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Current research on bilingual aphasia highlights the paucity in recommendations for optimal rehabilitation for bilingual
aphasic patients (Edmonds & Kiran, 2006; Roberts & Kiran, 2007). In this paper, we have developed a computational model
to simulate an English–Spanish bilingual language system in which language representations can vary by age of acquisition
(AoA) and relative proficiency in the two languages to model individual participants. This model is subsequently lesioned by
varying connection strengths between the semantic and phonological networks and retrained based on individual patient
demographic information to evaluate whether or not the model’s prediction of rehabilitation matches the actual treatment
outcome. In most cases the model comes close to the target performance subsequent to language therapy in the language
trained, indicating the validity of this model in simulating rehabilitation of naming impairment in bilingual aphasia.
Additionally, the amount of cross-language transfer is limited both in the patient performance and in the model’s predictions
and is dependent on that specific patient’s AoA, language exposure and language impairment. It also suggests how well
alternative treatment scenarios would have fared, including some cases where the alternative would have done better.
Overall, the study suggests how computational modeling could be used in the future to design customized treatment recipes
that result in better recovery than is currently possible.
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1. Introduction

Current research has only begun to inform us about
the nature of language impairment in bilingual aphasia.
Due to the variety of complicating issues associated with
bilingual aphasia, there has been insufficient research into
this topic (Lorenzen & Murray, 2008) although attention
to the nature of language impairment in bilingual aphasia
is increasing due to the practical demands of serving this
clinical population (Abutalebi, Rosa, Tettamanti, Green &
Cappa, 2009; Green, Grogan, Crinion, Ali,Sutton & Price,
2010; Green, Ruffle, Grogan, Ali, Ramsden, Schofield,
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Leff, Crinion & Price, 2011; Kohnert, 2004; Laganaro, Di
Pietro & Schnider, 2006; Meinzer, Obleser, Flaisch, Eulitz
& Rockstroh, 2007; Moretti, Bava, Torre, Antonello,
Zorzon, Zivadinov & Cazzato, 2001; Tschirren, Laganaro,
Michel, Martory, Di Pietro, Abutalebi & Annoni, 2011).
In a recent meta-analysis of treatment studies examining
rehabilitation of bilingual aphasia, Faroqi-Shah, Frymark,
Mullen & Wang (2010) reviewed 14 treatment studies
in which language therapy was provided to bilingual
individuals with aphasia. Of these, only one study (Junque,
Vendrell, Vendrell-Brucet & Tobena, 1989) had a large
subject pool (30 participants); all others were single
or multiple case studies. Nonetheless, Faroqi-Shah and
colleagues found that training patients in L2 resulted in
improved treatment outcomes in the treated language,
and further, more than half the participants across the
studies showed cross-language generalization. Faroqi-
Shah and colleagues also found that age of acquisition
(AoA) and time post-stroke did not specifically influence
the outcomes of treatment. However, the authors noted
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several other confounding variables across the studies
that limit the conclusions that can be drawn regarding
the effectiveness of rehabilitation of language recovery
bilingual aphasia. One aspect of this review is that
some of the studies reviewed are primarily naming
therapies, others aimed at improving sentence production
and still others more globally directed at improving
communication abilities, hence introducing another level
of variability across studies. A more recent study by Croft,
Marshall, Pring & Hardwick (2011), not included in this
meta-analysis, examined five Bengali–English individuals
with aphasia who received treatment in the two languages
consecutively. Four of the five patients benefited from the
naming therapy and three patients showed cross-language
generalization from the dominant to the less dominant
language.

Although several studies report positive treatment
outcomes, the factors that influence treatment outcomes
are not well understood. Static factors, such as pre-
stroke language state, the etiology of aphasia, and level
of impairment between the two languages as well as
dynamic factors, such as treatment methodology, and
current language exposure, add to the complicated portrait
of bilingual aphasia rehabilitation.

Our own work in this area of bilingual aphasia
rehabilitation has shed light on the complex interaction
between language exposure, level of aphasia severity, and
language therapy outcomes. Specifically, in the first study
systematically examining cross-language generalization
using a theoretically motivated framework, Edmonds and
Kiran (2006) conducted a semantically-based treatment
to improve naming in three English–Spanish bilingual
individuals with aphasia. They examined acquisition of
trained items and generalization to untrained semantically
related items in the trained language as well as translations
of the trained and untrained items in the untrained
language. Results showed within- and across-language
effects on generalization that were related to pre-stroke
language proficiencies. One participant, who claimed
equal proficiency in English and Spanish, exhibited
within-language generalization in the trained language
(Spanish) and some cross-language generalization to the
untrained language (English). The other two patients,
who reported that English was their stronger language
pre-stroke, showed cross-language generalization from
the trained language (Spanish) to the untrained language
(English) but no within-language generalization (to
related words in Spanish).

In a follow-up study, Kiran and Roberts (2010)
administered the same semantic treatment in four
English–Spanish and English–French individuals with
aphasia and measured within-language generalization
and cross-language generalization. One Spanish–English
patient was pre-morbidly proficient in both languages
but severely impaired in naming in both languages. The

second Spanish–English patient was pre-morbidly less
proficient in Spanish and post-morbidly more impaired in
Spanish. One French–English patient was pre-morbidly
more proficient in French but equally impaired in both
languages whereas the other was pre-morbidly proficient
and post-morbidly impaired in two languages. All patients
improved their naming of the trained items in the
trained language; two of the four patients showed within-
language generalization to semantically related items.
Cross-language generalization, however, occurred for
only one French–English patient. While these results
suggested that performance in all four patients was
influenced by factors including each patient’s pre-stroke
language proficiency, AoA, post-stroke level of language
impairment, and type and severity of aphasia (Kiran &
Roberts, 2010); no clear trends emerged regarding the
potential interaction between these factors. Importantly,
this replication of the Edmonds and Kiran (2006) study
used the same stimuli and treatment approach, but resulted
in different rehabilitation outcomes. These two studies
highlight the inherent problem of variability in bilingual
aphasia research, and this is exactly the kind of situation
where a computational model can advance the field.

One obvious approach to testing the applicability of
language rehabilitation in bilingual aphasia is to conduct
a large scale examination of the relationship between
language impairment, languages being tested, the relative
proficiency of each language, and the etiology of language
impairment in an otherwise homogenous population of
bilingual aphasics. However, there are several obstacles
to this approach because pre-stroke language proficiency
cannot be empirically assessed in patients with aphasia; it
is usually collected as an informal survey after the stroke
has occurred. Additionally, the presumed relationship
between lesion, deficit, and behavioral outcomes is
contentious even in the field of monolingual aphasia.
That is, it is still unclear whether a specific lesion in
a certain brain region in the left hemisphere results in
a specific linguistic deficit that can be observed using
behavioral measures (Caplan, 2004), thereby severely
limiting the predictions one can make about treatment
outcomes. More importantly, our limited understanding
of language impairment and recovery in bilingual aphasia
is complicated by the imperfect, but highly connected
relationship between AoA, pre-stroke proficiency/use and
impairment (Kiran & Iakupova, 2011; Kiran & Roberts,
2012; Roberts & Kiran, 2007).

An innovative approach to addressing rehabilitation
in bilingual aphasia is to use computational modeling to
complement our understanding of how language recovery
occurs in a bilingual individual with aphasia. Although
the physiological structure and location of the lexicon
in the brain are still open to some debate, converging
evidence from imaging, psycholinguistic, computational,
and lesion studies suggests that the lexicon is laid out



A computational account of bilingual aphasia rehabilitation 3

as one or several topographic maps, where concepts
are organized according to some measure of similarity
(Caramazza, Hillis, Leek & Miozzo, 1994; Farah &
Wallace, 1992; Spitzer, Kischka, Guckel, Bellemann,
Kammer, Seyyedi, Weisbrod, Schwartz & Brix, 1998).
Over the last twenty years, connectionist and dynamical
systems approaches have made remarkable contributions
to our understanding of the mechanisms of impairment of
language and cognition (Baron, Hanley, Dell & Kay, 2008;
Dell, Schwartz, Martin, Saffran & Gagnon, 2000; Foygel
& Dell, 2000; Plaut, 1996; Schwartz & Brecher, 2000;
Welbourne & Lambon Ralph, 2005). Computational
modeling has also been useful in understanding the
effect of the nature of the lesion on brain plasticity
(Keidel, Welbourne & Lambon Ralph, 2010; Reggia,
Gittens & Chhabra, 2000; Welbourne & Lambon Ralph,
2007). However, apart from one study (Plaut, 1996),
computational modeling has not been exploited in
predicting naming treatment outcomes for stroke patients.
In Plaut’s (1996) study, a computer network was trained to
recognize a set of artificial typical and atypical words (set
of binary values). Once the training was completed, the
network was lesioned and retrained on either the typical
examples or the atypical examples. Plaut found that
retraining atypical examples resulted in improvements
in recognition of typical items as well. Training typical
items, however, only improved the performance of trained
items while performance of atypical words deteriorated
during treatment. This computational simulation work
was instrumental in catalyzing a series of studies that
reported the beneficial effect of training atypical examples
versus typical examples within categories in individuals
with aphasia with naming deficits (Kiran, 2008; Kiran
& Johnson, 2008; Kiran, Sandberg & Sebastian, 2011;
Kiran & Thompson, 2003) and the development of the
Complexity Account of Treatment Efficacy for treatment
of naming deficits in aphasia (Kiran, 2007).

The purpose of the present study was to develop
and examine a computational account, based on self-
organizing maps, of bilingual naming deficits in aphasia
and the subsequent rehabilitation outcome patterns in
individuals with naming deficits. Self-organizing maps
(SOMs; Kohonen, 2001) are topographical structures,
and are therefore a natural tool to build simulations
of the lexicon. SOM-based models have been used
recently to understand how ambiguity is processed in
the lexicon (Miikkulainen, 1993), how lexical processing
breaks down in dyslexia (Miikkulainen, 1997) and how
the lexicon is acquired during development (Li, Zhao
& MacWhinney, 2007). SOMs form the basic building
blocks of the bilingual model used in this work, called
DISLEX (Miikkulainen, 1993, 1997). DISLEX consists
of separate self-organizing maps for semantics and
for orthographic and phonological lexica in different
languages, linked with associative connections. Because

words are laid out in a map, the model can account
for aphasic and dyslexic impairments where categories
of words are lost or impaired. Notably, Ping Li and
colleagues have implemented a bilingual developmental
version of this model, called DEVLEX, which is trained
with gradually more words across the two languages
and thereby accounts for a range of phenomena in
lexical acquisition, including effects of lexical categories
such as representation of nouns/verbs, word frequency,
word length, and word density (Li, 2009; Li, Farkas &
MacWhinney, 2004; Li & Green, 2007; Li et al., 2007).
DEVLEX is primarily a computational developmental
model of normal language performance, whereas the
model we describe here, the bilingual DISLEX model,
is a model of adult language that can be used to study
language breakdown and recovery. It can be lesioned by
deleting units and connections and by adding noise to the
connections. It therefore forms a promising starting point
for modeling bilingual lexical processing, impairment,
and recovery, as we outline here.

We have previously described the conceptual
architecture of the computational model DISLEX
(Grasemann, Sandberg, Kiran & Miikkulainen, 2011;
Miikkulainen & Kiran, 2009), but we highlight the key
points here. The computational model follows the logic
of the revised hierarchical model proposed by Kroll
and Stewart (1994) for the two languages (L1 and L2)
because it can account for both AoA and varying levels of
proficiency through the differential connection strengths.
The organization of the three maps and the associations
between them are learned simultaneously. Input symbols
are presented to two of the maps at the same time,
resulting in activations on both maps. Each individual
map adapts to the new input using standard SOM training
with a Gaussian neighborhood. Additionally, associative
connections between the maps are adapted based on
Hebbian learning, i.e., by strengthening those connections
that link active units, and normalizing all connections
of each unit. As a result of this learning process, when
a word is presented to the semantic map, the resulting
activation is propagated via the associative connections to
the phonetic maps, and vice versa. In this way, DISLEX
can model both comprehension and production in both
languages (Miikkulainen & Kiran, 2009). As described
in this paper, one of the features of the model is the
ability to model second language acquisition at different
ages and differences in proficiency between L1 and L2
in order to represent the wide range of combinations
of language dominance and proficiency in individual
bilingual individuals.

As a next step, we examined the validity in simulating
individual language performance by using AoA and
exposure as training parameters with the goal of matching
DISLEX’s performance with that of human pre-stroke
English and Spanish performance (Grasemann et al.,
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Table 1. Demographic information for seventeen participants with aphasia who were enrolled in the therapy
experiment. Details are explained in the text. ND indicates no data was available for that patient; eval = evaluation;
mod = moderate.

AoA

Pre-stroke language

exposure

Post-stroke language

exposure

Education

history Self-rating

Participant Age at eval English Spanish English Spanish English Spanish English Spanish English Spanish

UTBA07 56 0 native 0 native ND high ND high ND mod ND high 1.00 0.00 1.00 0.69

UTBA09 56 5 early 0 native 0.62 high 0.37 low 0.57 mod 0.42 mod 0.77 0.22 1.00 0.81

UTBA16 53 0 native 0 native 0.61 high 0.38 low 0.61 high 0.38 low 0.66 0.33 0.94 0.74

BUBA07 65 45 v. late 0 native 0.09 low 0.90 high 0.01 low 0.98 high 0.00 1.00 0.32 1.00

UTBA01 53 0 native 0 native 0.75 high 0.25 low 0.93 high 0.06 low 1.00 0.00 1.00 0.40

UTBA11 87 11 late 0 native ND mod ND high ND high ND high ND ND 0.97 1.00

UTBA17 52 6 early 0 native 0.65 high 0.34 low 0.55 mod 0.44 mod 0.58 0.41 1.00 1.00

UTBA19 75 27 late 0 native 0.16 low 0.83 high 0.14 low 0.85 high 0.00 1.00 0.20 1.00

UTBA22 41 18 late 0 native 0.09 low 0.90 high 0.37 low 0.62 high 0.00 1.00 0.34 0.94

UTBA23 41 9 late 0 native 0.32 low 0.67 high 0.28 low 0.71 high 0.22 0.77 0.65 0.94

BUBA01 44 19 late 0 native 0.27 low 0.72 high 0.21 low 0.78 high 0.00 1.00 0.88 0.88

BUBA04 37 9 late 0 native 0.73 high 0.26 low 0.66 high 0.33 low 1.00 0.00 1.00 0.48

BUBA12 33 12 late 0 native 0.28 low 0.71 high 0.45 mod 0.54 mod 0.27 0.72 0.80 1.00

UTBA02 54 21 late 0 native 0.30 low 0.69 high 0.50 mod 0.50 mod 0.33 0.66 0.89 1.00

UTBA18 74 17 late 0 native 0.40 mod 0.59 mod 0.00 low 1.00 high 0.25 0.75 1.00 1.00

UTBA20 85 69 v. late 0 native 0.05 low 0.94 high 0.11 low 0.88 high ND ND 0.00 0.00

UTBA21 88 5 early 0 native 0.71 high 0.28 low 0.98 high 0.01 low 1.00 0.00 ND ND

2011) for 18 bilingual individuals with aphasia. Pre-
morbid levels of naming performance (i.e., self-rated
pre-morbid proficiency), AoA, and relative exposure to
Spanish vs. English were collected from all patients, and
were used to determine the way in which each patient
model was trained. Then, the model was trained with the
same relative exposure as patients to both languages and
AoAs were simulated by variably delaying L2 training.
Results showed that in most cases (80%), the model is
able to match the pre-morbid language performance (in
addition to AoA and relative exposure) of patients well.

This preliminary work sets the foundation for the
work that will be described here. Briefly, in the present
paper, we damage the model in order to simulate naming
impairments and then retrain the model in one language
in order to understand the nature of cross-language
generalization. The starting point for rehabilitation is
a model that has been fit to an individual patient by
adjusting AoA, pre-stroke proficiency, and post-stroke
impairment of L1 and L2. That is, each individual patient
is represented by a separate, individual instance of the
model; all of these models have the same architecture
but are initialized to fit the particular patient’s language
history and impairment profile. The human behavioral
treatment study and the computational model share
identical input stimuli (i.e., words used for treatment)

as well as similar outcome measures (correct naming
percentage in each language). The stimuli employed in
this study have been used in previous treatment studies
(Edmonds & Kiran, 2006; Kiran & Roberts, 2010).
In rehabilitation training, the model is presented with
selected word-meaning pairs from L1 or L2, and it will
continue self-organizing using the same mechanisms as
during initial training. Even though only one language is
trained, the result of the rehabilitation is measured in the
final performance of the model in both L1 and in L2. We
then evaluate the fit of the model to actual patient data
as well as estimate the predictive power of the model in
terms of the optimal language to use for rehabilitation.

2. Methods

2.1 Part I: Behavioral treatment study

Participant demographic information
Seventeen bilingual English–Spanish aphasic patients
presenting with naming deficits and concurrent
lexical/semantic impairment secondary to a single left
hemisphere stroke were involved in treatment (see Table 1
for demographic information). Five of these individuals
have been described previously (Edmonds & Kiran,
2006; Kiran & Roberts, 2010) whereas the remaining



A computational account of bilingual aphasia rehabilitation 5

12 patients were enrolled in treatment concurrent with
the computational simulation portion.1 All participants
(except one individual) experienced a single, unilateral
cerebral vascular event (stroke) in the distribution of the
left middle cerebral artery or posterior cerebral artery
at least 6 months prior to initiation of the experiment.
BUBA04 suffered a gunshot wound to the left hemisphere.
For all participants, L1 was Spanish and L2 was English,
although many of them were English dominant, resulting
from higher exposure to English.

Assessment of language proficiency
For all participants, we obtained measures of language
AoA, use, and proficiency by administering a
questionnaire that obtained the following information:
the age of acquisition for each language; a proportion of
language exposure during the entire lifetime prior to the
stroke; educational history in terms of both the language
of instruction and language used by peers; the time spent
conversing in each language after the stroke (post-stroke
exposure), and a self-rating of pre-stroke proficiency
in each language. For pre-stroke language exposure, a
weighted average of the proportion of exposure across
the lifespan in hearing, speaking, and reading domains
was obtained for each language. Likewise, a weighted
average of the exposure in each language calculated hour
by hour during a typical weekday and typical weekend
score reflected the proportion of post-stroke language
exposure in each language. Finally, an average proportion
score in terms of the participant’s ability to speak and
understand the language in formal and informal situations
in each language reflected participants’ perception of
their own language proficiency. Details regarding the
participants’ language backgrounds are listed in Table 1.

Assessment of language impairment in English and
Spanish
The Boston Naming Test was administered in both English
and Spanish to indicate eligibility for treatment (Kaplan,
Goodglass & Weintraub, 2001; Kohnert, Hernandez &
Bates, 1998). While all participants performed below 75%
accuracy in both their languages there was a range of
naming impairments that provided an indication regarding
the level of severity of impairment for each patient.
Performance on the BNT in English and Spanish are listed
for each participant in Table 2.

Treatment stimuli
For all patients, target treatment items were selected
from a corpus of 300 nouns gathered from our previous
treatment studies for word finding in aphasia in both

1 UTBA01, UTBA02, UTBA07 were reported in Edmonds and Kiran
(2006) and UTBA09 and UTBA11 were reported in Kiran and Roberts
(2010).

monolingual and bilingual populations (Edmonds &
Kiran, 2006; Kiran, 2007, 2008; Kiran & Bassetto,
2008; Kiran & Johnson, 2008; Kiran & Thompson,
2003). Rather than proceeding with a pre-chosen set,
target items for each participant were chosen based
on a confrontation naming pre-test and hence, stimuli
trained during treatment differed for each participant.
Thus, for each participant, six individualized stimulus
sets were created: English set 1 (e.g., apple), Spanish
set 1 (e.g., manzana), English set 2 (e.g., orange),
Spanish set 2 (e.g., naranja), English unrelated/control
set (e.g., boat), Spanish unrelated/control set (e.g., vaca
(cow)). Only data for English set 1 and Spanish set
1 are reported in this study as the data collected for
the semantically related/control sets in each of the
languages dilutes the focus of this paper. The stimuli
used in treatment are described in detail elsewhere
(Edmonds & Kiran, 2004) and again in Part II. All
word pairs were category coordinates (e.g., horse and
sheep). Cognates (e.g., elephant and elefante) and words
with at least 50% phonetic similarity (e.g., cat and
gato) were eliminated. The lists were balanced for
average frequency (Bates, D’Amico, Jacobsen, Szekely,
Andonova, Devescovi, Herron, Lu, Pechmann, Pleh,
Wicha, Federmeier, Gerdjikova, Gutierrez, Hung, Hsu,
Iyer, Kohnert, Mehotcheva, Orozco-Figueroa, Tzeng &
Tzeng, 2003; Frances & Kucera, 1982) and number of
syllables.

Additionally, 261 binary semantic features (e.g., can
fly, is a container, can be used as a weapon) were
assembled for items across categories.2 These features
were then translated into Spanish by a Spanish–English
bilingual research assistant and encoded for each of the
300 words, assigning the value 1 when it was a feature of
that word and a value of 0 when it was not a feature of that
word. Every picture, therefore, had at least 15 features
that were applicable to that particular example.

General treatment procedures
To facilitate access to naming of trained items, a semantic-
feature–based treatment (Edmonds & Kiran, 2006) was
implemented. All participants received treatment two
times per week. Participants performed five treatment
steps that emphasize semantic feature attributes of a
particular example. First, they were required to label/name
the example. Then, the picture was placed in front of the
patient, who was asked to choose five features (from a field
of 10) that belong to that word and were (a) a superordinate
label (e.g., belongs to), (b) a function (e.g., is used for), (c)

2 These features were developed as part of a broader project (Edmonds
& Kiran, 2006; Kiran, 2003, 2007) to norm semantic features across
semantic categories. Across these projects, normal individuals made
judgments about the applicability of semantic attributes for each
individual item in each category.
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Table 2. Details are provided for each participant’s pre-treatment Boston Naming Test (BNT) scores, average
naming scores during baseline, and the language trained for each participant. Also reported are the effect sizes (ES)
in the trained language and untrained language and the cross-correlation coefficient (r) between the patient
time-series data and the model time-series data.

Pre-treatment

BNT Average baseline
Cross- correlation Cross-correlation

Language Trained Untrained r with model r with model

Participant English Spanish English Spanish trained language ES language ES trained language untrained language

UTBA07 0.16 0.15 0.27 0.15 Spanish 12.41 3.11 0.86 0.76

UTBA09 0.56 0.10 0.28 0.08 Spanish 10.97 2.07 0.79 0.59

UTBA16 0.06 0.05 0.01 0.01 English 6.82 0.82 0.67 0.50

BUBA07 0.00 0.15 0.06 0.06 English 2.88 4.08 0.71 0.53

UTBA01 0.00 0.00 0.03 0.03 English 12.70 0.577 0.94 0.39

UTBA11 0.08 0.05 0.04 0.02 English 14.90 1.14 0.89 0.45

UTBA17 0.52 0.08 0.31 0.05 English 5.31 1.19 0.90 0.36

UTBA19 0.03 0.46 0.01 0.43 English 4.83 1.12 0.52 0.44

UTBA22 0.05 0.46 0.40 0.00 Spanish 12.72 1.88 0.90 0.49

UTBA23 0.00 0.02 0.03 0.05 Spanish 13.83 10.68 0.69 0.42

BUBA01 0.36 0.43 0.36 0.52 English 4.91 1.41 0.91 –0.47

BUBA04 0.58 0.11 0.12 0.07 Spanish 16.5 2.61 0.94 –0.51

BUBA12 0.00 0.00 0.00 0.00 English 8.16 0 0.92 0.23

UTBA02 0.43 0.40 0.05 0.05 Spanish 11.07 4.94 0.28 0.50

UTBA18 0.28 0.32 0.01 0.21 Spanish 24.82 1.73 0.43 0.55

UTBA20 0.00 0.00 0.00 0.00 Spanish 0.00 0.00 ND ND

UTBA21 0.01 0.00 0.00 0.00 English 0.00 0.00 ND ND

a characteristic (e.g., has/is), (d) a physical attribute (e.g.,
is made of/appears), and (e) a location (e.g., is found).
After these were chosen, the patient was asked to generate
an association and a non-association (e.g., reminds me
of/doesn’t remind me of). Following this, the participant
was asked yes/no questions about these features and was
required to accept or reject these and other features as
being applicable to the target example. Finally, the picture
was presented again, and the participant was required to
name the target examples.

Baseline and treatment probe task
Picture naming was used to examine lexical retrieval.
Prior to treatment, three to five naming probes were given
to establish a baseline; the specific number of baseline
probes was varied across participants. No feedback was
provided during the probes. During treatment, naming
probes with the same stimuli as those presented during
baseline were given weekly. Responses to naming probes,
coded in the same way as in baseline, served as the primary
dependent measure. Treatment was discontinued when
naming accuracy reached 8/10 items on the trained items
in two consecutive sessions or when 20 sessions were
completed.

Data analysis
The extent to which changes from baseline to treatment
phases are statistically reliable was determined by
calculating effect sizes (ES). Effect sizes are calculated
comparing the mean of all data points in the post-treatment
phase relative to the baseline mean divided by the standard
deviation of baseline (Beeson & Robey, 2006).

Treatment results
Results for the seventeen patients are summarized in
Table 2 and illustrate the language that was trained for
each patient and the effect sizes for the trained language
set and the untrained language set. Based on comparable
naming treatment studies in monolingual aphasia, an ES
of 4.0 was considered small, 7.0 was considered medium
and 10.1 was considered large (Beeson & Robey, 2006)
for the trained language set.

2.2 Part II: Computational modeling

Architecture of the model
Figure 1 shows the basic architecture of the bilingual
DISLEX model. Its three main components are self-
organizing maps: one for word meanings and one
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Figure 1. (Colour online) Schematic representation of the
architecture of the bilingual DISLEX model adapted from
Kroll & Stewart’s (1994) theoretical model.

each for the corresponding phonetic symbols in L1
and L2. Each pair of maps is linked by directional
associative connections that enable network activation
to flow between maps, allowing the model to translate
between alternative semantic and phonetic representations
of a word.

Each self-organizing map is a two-dimensional grid of
computational units trained to represent a set of symbols.
The symbols are vectors of real numbers between 0 and
1, representing either semantic or phonetic features of a
word. During training, such vectors are presented to the
map one at a time, and each unit computes the Euclidean
distance d between its weight vector w and the symbol
representation v:

d

√∑
k

(wk − vk)2. (1)

The unit with the smallest distance (unit (r,s)) is then
found, and the weights of that unit and those in its
neighborhood (units (i, j)) are adapted towards the input
vector:

w′
k,ij = wk,ij + α(vk − wk,ij )hrs,ij, (2)

where α is the learning rate and hrs,ij is a function defining
the neighborhood (usually a Gaussian). This process has
two effects: the weight vectors become representations of
the symbol vectors, and the neighboring weight vectors
become similar. Over successive presentations of each
symbol, the array of units then learns to represent the space
of symbols in the language, creating a two-dimensional
layout of that space where units that are close to each
other on the map represent words that are similar either
semantically (in the semantic map) or phonetically (in the
phonetic maps for L1 and L2).

Associations between maps are learned at the same
time as the maps are organized. Two corresponding
representations for the same word (e.g., semantic and L1)
are presented at the same time, resulting in activations on
both maps. Associative connections between the maps
are then adapted based on Hebbian learning, i.e., by
strengthening those connections that link active units and
normalizing all connections of each unit:

a′
ij,mn = aij,mn + aηijηmn∑

uv(aij,uv + aηijηmn)
, (3)

where aij,mn is the weight on the associative connection
from unit (i,j) in one map to unit (m,n) in the other map
and ηij is the activation of the unit.

As a result of this learning process, when a concept is
presented to the semantic map, its associated phonetic
representations in the L1 and L2 maps are activated.
Conversely, when the L1 or L2 map is presented with
the phonetic representation of a word, the resulting
activation is propagated to the semantic map. DISLEX
therefore models both comprehension and production in
the lexicon. Note that in the latter case, activation can
also be propagated between L1 and L2, since the L1 and
L2 maps have direct connections between them as well.
Also, the connections between L1 and L2 create a possible
alternative path for the flow of activation between the
semantic map (S) and either phonetic map. For instance,
activation may flow from S → L1 directly, but also from
S → L2 → L1. Such indirect flow of activation between
maps can potentially simulate and explain how treatment
in one language can benefit the other. For example, if
the lexicon is presented with input symbols for S and
L1, those maps and the connections between them can
be adapted using the method described above. However,
in addition, the L2 map is activated indirectly, and that
activation can be used to train its associative connections
as well. How beneficial this “indirect training” is for L2
may depend on several factors, including the strength and
quality of the connections between L1 and L2. This model
of cross-language transfer forms the basis of the treatment
simulations described below.

Stimuli
The input data used for the computational experiments
consisted of a corpus of 300 nouns that were taken from the
treatment experiment described above. Representations
for all words in terms of semantic and phonetic feature
vectors were developed and used to train the model.
Semantic representations were vectors of the 261 binary
features described in the treatment stimuli section above.
The numerical representations of the features were used
directly to train the semantic map of the lexicon. In order
to develop the phonetic representations, both English
and Spanish words were transcribed phonetically by a
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Spanish–English bilingual research assistant using the
International Phonetic Alphabet (IPA). The transcriptions
were then translated into numerical input patterns using a
method based on previous work by Miikkulainen (1997),
and similar to the one used in PatPho (Li & McWhinney,
2002), a pattern generator designed to create feature-
based phonological representations. Following Ladefoged
(1982), each individual phoneme was first encoded
using four features: height, tongue position, length,
and rounded-ness for vowels, and place of articulation,
manner of articulation, voiced-ness, and lateralization for
consonants. These features are not complete descriptions
of each possible phoneme, but were more than sufficient
to distinguish the English and Spanish input words and to
capture phonetic similarities between them. Words were
split manually into spoken syllables, and the phonemes
of each syllable were inserted into a template vector
consisting of two consonants followed by two vowels,
followed again by two consonants (CCVVCC), resulting
in a feature vector of length 24 (six phonemes with
four phonetic features each). If a syllable had only one
vowel, that vowel was inserted twice. Single consonants
in the onset or coda of a syllable were also repeated;
syllables with no consonants in the beginning or end
were encoded by inserting zeros. Triple consonants were
encoded by averaging the features for the second and third.
In contrast to PatPho, representations of an entire word
were not left- or right-justified concatenations of syllables.
Instead, all words were padded from the left such that
the syllable that carried the primary stress lined up for
all words. This encoding method solves several problems
(e.g., capturing the similarity between the same word with
or without a prefix), but leads to relatively long overall
word representations. The final length of feature vectors
was 120 for English words (5 syllables × 24 features per
syllable), and 168 (7 × 24) for their Spanish translations.

Training the model
The semantic and phonetic input data were then used to
train Spanish–English bilingual DISLEX models. The
semantic and phonetic maps were a grid of 30 × 40
neurons, and were fully connected to each other by
directional associative connections. Learning rates, both
for maps and associations, were set to 0.25 during initial
training. The number of training epochs varied depending
on the target age being modeled. Four age levels were
simulated in order to reflect the ages of the patient
population: young (< 45 years; 800 epochs), middle-
aged (< 60 years; 1100 epochs), old (≤ 80 years; 1400
epochs), and very old (> 80 years; 1700 epochs). The
number of randomly selected English and Spanish words
trained during each epoch was controlled by two exposure
parameters (e.g., an English exposure of .4 meant that
every word had a 40% chance of being used in training
the English language part of the model during each

epoch). The variance of the Gaussian neighborhood was
initially 3, and decreased exponentially with a half-life
of 155 training epochs. These parameter settings were
determined empirically.

The effects of second-language AoA were simulated
in the model by delaying L2 training. Since all patients
were native Spanish speakers, initially only the Spanish
phonetic map, the semantic map, and the connections
between the two were trained. After an appropriate delay,
all three maps and all sets of associative connections were
then trained for the remaining epochs. The appropriate
training delays for simulating second-language AoA
effects were determined based on a few constraints. First,
given enough exposure, humans are often able to achieve
near-native performance even for relatively late AoA (age
18+ years), so the same needed to be possible in the model.
Initial experiments showed that naming performance in
the model begins to decline considerably, even for high
exposure, when training is delayed until epoch 260 or
later. This point in training was therefore used as the
equivalent of AoA = 20 years. A second constraint is
that, if a second language is acquired early, performance
should not differ significantly from a native language. In
the model, this is the case if training is delayed until no
later than epoch 175, which was therefore used as the
equivalent of AoA = 10 years. These two fixed training
delays were used to calibrate the simulation of AoA effects
in the model. For the present study, four AoA levels were
simulated: Native (training epoch 0), early (epoch 100),
late (epoch 180), and very late (epoch 300), corresponding
to AoAs of 0, 8, 18, and 30 years.

Current language dominance was simulated by varying
the exposure parameters for each language. Exposure
parameters were set such that the naming performance
approximated the performance observed in the control
population of the human aphasia study described earlier.
The model’s English performance thus varied between
75% and 98%; Spanish performance varied between
70% and 97%. Lower average Spanish performance
made it necessary to use lower Spanish than English
exposure in general. Four levels of relative exposure
(Spanish vs. English) were simulated: low Spanish/high
English, medium Spanish/moderately high English,
moderately high Spanish/medium English, and high
Spanish/low English. The corresponding low-to-high
exposure parameters were .04, .125, .2, .32 for Spanish,
and .2, .25, .325, .45 for English. These values reflect
the fact that English is generally the more dominant
(though not native) language in the patient group. Based
on the possible combinations of four levels of English
AoA, four levels of current language dominance, and four
levels of patient age, a range of 64 (43) “hypothetical
patient models” were then created to simulate the range
of possible pre-stroke scenarios. For each scenario, five
instances of the DISLEX model were trained using
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different randomized initial network connections. These
models were then used as starting points to simulate
stroke damage and to investigate the influence of treatment
language and pre-stroke conditions on treatment outcome.
Note that while it would be straightforward to map AoA to
a continuously varying training delay, the patients’ AoA
estimates are too noisy for such a mapping to be useful.
The fixed points make sense because differences between
the broad categories of early and late AoA categories are
generally reliable in the patient data leading to reliable
conclusions about the two groups.

Lesioning the model
In order to simulate pre-treatment starting points of the
patients in the human aphasia study, each individual
patient was first matched to one of the 64 scenarios
(described in the previous section) according to age,
self-reported AoA, and current exposure to English and
Spanish. The DISLEX models corresponding to each
patient were then damaged (“lesioned”) to varying degrees
to reflect the patient’s known naming impairment. Our
general approach to lesioning the model (i.e., to simulate
stroke damage and the following naming impairment)
was guided by published work in monolingual aphasia
(Baron et al., 2008; Dell et al., 2000; Foygel & Dell,
2000; Howard, Nickels, Coltheart & Cole-Virtue, 2006;
Miikkulainen, 1993, 1997; Plaut, 1996; Schwartz &
Brecher, 2000; Welbourne & Lambon Ralph, 2005).
Pertinent to the present study, one set of computational
models that describe naming deficits that can arise either
from incorrect/incomplete activation of semantic nodes
or phonological nodes (Dell, Schwartz, Martin, Saffran &
Gagnon, 1997; Foygel & Dell, 2000) or from a failure in
the bi-directional link between them (Dell et al., 1997).
Specifically, Foygel and Dell (2000) have suggested that
introducing noise in the connection weights between
the semantic-lexical (s-lesions) and lexical-phonological
(p-lesions) levels in the interactive activation model
simulates naming deficits in aphasia.

However, lesioning a bilingual model is slightly more
complex as the precise location and effect of lesion can
have consequences for whether the impairment is parallel
or differential between the two languages. An appropriate
way to damage the DISLEX model was chosen based on
the following constraints. First, since patients can show
differential language impairment, any lesion that affects
only the semantic map was ruled out, since it is shared
between both languages. Second, naming deficits in all
patients were not limited to any specific category of words.
The lesion must therefore be applied to one or more
entire maps, or to one or more entire sets of connections
between maps. Third, while naming deficits exist to some
degree in the entire group of patients, comprehension was
often relatively spared. Assuming that the same phonetic
map is used for both production and comprehension of

words, this rules out direct damage to one or both phonetic
maps.

Given these constraints, the only remaining way to
model the naming impairment of the patient group
with a common type of lesion was damage to the
associative connections between phonetic and semantic
maps. Damage was applied by adding Gaussian noise
with μ = 0 to all connections from the semantic map
to the phonetic maps. The amount of damage (the
“lesion strength”) in each case was adjusted by changing
the σ of the noise. The lesion strength was adapted
independently for each patient and each language such
that the resulting impaired naming performance matched
the pre-treatment aphasic performance of each patient.
The patients’ average performance on the pre-treatment
naming baseline (see Table 2) was used to determine the
target naming performance for the model. Damage was
increased gradually and independently for each language
until the average naming performance of the lesioned
models matched the patient data within 1%.

Modeling rehabilitation
The lesioned models (five DISLEX models for each of
the 17 individual patients that were treated for aphasia
in the patient study) were then used to assess the model’s
ability to model and predict rehabilitation effects. Naming
treatment was simulated by selecting a treatment language
and retraining each model on the original input words in
that language. Associative connections of the untreated
language were also trained, using indirect activation
in the way described above in the “Stimuli” section.
In this manner, part of the model is always trained
directly and deliberately, and another part indirectly
and spontaneously. For each patient model, treatment
was simulated once in English and once in Spanish,
independent of the language that was actually used to
treat the patient. Associative connections of the untreated
language were also trained, using indirect activation in the
way described above in the “Stimuli” section. The model
thus provides both a prediction of treatment outcome in
the patient (for the treatment language that was actually
used) and a prediction of what would have happened if the
other language had been chosen. One epoch of retraining
was performed for each treatment session conducted with
the actual patient, i.e., if a patient (e.g., BUBA01) received
10 treatment sessions, the model was accordingly trained
for10 epochs. For all models, the learning rate was reduced
uniformly to .01 to reflect the average effect of a single
treatment session in the patient data. Exposure parameters
for treatment were set to 1 for the treated and 0 for the
untreated language.

After each simulated treatment session, the naming
performance of the model was tested by presenting
all 300 words to the semantic map, propagating the
resulting activation to the phonetic maps, and examining
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Figure 2. (Colour online) Summary representation of cross-correlation functions between patient performance and model
performance for trained language (in blue) and untrained language (in red). Three distinct groups of participants emerged, in
the first group (A), model matched patient performance for both the trained and untrained language, in the second group (B),
model matched patient performance for the trained language only, and in the third group (C), model matched patient
performance for untrained language better than the trained language.

the resulting activation. A word was scored as correctly
named if the most active phonetic unit was the one
representing the correct word. For each language, the
percentage of semantic symbols correctly translated
to their phonetic representation was reported as the
model’s naming performance. In this way, similar outcome
measures (percentage of correctly named words in each
language) were used to compare the treatment response
of each model to that of the corresponding patient.

Comparison of patient and model performance
In order to evaluate the model’s output relative to the
patient data, the patient’s actual behavioral treatment
performance was compared to that of the lesioned
DISLEX models. The extent of the match between
the rehabilitation outcomes of patients and models was
examined first by visually inspecting the slopes, and
then by calculating cross-correlation coefficients using
the autoregressive integrated moving average (ARIMA)
procedure. Cross-correlation analysis models identify
the relationship between two time series by examining
coinciding changes over time (Box, Jenkins & Reinsel,
1994). Therefore, for each patient, we correlated the time
series of language performance for each language with
the model’s corresponding language.

3. Results

Of the 17 patients, 14 showed improvements as a function
of therapy in the trained language and three showed
improvements in the untrained language, indicating cross-
language transfer to the translations of the items trained.
The patient and model performance are described for
patients in Figure 2 and detailed results including

cross-correlation functions are provided in Table 2. In
each subsequent figure (Figures 3 and 4), the patient
performance (white background) is compared with model
performance (black background). For the patients, the pre-
treatment baselines are reported before the first vertical
line. For the model, the first data is computed as the
average of the pre-treatment baselines for that patient.
For each patient, the probes conducted during treatment
are reported between the two vertical lines and the post-
treatment probes (when administered) are reported after
the second vertical line. The post-treatment averages are
only relevant for the computation of the effect sizes.
For the purposes of comparison with the computational
model, only the data between the two vertical lines (i.e.,
training phase) is important. In what follows, we discuss
the results in four subgroups of cases, one where the
model accurately simulates both the trained and untrained
language, a second group where the model accurately
simulates only the trained language, a third group where
the model simulates the untrained language only and a
fourth group where the model is unable to match the
patient performance sufficiently.

In the first group, for four patients (UTBA07, UTBA09,
UTBA16, BUBA07) the model accurately simulates
performance in both the trained and the untrained
language. For instance, UTBA07 learned both languages
as a native and exposure to both languages was high before
stroke, indicating equivalence between the two languages.
Both languages were moderately impaired and English
exposure lessened after the stroke. Although UTBA07
was trained in Spanish, s/he shows greater performance
in English during baseline and this performance steadily
increases over time. Performance on the trained Spanish
increases towards the end of the treatment. Interestingly,
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Figure 3. (Colour online) Representative samples of patient performance (white background) compared with model
performance (black background). For the patients, the pre-treatment baselines are reported before the first vertical line, for
the model the first data is computed as the average of the pre-treatment baselines for that patient. For each patient, the probes
conducted during treatment are reported between the two vertical lines and the post-treatment probes (when administered)
are reported after the second vertical line. (A) One representative patient where model output matches the trained language
and the untrained language. (B) Two representative patients where model output matches the trained language. No changes
are noted in the untrained language. (C) Sample of a patient and model performance where model matches performance for
untrained language better than for the trained language. (D) Sample of a patient where model and patient performance do not
change as a function of treatment.
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the model adequately captures the changes in both
languages as evidenced by the relatively high correlation
between the model’s performance and the patient’s
performance in the two languages (Spanish r = .86;
English r = .76).

Similar to UTBA07, UTBA09 learned Spanish as
a native and English early in life. Early exposure to
English was high and exposure to Spanish was low;
however, exposure after stroke was moderate in both
languages. Impairment in English was moderate-severe
(29% accuracy) but impairment in Spanish was severe.
UTBA09 was trained in Spanish, which was the weaker
language and performance in that language improved
during the course of treatment; while performance on the
stronger language improved initially and then remained
stable. The model captures the performance in both
languages very accurately (Spanish r = .79; English
r = .59) (see Figure 3A). A third patient UTBA16
learned both languages as a native. Pre-stroke early
exposure to English was high, but exposure to Spanish
was low, and this pattern of exposure continued post-
stroke. Impairment was equally severe in both languages.
UTBA16 was trained in English, the stronger language.
This patient shows improvement in the trained language
but no changes in the untrained weaker language
(Spanish). The model also predicts modest improvement
in the trained language which matches the patient
performance (English r = .67), and for improvements
in the untrained language (Spanish r = .50). BUBA07
learned Spanish as a native and English late in life.
Pre-stroke exposure to English was low, but exposure to
Spanish was high, and this pattern of exposure continued
post-stroke. Impairment was severe in both languages.
BUBA07 was trained in English, the weaker language,
and showed marginal improvements in both the trained
English language and the untrained Spanish language.
The model, however, over-predicts performance in the two
languages for the same duration of treatment although the
trends for the model and patient generally correlate well
(English r = .71; Spanish r = .53). It appears that given
more time in treatment, the patient very well could have
achieved the same level of treatment outcome as the model
predicts but this is a speculation at this point.

In the second subgroup of patients (UTBA01,
UTBA17, BUBA04, UTBA11, UTBA22, BUBA01,
BUBA12, UTBA19, UTBA23), the model accurately
matches the patient output in the trained language but
not for the untrained language. In several cases that
follow, lower correlation coefficients for the untrained
language are due to minimal change in both the
model and the patient data that is indicative of no
generalization to the untrained language (UTBA01,
BUBA01, UTBA22, BUBA04). In other cases, the model
predicts generalization to the untrained language whereas
the patient does not show generalization to the untrained

language (UTBA11, UTBA23). The cases that follow,
however, are grouped by proficiency and language use.
For instance, UTBA01 learned both languages as a
native. Pre-stroke exposure to English was high, but
exposure to Spanish was low, and this pattern of exposure
continued post-stroke. Both languages were severely
impaired (high impairment). UTBA01was trained in
English and improved in English, with no improvement
noted in the untrained Spanish (see Figure 3B). The
model predicts the same outcome for English (r = .94), but
predicts very small improvements in Spanish that were not
observed (r = .39). Likewise, UTBA17 learned Spanish
as a native and English early in life. Early exposure
to English was high, but exposure to Spanish was low.
Exposure after stroke was moderate in both languages.
Impairment was severe in Spanish but moderate in
English. UTBA17 was trained in English, which was
the stronger language, and performance on this language
improved remarkably during the course of treatment.
Again, cross-language transfer was limited. The model’s
performance captures this differential re-learning and
matches the performance for English well (r = .90), but
predicts slightly more improvements in Spanish than is
actually observed (r = .36). Like UTBA01 and UTBA17,
BUBA04 learned Spanish as a native and English later in
life. Pre-stroke exposure to English was high, but exposure
to Spanish was low, and this pattern of exposure continued
post-stroke. Impairment was severe in both languages.
BUBA04 was trained in the weaker language, Spanish,
which improved as a function of treatment. English, the
stronger language, did not show much improvement by the
end of treatment. Again, the model’s performance closely
mirrors the performance for the trained Spanish language
(r = .94). Performance in English, however, shows slight
improvements overall which is different from the initial
increase followed by a decrease in performance observed
for the patient (r = –.51).

The next five patients all learned English late in
life and were stronger in Spanish prior to their stroke.
Hence, UTBA11 learned Spanish as a native and English
late in life. Early exposure to English was moderate
and exposure to Spanish was high; however, exposure
after stroke was high in both languages. Impairment was
equally severe in both languages. UTBA11 was trained
in English and performance in this language improved
significantly; however, no changes were observed in
the untrained Spanish language. The model, however,
predicts that training in English should improve both the
trained language as well the untrained language (Spanish).
Therefore, while the model accurately captures changes
in the trained language (Spanish r = .89), the match in
the untrained language is not adequate (English r = .45).
UTBA22 learned Spanish as a native and English late
in life. Pre-stroke exposure to English was low, but
exposure to Spanish was high, and this pattern of exposure
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continued post-stroke. Impairment was moderate in
Spanish but severe in English. UTBA22 was trained
in Spanish and showed a dramatic improvement as a
function of treatment, however no remarkable changes
were observed in the untrained language (English). The
model’s performance matches the patient’s output very
closely for Spanish (r = .90); however, it does not perfectly
match performance in English (r = .49). BUBA01 learned
Spanish as a native and English late in life. Pre-stroke
exposure to English was low, but exposure to Spanish was
high, and this pattern of exposure continued post-stroke.
Impairment was moderate in both languages. BUBA01
was trained in English, which was this patient’s weaker
language. This patient shows a remarkable increase in
the trained language which surpasses the untrained but
stronger Spanish language performance (see Figure 3B).
Interestingly, the model’s performance closely mirrors this
trend; with performance in English improving over time
and performance in Spanish remaining stable (English
r = .91; Spanish r = –.47). BUBA12 learned Spanish as a
native and English late in life. Early exposure to English
was low and exposure to Spanish was high; however,
exposure after stroke was moderate (i.e., equal) in both
languages. Impairment was severe in both languages.
BUBA12 was trained in English, the weaker language,
and showed only improvement in the trained language
with little to no change in the untrained but stronger
language. The model’s performance closely matches the
patient’s performance in the trained language (English
r = .92), however, it slightly over-predicts performance in
the stronger untrained Spanish language (Spanish r = .23)

UTBA23 learned Spanish as a native and English
later in life. Pre-stroke exposure to English was low,
but exposure to Spanish was high, and this pattern of
exposure continued post-stroke. Impairment was severe
in both languages. UTBA23 was trained in Spanish and
performance in the trained language for this patient
improved whereas performance in the untrained English
language only improved towards the end of treatment. The
model’s performance matches the patient’s performance
in the trained Spanish language and untrained English;
however, since the patient’s performance is more variable
than the model’s, the correlation coefficients are not as
strong as expected (Spanish r = .69; English r = .42).

In a third subgroup of patients (UTBA02, UTBA18),
the model’s performance accurately matches patients’
performance on the untrained language but the matches
for the trained language are not perfect. For instance,
UTBA02 was a native speaker of Spanish but learned
English late. Before stroke, exposure to both languages
was moderate (i.e., equal) and both languages were
severely impaired after stroke. UTBA02 was trained in
Spanish and while performance in Spanish improves
immediately once treatment commences, performance in
the untrained English improves, but the data is variable.

The model’s performance is more consistent, and based
on the AoA, exposure and lesion parameters, predicts
greater generalization to the untrained English language
than what is actually observed (Spanish r = .28; English
r = .50). For UTBA18, the model does not do as good a
job matching the patient output for the trained language
but adequately matches the untrained language. UTBA18
learned Spanish as a native and English late in life. Early
exposure to both English and Spanish was moderate (i.e.,
equal), however, exposure after stroke was high in Spanish
and low in English. Impairment was high in both lan-
guages although English was less impaired than Spanish.
UTBA18 was trained in English. Although performance
on the trained language improved, performance was highly
variable. The untrained language (Spanish) also showed
some marginal improvements towards the end of treatment
(see Figure 3C). The model’s performance is similar to the
performance of the patient, but because improvements
in the model are more stable and consistent in the two
languages than the actual patient data, the correlation
between model and patient performance is not strong
(Spanish r = .43; English r = .55).

In the last subgroup of two patients (UTBA20,
UTBA21) cross-correlation coefficients could not be
calculated due to the lack of variance in the data as
there are no improvements in the patient data. UTBA20
learned Spanish as a native and English late in life. Pre-
stroke exposure to English was low, but exposure to
Spanish was high, and this pattern of exposure continued
post-stroke. Impairment was severe in both languages.
UTBA20 was trained in Spanish, which would have been
considered the stronger language, but output was very
limited in both languages. This patient did not improve
on either the trained language (Spanish) or the untrained
language (English). However, the model predicts some
improvements in outcome which are not observed in the
patient’s performance (see Figure 3D). Like UTBA20,
UTBA21 learned Spanish as a native speaker but English
early in life. Unlike UTBA20, pre-stroke exposure to
English was high, but exposure to Spanish was low for this
patient, and this pattern of exposure continued post-stroke.
Impairment was severe in both languages. UTBA21 was
trained in English, which was the stronger language,
but training in English did not improve performance in
English or Spanish. Like the previous patient, the model
predicts slight improvements in outcome which are not
observed in the patient’s performance.

3.1 Preliminary results on predicting rehabilitation
outcomes

One of the important aspects of the model simulations is
that both language treatments can be simulated. Therefore,
as described above in section “Modeling rehabilitation”,
the model was trained in both languages irrespective
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Figure 4. (Colour online) Model’s prediction of treatment in both languages. In this scenario, the patient was trained in
Spanish and the model accurately predicts performance in both languages. When, however, the model is trained in English,
there are greater improvements predicted in the trained language. See text for details.

of which language the patient was trained in. For
every patient, the model’s output for both languages
consequently predicts what the treatment outcome may
have been if treatment was provided in the other language.
As an example, UTBA09 was trained in Spanish, which
was this patient’s weaker language (see Figure 4). The
model’s predictions match the treatment outcome in that
the trained Spanish language improved but improvements
in English were marginal. If treatment were instead
provided in English, which was the stronger language,
the model predicts greater improvements in English and
lesser improvements in the untrained language, Spanish.
While it is purely speculative at this point, the results
from the model provide a provocative alternative for
the treated language for this patient: It is possible that
the overall improvements in treatment would have been
greater following training in English than Spanish for
this patient and consequently, UTBA09 was trained in
the wrong language.

4. Discussion

The present study aimed to address the important
issue of language recovery following treatment in
bilingual aphasia by comparing performance in treated
bilingual aphasic individuals with the performance of a

computational model simulating aphasia in a bilingual
lexicon. From a clinical standpoint, the establishment of
the efficacy of rehabilitation in each of the languages
of the individual with bilingual aphasia is important
because there are currently no clear recommendations on
the best approach for rehabilitation of bilingual aphasia.
Preliminary results obtained from the simulations of
17 patients allows a direct comparison of outcomes using
two parallel yet complementary scientific approaches and
show that the model successfully simulates improvements
in the trained language in 13 out of the 17 patients. For a
majority of the patients, the model accurately matches
improvements in the trained language (see Figure 2).
Additionally, when cross-language transfer is observed
in patients, the model accurately simulates this cross-
language transfer (e.g., UTBA02, BUBA07). Importantly,
there are several cases where patients do not show
cross-language transfer and the model also does not
predict transfer (e.g., UTBA01, UTBA22). There are
other cases where the model does not accurately match
the patient data, likely because the patient data is much
more variable than the model’s outcomes. This lack of
overlap may be more reflective of the variability observed
in the patient treatment outcomes than the model’s
inability to accurately match performance. Individuals
with aphasia often show intra-subject variability, i.e.,
performance varies from one day to another as well
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as inter-subject variability. Neurological, psychological,
social/motivational factors are just some of the factors
that may influence the heterogeneity. This is precisely
why single subject experimental designs are well suited to
examine rehabilitation outcomes as individual variability
is revealed as a function of time. The model, however,
is modest in the number of parameters that determine
treatment outcome. Future studies on computational
rehabilitation in aphasia need to take into account the
additional factors that may influence patient performance
in treatment.

Nonetheless, there are several observations regarding
the model and patient outcomes that are noteworthy. First,
it appears that in individuals with differential proficiency
prior to stroke, when the stronger language is trained,
only that language improves, no changes are observed in
the weaker untrained language. This pattern is observed
in several patients (UTBA01, UTBA16, and UTBA17)
and the model accurately simulates these outcomes. In
one case, when the stronger language was trained, there
was generalization to the weaker language (UTBA23),
but this was a patient who learned both languages early
in life suggesting that perhaps age of acquisition is an
important factor in determining treatment outcomes. The
model’s architecture provides some insights into why this
may be the case. For early AoA, training of both maps
starts approximately at the same time (and using a similar
large neighborhood size) whereas for late second language
AoA, only L1 is trained first and training of L2 begins
later, when the neighborhood is already smaller and well-
defined. Since the global map structure is determined
early in training, simulating late AoA can be expected
to affect the global organization of the L2 phonetic map
but not that of the semantic and L1 maps. Notably, the
observation that the timing of L2 acquisition impacts the
structural representation of L1 and L2 maps, such that L2
becomes parasitic on L1 has been reported previously in
the developmental DEVLEX model (Zhao & Li, 2010).

Second, in individuals with differential proficiency
prior to stroke, when the weaker language is trained,
there are instances of cross-language generalization to
the stronger language (UTBA09, UTBA07, BUBA04,
BUBA07). Specifically, UTBA07 and UTBA09 learned
English early but BUBA07 learned English late in life.
UTBA09 and BUBA07 were less exposed to English
than Spanish whereas UTBA07 and BUBA04 were less
exposed to Spanish than English. When all these patients
were trained on their weaker language, they showed
improvements in the trained weaker language as well as
cross-language transfer to the stronger language. Except
for BUBA04, the model does a reasonable job simulating
outcomes (correlation coefficients > .5) for the remaining
three patients. These findings are consistent with our
original work suggesting that training the weaker language
may be more effective in facilitating generalization to

the stronger language (Edmonds & Kiran, 2006) but are
strengthened by replication across a more diverse group
of participants.3 In cases where there is no generalization
from the trained language to the untrained language, with
the exception of two patients, it is usually in patients
with severe language impairments (low starting points),
indicating that the severity of language impairment may
be another factor determining the extent of cross-language
generalization.

It should be noted that when the model does not
accurately predict outcome, there are several reasonable
explanations. For instance, when the total number of
treatment sessions for UTBA07 (seven sessions) was
precisely matched by the model, the model predicts
improvements in both languages but not that performance
in Spanish surpasses that in English. However, when the
model was extended in time (to total of 10 sessions)
the model’s prediction matched the patient’s performance
very well. This finding indicates that the learning rates
and treatment duration, which were kept consistent with
the patient data in this study, can also be systematically
manipulated for each patient in order to make more
accurate predictions for treatment.

In another scenario, the model slightly over-predicted
outcomes for two patients who showed no improvements
as a function of treatment (UTBA20, UTBA21). It is
important to note, however, that these patients were
very severely limited in their verbal output and likely
had concurrent apraxia of speech/phonological planning
deficits. Phonological planning deficits are out of the
scope of this computational model as they require further
subcomponents of the L1/L2 model to be specified, and
have been the focus of other computational models of
monolingual speech production (Callan, Kent, Guenther
& Vorperian, 2000; Guenther, Hampson & Johnson,
1998). Therefore, it is completely reasonable to expect
the systematically increasing performance in the model,
which does not include a speech planning component or
impairment. Future versions of this model should focus
on specifying stages involved in lexical selection and
phonological planning in the two languages of bilingual
individuals (Costa, La Heij & Navarrete, 2006). Third,
while the associative connections between L1 and L2
currently modulate during training and rehabilitation, in
the future their effect on modulating performance needs
to be studied as well. The computational model can be
used to gain insight and formulate hypotheses, which can
then be verified in human subject experiments.

Finally, ability of the model to predict the optimal
treatment language is a potentially revolutionary and
powerful outcome of this study. For every patient, the
model generated simulation outcomes based on treatment

3 UTBA07 was one of the patients reported in the Edmonds and Kiran
(2006) study.
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in each language whereas our existing patient data only
addresses treatment provided in one language (since each
patient is unique and can be rehabilitated only once). As
illustrated by the example patient (UTBA09), where the
patient was trained in the weaker language and the model
predicted the outcome correctly; the model also predicted
that training in the stronger language would have resulted
in even better outcome. Clearly, in order to confirm the
predictive power of the model we need to systematically
train patients based on the model’s predictions and then
compare the patient and model outcomes. In the interim,
the advantage of the model is that it can be used to estimate
what the best treatment for each individual patient might
be based on individual patient language histories and
language impairment, and thereby improve the state of the
art in rehabilitation of bilingual aphasia and is a unique
and novel approach in this field.

There are several limitations of this study. First, despite
the fairly large sample size (N = 17 patients with bilingual
aphasia); these patients were self-selected and therefore
the model and the patient treatment data do not reflect
every possible combination of AoA, language exposure
and language impairment/lesion. A more complete study,
where a large number of patients are treated with
alternative treatments and predictions matched with the
model, is warranted. Second, since this was a preliminary
examination of computational lesioning and retraining;
we kept the learning, lesion and retraining parameters
consistent across patients, possibly explaining the lack
of complete overlap between the patient and model data
in some cases. Again, a systematic examination of free
parameters that include varying the nature of language
exposure, lesion strength and location and learning rates
may reveal significant insights and may ultimately change
the field of bilingual aphasia rehabilitation specifically
and aphasia rehabilitation in general. We are currently
pursuing this line of work and have completed an initial
examination of the effect of lesion strength on naming
impairment in bilingual aphasia (Grasemann, Kiran,
Sandberg & Miikkulainen, 2012).

To summarize, the computational model described in
this paper is an innovative approach to predict optimal
rehabilitation protocols by simulating a bilingual language
system in which language representations can vary by
age of acquisition and relative proficiency, and are
subsequently lesioned and retrained to improve output
in order to facilitate the greatest amount of language
recovery in bilingual aphasia.

References

Abutalebi, J., Rosa, P. A., Tettamanti, M., Green, D. W., & Cappa,
S. F. (2009). Bilingual aphasia and language control: A
follow-up fMRI and intrinsic connectivity study. Brain and
Language, 109 (2–3), 141–156.

Baron, R., Hanley, J. R., Dell, G. S., & Kay, J. (2008).
Testing single- and dual-route computational models of
auditory repetition with new data from six aphasic patients.
Aphasiology, 22 (1), 1–15.

Bates, E., D’Amico, S., Jacobsen, T., Szekely, A., Andonova, E.,
Devescovi, A., Herron, D., Lu, C. C., Pechmann, T., Pleh,
C., Wicha, N., Federmeier, K., Gerdjikova, I., Gutierrez,
G., Hung, D., Hsu, J., Iyer, G., Kohnert, K., Mehotcheva,
T., Orozco-Figueroa, A., Tzeng, A., & Tzeng, O. (2003).
Timed picture naming in seven languages. Psychonomic
Bulletin Review, 10 (2), 344–380.

Beeson, P. M., & Robey, R. R. (2006). Evaluating single-subject
treatment research: Lessons learned from the aphasia
literature. Neuropsychological Review, 16 (4), 161–169.

Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). Time series
analysis: Forecasting and control (3rd edn.). Englewood
Cliffs, NJ: Prentice Hall.

Callan, D. E., Kent, R. D., Guenther, F. H., & Vorperian,
H. K. (2000). An auditory-feedback-based neural network
model of speech production that is robust to developmental
changes in the size and shape of the articulatory system.
Journal of Speech, Language, and Hearing Research, 43
(3), 721–736.

Caplan, D. (2004). The neuro in cognitive neuropsychology
[comment/reply]. Cognitive Neuropsychology, 21 (1), 17–
20.

Caramazza, A., Hillis, A., Leek, E., & Miozzo, M. (1994). The
organization of lexical knowledge in the brain: Evidence
from category- and modality-specific deficits. In L. A.
Hirschfeld & S. A. Gelman (eds), Mapping the mind:
Domain specificity in cognition and culture, pp. 68–84.
Cambridge: Cambridge University Press.

Costa, A., La Heij, W., & Navarrete, E. (2006). The dynamics
of bilingual lexical access. Bilingualism: Language and
Cognition, 9 (2), 137–151.

Croft, S., Marshall, J., Pring, T., & Hardwick, M. (2011).
Therapy for naming difficulties in bilingual aphasia: Which
language benefits? International Journal of Language &
Communication Disorders, 46 (1), 48–62.

Dell, G. S., Schwartz, M. F., Martin, N. M., Saffran, E. M.,
& Gagnon, D. A. (1997). Lexical access in aphasic and
nonaphasic speakers. Psychological Review, 104, 801–
838.

Dell, G. S., Schwartz, M. F., Martin, N., Saffran, E. M., &
Gagnon, D. A. (2000). The role of computational models
in neuropsychological investigations of language: Reply to
Ruml and Caramazza (2000). Psychological Review, 107
(3), 635–645.

Edmonds, L. [A.], & Kiran, S. (2004). Confrontation naming
and semantic relatedness judgements in Spanish/English
bilinguals. Aphasiology, 18 (5–7), 567–579.

Edmonds, L. A., & Kiran, S. (2006). Effect of semantic naming
treatment on crosslinguistic generalization in bilingual
aphasia. Journal of Speech, Language, and Hearing
Research, 49 (4), 729–748.

Farah, M., & Wallace, M. (1992). Semantically bounded anomia:
Implications for the neural implementation of naming.
Neuropsychologia, 30 (21), 609.

Faroqi-Shah, Y., Frymark, T., Mullen, R., & Wang, B.
(2010). Effect of treatment for bilingual individuals with



A computational account of bilingual aphasia rehabilitation 17

aphasia: A systematic review of the evidence. Journal of
Neurolinguistics, 23, 319–341.

Foygel, D., & Dell, G. S. (2000). Models of impaired lexical
access in speech production. Journal of Memory and
Language, 43 (2), 182–216.

Frances, N., & Kucera, H. (1982). Frequency analysis of English
usage. Boston, MA: Houghton Mifflin.

Grasemann, U., Kiran, S., Sandberg, C., & Miikkulainen,
R. (2012). Computational simulation of lexical-semantic
naming deficits in bilingual aphasia. Ms., The University
of Texas at Austin.

Grasemann, U., Sandberg, C., Kiran, S., & Miikkulainen, R.
(2011). Impairment and rehabilitation in bilingual aphasia:
A SOM-based model. Presented at the 8th Workshop on
Self-Organizing Maps (WSOM 2011), Espoo, Finland.

Green, D. W., Grogan, A., Crinion, J., Ali, N., Sutton, C., &
Price, C. J. (2010). Language control and parallel recovery
of language in individuals with aphasia. Aphasiology,
24 (2), 188–209.

Green, D. W., Ruffle, L., Grogan, A., Ali, N., Ramsden, S.,
Schofield, T., Leff, A. P., Crinion, J., & Price, C. J. (2011).
Parallel recovery in a trilingual speaker: The use of the
Bilingual Aphasia Test as a diagnostic complement to
the Comprehensive Aphasia Test. Clinical Linguistics &
Phonetics, 25 (6–7), 449–512.

Guenther, F. H., Hampson, M., & Johnson, D. (1998). A
theoretical investigation of reference frames for the
planning of speech movements. Psychological Review, 105
(4), 611–633.

Howard, D., Nickels, L., Coltheart, M., & Cole-Virtue, J. (2006).
Cumulative semantic inhibition in picture naming: exper-
imental and computational studies. Cognition, 100 (3),
464–482.

Junque, C., Vendrell, P., Vendrell-Brucet, J. M., & Tobena,
A. (1989). Differential recovery in naming in bilingual
aphasics. Brain and Language, 36 (1), 16–22.

Kaplan, E., Goodglass, H., & Weintraub, S. (2001). Boston
Naming Test (2nd edn.). Philadelphia, PA: Lippincott
Williams & Wilkins.

Keidel, J. L., Welbourne, S. R., & Lambon Ralph, M. A. (2010).
Solving the paradox of the equipotential and modular brain:
A neurocomputational model of stroke vs. slow-growing
glioma. Neuropsychologia, 48 (6), 1716–1724.

Kiran, S. (2007). Complexity in the treatment of naming deficits.
American Journal of Speech-Language Pathology, 16 (1),
18–29.

Kiran, S. (2008). Typicality of inanimate category exemplars
in aphasia treatment: Further evidence for semantic
complexity. Journal of Speech, Language, and Hearing
Research, 51 (6), 1550–1568.

Kiran, S., & Bassetto, G. (2008). Evaluating the effectiveness
of semantic-based treatment for naming deficits in aphasia:
What works? Seminars in Speech and Language, 29 (1),
71–82.

Kiran, S., & Iakupova, R. (2011). Understanding the relationship
between language proficiency, language impairment and
rehabilitation. Evidence from a single case study. Clinical
Linguistics & Phonetics, 25 (6–7), 565–583.

Kiran, S., & Johnson, L. (2008). Semantic complexity in
treatment of naming deficits in aphasia: Evidence from

well-defined categories. American Journal of Speech
Language Pathology, 17 (4), 389–400.

Kiran, S., & Roberts, P. M. (2010). Semantic feature
analysis treatment in Spanish–English and French–English
bilingual aphasia. Aphasiology, 24 (2), 231–261.

Kiran, S., & Roberts, P. M. (2012). What do we know about
assessing language impairment in bilingual aphasia? In
M. R. Gitterman, M. Goral & L. K. Obler (eds.), Aspects
of multilingual aphasia, pp. 35–51. Clevedon: Multilingual
Matters.

Kiran, S., Sandberg, C., & Sebastian, R. (2011). Treatment
of category generation and retrieval in aphasia: Effect of
typicality of category items. Journal of Speech, Language,
and Hearing Research, 54, 1101–1117.

Kiran, S., & Thompson, C. K. (2003). The role of semantic
complexity in treatment of naming deficits: Training
semantic categories in fluent aphasia by controlling
exemplar typicality. Journal of Speech, Language, and
Hearing Research, 46 (4), 773–787.

Kohnert, K. (2004). Cognitive and cognate-based treatments for
bilingual aphasia: A case study. Brain and Language, 91
(3), 294–302.

Kohnert, K. J., Hernandez, A. E., & Bates, E. (1998). Bilingual
performance on the Boston Naming Test: Preliminary
norms in Spanish and English. Brain and Language, 65 (3),
422–440.

Kohonen, T. (2001). Self-organizing maps. Berlin: Springer.
Kroll, J. F., & Stewart, E. (1994). Category interference in

translation and picture naming: Evidence for asymmetric
connection between bilingual memory representations.
Journal of Memory and Language, 33 (2), 149–174.

Ladefoged, P. (1982). A course in phonetics (2nd edn.). Fort
Worth, TX: Harcourt College Publishers.

Laganaro, M., Di Pietro, M., & Schnider, A. (2006). What
does recovery from anomia tell us about the underlying
impairment: The case of similar anomic patterns and
different recovery. Neuropsychologia, 44 (4), 534–545.

Li, P. (2009). Lexical organization and competition in first and
second languages: Computational and neural mechanisms.
Cognitive Science, 33 (4), 629–664.

Li, P., Farkas, I., & MacWhinney, B. (2004). Early lexical
development in a self-organizing neural network. Neural
Networks, 17 (8–9), 1345–1362.

Li, P., & Green, D. W. (2007). Neurocognitive approaches to
bilingualism: Asian languages. Bilingualism: Language
and Cognition, 10 (2), 117–119.

Li, P., & MacWhinney, B. (2002). PatPho: A phonological
pattern generator for neural networks. Behavior Research
Methods, Instruments, and Computers, 34, 408–415.

Li, P., Zhao, X., & MacWhinney, B. (2007). Dynamic self-
organization and early lexical development in children.
Cognitive Science: A Multidisciplinary Journal, 31 (4),
581–612.

Lorenzen, B., & Murray, L. L. (2008). Bilingual aphasia:
A theoretilcal and clinical review. American Journal of
Speech-Language Pathology, 17 (3), 299–317.

Meinzer, M., Obleser, J., Flaisch, T., Eulitz, C., & Rockstroh, B.
(2007). Recovery from aphasia as a function of language
therapy in an early bilingual patient demonstrated by fMRI.
Neuropsychologia, 45 (6), 1247–1256.



18 Swathi Kiran, Uli Grasemann, Chaleece Sandberg and Risto Miikkulainen

Miikkulainen, R. (1993). Subsymbolic natural language
processing: An integrated model of scripts, lexicon, and
memory. Cambridge, MA: MIT Press.

Miikkulainen, R. (1997). Dyslexic and category-specific impair-
ments in a self-organizing feature map model of the lexicon.
Brain and Language, 59, 334–366.

Miikkulainen, R., & Kiran, S. (2009). Modeling the bilingual
lexicon of an individual subject. Lecture Notes in Computer
Science, 5629, 191–199.

Moretti, R., Bava, A., Torre, P., Antonello, R. M., Zorzon, M.,
Zivadinov, R., & Cazzato, G. (2001). Bilingual aphasia and
subcortical-cortical lesions. Perceptual and Motor Skills,
92 (3.1), 803–814.

Plaut, D. C. (1996). Relearning after damage in connectionist
networks: Toward a theory of rehabilitation. Brain and
Language, 52 (1), 25–82.

Reggia, J. A., Gittens, S. D., & Chhabra, J. (2000). Post-lesion
lateralisation shifts in a computational model of single-
word reading. Laterality: Asymmetries of Body, Brain and
Cognition, 5 (2), 133–154.

Roberts, P. M., & Kiran, S. (2007). Assessment and treatment of
bilingual aphasia and bilingual anomia. In A. A. E. Ramos
(ed.), Speech and language disorders in bilinguals, pp. 109–
131. New York: Nova Science.

Schwartz, M. F., & Brecher, A. (2000). A model-driven analysis
of severity, response characteristics, and partial recovery
in aphasics’ picture naming. Brain and Language, 73 (1),
62–91.

Spitzer, M., Kischka, U., Guckel, F., Bellemann, M. E., Kammer,
T., Seyyedi, S., Weisbrod, M., Schwartz, A., & Brix,
G. (1998). Functional magnetic resonance imaging of
category-specific cortical activation, evidence for semantic
maps. Cognitive Brain Research, 6 (4), 309–319.

Tschirren, M., Laganaro, M., Michel, P., Martory, M. D., Di
Pietro, M., Abutalebi, J., & Annoni, J. M. (2011). Language
and syntactic impairment following stroke in late bilingual
aphasics. Brain and Language, 119 (3), 238–242.

Welbourne, S. R., & Lambon Ralph, M. A. (2005). Using
computational, parallel distributed processing networks to
model rehabilitation in patients with acquired dyslexia: An
initial investigation. Aphasiology, 19 (9), 789–806.

Welbourne, S. R., & Lambon Ralph, M. A. (2007). Using parallel
distributed processing models to simulate phonological
dyslexia: The key role of plasticity-related recovery.
Journal of Cognitive Neuroscience, 19 (7), 1125–1139.

Zhao, X., & Li, P. (2010). Bilingual lexical interactions in an
unsupervised neural network model. International Journal
of Bilingual Education and Bilingualism, 13 (5), 505–524.


