

359

Figure 4: An example of a champion warning
network evolved by NEAT after 200 generations.
Weight values for the connections are depicted by
color; they vary from bright red (very inhibitory) to
black (neutral) to light blue (very excitatory). Input
nodes are located along the bottom, the output node
is located at the top, and the light gray nodes in be-
tween are evolved hidden nodes. NEAT attempts
to match the complexity of the evolved networks to
the complexity of the problem. For example, the
recurrent connections in nodes 64, 22, 359, and 203
allow it to detect dangerous situations that are not
immediately obvious from the sensor values, such as
skidding off the road.

(a) (b)

Figure 5: Training with visual inputs. (a) The
original raw pixel data from a first-person camera
mounted in the car and (b) a 20 × 14 grayscale ver-
sion of the same data that is provided as input to
the warning networks.

Evolved
(Image input)

0.043

M
ea

n
S

qu
ar

ed
 E

rr
or

Always Warn Never Warn Evolved
(Rangefinder input)

0.074

0.028

Random Warn

0.294

0.853

Method

Figure 6: A comparison between warning networks
evolved by NEAT and fixed baseline warning policies
for warning about collisions with other cars. When
networks are evolved with laser rangefinder data as
input, they perform more than twice as well as the
best baseline policy. Surprisingly, networks evolved
with image data perform almost as well.

The results from a comparison using four-fold cross-validation
are shown in Figure 6. Surprisingly, networks evolved us-
ing visual data perform almost as well as those evolved us-
ing laser rangefinder data, and still manage to significantly
outperform all three baseline warning policies. This result
shows that despite the high dimensionality and unprocessed
nature of the visual input, NEAT is still able to generate
competent warning networks.

One possible explanation for this success is that the net-
works are somehow taking advantage of flaws in the training
and testing data. For example, if the data does not include
enough variety, there may exist a single “magic pixel” that
happens to correlate well with when crashes occur. Genetic
algorithms are known for their ability to exploit such subtle
experimental flaws.

To test the “magic pixel” hypothesis, a pixel ablation
study was performed. One input of a champion warning
network was ablated, i.e. forced to always show black. The
performance of the network was then evaluated and the dif-
ference between the ablated performance and the normal
performance was noted. The ablated input was returned
to normal and another input similarly ablated, until all 280
inputs had been individually ablated and tested.

The results from this experiment are shown in Figure 7.
Each pixel in Figure 7 (a) represents the performance dif-
ference when that pixel was ablated. Black pixels indicate
no change in performance whereas white pixels indicate that
performance degraded to the worst possible level (1.0 MSE).
If the warning network was relying on a small number of pix-
els to generate its warnings, one would expect this analysis
to reveal those pixels as being much brighter than others.
As this figure shows, however, all of the pixels have roughly

(a) (b)

Figure 7: Results from the pixel ablation experi-
ment. (a) Darker pixels indicate small changes in
performance after ablation whereas light pixels in-
dicate large changes in performance. (b) A normal-
ized version of the same data. The warning network
does not seem to use any single pixel to generate its
warnings, but it has discovered that some areas are
more informative than others.

the same color. To more clearly elucidate this result, Fig-
ure 7 (b) shows the same analysis but with the values of the
pixels normalized. There are many pixels in this figure with
a light color, which suggests that the warning network is not
relying on a single pixel to generate its warnings.

Interestingly enough, some of the many pixels that seem
to contribute are located at the very top of the image, where
the rendering of the sky almost always yields a constant
color. It is possible that the warning network is using such
constant pixels as bias values, despite being provided with
a bias neuron that is normally used with neural networks.
Although evolution is not taking advantage of any single
“magic pixels”, it does seem to be exploiting the regularity
of the sky in the simulated world. The next section explores
the question of whether or not this approach still work in
the real world, where the environment lacks the uniformity
of simulation.

5. LEARNING ON A ROBOTIC VEHICLE
The above approaches, developed in simulation, were trans-

ferred to the real-world and implemented on a robotic vehi-
cle testbed. In a manner similar to the simulation, the robot
was trained to warn about impending collisions and lane de-
partures while moving through a cluttered environment.

The robot used for this experiment was a customized Ap-
plied AI GAIA robot with a SICK laser rangefinder and a
Bumblebee stereo camera (Figure 8). Both the rangefinder
and camera were configured to save 10 frames of data per
second to the local storage device of the robot. The rangefinder
generated 180 measurements in one-degree increments, but
these values were averaged over 20 slices to produce 20 mea-
surements over the 180 degree span. The stereo data from
the camera was discarded and the resulting single images
were compressed down to a 20 × 14 pixel size.

The robot was piloted through a mock roadway littered
with stationary black obstacles with a height similar to that
of the robot. A total of 8094 frames of training data were
recorded, including 112 collision events. This data was pro-
cessed offline and fed into NEAT to generate warning net-
works. In this preliminary experiment, all of the available
data was used for training; the results in Figure 9 show two
examples of performance on this training set.

Figure 8: The robotic vehicle (an Applied AI GAIA)
used for real-world training, with its SICK LMS-200
laser rangefinder and Point Grey Bumblebee digital
stereo camera.

In Figure 9, each example shows the events leading up
to a collision with a stationary object at one-second inter-
vals. Thus the first image (on the left for each example)
depicts the robot three seconds before impact, whereas the
last image (on the right for each example) shows the robot
at the moment of impact. A history of the warnings gener-
ated by a warning network is shown along the top of each
image. Rangefinder input is shown in the top set of images.
In both examples, as the object draws closer, the warning
levels increase appropriately.

These results suggest that NEAT does not rely on the
regularity of the simulated world to generate robust warning
networks. Despite having to deal with noisy laser rangefinder
data and a cluttered visual environment, NEAT is able to
successfully evolve warning networks in the real world.

6. CONCLUSIONS
This paper presents three advances in the application of

NEAT to a vehicle collision warning domain. First, NEAT
was evaluated in a complex, dynamic environment that in-
cluded other cars; it outperformed three hand-coded straw-
man warning policies and generated warning levels consis-
tent with those of an open-road warning system. Second, the
processed laser rangefinder input to the warning networks
was replaced with raw pixel data from a simulated camera.
Surprisingly, NEAT was still able to generate warning net-
works that outperformed the baseline hand-coded warning
policies. Finally, this approach was evaluated using a real-
world robotic vehicle testbed. Despite noisy real-world sen-
sor data, preliminary training experiments suggested that
NEAT was able to generate robust warning networks using
both laser rangefinder and visual sensors. These three re-
sults set the stage for developing warning networks for real-
world traffic, which may someday save lives in real vehicles.

7. FUTURE WORK
One obvious next step for this work is to implement this

system in a full-size vehicle in an outdoor environment. It
will be important in particular to test how well the net-
works trained with visual data react to changing lighting
conditions. Such an extension may require extending the
visual field significantly.

Another interesting avenue for future work is online train-
ing, which has the potential to allow warning networks to
become customized to individual drivers [7]. Extensions to
the NEAT algorithm like FS-NEAT [12], which allows se-
lecting the most appropriate input features as part of the
evolution, may also turn out useful for scaling up to real
cars.

Finally, it could be very useful to continue to compare how
different types of input affect the learning process. The work
in this paper shows that NEAT can learn with either low-
level pixel data or medium-level rangefinder data. There are
many current visual processing systems that provide differ-
ent high-level information from a visual stream of data. Such
high-level input is attractive because it offers the possibility
of greatly simplifying the learning process. On the other
hand, high-level input is by definition fairly abstract, and
may not always provide the right information for every dan-
gerous situation. Understanding which level of input works
most effectively with evolution is an interesting direction for
future work.

8. ACKNOWLEDGMENTS
The authors would like to thank all of the programmers

that contributed to the open-source RARS project, which is
available at http://rars.sourceforge.net. Thanks to Robert
Vogt for providing valuable technical assistance during this
project. This research was supported in part by a grant
from Toyota, USA.

APPENDIX A.
This appendix describes the NEAT parameters used for ex-
periments in this paper. For more information about these
parameters, see Stanley and Miikkulainen [9]. The coeffi-
cients for measuring compatibility were c1 = 1.0, c2 = 1.0,
and c3 = 3.0. The survival threshold was 0.2. The champion
of each species with more than five networks was copied into
the next generation unchanged. The weight mutation power
was 0.06. The interspecies mating rate was 0.05. The num-
ber of target species was 5. The drop-off age was 1000. The
probability of adding recurrent links was 0.2. Small varia-
tions of these values yield approximately equivalent results.

9. REFERENCES
[1] N. H. T. S. Administration. Traffic safety facts: A

compilation of motor vehicle crash data from the
fatality analysis reporting system and the general
estimates system, early edition. Technical report,
National Center for Statistics and Analysis, U.S.
Department of Transportation, 2004.

[2] E. Dickmanns and B. Mysliwetz. Recursive 3-D road
and relative ego-state recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
14(2):199–213, 1992.

[3] D. E. Goldberg and J. Richardson. Genetic algorithms
with sharing for multimodal function optimization. In

(a)

(b)

Figure 9: An example robot-generated warnings for a single crash (a) using laser rangefinder data as input
and (b) using digital camera data as input. The 20 rangefinder values are shown in green in the bottom-left
corner of the images in (a), and the warning levels generated by the evolved network are shown in red in the
top-left corner of the image. Despite noise in the rangefinder data and visual clutter in the visual data, the
results from this training suggests that the networks have learned to successfully predict collisions.

Proceedings of the Second International Conference on
Genetic Algorithms, pages 148–154, 1987.

[4] F. Gruau, D. Whitley, and L. Pyeatt. A comparison
between cellular encoding and direct encoding for
genetic neural networks. In J. R. Koza, D. E.
Goldberg, D. B. Fogel, and R. L. Riolo, editors,
Genetic Programming 1996: Proceedings of the First
Annual Conference, pages 81–89. MIT Press, 1996.

[5] M. Haag and H.-H. Nagel. Combination of edge
element and optical flow estimates for 3d-model-based
vehicle tracking in traffic image sequences.
International Journal of Computer Vision,
35(3):295–319, 1999.

[6] N. J. Radcliffe. Genetic set recombination and its
application to neural network topology optimization.
Neural Computing and Applications, 1(1):67–90, 1993.

[7] K. Stanley, N. Kohl, R. Sherony, and R. Miikkulainen.
Neuroevolution of an automobile crash warning
system. In Proceedings of the Genetic and
Evolutionary Computation Conference 2005, pages
1977–1984, 2005.

[8] K. O. Stanley and R. Miikkulainen. Efficient
reinforcement learning through evolving neural
network topologies. In Proceedings of the Genetic and
Evolutionary Computation Conference
(GECCO-2002), 2002.

[9] K. O. Stanley and R. Miikkulainen. Evolving neural
networks through augmenting topologies. Evolutionary
Computation, 10(2), 2002.

[10] K. O. Stanley and R. Miikkulainen. Competitive
coevolution through evolutionary complexification.
21:63–100, 2004.

[11] F. Thomanek, E. D. Dickmanns, and D. Dickmanns.
Multiple object recognition and scene interpretation
for autonomous road vehicle guidance. In Intelligent
Vehicles Symposium, 1994.

[12] S. Whiteson, P. Stone, K. O. Stanley,
R. Miikkulainen, and N. Kohl. Automatic feature
selection in neuroevolution. In GECCO 2005:
Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1225–1232, June 2005.

[13] X. Yao. Evolving artificial neural networks.
Proceedings of the IEEE, 87(9):1423–1447, 1999.

