
Evolving Neural Networks for Strategic Decision-Making Problems

Nate Kohl and Risto Miikkulainen

nate@cs.utexas.edu, risto@cs.utexas.edu

Department of Computer Sciences, The University of Texas at Austin

1 University Station C0500, Austin, Texas

Abstract

Evolution of neural networks, or neuroevolution, has been a successful approach to many low-level control problems
such as pole balancing, vehicle control, and collision warning. However, certain types of problems – such as those involving
strategic decision-making – have remained difficult for neuroevolution to solve. This paper evaluates the hypothesis that
such problems are difficult because they are fractured: The correct action varies discontinuously as the agent moves from
state to state. A method for measuring fracture using the concept of function variation is proposed, and based on this
concept, two methods for dealing with fracture are examined: neurons with local receptive fields, and refinement based
on a cascaded network architecture. Experiments in several benchmark domains are performed to evaluate how different
levels of fracture affect the performance of neuroevolution methods, demonstrating that these two modifications improve
performance significantly. These results form a promising starting point for expanding neuroevolution to strategic tasks.

1. Introduction

The process of evolving neural networks using genetic
algorithms, or neuroevolution, is a promising new approach
to solving reinforcement learning problems. While the tra-
ditional method of solving such problems involves the use
of temporal difference methods to estimate a value func-
tion, neuroevolution instead relies on policy search to build
a neural network that directly maps states to actions. This
approach has proved to be useful on a wide variety of prob-
lems and is especially promising in challenging tasks where
the state is only partially observable, such as pole balanc-
ing, vehicle control, collision warning, and character con-
trol in video games (Gomez et al., 2006; Stanley and Mi-
ikkulainen, 2002; Kohl et al., 2006; Reisinger et al., 2007;
Stanley et al., 2005b; Stanley and Miikkulainen, 2004a,b).
However, despite its efficacy on such low-level control prob-
lems, other types of problems such as concentric spirals,
multiplexer, and high-level decision making in general have
remained difficult for neuroevolution algorithms to solve.
A better understanding of why neuroevolution works well
on some problems – but not others – would be useful in de-
signing the next generation of neuroevolution algorithms.

Most of the early work in neuroevolution was based on
fixed-topology methods (Gomez and Miikkulainen, 1999;
Moriarty and Miikkulainen, 1996; Saravanan and Fogel,
1995; Whitley et al., 1993; Wieland, 1991). This work was
driven by the simplicity of dealing with a single network
topology and theoretical results showing that a neural net-
work with a single hidden layer of nodes could approx-
imate any function, given enough nodes (Hornik et al.,
1989). However, there are certain limits associated with

fixed-topology algorithms. Chief among those is the issue
of choosing an appropriate topology for learning a priori.
Networks that are too large have extra weights, each of
which adds an extra dimension of search. On the other
hand, networks that are too small may have difficulty rep-
resenting solutions beyond a certain level of complexity.

Neuroevolution algorithms that evolve both topology
and weights (so-called constructive algorithms) were cre-
ated to address this problem (Angeline et al., 1993; Gruau
et al., 1996; Yao, 1999). While this approach met with
some success, it struggled to effectively evolve both topol-
ogy and weights simultaneously. One problem was com-
peting conventions, wherein structures that evolve inde-
pendently in different networks must be joined together
meaningfully in a crossover operation. This difficulty was
recently addressed with the introduction of historical mark-
ings, which provided a principled method of identifying ho-
mologous sections of two different networks (Stanley and
Miikkulainen, 2002). This improvement allowed neuroevo-
lution algorithms to compete with standard reinforcement
learning algorithms on a variety of problems.

However, certain types of problems – such as high-level
decision tasks – still remain difficult for neuroevolution al-
gorithms to solve. This paper presents the fractured prob-

lem hypothesis as a possible explanation for this issue. By
definition, fractured problems have a highly discontinuous
mapping between states and optimal actions. As an agent
moves from state to state, the best action that the agent
can take changes frequently and abruptly. In contrast, the
optimal actions for a non-fractured problem change slowly
and continuously.

Preprint submitted to Elsevier February 27, 2009

Figure 1: The fractured decision space for one configuration of team-
mates and opponents in the keepaway soccer task. The color at each
point represents the set of available receivers for a pass from that
point. In order to perform well in this task, the player must be able
to model a fractured decision space.

Many challenging supervised learning tasks are frac-
tured, such as multiplexer and concentric spirals. Impor-
tantly for reinforcement learning, high-level decision tasks
where an agent must choose between several sub-behaviors
are often fractured as well. For example, Figure 1 shows
the possible actions that a hand-coded keepaway soccer
player considers when making a passing decision during a
game. The three teammates that could receive the pass
are indicated by darker circles; two opponents who might
intercept the pass are indicated by lighter circles with
crosses. The color at each point p represents the set of
possible teammates that could successfully receive a pass
if the player were at point p with the ball. As the player
moves around the field with the ball, the set of possible
teammates open for a pass changes frequently and dis-
continuously, giving this task a fractured quality. In addi-
tion, the nature of the fracture changes as both teammates
and opponents move. The fractured problem hypothesis
posits that neuroevolution performs poorly on such frac-
tured problems because the evolved neural networks have
difficulty representing such abrupt decision boundaries.

The first section of this paper introduces a quantitative
definition of fracture built on the mathematical concept of
function variation. Next, related work on fracture in ma-
chine learning is reviewed and two modified learning algo-
rithms designed to solve fractured problems are proposed.
These algorithms are empirically compared to a state-of-
the-art constructive neuroevolution method called NEAT
on five different fractured problems. The results confirm
the fractured domain hypothesis, showing that standard
neuroevolution techniques have difficulty performing well
in fractured domains. The modified neuroevolution al-
gorithms, however, perform much better, suggesting that
neuroevolution can scale to high-level decision tasks as
well.

2. Fractured Problems

What makes problems like multiplexer, concentric spi-
rals, and high-level decision tasks in general different from
those on which other neuroevolution algorithms have done
so well? This section proposes the hypothesis that these
problems share a common property: They possess a “frac-
tured” decision space, loosely defined as a space where

adjacent states require radically different actions In this
section, the concept of function variation is introduced
as a way to more precisely quantify this idea. Section 5
will then describe several experiments to demonstrate that
the difficulty neuroevolution has with fractured problems
stems from an inability to generate networks with an ap-
propriate amount of variation.

2.1. Measuring Complexity

For many problems (such as the typical control or re-
inforcement learning benchmarks), the correct action for
one state is similar to the correct action for neighboring
states, varying smoothly and infrequently. In contrast, for
a fractured problem, the correct action changes repeatedly
and discontinuously as the agent moves from state to state.
For example, in Figure 1, the left half of the state space
in particular is quite fractured.

Clearly, the choice of state variables could change many
aspects of a given problem, including the degree to which
it is fractured. For example, solving the concentric spi-
rals problem becomes much easier if the state space is
represented in polar coordinates instead of cartesian co-
ordinates. For this work, a problem is considered a “black
box” that already has associated states and actions. In
other words, it is assumed that the definition of a problem
includes a choice of inputs and outputs, and the goal of
the agent is to learn given those constraints. Any defini-
tion of fracture then applies to the entire definition of the
problem.

This definition of fracture, while intuitive, is not very
precise. More formal definitions of complexity have been
proposed for learning problems, including Minimum De-
scription Length (Barron et al., 1998; Chaitin, 1975), Kol-
mogorov complexity (Kolmogorov, 1965; Li and Vitanyi,
1993), and Vapnik-Chervonenkis (VC) dimension (Vapnik
and Chervonenkis, 1971). Unfortunately, these metrics are
often more suited to a theoretical analysis than they are
to practical usage. For example, Kolmogorov complexity
is a measure of complexity that depends on the compu-
tational resources required to specify an object – which
sounds promising for measuring problem fracture – but
it has been shown to be practically uncomputable (Ma-
ciejowskia, 1979).

An alternative way to measure fracture is to consider
the degree to which solutions to a problem are fractured.
VC dimension at first appears promising for this approach,
since it describes the ability of a possible solution to “shat-
ter” a set of randomly-labeled training examples into dis-
tinct groups. However, VC dimension is a general method

2

for measuring the capabilities of a model, and does not
apply to a specific problem. Furthermore, analyzing VC
dimension of neural networks is difficult; while results exist
for single-layer networks, it is much more difficult to ana-
lyze the networks with arbitrary (and possibly recurrent)
connectivity that constructive neuroevolution algorithms
generate (Mitchell, 1997).

A third possibility is described by Ho and Basu (Ho
and Basu, 2002), who surveyed a variety of complexity
metrics for supervised classification problems and found a
significant difference between random classification prob-
lems and those drawn from real-world datasets. In terms
of measuring problem fracture, the most promising of these
metrics is a gauge of the linearity of the decision bound-
ary between two classes of data. However, these metrics
are tied to a two-class supervised learning setting, which
makes them less useful in a reinforcement learning setting,
where the goal can involve learning a continuous mapping
from states to actions.

Therefore, in order to measure fracture, a more direct
approach is developed in this paper: measuring how much
the actions of optimal policies for the problem change from
state to state. In a fractured problem, good policies re-
peatedly yield different actions as the agent moves from
state to state. Compared to the alternatives described
above, this definition of problem fracture is easy to com-
pute, because it turns out to be surprisingly simple to mea-
sure how much policies change over a known and bounded
area.

Of course, this definition of problem fracture explic-
itly ties fracture to optimal policies. Intuitively, a prob-
lem may be considered difficult if the optimal policy has
this fractured property. However, some fractured problems
might have relatively unfractured policies that are quite
close to optimal. Any learning algorithm could perform
quite well on these problems, regardless of the amount of
fracture in optimal policies. One simplifying assumption
made in this paper, therefore, is that there is a relatively
smooth continuum in both score and fracture between poor
policies and optimal policies. Several experiments pre-
sented below suggest that this assumption is likely to be
true in many realistic problems.

Estimating problem fracture depends on measuring how
the actions of optimal policies change from state to state.
The next section describes how this measurement can be
made by treating policies as functions and measuring how
much the functions change using the concept of total vari-
ation.

2.2. Measuring Variation of a Function

The total variation of a function (Leonov, 1998; Vi-
tushkin, 1955) measures how much a function (or pol-
icy) changes over a certain interval. This section pro-
vides a technical description of multidimensional variation
(adapted from (Leonov, 1998)) followed by several illus-
trations of how variation can be computed.

Consider an N -dimensional rectangular parallelepiped
B = Bb

a = Ba1...aN

b1...bN
= {x ∈ ℜN : ai ≤ xi ≤ bi, ai <

bi, i = 1, . . . , N} and a function over this parallelepiped,
z(x1, . . . , xN), whose variation is to be measured. From
(Leonov, 1998; Bochner, 1959; Kamke, 1956; Shilov and
Gurevich, 1967), the N -dimensional quasivolume σN for z

over a sub-parallelepiped Bβ
α of B is defined as

σN (Bβ
α) =

1
∑

v1=0

. . .

1
∑

vN=0

(−1)v1+...+vN z[x1, . . . , xN], (1)

where xc is

xc = βc + vc(αc − βc).

Now consider a partitioning of B into a set of sub-
parallelepipeds Π = {Bj}

n
j=1 where none of the individual

sub-parallelepipeds Bj intersect, and B1 + . . . + Bn = B.
Let P be the set of all such partitions for all n. The N -
dimensional variation (or Vitali variation) of the function
z in the parallelepiped B is

VN (z,B) = sup
Π

n
∑

j=1

|σN (Bj)| : Π = {Bj}
n
j=1 ∈ P

(2)

Next, consider all of B’s m-dimensional coordinate faces
Bi1,...,im

for 1 ≤ m ≤ N − 1 that pass through the point
a ∈ B and are parallel to the axes xi1 , . . . , xim

where
1 ≤ i1 < . . . < im ≤ N . For convenience, mark all of
the m-dimensional faces of the form Bi1,...,im

by a number

r (1 ≤ r ≤
(

N
m

)

= Nm). Each such face will be denoted by

B
(m)
r .
Definition: The total variation of the function z in

the parallelepiped B is the number

V (z,B) =
N−1
∑

m=1

{

Nm
∑

r=1

Vm(z,B(m)
r)

}

+ VN (z,B) (3)

Several illustrative examples of this variation calcula-
tion follow, starting with the one-dimensional case. The
variation of a 1-d function z(x1) over the range a1 ≤ x1 ≤
b1 is simply the sum of the absolute value of the differences
between adjacent values of z between a1 and b1. When
N = 1, the variation of z over the interval B, V (z,B),
effectively becomes V1(z,B), which is computed by the
summation in Equation 2. For example, Figure 2 shows
a function z that has been divided into five sections in-
side the interval [a1, b1]. The differences between adjacent
points (each computed by Equation 1 and shown as dotted
lines in Figure 2) would be added together to determine
the variation for z on the parallelepiped B = Bb1

a1
, which

is just the 1-d interval [a1, b1].
In Figure 2, the 1-d parallelepiped B (or the interval

[a1, b1]) is divided into five sections by six points. Clearly,

3

1a 1b
x 1

1
z(x)

Figure 2: An example of how the variation of a 1-d function is com-
puted. The absolute value of the differences between adjacent points
on the function (shown as dotted lines) over the interval [a1, b1] are
summed together to produce an estimate of the total variation.

a different selection of points could produce a different es-
timate of variation. For example, if the variation calcula-
tion only used the first and last points in the interval, then
the middle two “bumps” of the function would be skipped
over, producing a lower variation. The choice of an appro-
priate set of points (referred to above as a partition Π of
B) is dealt with in Equation 2. To compute the VN (z,B),
a partition Π of B should be chosen such that it maximizes
VN (z,B). It is easy to see that as the discretization of the
partition becomes increasingly fine, the variation will not
decrease. In fact, when the discretization of the partition
becomes infinitely small, the calculation of VN (z,B) in the
1-d case turns into

V1(z,Bb1
a1

) =

∫ b1

a1

|z(x)|dx. (4)

Infinitely-fine partitionings of B are fine for mathe-
maticians, but practically speaking, computational resources
will limit the degree to which it is possible to discretize B.
For the work described here, the finest possible discretiza-
tion Π̂ of B is chosen given the limited computational re-
sources available. This means that only one partition Π̂ is
considered, and the supremum in Equation 2 is effectively
ignored.

The computation of multidimensional variation is more
involved than the 1-d case. To compute the variation for
a 2-d function z(x1, x2) on the parallelepiped B = Bb1,b2

a1,a2
,

three different terms are computed and summed together.
Each of these terms is meant to measure the variation in
a specific direction on B, and corresponds to a “face” of
B (shown in Figure 3):

• B
(1)
1 : the first 1-d face of B, variation of z as x1

changes;

• B
(1)
2 : the second 1-d face of B, variation of z as x2

changes; and

• B: the only 2-d face of B is B itself, variation of z

as both x1 and x2 change.

To compute the variations for the two 1-d faces of B,

V1(z,B
(1)
1) and V1(z,B

(1)
2), a calculation very similar to

1
a)
2

(a

x
1

x
2

Figure 3: The three faces (two 1-d faces and one 2-d face) of a 2-
d parallelepiped that pass through the point (a1, a2). Measuring
variation on each face is meant to capture how the function changes
in different directions.

the one described above can be used: the variation is
simply the sum of the absolute values of the differences
between adjacent values of the function. Each difference
between adjacent points α and β is σN (Bβ

α), represented
by Equation 1. The 2-d version of Equation 1 involves
measuring four points, instead of two. For example, when
N = 2, the quasivolumes of the function z over the paral-
lelepipeds Bβ1,β2

α1,α2
, Bβ1

α1
, and Bβ2

α2
are

σ2(B
β1,β2

α1,α2
) = z(β1, β2) − z(β1, α2) − z(α1, β2) + z(α1, α2),

σ1(B
β1

α1
) = z(β1, a2) − z(α1, a2),

σ1(B
β2

α2
) = z(a1, β2) − z(a1, α2).

It should be noted that there are actually four 1-d faces
of the 2-d parallelepiped B, but only two of the faces are
used in this variation calculation, i.e. those that are on
the “lower” edge of B (denoted by those faces that pass
through the point a ∈ B).

The next section continues this discussion of function
variation with a description of how total variation can be
measured in the context of neuroevolution.

2.3. Measuring Variation of a Neural Network

A neural network produced by a neuroevolution algo-
rithm can be thought of as a function that maps states to
actions. Because the variation calculation does not care
what form the function takes – it only requires input and
output pairs from the function – it is straightforward to
calculate the variation of a neural network.

The first step is to select a parallelepiped P of the
input space over which variation will be measured. In
a reinforcement learning setting, it is frequently the case
that the inputs have already been truncated or scaled to
a certain range, effectively defining P . For example, an

4

agent controlling a racecar might receive an angular input
describing the location of the nearest opponent. This input
can be scaled into the range [−π, π], defining P for that
dimension. Different dimensions of P can have different
bounds.

The next step is to quantize P into some partition Π.
As described above, the ideal partition Πoptimal contains
infinitely small slices of P . However, a finite amount of
computation limits how finely P can be discretized. Prac-
tically speaking, P is quantized into Π̂, which is the finest
uniform discretization of P that is possible given the com-
putational resources that are available.

The definition of P and Π̂ determine a finite set of
points from the input space. The output of the neural
network is then measured and stored for each of these in-
put points. After measuring these values, a series of sum-
mations over each possible combination of dimensions of
the input space (described by Equations 1, 2, and 3) deter-
mines the variation of the network. For networks with mul-
tiple outputs, this work assumes that the total variation
of the network is the average of the multiple independent
variation calculations for each output. This assumption
has proven effective for the experiments below; however
an interesting avenue for future work involves closer ex-
amination of this assumption.

It should be noted that this definition of variation as-
sumes that the network represents a function. In some
applications of neuroevolution, evolved networks are not
functions in the strictest sense; they map states to ac-
tions, but the experimenter does not reset node activation
levels between successive states. Evolved networks used in
this manner are less similar to state-action functions and
more akin to dynamical systems with internal state over
time that happen to pick actions. With such networks, it
is not meaningful to simply query a network for its cho-
sen action given a single state. Instead, the network must
be evaluated over a set of states, starting from a specific
initial state, while maintaining activation levels of individ-
ual nodes in the network across state transitions. This
approach can be used to great advantage in non-Markov
problems. For example, in the non-Markov pole-balancing
task, an evolved recurrent network was found to use such
recurrent connections to compute the derivative of the pole
angle (Stanley and Miikkulainen, 2002). This information
about the direction of pole movement proved useful in solv-
ing the task quickly with a small network (Figure 4).

It is difficult to measure the variation of a network that
is not as a function. Instead of simply querying the net-
work for its output at a given state, the entire succession
of states that lead up to the state in question must be
queried in order – and it is still not clear that such an ap-
proach would yield appropriate values for a variation com-
putation. Because of this restriction, this paper focuses
on learning state-action mappings for Markov problems.
Fortunately, there are many interesting problems that are
Markov or that can be made Markov with additional state
variables.

Out

Cart Long Pole Short Pole
Bias

Pos

Figure 4: A surprisingly small solution that was evolved by the
NEAT neuroevolution to solve the non-Markov double pole balancing
problem. NEAT was able to take advantage of recurrent connections
to generate a parsimonious solution to this problem.

Even in Markovian tasks, the recurrent topologies that
constructive neuroevolution algorithms produce may be
useful. The activation process for these networks starts
from a uniform un-activated state where only the input
nodes have activation values. Values from the input nodes
are propagated through the network until all output nodes
have received some input value. The network is then ac-
tivated κ times, where each activation allows values from
the input nodes to propagate one level deeper into the net-
work. The input nodes maintain their output over all κ

activations. This repeated activation scheme allows recur-
rent connections and values delayed during propagation to
affect the computation of an action for a state.

Using this procedure, it is possible to evaluate the vari-
ation of any neural network produced by neuroevolution
in Markovian tasks. This calculation provides a quantita-
tive description of the amount of fracture that a learning
algorithm is capable of modeling for a given problem. By
measuring the variation of good policies, this metric can
also be used to estimate the difficulty of a given problem.

The intuitive concept that fracture makes a problem
difficult is familiar to the machine learning community.
The next section describes previous approaches to solving
fractured problems. These insights are then utilized in
Section 4 to develop two new neuroevolution methods for
such problems.

3. Related Work

In order to perform well in a fractured problem, a learn-
ing algorithm must be able to generate representations
that capture local features of the problem. For example,
after the algorithm experiences a new state in the envi-
ronment, it needs to associate a specific action for that
state. If the problem is fractured, it may not be useful
to generalize from the actions of nearby states. Further-
more, any large-scale changes the algorithm may attempt
to make could disrupt the individual actions tailored for
other states. Therefore, the algorithm must be able to
make local changes to isolate that particular state from its
neighbors and associate the correct action with it. This
concept of localized change – as opposed to large-scale,
global change – has also appeared before in many parts

5

����
����
����
����
����

����
����
����
����
����

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

(bx,by)(ax,ay)

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�����
�����
�����
�����

�����
�����
�����
�����

+
−

+
−

+ −

−
+

−

+

+
−

(a) (b)

Figure 5: A comparison of how (a) an RBF network and (b) a
sigmoid-node network (b) might isolate two specific areas of a 2-d
input space. The local functionality of the RBF network can identify
comparable spaces using far fewer parameters.

of the machine learning community, and will serve as the
starting point for the proposed methods as well.

3.1. Supervised Learning

One promising method for learning local features is
radial basis function (RBF) networks (Gutmann, 2001;
Moody and Darken, 1989; Park and Sandberg, 1991; Platt,
1991). RBF networks originated in the supervised learning
community, and are usually described as neural networks
with a single hidden layer of basis-function nodes. Each
of these nodes computes a function (usually a Gaussian)
of the inputs, and the output of the network is a linear
combination of all of the basis nodes. RBF networks are
usually trained in two stages: The locations and sizes of
the basis functions are determined, and then the parame-
ters that combine the basis functions are computed. Fig-
ure 5 shows a simple example of how an RBF network
can isolate local areas of the input space with fewer muta-
ble parameters than a sigmoid-node neural network. For
an overview of RBF networks in the supervised learning
literature, see (Ghosh and Nag, 2001).

The local processing in RBF networks has proved to be
useful in many problems, frequently outperforming other
function approximation techniques (Lawrence et al., 1996;
Wedge et al., 2005). Such local approaches have been
particularly useful on supervised learning problems that
might be considered fractured, like the concentric spirals
classification task (Chaiyaratana and Zalzala, 1998). This
success suggests that an RBF approach could be useful
for fractured reinforcement learning problems as well. Of
course, supervised RBF algorithms take advantage of la-
beled training data when deciding how to build and tune
RBF nodes, and such data is not available in reinforcement
learning. Furthermore, most of the network architectures
proposed in supervised RBF algorithms are fixed before
learning or are constrained to be highly regular (e.g. a sin-
gle hidden layer of RBF nodes). This constraint could limit

the ability of the learning algorithms to find an appropri-
ate representation for the problem at hand. Moreover, it
may be possible to evolve the RBF networks and thereby
construct complex networks for fractured problems.

Another interesting idea for generating locality in the
supervised learning community is deep learning (Hinton
and Salakhutdinov, 2006). The idea is that neural net-
works with a large number of nodes between input and
output are able to form progressively high-level and ab-
stract representations of input features and could generate
fractured decision boundaries as well (Bengio, 2007; LeCun
and Bengio, 2007). However, it is difficult to train deep
networks with standard techniques like backpropagation
because the error signal diminishes quickly over the many
connections. In order to solve this problem, deep learn-
ing networks are pre-trained using unsupervised methods
to cluster input patterns into distinct groups. This pre-
training sets the weights of the network close to good val-
ues, which then allows backpropagation to run successfully.

The arguments for deep learning are complementary
to those for constructive neuroevolution; both approaches
result in complicated network structures that can hold so-
phisticated representations of input data, as opposed to
single-layer architectures. The two approaches diverge in
that the networks are not constructed in deep learning
and that the second stage of deep learning relies on super-
vised feedback. However, it would be possible to incorpo-
rate deep learning’s initialization of network weights into
a neuroevolution algorithm, and thereby bias the search
towards local solutions.

3.2. Reinforcement Learning

In contrast to the approaches described above, rein-
forcement learning algorithms are designed to solve prob-
lems where labeled training data is unavailable. The idea
of local processing has also proved to be effective for value-
function reinforcement learning algorithms. Such methods
frequently benefit from approximating value functions us-
ing highly local function approximators like tables, CMACs,
or RBF networks (Kretchmar and Anderson, 1997; Li and
Duckett, 2005; Li et al., 2006; Peterson and Sun, 1998;
Stone et al., 2006; Sutton, 1996; Taylor et al., 2006). For
example, Sutton used a CMAC (a function approximator
consisting of multiple overlapping receptive fields, known
for its ability to generalize locally) successfully on a set of
problems that had previously proved difficult to solve using
global function approximators (Sutton, 1996). Asada et
al. improved the learning performance of a value-function
algorithm by grouping local patches of the state space to-
gether that shared the same action (Asada et al., 1995).
More recently, Stone et al. found that in the benchmark
keepaway soccer problem, an RBF-based value-function
approximator significantly outperformed a normal neural
network value-function approximator (Stone et al., 2006).
Such results suggest that local behavioral adjustments could
be useful for policy-search reinforcement learning algo-
rithms – like neuroevolution – as well.

6

3.3. Evolutionary Computation

Evolutionary approaches to learning using the cascade
correlation architecture have proven to be highly effec-
tive on certain benchmark problems like concentric spi-
rals (Potter and Jong, 2000; Tulai and Oppacher, 2002).
Although the only concept that these approaches borrow
from cascade correlation is the network architecture (i.e.
the process of training hidden nodes to correlate with pre-
existing error is not used), this topology restriction alone
results in good performance on the concentric spirals prob-
lem. It is possible that this is a good approach to fractured
problems in general.

Learning classifier systems (LCS) are another family
of algorithms that use local processing to solve reinforce-
ment learning problems. LCS approximate functions with
a population of classifiers, each of which is responsible for
a small part of the input space. A competitive contrib-
utory mechanism encourages classifiers to cover as much
space as possible, removing redundant classifiers and in-
creasing generalization. A number of LCS algorithms have
been developed that vary both in how the classifiers cover
the input space and in how they approximate local func-
tions (Butz, 2005; Butz and Herbort, 2008; Wilson, 2008,
2002; Lanzi et al., 2006, 2005; Bull and O’Hara, 2002;
Howard et al., 2008). Of particular interest are approaches
like those used in Neural XCSF, which use a fixed-topology
or variable-size single-layer neural network to define both
conditions and actions of a simple LCS. Although early
work examining the role of constructive neural networks
in LCS has been promising (Howard et al., 2008), the full
potential of a combination of LCS and constructive neu-
roevolution has not yet been explored.

Third, several hybrid algorithms have been proposed
that use various flavors of genetic algorithms to reduce the
amount of required human expertise in supervised learn-
ing, usually by automatically determining the number,
size, and location of basis functions (Angeline, 1997; Billings
and Zheng, 1995; Chaiyaratana and Zalzala, 1998; Gonza-
lez et al., 2003; Guillen et al., 2007, 2006; Guo et al., 2003;
Maillard and Gueriot, 1997; Sarimveis et al., 2004; White-
head and Choate, 1996). These approaches still rely on
supervised training data, at least in part, and typically
are also constrained to produce single-layer network archi-
tectures.

For instance, the Global-Local ANN (GL-ANN) archi-
tecture proposed by Wedge et al. first trains a single-
layer sigmoid-node network, then constructively adds RBF
nodes, and finally adjusts all parameters of the network
(Wedge et al., 2006). Similarly, the Structural Modu-
lar Neural Networks approach uses a genetic algorithm to
evolve single-layer networks with both sigmoid and RBF
nodes (Jiang et al., 2003). These approaches are intriguing
in that they combine global approximation with sigmoid
nodes with the local adjustments of RBF nodes. The re-
sulting network architectures are still quite regular when
compared to the unbiased architectures that constructive
neuroevolution algorithms can discover.

A fourth area of of related work is genetic program-
ming (GP), where Rosca developed methods to allow GP
to decompose problems into useful hierarchies and abstrac-
tions (Rosca, 1997). To the extent that the fracture for a
given problem is organized in a hierarchical manner, the
adaptive representations could be used to bias search to-
wards small, repeated motifs. Of course, the notion of
reusable modules of code is easier to define for genetic
programs than it is for neural networks. In order to take
advantage of this work in GP, it is necessary to understand
how modular neural networks can be developed, but a cas-
caded structure is a possible start.

The concept of locality appears in many fields other
than machine learning. One particularly interesting area is
the study of human cognition and cognitive modeling. Al-
though not the primary focus of this work, it is fascinating
and potentially useful to consider the role of locality in hu-
man cognition. In particular, several papers in this special
issue show that the ability to make local changes to cog-
nitive processes is biologically plausible, whether viewed
as attractors in the prefrontal cortex (Levine, 2009), di-
vision of general knowledge into discrete chunks (Kozma
and Freeman, 2009), or the representation of language in
the brain using different states (Perlovsky, 2009).

The next section describes how the ideas above might
be incorporated into current neuroevolution algorithms.
The approach is to create modified versions of a state-
of-the-art neuroevolution algorithm, as will be described
next.

4. Utilizing Locality in Neuroevolution

One of the most promising neuroevolution algorithms
to date is the Neuroevolution of Augmenting Topologies
(NEAT) algorithm (Stanley and Miikkulainen, 2002, 2004a).
This section reviews the NEAT algorithm and describes
two modifications to NEAT designed to improve its per-
formance in fractured problems by biasing or constraining
the search for network topologies. In the following sec-
tion, these modifications will be compared empirically to
NEAT and a linear baseline algorithm on several fractured
problems.

4.1. The NEAT Neuroevolution Method

NEAT is designed to solve difficult reinforcement learn-
ing problems by automatically evolving network topology
to fit the complexity of the problem. NEAT combines
the usual search for the appropriate network weights with
complexification of the network structure. It starts with
simple networks and expands the search space only when
beneficial, allowing it to find significantly more complex
controllers than fixed-topology evolution. These proper-
ties make NEAT an attractive method for evolving neural
networks in complex tasks.

NEAT is based on three key ideas. First, evolving net-
work structure requires a flexible genetic encoding. Each

7

genome in NEAT includes a list of connection genes, each
of which refers to two node genes being connected. Each
connection gene specifies the in-node, the out-node, the
weight of the connection, whether or not the connection
gene is expressed (an enable bit), and an innovation num-
ber, which allows finding corresponding genes during crossover.
Mutation can change both connection weights and network
structures. Connection weights are mutated in a manner
similar to any NE system. Structural mutations, which al-
low complexity to increase, either add a new connection or
a new node to the network. Through mutation, genomes
of varying sizes are created, sometimes with completely
different connections specified at the same positions.

Each unique gene in the population is assigned a unique
innovation number, and the numbers are inherited dur-
ing crossover. Innovation numbers allow NEAT to do
crossover without the need for expensive topological analy-
sis. Genomes of different organizations and sizes stay com-
patible throughout evolution, and the problem of matching
different topologies (Radcliffe, 1993) is essentially avoided.

Second, NEAT speciates the population so that indi-
viduals compete primarily within their own niches instead
of with the population at large. This way, topological in-
novations are protected and have time to optimize their
structure before they have to compete with other niches in
the population. The reproduction mechanism for NEAT is
explicit fitness sharing (Goldberg and Richardson, 1987),
where organisms in the same species must share the fitness
of their niche, preventing any one species from taking over
the population.

Third, unlike other systems that evolve network topolo-
gies and weights (Gruau et al., 1996; Yao, 1999), NEAT be-
gins with a uniform population of simple networks with no
hidden nodes. New structure is introduced incrementally
as structural mutations occur, and the only structures that
survive are those that are found to be useful through fit-
ness evaluations. In this manner, NEAT searches through
a minimal number of weight dimensions and finds the ap-
propriate level of complexity for the problem.

These three ideas allow NEAT to find surprisingly small
solutions to a variety of reinforcement learning problems.
However, NEAT’s ability to solve fractured problems is
limited. This section continues with descriptions of two
modified versions of NEAT – inspired by the related liter-
ature – that are designed to perform better on fractured
problems. Both of these approaches are essentially exten-
sions to the standard NEAT algorithm that are designed
to improve performance on fractured problems by either
biasing or constraining the types of network structure that
NEAT explores towards more local representations.

4.2. The RBF-NEAT Algorithm

The first algorithm, called RBF-NEAT, extends NEAT
by introducing a new topological mutation that adds a ra-
dial basis function node to the network. Like NEAT, the
algorithm starts with a minimal topology, in this case con-
sisting of a single layer of weights connecting inputs to out-

Normal Node

RBF Node

Figure 6: An example of the network topology evolved by the RBF-
NEAT algorithm. Radial basis function nodes, initially connected to
inputs and outputs, are provided as an additional mutation to the
algorithm. These nodes allow evolution to utilize local structures
where they may be appropriate, e.g. in fractured problems.

Frozen Connection

Mutable Connection

Figure 7: An example of a network constructed by Cascade-NEAT.
Only connections associated with the most recently added hidden
node are evolved. Compared to NEAT and RBF-NEAT, Cascade-
NEAT constructs networks with a regular topology, where succes-
sively more refined decision boundaries are produced at each cas-
caded level.

puts, and no hidden nodes. In addition to the usual “add
link” and “add node” mutations in NEAT, with probabil-
ity ǫ = 0.05 an “add RBF node” mutation occurs (Fig-
ure 6). Each RBF node is activated by an axis-parallel
Gaussian with variable center and size. All free parame-
ters of the network, including RBF node parameters and
link weights, are determined by a genetic algorithm similar
to the one in NEAT (Stanley and Miikkulainen, 2002).

RBF-NEAT is designed to evaluate whether local pro-
cessing nodes can be useful in policy-search reinforcement
learning problems. The addition of a RBF node mutation
provides a bias towards local-processing structures, but the
normal NEAT mutation operators still allow the algorithm
to explore the space of arbitrary network topologies.

4.3. The Cascade-NEAT Algorithm

The search for network topologies can also be biased
towards fractured solutions by constraining the search to
cascaded structures. The cascade architecture (shown in
Figure 7) is a regular form of network architecture where
each hidden node is connected to inputs, outputs, and all
hidden nodes to its left.

Like NEAT, Cascade-NEAT starts from a minimal net-
work consisting of a single layer of connections from inputs
to outputs. Instead of the normal NEAT mutations of
“add node” and “add connection”, Cascade-NEAT uses an
“add cascade node” mutation: With probability ǫ = 0.05,
a hidden node is added to the network. This hidden node
has inputs from all inputs and existing hidden nodes in

8

the network, and is connected to all outputs. In addition,
whenever a hidden node is added, all pre-existing network
structure is frozen in place. Thus, at any given time, the
only mutable parameters of the network are the connec-
tions that involve the most recently-added hidden node.

Cascade-NEAT adds a considerable constraint to the
search for appropriate network topologies, given the wide
variety of network structures that the normal NEAT algo-
rithm examines. The next section examines the effect of
this constraint – and the effect of the bias in RBF-NEAT
– on a series of fractured problems.

5. Empirical Analysis

In order to test the hypothesis that biasing and con-
straining topology search to local solutions is beneficial in
fractured problems, RBF-NEAT and Cascade-NEAT were
compared with the standard NEAT algorithm on several
different benchmark problems. Also included was a base-
line algorithm consisting of NEAT without any structural
mutation operators, i.e. a method that evolves a single
layer of weights with no hidden nodes. This linear combi-
nation of input features is the same initial network topol-
ogy that NEAT starts with, and is included to provide a
sense of scale to the following graphs.

5.1. Generating Maximal Variation

The first experiment was designed to evaluate how much
variation these different learning algorithms can produce
in an unrestricted setting. A problem was created where
the only goal was to produce a “solution” that contained
as much variation as possible.

Three versions of this problem were created, each with
a different number (one, two or three) of inputs. The in-
put space for each problem was uniformly divided into
roughly 200 points. An evaluation consisted of evaluating
a network on a each of these points and noting the value
that was produced from the single output. The score for
a network was the total variation of the discretized func-
tion that the network represented, calculated in a manner
described in Section 2.3.

The results from this experiment are shown in Figure 8.
Cascade-NEAT is able to produce significantly higher vari-
ation than other algorithms. Interestingly RBF-NEAT
produces relatively high variation for a single input but less
as the number of inputs increases, suggesting that RBF-
NEAT is mainly effective in low-dimensional settings.

5.2. Function Approximation

The general function approximation problem requires
the learning algorithm to evolve neural networks to ap-
proximate fixed 1-d functions. Each network is evaluated
on a series of numbers representing the input to the func-
tion. The network state is cleared before each new input is
presented, then the input is fed into the network for κ = 10
activations. The squared error between the output of the

 NEAT

 Cascade−NEAT

 RBF−NEAT

 Linear

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1−Input 2−Inputs 3−Inputs

V
ar

ia
ti

o
n

V
ar

ia
ti

o
n

1−Input 2−Inputs 3−Inputs

Figure 8: Performance of four learning algorithms on a problem
where the goal is to produce a solution with as much variation as
possible. When the dimensionality is small, RBF-NEAT does well,
but in general, Cascade-NEAT is able to produce the highest amount
of variation.

(a) (b) (c) (d) (e) (f)

Figure 9: Six versions of a sine wave function approximation problem.
Sine waves with higher frequency have higher variation, making them
harder to approximate.

network and the target function is recorded for a series of
τ = 100 input points. After the network has been evalu-
ated on all τ input points for a function, the mean squared
error is inverted and used as a fitness signal. Function ap-
proximation is a good test problem because it is easy to
visualize, and because it is straightforward to calculate the
variation of the optimal solution.

The functions to be approximated follow the form sin(αx).
The six different versions of this sine function (shown in
Figure 9) have increasing variation, corresponding to larger
values of α.

Figure 10 shows the performance of NEAT, Cascade-
NEAT, RBF-NEAT, and the linear baseline algorithm (each
averaged over 100 runs) on each of these six function ap-
proximation problems. The horizontal position of each
pair of points indicates the variation of the optimal solu-
tion for that problem.

As variation increases, the score for NEAT drops, con-
firming the hypothesis that variation measures how dif-
ficult the problem is for NEAT. Although all algorithms
perform similarly in the problem with the least amount
of variation, a marked difference appears as variation in-
creases. The Cascade-NEAT and RBF-NEAT algorithms
generate scores that are nearly twice as good as the nor-
mal NEAT algorithm (using the linear version of NEAT as
a baseline), supporting the hypothesis that incorporating
a locality bias into network construction makes learning
high-variation problems easier.

9

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 2 4 6 8 10 12 14

S
c
o
re

Variation

NEAT
Cascade-NEAT

Linear
RBF-NEAT

Variation

S
co

re

Figure 10: Results for the sine wave function approximation problem.
Performance drops as the amount of variation required to solve the
problem increases, but RBF-NEAT and Cascade-NEAT outperform
the standard NEAT algorithm significantly (p > 0.95).

(a) (b) (c) (d) (e) (f) (g)

Figure 11: Seven versions of the concentric spirals problem that vary
in the degree to which the two spirals are intertwined. The colored
dots indicate the discretization used to generate data from each spi-
ral. As the spirals become increasingly intertwined, the variation of
the optimal policy increases.

5.3. Concentric Spirals

Concentric spirals is a classic supervised learning bench-
mark task often used to evaluate the Cascade Correlation
architecture. Originally proposed by Wieland (Potter and
Jong, 2000), the problem consists of correctly identifying
points from two intertwined spirals. Solving this problem
involves repeatedly tagging nearby regions of the input
space with different labels, which makes the decision task
fractured.

In order to examine the effect of fracture on NEAT,
seven semi-supervised versions of increasing difficulty of
the concentric spirals problem of were created (Figure 11).
As the spirals become increasingly intertwined, the varia-
tion of the optimal policy increases. Note that this version
of the problem differs from the supervised version, where
a learner receives feedback about individual points. This
modified version of concentric spirals – like all the domains
examined in this paper – is cast as a reinforcement learn-
ing problem, which means the learning agent receives dra-
matically less information about its performance. In this
problem, the only feedback an agent receives is the num-
ber of points properly classified. This makes the task of
correctly identifying points on the two spirals much more
difficult.

Figure 12 shows the score for the four learning algo-

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 10 20 30 40 50 60 70 80 90

S
c
o
re

Variation

NEAT
Cascade-NEAT

Linear
RBF-NEAT

S
co

re

Variation

Figure 12: Average score for the four learning algorithms on seven
versions of the concentric spirals problem. As the variation of the
problem increases, performance falls, but Cascade-NEAT and RBF-
NEAT are able to significantly outperform the standard NEAT al-
gorithm (p > 0.95).

Input NEAT Cascade Linear RBF

NEAT NEAT

Figure 13: Output of the best solutions found by each learning algo-
rithm for two versions of the challenging semi-supervised concentric
spirals problem. Cascade-NEAT and RBF-NEAT do a much better
job than NEAT at generating the subtle variations required by the
more complicated version of the problem.

rithms (NEAT, Cascade-NEAT, RBF-NEAT, and the lin-
ear baseline algorithm) averaged over 25 runs. Again,
scores decrease as variation increases, showing that the
variation of each problem correlates closely with problem
difficulty. However, Cascade-NEAT and RBF-NEAT are
able to offer significant increases in performance over that
of the standard NEAT algorithm.

Figure 13 shows the output of the best evolved solu-
tions from each learning algorithm for two of these prob-
lems. NEAT is able to find an approximate solution for
the simpler problem, but is unable to discover a network
that can represent the variation required to do well on
the more complex problem. The solutions that Cascade-
NEAT and RBF-NEAT generate, while not perfect, are
able to encompass more variation than those discovered
by NEAT.

5.4. Multiplexer

The multiplexer is a challenging benchmark problem
from the evolutionary computation community. Perform-

10

Addr
1

Select

Data

Data

1

2
Out

Data
1

Addr
1

Addr
2

Select
Data

2

Data
3

Data
4

Out

Addr
1

Addr
2

Data
1

Data
2

Data
3

Data
4

Select

Data
5

Addr
3

Out

Addr
1

Addr
2

Data
2

Data
3

Data
4

Data
5

Data
1

Select

Addr
3

Data
6

Out

(a) (b) (c) (d)

Figure 14: Four versions of the multiplexer problem, where the goal
is to use address bits to select a particular data bit. For (c) and (d),
not all of the values for the third address bit were used. The amount
of variation required to solve the multiplexer problem increases as
the number of total inputs (address bits plus data bits) increases,
making the problem harder.

ing well on this problem requires an agent to learn to split
the input into address and data fields, then decode the
address and use it to select a specific piece of data. For
example, the agent might receive as input six bits of in-
formation, where the first two bits denote an address and
the remaining four bits represent the data field. The two
address bits indicate which one of the four data bits should
be set as output. The binary representation and the divi-
sion of the input into two separate logical groups suggests
intuitively that the multiplexer problem is fractured.

Four experiments were performed with increasingly dif-
ficult versions of the problem, which are shown in Fig-
ure 14. These four problems differ in the size of the input,
ranging from three (one address bit and two data bits)
to nine (three address bits and six data bits). Note that
not all values for the third address bit are used for the
two largest versions of the problem. As the number of in-
puts increases, the variation of the optimal solution also
increases. This increase allows the impact of variation on
performance to be measured.

Each version of the multiplexer problem effectively de-
fines a binary function from the input bits to a single out-
put bit. During learning, every possible combination of
inputs (given the constraints on address and data bits)
was presented to each network in turn. As before, net-
work state was cleared between consecutive inputs. The
fitness for each network was the inverted mean squared
error over all inputs.

Figure 15 shows the performance of NEAT, Cascade-
NEAT, RBF-NEAT, and the linear baseline algorithm on
these multiplexer problems. As in previous sections, each
group of four vertical points represents one of the prob-
lems. While NEAT is able to perform well on the simplest
multiplexer, its performance falls off quickly as the re-
quired variation increases. Interestingly, RBF-NEAT does
not offer significant increases in performance over regular
NEAT for any other versions. However, Cascade-NEAT is
able to outperform all other algorithms significantly.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25

S
c
o
re

Variation

NEAT
Cascade-NEAT

Linear
RBF-NEAT

S
co

re

Variation

Figure 15: Performance of the four learning algorithms on four ver-
sions of the multiplexer problem. Cascade-NEAT is able to dramat-
ically improve performance over the other algorithms (p > 0.95).

Figure 16: A starting configuration of players for the 4-versus-2 keep-
away soccer problem. The four keepers (the darker players) attempt
to keep the ball (shown in white) away from the two takers (the
lighter players with crosses). Keepaway is a challenging high-level
strategy problem with continuous inputs and a fractured decision
space.

5.5. Keepaway Soccer

The final empirical comparison expands the benchmark
comparisons above to a high-level decision-making task.
The four learning algorithms described above were evalu-
ated on a version of the 4-versus-2 keepaway soccer prob-
lem (Whiteson et al., 2005; Stone et al., 2006). Keepaway
soccer is a challenging high-level decision task with con-
tinuous input. The goal is for the four keepers to prevent
the two takers from controlling the ball in a bounded area.
One feature that makes this particular version of keepaway
difficult is that the takers can move five times faster than
the keepers, which forces the keepers to develop a robust
passing strategy instead of merely running with the ball.
Figure 16 shows a typical initial state of a keepaway game.

The takers behave according to a fixed, hand-coded
algorithm that focuses on covering passing lanes and con-
verging on the ball. The four keepers are controlled by a
mix of hand-coded and evolved behaviors. When a game
starts, the keeper nearest the ball is made “responsible”
for the ball. If this responsible keeper is not close enough

11

 80

 85

 90

 95

 100

 105

NEAT Cascade−NEAT RBF−NEAT Linear−Baseline Hand−Coded

S
co

re

Hand−CodedRBF−NEATNEAT

Cascade−NEAT Linear

S
co

re

Figure 17: Comparison of the four learning algorithms and a hand-
coded solution in the keepaway soccer problem. While NEAT is
able to slightly improve on the hand-coded behavior, Cascade-NEAT
offers the best performance by a wide margin. Animations of the best
learned policies can be seen at nn.cs.utexas.edu/?fracture.

to the ball, it executes a pre-existing intercept behavior in
an effort to get control of the ball. The keepers not respon-
sible for the ball execute a pre-existing get-open behavior,
designed to put the keepers in a good position to receive
a pass.

However, When the responsible keeper has control of
the ball (defined by being within φ meters of the ball) it
must choose between executing a pre-existing hold behav-
ior or attempting a pass to one of its three teammates.
The goal of learning is to make the appropriate decision
given the state of the game at this point.

To make this decision, the network controlling the re-
sponsible keeper receives ten continuous inputs. The first
input describes the keeper’s distance from the center of
the field. The network also receives three inputs for each
teammate: the distance to that teammate, the angle be-
tween that teammate and the nearest taker, and the dis-
tance to that nearest taker. All angles and distances are
normalized to the range [0, 1]. The network has one out-
put for each possible action (hold, or pass to one of the
three teammates). The output with the highest activation
is interpreted as the keeper’s action.

If the responsible keeper chooses to pass, the keeper re-
ceiving the pass is designated the responsible keeper. After
initiating the pass, the original keeper begins executing the
get-open behavior.

Each network was evaluated from τ = 30 different
randomly-chosen initial configurations of takers and keep-
ers. In each configuration, the ball is initially placed near
one of the keepers. Each of the players executes the ap-
propriate hand-coded behavior, and the current network
is used to select an action when the keeper responsible for
the ball needs to choose between holding and passing. The
game is allowed to proceed until a timeout is reached, the
ball goes out of bounds, or a taker achieves control of the
ball (by getting within φ meters of it). The score for a sin-
gle game is the number of timesteps that the game takes.

 NEAT

 Cascade−NEAT

 RBF−NEAT

 Linear−Baseline

 Hand−Coded

 80

 100

 120

 140

 160

5−States 10−States 20−States 30−States

S
co

re
S

co
re

5−States

10−States

20−States

30−States

Figure 18: Measuring the effect of the number of starting states on
learning performance. As the number of starting states increases,
the relative performance gain provided by Cascade-NEAT increases.
This result suggests that the utility of Cascade-NEAT increases with
problem fracture, making it a good candidate for learning in high-
level decision-making tasks.

The overall score for the network is the sum of the scores
for all τ games.

Figure 17 shows a comparison of the four learning al-
gorithms (NEAT, Cascade-NEAT, RBF-NEAT, and the
linear baseline algorithm) as well as a hand-coded solution
for the keepaway soccer problem. NEAT was able to of-
fer moderate improvement over the hand-coded policy, but
Cascade-NEAT offers the highest performance by a wide
margin. Animations of the best learned and hand-coded
policies can be seen at nn.cs.utexas.edu/?fracture.

One method of varying the amount of fracture in the
keepaway domain is to change τ , the number of initial
states on which each network is evaluated. Reducing the
number of starting states should reduce variation, mak-
ing the problem easier to solve. Intuitively, this has the
effect of reducing the amount of area over which the net-
work must generalize, resulting in a simpler function that
the network must approximate. As the number of required
states decreases, it should become easier to solve the prob-
lem with a relatively simple mapping from states to ac-
tions. Figure 18 shows the effect of reducing the number
of starting states on the four learning algorithms.

In general, versions of the keepaway problem with fewer
starting states are easier to solve. However, as the num-
ber of starting states increases, the superior performance
of Cascade-NEAT becomes more pronounced. This result
supports the hypothesis that problems become increas-
ingly fractured as the scope of learning increases, and that
Cascade-NEAT is much more adept at solving these frac-
tured problems.

6. Discussion and Future Work

The experiments in this paper confirm the hypothe-
sis that NEAT has difficulty in solving fractured domains.

12

When the amount of variation required to solve a prob-
lem is small, NEAT does well. But as the required varia-
tion increases, NEAT’s performance falls off quickly. How-
ever, biasing and constraining network construction to-
wards local structure is found to dramatically improve
performance on highly-fractured problems. Both RBF-
NEAT and Cascade-NEAT offer improved performance on
all problems.

Interestingly, RBF-NEAT works best in low-dimensional
settings. This result is understandable – as the number of
inputs increases, the curse of dimensionality makes it in-
creasingly difficult to set all of the parameters correctly for
each basis function. This limitation suggests that a better
method of incorporating basis functions into a constructive
algorithm would be to situate those basis nodes on top of
the evolved network structure. The lower levels of such a
network can be thought of as transforming the input into
a high-level representation. The high-level representation
is likely to be of smaller dimensionality than the original
representation and basis nodes operating at this level may
be effective at selecting useful features.

A related avenue for future work involves the possi-
ble combination of RBF-NEAT and Cascade-NEAT. These
two algorithms show promise in different scenarios, and a
combination of the two could result in a better overall al-
gorithm.

In addition to the cascade architecture and basis func-
tions, there are other useful ideas from the machine learn-
ing community that could be applied to neuroevolution.
Chief among these possibilities is the potential for an ini-
tial unsupervised training period to initialize a large net-
work, similar to the initial step of training that happens
in deep learning. Using unsupervised learning to provide
a good starting point for the search process could have a
dramatic effect on learning performance.

Finally, it would be useful to evaluate the lessons learned
here on other high-level reinforcement learning problems.
One potential candidate is a multi-agent vehicle control
task, such as that examined in (Stanley et al., 2005a).
Previous work has shown that algorithms like NEAT are
effective at generating low-level control behaviors, like ef-
ficiently steering a car through S-curves on a track. Suc-
cessfully evolving higher-level behavior to reason about op-
ponents or race strategy has proven difficult, but may be
possible with algorithms like Cascade-NEAT and RBF-
NEAT.

7. Conclusion

Despite its success in the past, neuroevolution in gen-
eral and NEAT in particular has surprising difficulty solv-
ing certain types of high-level decision-making problems.
This paper presents the hypothesis that this difficulty arises
because these problems are fractured: The correct action
varies discontinuously as the agent moves from state to
state. A method for measuring fracture using the concept
of function variation is proposed, and several examples

of high-level reinforcement learning problems that possess
such a fractured quality are presented. While NEAT is
shown to perform rather poorly on these fractured prob-
lems, two modifications to NEAT, called RBF-NEAT and
Cascade-NEAT, improve performance significantly by bi-
asing or constraining the search for network topologies to-
wards local solutions. Thus, these methods lay the ground-
work for the next generation of neuroevolution algorithms
that can discover high-level strategic behavior.

References

Angeline, P. J., 1997. Evolving basis functions with dynamic recep-
tive fields. In: IEEE International Conference on Systems, Man,
and Cybernetics. Vol. 5. pp. 4109–4114.

Angeline, P. J., Saunders, G. M., Pollack, J. B., 1993. An evolution-
ary algorithm that constructs recurrent neural networks. IEEE
Transactions on Neural Networks 5, 54–65.

Asada, M., Noda, S., Hosoda, K., 1995. Non-physical intervention in
robot learning based on lfe method. In: Proceedings of Machine
Learning Conference Workshop on Learning from Examples vs.
Programming by Demonstration. pp. 25–31.

Barron, A., Rissanen, J., Yu, B., 1998. The minimum description
length principle in coding and modeling. IEEE Trans. Informa-
tion Theory 44 (6), 2743–2760.

Bengio, Y., 2007. Learning deep architectures for ai. Tech. Rep. 1312,
Dept. IRO, Universite de Montreal.

Billings, S. A., Zheng, G. L., 1995. Radial basis function network
configuration using genetic algorithms. Neural Networks 8, 877–
890.

Bochner, S., 1959. Lectures on Fourier Integrals with an Author’s
Supplement on Monotonic Functions, Stieltjes Integrals and
Harmonic Analysis. Princeton University Press.

Bull, L., O’Hara, T., 2002. Accuracy-based neuro and neuro-fuzzy
classifier systems. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference. pp. 905–911.

Butz, M. V., 2005. Kernel-based, ellipsoidal conditions in the real-
valued xcs classifier system. In: Proceedings of the 2005 con-
ference on Genetic and Evolutionary Computation. pp. 1835–
1842.

Butz, M. V., Herbort, O., 2008. Context-dependent predictions and
cognitive arm control with xcsf. In: Proceedings of the 2008
conference on Genetic and Evolutionary Computation.

Chaitin, G., 1975. A theory of program size formally identical to
information theory. Journal of the ACM 22, 329–340.

Chaiyaratana, N., Zalzala, A. M. S., 1998. Evolving hybrid rbf-
mlp networks using combinedgenetic/unsupervised/supervised
learning. In: UKACC International Conference on Control.
Vol. 1. pp. 330–335.

Ghosh, J., Nag, A., 2001. An overview of radial basis function net-
works. Studies In Fuzziness And Soft Computing: Radial basis
function networks 2: new advances in design, 1–36.

Goldberg, D. E., Richardson, J., 1987. Genetic algorithms with shar-
ing for multimodal function optimization. In: Proceedings of
the Second International Conference on Genetic Algorithms.
pp. 148–154.

Gomez, F., Miikkulainen, R., 1999. Solving non-markovian control
tasks with neuroevolution. In: In Proceedings of the 16th In-
ternational Joint Conference on Artificial Intelligence.

Gomez, F., Schmidhuber, J., Miikkulainen, R., 2006. Efficient non-
linear control through neuroevolution. In: Proceedings of the
European Conference on Machine Learning (ECML-06, Berlin).

Gonzalez, J., Rojas, I., Ortega, J., Pomares, H., Fernandez, F., Diaz,
A., 2003. Multiobjective evolutionary optimization of the size,
shape, and position parameters of radial basis function net-
works for function approximation. IEEE Transactions on Neu-
ral Networks 14, 1478–1495.

Gruau, F., Whitley, D., Pyeatt, L., 1996. A comparison between cel-
lular encoding and direct encoding for genetic neural networks.

13

In: Koza, J. R., Goldberg, D. E., Fogel, D. B., Riolo, R. L.
(Eds.), Genetic Programming 1996: Proceedings of the First
Annual Conference. MIT Press, pp. 81–89.

Guillen, A., Pomares, H., Gonzalez, J., Rojas, I., Herrera, L. J.,
Prieto, A., 2007. Parallel multi-objective memetic rbfnns de-
sign and feature selection for function approximation problems
4507/2007, 341–350.

Guillen, A., Rojas, I., Gonzalez, J., Pomares, H., Herrera, L. J.,
Paechter, B., 2006. Improving the performance of multi-
objective genetic algorithm for function approximation through
parallel islands specialisation 4304/2006, 1127–1132.

Guo, L., Huang, D.-S., Zhao, W., 2003. Combining genetic optimi-
sation with hybrid learning algorithm for radial basis function
neural networks. Electronics Letters 39, 1600–1601.

Gutmann, H., 2001. A radial basis function method for global opti-
mization. Journal of Global Optimization 19, 201–227.

Hinton, G. E., Salakhutdinov, R. R., 2006. Reducing the dimension-
ality of data with neural networks. Science 313 (5786), 504–507.

Ho, T., Basu, M., 2002. Complexity measures of supervised classifi-
cation problems. IEEE Transactions on Pattern Analysis and
Machine Intelligence 24 (3), 289–300.

Hornik, K. M., Stinchcombe, M., White, H., 1989. Multilayer feedfor-
ward networks are universal approximators. Neural Networks,
359–366.

Howard, D., Bull, L., Lanzi, P.-L., 2008. Self-adaptive constructivism
in neural xcs and xcsf. In: Proceedings of the 2008 Genetic and
Evolutionary Computation Conference.

Jiang, N., Zhao, Z., Ren, L., 2003. Design of structural modular
neural networks with genetic algorithms. Advances in Software
Engineering 34, 17–24.

Kamke, E., 1956. Das lebesgue-stieltjes integral.
Kohl, N., Stanley, K., Miikkulainen, R., Samples, M., Sherony,

R., July 2006. Evolving a real-world vehicle warning system.
In: Proceedings of the Genetic and Evolutionary Computation
Conference 2006. pp. 1681–1688.

Kolmogorov, A., 1965. Three approaches to the quantitative defini-
tion of information. Problems of Information Transmission 1,
4–7.

Kozma, R., Freeman, W., 2009. The kiv model of intentional dynam-
ics and decision making. Neural Networks.

Kretchmar, R., Anderson, C., 1997. Comparison of cmacs and radial
basis functions for local function approximators in reinforce-
ment learning. In: Proceedings of the International Conference
on Neural Networks.

Lanzi, P., Loiacono, D., Wilson, S., Goldberg, D., 2006. Classifier
prediction based on tile coding. In: Proceedings of the Genetic
and Evolutionary Computation Conference. pp. 1497–1504.

Lanzi, P. L., Loiacono, D., Wilson, S. W., Goldberg, D. E., 2005.
Xcs with computed prediction for the learning of boolean func-
tions. In: Proceedings of the IEEE Congress on Evolutionary
Computation Conference.

Lawrence, S., Tsoi, A., Back, A., 1996. Function approximation with
neural networks and local methods: Bias, variance and smooth-
ness. In: Australian Conference on Neural Networks. pp. 16–21.

LeCun, Y., Bengio, Y., 2007. Scaling learning algorithms towards ai.
Large-Scale Kernel Machines.

Leonov, A. S., 1998. On the total variation for functions of sev-
eral variables and a multidimensional analog of helly’s selection
prinicple. Mathematical Notes 63 (1), 61–71.

Levine, D., 2009. Brain pathways for cognitive-emotional decision
making in the human animal. Neural Networks.

Li, J., Duckett, T., 2005. Q-learning with a growing rbf network
for behavior learning in mobile robotics. In: Proceedings of
the Sixth IASTED International Conference on Robotics and
Applications.

Li, J., Martinez-Maron, T., Lilienthal, A., Duckett, T., 2006. Q-
ran: A constructive reinforcement learning approach for robot
behavior learning. In: Proceedings of IEEE/RSJ International
Conference on Intelligent Robot and System.

Li, M., Vitanyi, P., 1993. An Introduction to Kolmogorov Complex-
ity and Its Applications. Springer-Verlag.

Maciejowskia, J. M., 1979. Model discrimination using an algorith-
mic information criterion. Automatica 15, 579–593.

Maillard, E., Gueriot, D., 1997. Rbf neural network, basis functions
and genetic algorithm. In: International Conference on Neural
Networks. Vol. 4.

Mitchell, T., 1997. Machine Learning. McGraw Hill.
Moody, J., Darken, C. J., 1989. Fast learning in networks of locally

tuned processing units. Neural Computation 1, 281–294.
Moriarty, D. E., Miikkulainen, R., 1996. Efficient reinforcement

learning through symbiotic evolution. Machine Learning 22, 11–
32.

Park, J., Sandberg, I. W., 1991. Universal approximation using
radial-basis-function networks. Neural Computation 3, 246–
257.

Perlovsky, L., 2009. Language and cognition. Neural Networks.
Peterson, T., Sun, R., 1998. An rbf network alternative for a hy-

brid architecture. In: IEEE International Joint Conference on
Neural Networks. Vol. 1. pp. 768–773.

Platt, J., 1991. A resource-allocating network for function interpola-
tion. Neural Computation 3 (2), 213–225.

Potter, M. A., Jong, K. A. D., 2000. Cooperative coeveolution: An
architecture for evolving coadapted subcomponents. Evolution-
ary Computation 8 (1), 1–29.

Radcliffe, N. J., 1993. Genetic set recombination and its application
to neural network topology optimization. Neural Computing
and Applications 1 (1), 67–90.

Reisinger, J., Bahceci, E., Karpov, I., Miikkulainen, R., 2007. Co-
evolving strategies for general game playing. In: Proceedings
of the IEEE Symposium on Computational Intelligence and
Games.

Rosca, J. P., 1997. Hierarchical learning with procedural abstraction
mechanisms. Ph.D. thesis, Rochester, NY 14627, USA.
URL citeseer.ist.psu.edu/rosca97hierarchical.html

Saravanan, N., Fogel, D. B., 1995. Evolving neural control systems.
IEEE Expert, 23–27.

Sarimveis, H., Alexandridis, A., Mazarakis, S., Bafas, G., 2004. A
new algorithm for developing dynamic radial basis function
neural network models based on genetic algorithms. Computers
and Chemical Engineering 28, 209–217.

Shilov, G. E., Gurevich, B. L., 1967. Integral, measure, derivative.
Stanley, K., Kohl, N., Sherony, R., Miikkulainen, R., 2005a. Neu-

roevolution of an automobile crash warning system. In: Pro-
ceedings of the Genetic and Evolutionary Computation Con-
ference 2005. pp. 1977–1984.

Stanley, K. O., Bryant, B. D., Miikkulainen, R., 2005b. Real-time
neuroevolution in the NERO video game. IEEE Transactions
on Evolutionary Computation 9 (6), 653–668.

Stanley, K. O., Miikkulainen, R., 2002. Evolving neural networks
through augmenting topologies. Evolutionary Computation
10 (2).

Stanley, K. O., Miikkulainen, R., 2004a. Competitive coevolution
through evolutionary complexification. Journal of Artificial In-
telligence Research 21, 63–100.

Stanley, K. O., Miikkulainen, R., 2004b. Evolving a roving eye for go.
In: Proceedings of the Genetic and Evolutionary Computation
Conference.

Stone, P., Kuhlmann, G., Taylor, M. E., Liu, Y., 2006. Keepaway soc-
cer: From machine learning testbed to benchmark. In: Noda,
I., Jacoff, A., Bredenfeld, A., Takahashi, Y. (Eds.), RoboCup-
2005: Robot Soccer World Cup IX. Vol. 4020. Springer Verlag,
Berlin, pp. 93–105.

Sutton, R. S., 1996. Generalization in reinforcement learning: Suc-
cessful examples using sparse coarse coding. In: Advances in
Neural Information Processing Systems 8. pp. 1038–1044.

Taylor, M., Whiteson, S., Stone, P., July 2006. Comparing evolution-
ary and temporal difference methods for reinforcement learning.
In: Proceedings of the Genetic and Evolutionary Computation
Conference. pp. 1321–28.

Tulai, A. F., Oppacher, F., 2002. Combining competitive and cooper-
ative coevolution for training cascade neural networks. In: Pro-
ceedings of the Genetic and Evolutionary Computation Confer-

14

ence. pp. 618–625.
Vapnik, V., Chervonenkis, A., 1971. On the uniform convergence of

relative frequencies of events to their probabilities. Theory of
Probability and its Applications 16, 264–280.

Vitushkin, A. G., 1955. On multidimensional variations.
Wedge, D., Ingram, D., McLean, D., Mingham, C., Bandar, Z., 2005.

Neural network architectures and wave overtopping. In: Proc.
Inst. Civil Engineering 2005: Maritime Engineering. Vol. 158
MA3. pp. 123–133.

Wedge, D., Ingram, D., McLean, D., Mingham, C., Bandar, Z., 2006.
On global-local artificial neural networks for function approx-
imation. IEEE Transactions on Neural Networks 17 (4), 942–
952.

Whitehead, B., Choate, T., 1996. Cooperative-competitive genetic
evolution of radial basis functioncenters and widths for time
series prediction. IEEE Transactions on Neural Networks 7,
869–880.

Whiteson, S., Kohl, N., Miikkulainen, R., Stone, P., May 2005.
Evolving keepaway soccer players through task decomposition.
Machine Learning 59, 5–30.

Whitley, D., Dominic, S., Das, R., Anderson, C. W., 1993. Ge-
netic reinforcement learning for neurocontrol problems. Ma-
chine Learning 13, 259–284.

Wieland, A., 1991. Evolving neural network controllers for unstable
systems. In: In Proceedings of the International Joint Confer-
ence on Neural Networks. pp. 667–673.

Wilson, S. W., 2002. Classifiers that approximate functions. Natural
Computing 1, 211–234.

Wilson, S. W., 2008. Classifier conditions using gene expression
programming. Tech. Rep. 2008001, Illinois Genetic Algorithms
Laboratory, University of Illinois at Urbana-Champaign.

Yao, X., 1999. Evolving artificial neural networks. Proceedings of the
IEEE 87 (9), 1423–1447.

15

