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Abstract

Intellectual expertise means knowledge and ability that a per-
son has that allows them to solve complex problems. It is im-
portant to understand how people become experts so that we
can improve educational strategies, and help learners achieve
their full academic potential. Unfortunately, the processof ac-
quiring intellectual expertise is not well understood. Artificial
neural networks (ANNs) have already been successful in mod-
eling other types of human learning. This paper shows that
they can also be trained as a model of expert human learning,
and address many of the difficulties found in trying to study
expertise in humans. The results confirm three hypotheses:
(1) An artificial neural network can be used as a model to in-
vestigate how people learn under different training scenarios;
(2) Different methods for delivering the training materialre-
sult in different final performance; (3) The best performance
is achieved by incrementally increasing the complexity of the
material. These results provide educators with computational
evidence that structured, integrated delivery methods arebet-
ter for learners than oversimplification and isolation of learning
tasks.

Introduction
An intellectual expert has achieved a level of cognitive de-
velopment in which she or he can rapidly grasp subtleties of
complex problems, and produce very high quality solutions.
A goal of formal education is to help students achieve an ex-
pert level of understanding in their chosen field. It is im-
portant to understand the nature of expertise so that we can
improve educational strategies. As a result of many research
studies about expertise, we know a lot about the characteris-
tics of experts. However, there is a lot we do not understand
about how to become an expert. It is not easy to create ex-
perts, whether human or computational. The learning process
is complex and human studies are difficult. Understanding
how to acquire intellectual expertise has proven elusive for
educators, psychologists and students alike.

A primary goal of the study reported here is to increase un-
derstanding of the process by which humans become intellec-
tual experts. In particular, how can people develop the ability
to look at a problem statement and immediately select the best
solution strategy? The second main goal is to understand this
process in the context of formal instruction; specifically,how
does the strategy by which material is delivered to the learner
affect learning and conceptual development?

This paper presents results from a series of computational
experiments examining how different delivery methods in-
fluence learning and conceptual development. These experi-
ments use a real-world adult educational problem: the ability

to identify correct solution strategies for calculus integration
problems. The goal is to show that an artificial neural net-
work can be used as a model to investigate how people learn
under different training scenarios, and that different delivery
methods result in different overall performance. The main
results include: (1) errors are higher on final exams when dif-
ferent problem types are learned in isolation; (2) cramming
just prior to taking final exams does not significantly improve
performance. Different delivery strategies affect learning in
different ways: (1) traditional sequential delivery methods
inhibit learning and retention; (2) integrated delivery meth-
ods increase learning and retention; (3) the best performance
comes from delivery methods that incrementally increase the
complexity of material. These results can be applied to devel-
oping better training methods for people.

Prior Research on Intellectual Expertise
Studies of human expertise and understanding have revealed
key information about experts. We know that experts and
novices categorize problems differently, and that this cate-
gorization takes place before the subject attempts to solvethe
problem (Chi, Feltovich, and Glaser 1981). We also know
that experts can categorize problems without solving them
(Robinson and Hayes 1978). Finally, there is strong evidence
that routine problems are solved not by intense calculating
but rather by recognizing a type of problem (categorizing)
and then using the stored knowledge about how to solve prob-
lems of that type (Reiman & Chi ’89 referenced in (Ross and
Spalding 1991).

Most studies of expertise have focused on what an expert
knows, rather than the process by which she or he attained
expertise. As a result, we know a lot less about this learn-
ing process than we do about expertise itself. Expert be-
havior does not simply follow a script: the greatest exper-
tise is the result of long-term practice (Hayes 1989) that is
consciously goal directed, self-monitoring, and self-adjusting
within the setting of each particular task (Garner 1990). In
addition, many studies have shown that meta-cognition (self-
appraisal and self-management of cognition) is critical for
successful academic learning (literature surveyed by Paris
and Winograd (1990)). Since we know that experts catego-
rize extremely well, it is possible that categorization ability
and goal-directed meta-cognition enhance one another. When
these abilities merge, intuition may be the result: there is
strong evidence that experts rely upon their accurate intuition
and a holistic recognition of appropriate actions (Dreyfusand
Dreyfus 1986).
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Cognitive scientists have often studied mathematics learn-
ing, due to the abstract nature of its concepts. Bruner has even
suggested that learning mathematics may be viewed as a mi-
crocosm of all intellectual development (Bruner and Kenney
1965). A particularly interesting early connectionist model of
mathematics learning was presented by Viscuso, Anderson,
and Spoehr (1989). Their artificial neural network (ANN)
simulated qualitative reasoning while doing multiplication.
In summarizing their model, Viscuso et al correctly pointed
out that the most important contribution of their model was
that it mimicked the manner in which experts rely not so
much on formal logic and rules but on their ”sense” of what is
correct. Another interesting ANN system learned to perform
arbitrarily long addition problems (Cottrell and Tsung 1993).
Their model learned the implicit underlying rule of addition.
This system showed that ANNs can account for conceptual
development: the network learned an important concept on
which it had not been explicitly trained. In the decade since
these studies were published, there has been quite a bit of
work in related areas, such as the development of basic nu-
merical abilities in infants and children (literature surveyed
in (Ahmad, Casey, and Bale 2002)), and in childhood strategy
development (Bray, Reilly, Villa, and Grupe 1997). However,
we still do not understand how adult human experts learn to
“sense” important concepts. It is important to understand this
ability, so that we can better educate students.

The Calculus Domain
Calculus, at its most fundamental level, is based upon abstract
cognitive concepts. As a result, understanding how people
best learn calculus requires understanding the mind. The cur-
rent educational debates over mathematics and science ed-
ucation partly result because we do not understand enough
about how the brain produces cognition and conceptual un-
derstanding. In order to become calculus experts, students
need to understand complex concepts and intuitively select
the most efficient methods to solve problems. Educators need
to understand what methods of delivering material will most
help students achieve these abilities.

In the last decade math and science have been at the center
of an increasingly wide-spread national concern with prop-
erly educating citizens for the new technological age. In col-
lege, students who want to major in science or engineering
usually have to first perform well in calculus, which turns out
to be a major obstacle for many of them.

In order to clearly identify what kinds of problems calculus
students were having at at the University of Texas at Austin
(UT), we conducted structured interviews with mathematics
faculty and teaching assistants (TAs). The results fit well
with the psychological literature on expert/novice behavior.
Faculty and TAs reported that novice learners (in this case
UT students) are often unable to select the correct solution
strategy. This problem arises before they even have a chance
to exhibit computational difficulties and prevents many from
reaching timely, correct solutions. Conversely, the experts
claimed an ability to ”just see” the correct strategy, yet were
unable to articulate how they knew. Probing revealed that al-
though there are ”rules of thumb” to assist in this domain,
they are not comprehensive and do not cover many common
scenarios. Experts instead pointed to general patterns andcat-

egorization that they have learned to recognize via extensive
practice.

Successful problem solvers categorize math problems
based upon underlying structural similarities and fundamen-
tal principles (Schoenfeld and Herrmann 1982). These cate-
gories are often grouped based upon solution strategies, that
the experts then use to calculate an answer (Owen and Sweller
1989). How such strategies are formed is poorly understood.
What regularities are most likely to be noticed, and how does
the form in which the initial procedure is learned affect what
is noticed? From the point of view of education, are there
ways of managing how learners practice, to enhance the like-
lihood that they will notice these regularities, and incorporate
this information into their problem-solving strategies?

One of the first instructional decisions is what order to
present the material in, and how to move from one concept
to the next. There are many possible orderings of material,
and a computational model can be used to explore them. The
model presented in this paper, described in the next section,
contributes to achieving this research goal.

The ANN Model
The particular calculus problem chosen for the study is
to decide whether a given integration problem should be
solved with Simple Integration (Simple), Integration by U-
Substitution (Usub), or Integration by Parts (Parts). Thissec-
tion describes the architecture of the artificial neural network
as well as the training and test data, its encoding, and the ex-
perimental methods used in all the experiments described in
this paper.

Architecture and Data
The model is an artificial neural network utilizing the back-
propagation algorithm (for details of the algorithm see Bishop
1995) created using the LENS network simulator (Rohde
1999). The network is fully connected, and has 55 input
nodes and 20 hidden nodes. The 55 input nodes make up
a vector large enough to represent the features of one cal-
culus integration problem containing up to four terms. The
20 hidden units were determined to be appropriate by exper-
imentation; the results were not effected by small changes in
size.

The input data consists of 957 calculus integration prob-
lems based upon examples found in college level calculus
textbooks. Feature coding is a logical choice for represent-
ing them, given that both novices and experts use the features
of a problem to determine which approach to use (Chi et al.
1981). The 55 unit input vector contains a series of 0s and 1s
that map operators/operands to their location in the calculus
integration problem. Short problems are padded with blanks.
The vector consists of� Four 2-unit terms representing constants and variables.� Four 8-unit Unary Operators, representingsin; os; tan; ot; se; s; ln, exponentiatione(x).� Three 5-unit Binary Operators, representing multiplica-

tion, division, exponentiation̂, addition, subtraction.

For example, the problem3 + os(x) � sin(y) + ln(x)



is coded in postfix form as: 01 00000000 10 01000000 00
10000000 10 00000010 00010 00001 00010, where the
components are

01 : No Variable; Constant (i.e.3)
00000000 : NONE (i.e. no unary operator for the constant)
10 : Variable (i.e.x); No Constant
01000000 : cos (of the variablex)
10 : Variable (i.e.y); No Constant
10000000 : sin (of the variabley)
10 : Variable (i.e.x); No Constant
00000010 : ln (of the variablex)
00010 : +
00001 : -
00010 : +

The network has three output nodes, each of which repre-
sents one of the possible integration strategies, Simple, Usub,
Parts. Because the network is trained with one active target
at a time, it learns to represent how confident it is in each
choice (Bourlard and Wellekens 1990). For example, if the
network reports activation values at 12%, 85%, 3%, then it is
quite confident in the second category, considers the first cat-
egory possible but unlikely, and the third category extremely
unlikely (but not absolutely impossible). This percentagerep-
resents theconfidence levelthat the network has in each an-
swer.

Experimental Design

The calculus integration problems were divided into 10-fold
cross-validation training and test sets (splits, or learning ex-
periments). In each experiment the training set was input to
the network, one problem at a time, in random order, and the
test set was used to measure performance. Validation sets
were not used because each learning experiment represented
training one subject and the training time had to be constant,
to compare how well the subjects learned. Three different
types of learning experiments were run. Each experiment was
run ten times, randomly resetting the initial network weights
each time. Thus the whole study consisted of 300 learning
experiments. This way it was possible to model the behav-
ior of many different subjects and watch for both emergent
patterns and individual variation.

During the test phase, there was always only one correct
answer to a problem. This answer, called the ”Best”, was
the answer suggested in a textbook, or by a calculus expert
(faculty, TA). For each test problem the network reported how
confident it was that the solution strategy was either Simple,
Usub or Parts. If the confidence level for all solutions was
below 80%, the problem was considered having ”stumped”
the network.

Results

Two sets of experiments (Drill and Test, Fully Integrated
Learning) validated the ANN as a model of human learning.
These experiments showed that the model accurately matches
results from past educational research. In addition, theseex-
periments provide insight into how the learning process oc-
curs. The third set of experiments provided a computational

prediction that a different type of learning (Incremental)pro-
duces the best performance.

Validating the Model: Drill and Test Learning
The first set of experiments, called “Drill and Test”, mim-
icked a classic form of delivery that results in poor long-term
retention in humans (Resnick and Ford 1981). In this method,
concepts are introduced to the learner one at a time, with no
overlap between topics. At the end of each topic, the learner
is given a midterm exam (of previously unseen examples) on
that concept.

After it has been trained with all concepts, the learner is
given an opportunity to “cram”, i.e. train on all concepts for
a short period of time. At the end of all material, there is a
comprehensive exam consisting of the entire test set.

In order to monitor the progress of learning quantitatively,
and to compare to other approaches, each network was also
tested during each epoch in two ways: (1) with the current
midterm exam, illustrating the performance that the teacher
would see in the classroom (Figure 1a), and (2) with the com-
prehensive exam, monitoring progress in learning the entire
task, but broken into separate numbers for the different con-
cepts (Figure 1b).

The main result was that the model, like humans, only re-
members the most recently introduced concept well. More
specifically, in 100 experiments run using Drill and Test, most
networks (83%) rapidly learned to identify each of the con-
cepts in turn (Simple, Usub, Parts). On midterm exams, the
network often recognized 100% of the problems belonging
to the concept that had just been studied. However, in spite
of the opportunity to cram first, when the comprehensive fi-
nal exam was given, these learners performed poorly, averag-
ing 41.65% (standard deviation 6.35). The highest score was
54.55%. The remaining 17% of network learners were un-
able to make the switch from Simple to Usub problems, and
then to Parts problems: their Usub and Parts midterms usually
scored 0%. When these learners crammed and then took their
comprehensive exams, they scored on average 17.29% (stan-
dard deviation 4.95), with a high score of 26.92% All learners
in these experiments were extremely confident in their an-
swers, even when they were wrong.

Validating the Model: Fully Integrated Learning
A second set of experiments mimicked human learning us-
ing an approach called “Fully Integrated Learning”. This
approach is inspired by the immersion experiences popular
in foreign language learning (Spolsky 1989): the learner is
placed in an environment where she or he is completely sur-
rounded by the stimuli to be learned. The cognitive mecha-
nisms that enable a foreign language student to sort out im-
portant grammatical features might not be that different from
those cognitive mechanisms that sort out features of mathe-
matical structures. In the Fully Integrated Learning experi-
ments, there was only one training period, during which the
networks were trained on all of the problem types simultane-
ously. During each epoch, the Simple, Usub and Parts train-
ing problems were input to the network in random order. Ex-
ams using the entire test set were given after every training
epoch.

Fully Integrated Learning produced significantly better re-
sults than the Drill and Test delivery experiments (Figure



Figure 1: Drill and Test Learning. (a) The classroom perfor-
mance of 12 representative learners, i.e. their accuracy onthe cur-
rent midterm (Simple, Usub, Parts, Cram periods) and comprehen-
sive exam. Exam scores are on the y-axis, and the training epoch
is shown along the x-axis. Scores on the comprehensive exam were
poor - even with the aid of a cram session the highest score was
54.55%. (b) The average performance of all learners on the com-
prehensive exams, broken down by concept. Each problem typeis
forgotten when a new topic is learned.

2). The average score on the final comprehensive exam was
76.99% (standard deviation 7.94). The highest score was
80.76%. In contrast to Drill and Test, confidence in Fully
Integrated learning closely reflected exam scores. The errors
that were made on the exams followed a pattern of slow, grad-
ual learning, spread across all problem types. The Fully In-
tegrated Learning results as a whole replicated human data
showing that immersion results in better longer-term reten-
tion than does Drill and Test.

Extending the Model: Incremental Learning

The third set of experiments was designed to test the hypoth-
esis that the best learning of material is obtained by a deliv-
ery approach called “Incremental Learning”. This approach
is inspired by the result in the machine learning community
that it is often most effective to tackle large computational
tasks by starting with small problems and gradually increas-

Figure 2: Fully Integrated Learning. (a) The classroom perfor-
mance of 12 representative learners on the comprehensive test set
over the course of learning. The learners initially failed the exams,
but their scores rapidly increased, and finally plateaued. Improve-
ment was not smooth, reflecting the trial and error process oflearn-
ing. The best exam score was 80.76%. (b) Average performanceof
all learners broken down by concept. Usub problems were learned
fastest, Simple problems slowest. Final results for Simple, Usub and
Parts were similar.

ing their complexity (Elman 1991; Gomez and Miikkulainen
1997). When there are a large number of co-dependent vari-
ables, it is hard to discover the role that each one plays in the
problem and its solution. Therefore, an Incremental Learn-
ing delivery introduces new, increasingly complex concepts
along with reinforcement of old concepts.

As with the Drill and Test experiments, there were three
training periods. The network was first trained to identify
Simple problems. During the second training period, Usub
problems were added to the Simple problems, and for the
third training period, Parts problems were added. The class-
room performance was measured with Simple tests during
the the first period, Simple and Usub test problems during
the second, and the entire test set during the third (Figure
3a). The progress in learning the entire task was monitored
with the entire test set, broken down by concept (Figure 3b).
As in the Drill and Test experiments, Simple-only midterms
very rapidly reached scores of 100%. When Usub prob-



lems were introduced, test scores began to fluctuate severely.
Scores would drop to, or near, zero, rebound, and then drop
again, as the network struggled to distinguish the new con-
cept (Usub) from the old concept (Simple). Over time, al-
though fluctuation continued, overall test scores increased. In
a few cases, SU midterm scores reached 100%, however the
majority of cases peaked at 70-75%. When Parts problems
were introduced, the pattern of fluctuating scores was accen-
tuated. Midterm scores immediately plummeted, although it
is interesting to note that even the downward drop was often
not smooth, but marked by brief plateaus and recoveries. Per-
formance continued to deteriorate for longer than in the SU
training segment, with scores fluctuating lower and lower. In
contrast to the SU midterm scores, SUP midterm scores ap-
peared to tighten in closer and closer to complete failure (for
a while nearly all midterms fluctuated well under 20%). This
behavior is predictable, because it is harder to distinguish
three concepts from one another than two concepts. Even-
tually, performance began to improve, with prominent indi-
vidual differences, as each network learner identified subtle
patterns to accurately identify each concept. Eventually,vir-
tually all midterm scores surpassed 70%. The average score
on the final comprehensive exam was 81.9% (standard devia-
tion 8.23). It is important to note that the final test resultsfor
Incremental Learning were better than either Drill and Test
or Fully Integrated Learning, in spite of interim results that
sometimes appeared poorer than either other type of exper-
iment. The maximum exam SUP score was 95.6%, higher
than any score reached in a Fully Integrated learning exper-
iment. As evaluated with a t-test, the Incremental Learning
final exam scores were higher than those of the Fully Inte-
grated learning (t = 1:9574; df = 11:869; p = 0:07423).

The types of errors that the network made followed a pat-
tern. As each new training period began, the network ap-
peared to “flail”, choosing first one answer then another on
successive exam questions. However, this “flailing” gradu-
ally lessened and the network learned to correctly select each
problem type simultaneously. As with the Fully Integrated
Learning experiments, the learners’ confidence levels closely
reflected exam scores. The Incremental learning experiments
showed that the best performance is achieved by introducing
increasingly complex concepts gradually, allowing learners
to build on their existing knowledge, and gradually pay more
attention to finer distinctions.

Discussion and Future Work

Calculus integration problems that are often given to novice
learners were used to study the process of learning to accu-
rately categorize them by solution strategy. These strategies -
Simple Integration, Integration by U-substitution, Integration
by Parts - represent complex concepts that students need to in-
tuitively master in order to become calculus experts. Drilland
Test experiments and Fully Integrated experiments validated
the model by showing that it can mimic known data about hu-
man learning. Drill and Test experiments supported the hy-
pothesis that delivery methods that rigidly separate concepts
during learning result in poor long-term retention of material.
Also supported was the hypothesis that when concepts are
reinforced inconsistently, only the most recently introduced
concept is remembered, and that cramming does not improve

Figure 3: Incremental Learning. (a) The classroom perfor-
mance of 12 representative learners on the current midterm (Simple,
Simple-Usub, Simple-Usub-Parts). The maximum comprehensive
exam score was 95.6%, higher than any score reached in a FullyInte-
grated learning experiment. (b) Average performance of alllearners
broken down by concept. Each problem type followed the same pat-
tern of fluctuation between learning and apparent forgetting. Over
time fluctuation lessened and performance improved for all problem
types. Simple problems fluctuated the most and the longest.

learning. The nearly perfect midterm exam scores seen in
Drill and Test experiments were misleading. They implied
a level of interim learning and understanding which was not
supported when the final exam require the learner to distin-
guish complex concepts.

Fully Integrated learning experiments supported the hy-
pothesis that if problems that belong to one concept are in-
troduced along with problems that belong to other concepts,
error rates are smaller than when the same concepts are in-
troduced separately. Over time, Fully Integrated learnersper-
formed quite well on their exams and although they are not
perfect, can be claimed to have learned the task.

The results for Incremental Learning were very different
from either Drill and Test or Fully Integrated learning. By
introducing new problem types in a structured manner, the



network learner is allowed to focus on a smaller set of charac-
teristics at the beginning of learning. Just as the first concept
(Simple integration problems) is acquired, additional prob-
lems (Usub) are mixed in. The resulting confusion is apparent
in the fluctuating midterm scores. Over time, as the learner
grapples with the two contrasting problem types, confusion
diminishes and midterm scores rise. When Parts problems
are introduced, it becomes again more difficult to discrimi-
nate between the concepts. However, it is far more difficult
to compare three related problem types than two. The confu-
sion lasts longer and is more difficult to resolve, and individ-
ual learner differences become more apparent. Fortunately,
the ”priming” effect of the previous training segments allows
most Incremental Learning learners to eventually do well, and
in most cases better than the Fully Integrated learners.

An interesting direction of future research is to analyze the
conceptual development that took place in the model during
the different types of delivery methods. Using techniques
such as Independent Component Analysis (ICA) of hidden
layer representations it may be possible to discover how the
network learners represent the problems as the learning pro-
gresses. In addition, the predictions on Incremental Learning
can be tested in a study with human subjects. If confirmed,
these results strongly suggest that a structured incremental
approach should be used in teaching for expertise.

Conclusion
The experiments reported in this paper support the following
three hypotheses: 1) An artificial neural network can be used
as a model to investigate how people learn under different
training scenarios 2) Different delivery methods result indif-
ferent overall performance 3) Incremental Learning results in
better performance than either Drill and Test or Fully Incre-
mental learning. These results provide new insight into how
humans learn complex cognitive tasks. As a result, educa-
tors have computational evidence that structured, integrated
delivery methods lead to better performance for learners than
oversimplification and isolation of learning tasks. They also
have evidence that introducing many complex concepts at the
same time does not produce the best learning either. The
work encourages educators to focus on finding the optimal
balance between introducing complexity and providing struc-
tured guidance. Finally, educators are reminded that interim
results that reflect struggle with complex concepts will result
in longer term performance gains than near perfect results in
the short term.
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