In Proceedings of the International Joint Conference
on Neural Networks (LICNN-92, Baltimore, MD), I1:901-906.

Data Rectification using Recurrent (Elman) Neural Networks *

T. W. Karjala and D. M. Himmelblau R. Miikkulainen
Department of Chemical Engineering Department of Computer Sciences
University of Texas at Austin University of Texas at Austin
Abstract

Nonlinear programming techniques are used to train Elman(1990) type simple recurrent neural net-
werks to reconcile simulated measurements for a simple dynamic system, a draining tank. The neiworks
are trained in a batch mode using the BFGS quasi-Newton nonlinear optimization algorithm. Noisy data
are used for both training the networks and testing network performance. Recurrent Elman networks
are able to significantly reduce the noise level in the process measurements without explicit knowledge

- of the nonlinear dynamics of the system.

1 Introduct ioﬁ

Rarely does the overall amount of raw material processed and energy furnished to a modern chemical plant
or refinery exactly match the amount of product produced or energy consumed because of inaccuracies in
the measurement of the process variables. It is the goal of data rectification to compensate for these random
and nonrandom measurement errors by making suitable adjustments to the measurements. For steady state
processes, methods have been developed that first detect and remove nonrandom or gross measurement errors,
and then perform constrained weighted least squares minimization to make the adjustments[10, 1, 9, 6, 2, 5).
Others have applied nonlinear programming techniques directly to the dynamic process[7]. Both methods
are limited to processes for which accurate models exist complex. The recurrent neural network approach
outlined in this paper can be applied, provided sufficient historical data exist, to processes for which the
detailed knowledge required to build accurate dynamic models is lacking.

2 Data Rectification and Neural Networks

Neural networks provide an alternative approach for data rectification. All current methods that have been
proposed utilize redundancy in the plant measurements and explicit expressions for the plant model and/or
constraints. More process variables are normally measured than are absolutely necessary to specify the state
of a process given knowledge of the constraints, and the values of these variables can be adjusted so that the
constraints are satisfied. It is proposed that neural networks be trained to used the redundancy in the plant
measurements and knowledge of the process to rectify the raw data (Figure 1). Ideally, with a feed-forward
network, inaccurate plant measurements at a given time would be used as the network inputs and the “true”
values of the measurements would be used as the targets of the network during training. For real plant
data however, the true values of the measured variables are not known and thus optimal target patterns for
network training are not available. By reposing the problem as a modeling or time series prediction problem
and asking the network to predict the current set of measurements based on past measurements, the lack of
suitable targets can be avoided.

*This research was supported in part by Shell Development Corporation

3 Nonlinear Programming and Elman Networks

Many researchers using neural networks for time series prediction have chosen to “parallelize time” by
incorporating a moving window of input values for standard feed-forward networks. The past N values
of the M input variables might be used simultaneously as the network inputs resulting in networks with
NxM input nodes. The length of the data window N must be long enough to capture the dynamics of each
variable, but the number of nodes must be kept to 2 minimum in order to minimize the size of the network.
In general, the size of the data window must be determined by trial and error, and each input variable in a
multivariate time series should have a separate data window size for optimal performance. This simply adds
to the number of parameters that must be tuned by trial and error when using a standard back-propagation
training technique.

There has recently been considerable interest in using recurrent network architectures for time series
prediction. Recurrent networks include links between nodes that feedback signals to other nodes on the
same or prior layers. This provides networks with internal states and a form of memory. As a result,
recurrent networks provide more than the simple 1-to-1 mapping of feed-forward networks. The outputs
of such networks depend not only on the current inputs but also on previous inputs. Time is represented
implicitly rather than explicitly through the use of a moving window.

The recurrent Elman architecture was chosen for this work because of its simplicity [3]. This architecture
is similar to the standard feed-forward architecture with layers of input units, hidden units, and output units,
but also includes a set of context units which save the prior activation of the hidden units and feedback the
stored activation of the previous cycle to the hidden units in a fully connected manner (Figure 2). For the
application under consideration, the input vectors correspond to the plant measurements at a given time
step and the target vectors are the plant measurements at the next time step. The number of hidden nodes
1s equal to the number of context nodes and must be adjusted to fit the problem at hand. The input layer
and the hidden layer had one bias node each, and Gaussian activation functions were used throughout the
network. Our experience has shown that Gaussian activation functions give superior results when compared
to sigmoidal functions.

Most recurrent and ordinary feed-forward networks used today are trained using some form of back-
propagation. Back-Propagation is actually a form of gradient descent and a good derivation can be found
in [4]. The goal is to minimize the squared error between the actual network outputs and the target values
by adjusting the weights in the network for all the output nodes i and patterns t:

minimize E[w] = % Z Z(Tse - 04)* (1)
T 3

Gradient descent is one of the simplest but also one of the slowest unconstrained optimization methods.
Much better algorithms exist and are described in relation to neural networks in [11]. The single most
popular method today for unconstrained optimization is the BFGS quasi-newton algorithm. For a detailed
theoretical discussion see [8]. This method has consistently outperformed other methods on comparably
sized problems. This algorithm is commonly available in most standard numerical libraries for workstations
and mainframe computers.

The Elman networks used in this work were trained in batch mode, for a entire time series at a time. A
subroutine was written to return the value of the above error, E, as a function of the network weights and
training set. This subroutine was interfaced to a standard optimization package which iteratively adjusted the
weights of the network until an optimum was found. By using the BFGS nonlinear programming algorithm,
it was possible the avoid the time consuming tuning of learning rate and momentum required for optimal
training using the back-propagation algorithm. We have found that adjustment of the weights via NLP takes
as little as 10% of the time used by back-propagation.

4 An Example Dynamic System

To generate simulated measurements in time for network training and testing, one of the simplest dynamic
systems found in engineering practice was used, namely the draining tank (Figure 3). In this system, the
exit volumetric flow rate ¢ is a function of the liquid level height h, and various physical parameters such as

liquid density p, valve coefficient C,, and gravitational constant g:

g =Cy\/pgh (2)

The height of the liquid level in the tank is governed by the first order, nonlinear differential equation

dh
A =4~ Co/pgh - (3)

where A is the cross-sectional area of the tank and g¢; is the input flow rate to the tank. These equations
were de-dimensionalized so that ¢;, &, and ¢ ranged from 0 to 1. This system was numerically integrated to
generate time series data as a function of ¢; and time for the three measured variables. Noise was added to
each measured variable using

y=n+e (4)
where y was the simulated measurement, was the true value generated from the solution of (2) and (3),
and € was the random measurement error generated from

€ = p(0.05) (5)

where p is a normally distributed variable with zero mean and unit variance. The resulting random mea-
surement errors had zero mean and variance of 0.0025 and were independent of measurement magnitude.

5 Results for Example Problem

The liquid level h, from a typical training set is shown in Figure 4 without measurement errors. This same
variable from a typical test set is shown in Figure 5. This data was generated by integrating the response of
the system with respect to step changes implemented at different times in the input flow rate. In Figure 6,
the output of a network with three hidden nodes is shown for a noisy test set. Note that the network is
able to follow the dynamic changes that occurred when the input flow rate was stepped from one value to
another. Table 1 shows the reduction in variance of the measurement noise accomplished by this network.
These variances were calculated for the deviation 6, between the true values of the measurements and the
network’s predictions for each time step:

& = (U‘net = f})t (6)
Note that the output variance decreased by an order of magnitude for h and ¢ but increased for the input flow
rate g; in both the training and test sets. Both h and g are smooth functions of time but ¢; is discontinuous
as shown in Figure 7.

For a network trained on data generated by repeatedly ramping the input flow rate as shown in Figure 8,
the results in Table 2 were obtained. In this case the output variance of all the errors were reduced by an
order of magnitude for the training set, but the test set output variance decreased by an order of magnitude
for & and g but increased to 0.013 for the input flow rate. The reconciliation performance of the network for
the liquid level is shown in Figure 9. .

In an effort to determine the best performance of this network configuration on this problem, one network
was trained with noisy input vectors and with the actual, noise free target vectors for the measurements
from the ramped input flow data. This represents the ideal case in which the true values of the variables are
available for training. The results are shown in Table 3. Figure 10 shows the network performance for the
liquid level. Note that in this case the network was able to reduce the variance for all three variables.

The choice of Elman networks with three input nodes, three hidden nodes, three context nodes and three
output nodes was based on qualitative examination of network performance on rectification of the liquid
level measurement. It is probable that other configurations could be found that would do a better overall
Job if suitable quantitative criteria was used to select the optimal network size.

6 Conclusions

The Elman recurrent architecture was able to significantly reduce the noise level in simulated process mea-
surements for the simple dynamic system studied here. The network improved the precision of the smooth

variables A and ¢ but increased it for the discontinuous or piecewise continuous variable ¢;. These results
were obtained by training the networks only on the noisy measurements, without an explicit equation for
the process model. It should be possible to apply these techniques to actual process data. Maximum per-

formance was obtained by training the network with

such target data is not normally available in practice.

noisy inputs and with the true, noiseless outputs but

The networks were trained using straightforward, unconstrained nonlinear optimization techniques. This
made it possible to avoid the trial and error associated with tuning the learning rate and momentum terms

required in the various back-propagation algorithms.

The random measurement errors used in this work were uncorrelated and purely Gaussian in nature.
Future work will investigate the effect of correlated errors, gross errors, and biases on network performance.

— |
nolsy
urat = —— reconclled
Ilrr‘tgg:uremaents —] NN . measurements
—]

Figure 1: Data Rectification using a Neural Net-
work.

q;

1ﬁ

"

Figure 3: A Simple Dynamic System, The Drain-
ing Tank.

ﬂ
I
\
L

% q

height —

height
-
»

Output unlts

1]Hidden unlts

| | [|
Input unlfs Context units

Figure 2: The Elman Architecture.

1 T T T T
0.9 [

T
height —

0.7 F

hetght

3 N
400 1000 1202 1400

Figure 4: Liquid Level k from the Step Training
Set.(Before the addition of measurement noise)

Table 1: Data Rectification Results. Network
with three hidden nodes trained on noisy step data.

ﬂﬁ/\M I‘*
LA

1000 1208
time

Figure 5: Liquid Level i from the Step Testing
Set.(Before the addition of measurement noise)

input output
measure- error error

ment variance | variance

Training qi 0.0025 0.0051
Set h 0.0025 | 0.00032

q 0.0025 | 0.00040

Testing qi 0.0025 0.0049
Set h 0.0025 | 0.00026

q 0.0025 | 0.00023

7 Nomenclature

cross-sectional area of tank

valve coefficient

training set error

gravitational constant

height of liquid in tank

output node index

activation of output node i at time ¢
input flow rate

output flow rate

; target value for output node 7 at time ¢
time, time index

vector of network weights

simulated measurement

deviation between measured value and network
prediction

€ random measurement error

network prediction of measured variable
true value of measured variable
normally distributed variable with zero mean
and unit variance

liquid density

References

[1] C. M. Crowe. The maximum-power test for
gross errors in the original constraints in data
reconciliation. In Proceedings of the PSE 91,
pages I1.7.1-14, Montebello, Canada, August 5-
9, 1991 1991.

C. M. Crowe, C. Y. Garcia, and A. Hrymak.
Reconciliation of process flow rates by matrix
projection, Part I: Linear case. AIChE Journal,
29:881, 1983.

2]

[3] J. L. Elman. Finding structure in time. Cognitive
Science, 14(2):179-211, 1990.

[4] J. A. Hertz, A. S. Krogh, and R. G. Palmer. In-
troduction to the Theory of Neural Computation.
Addison Wesley, 1991.

[5] C. D. Iordache, R. S. H. Mah, and A. C.
Tamhane. Performance studies of the measure-
ment test for detection of gross errors in process
data. AIChE Journal, 31:1187, 1985.

[6] J. Y. Keller, M. Darinach, and G. Krzakala.
Gross error estimation in linear steady state sys-
tems. In Proceed. IFAC/IMACS Symp. “SAFE-
PROCESS 917, pages 211-214, Baden-Baden,
September 10-13 1991.

n

network input -
network output —

hetght

-0.2

1 "
L] 208 400 w00 1200

Figure 6: Rectification of the Liquid Level for
Step Changes in Input Flow Rate. The Elman
network was trained using data containing measure-
ment noise in both the input patterns and target
values.

[7] I-W. Kim, M. J. Liebman, and T. F. Edgar.
Robust error-in-variables estimation using non-
linear programming techniques. AICKE Journal,
36(7):985-993, 1990.

D. G. Luenberger. Linear and Nonlinear Pro-

grammang. Addison Wesley, second edition,
1989. .

[9] H. Takiyama,Y. Naka, E. O’Shima, and A. Adri-
ani. Sensor-based data reconciliation method
and application to the pilot plant. Jour-
nal Chemical Engineering Japan, 24(3):339-346,

1991.

[10] A. C. Tamhane and R. S. H. Mah. Data rec-
onciliation and gross error detection in chemi-
cal process networks. Technometrics, 27(4):409-

422, 1985.

R. L. Watrous. Learning algorithms for connec-
tionist networks: Applied gradient methods of
nonlinear optimization. Technical Report MS-
CIS-88-62, Department of Computer and In-
formation Science, University of Pennsylvania,
1988.

flow in

N L L "
9 200 400 (1] L 1000 1200

Figure 7: Input Flow Rate g; for the Step Train-
ing Set.(Before the addition of measurement noise)

flow in —

flow in

200 400 (4] w00 pe-1-] 1200 laco

Figure 8: Input Flow Rate ¢; for the Ramp
Training Set.(Before the addition of measurement
noise)

height

" " " L L
° 200 400 600 w00 1000 1200 1400

Figure 9: Rectification of the Liquid Level for
Ramp Changes in Input Flow Rate. The Elman
network was trained using data containing measure-
ment noise.

T
netwerk inmput -
retwork output —

haight

. i 2
¢ 220 400 €00 L1 1000 1202 1400

Figure 10: Rectification of the Liquid Level for
Ramp Changes in Input Flow Rate. The Elman
network was trained using data containing measure-
ment noise in the inputs but with the true values as
targets.

Table 2: Data Rectification Results. Network
with three hidden nodes trained on noisy ramp data.

input output
measure- error error
ment variance | variance
Training qs 0.0025 | 0.00066
Set h 0.0025 | 0.00028
q 0.0025 | 0.00041
Testing gi 0.0025 0.013
Set h 0.0025 | 0.00027
q 0.0025 | 0.00030

Table 3: Data Rectification Results. Network
with three hidden nodes trained on clean ramp data.

input output
Imeasure- error error
ment variance | variance
Training qi 0.0025 0.00062
Set h 0.0025 0.00026
q 0.0025 0.00022
Testing qi 0.0025 0.00074
Set. h 0.0025 0.00039
q 0.0025 0.0018

