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Abstract to identify correct solution strategies for calculus intgn
problems. The goal is to show that an artificial neural net-
Intellectual expertise means knowledge and ability thatap  work can be used as a model to investigate how people learn
son has that allows them to solve complex problems. Itisim- nder different training scenarios, and that differenivaey

portant to understand how people become experts so that we C .
can improve educational strategies, and help leamnerg\ehi methods result in different overall performance. The main

their full academic potential. Unfortunately, the procebac- results include: (1) errors are higher on final exams when dif
quiring intellectual expertise is not well understood. ifigtal ferent problem types are learned in isolation; (2) cramming
neural networks (ANNs) have already been successful in mod- just prior to taking final exams does not significantly impgov

eling other types of human learning. This paper shows that : : . -
they can also be trained as a model of expert human learning, performance. Different delivery strategies affect leagrin

and address many of the difficulties found in trying to study ~ different ways: (1) traditional sequential delivery medso
expertise in humans. The results confirm three hypotheses: inhibit learning and retention; (2) integrated deliverytme
(1) An artificial neural network can be used as a model to in-  ods increase learning and retention; (3) the best perfacean
vestigate how people learn under different training sdesar  comes from delivery methods that incrementally increase th

2) Different methods for delivering the training mateniat : : :
(su)lt in different final performance;g(S) The besgtj performanc complexity of material. These results can be applied toldeve

is achieved by incrementally increasing the complexityheft ~ Oping better training methods for people.
material. These results provide educators with computatio

evidence that structured, integrated delivery methoddate Prior Research on I ntellectual Expertise
ter for learners than oversimplification and isolation afténg
tasks. Studies of human expertise and understanding have revealed

key information about experts. We know that experts and
. novices categorize problems differently, and that thie-cat
Introduction gorization takes place before the subject attempts to soéve
An intellectual expert has achieved a level of cognitive de{problem (Chi, Feltovich, and Glaser 1981). We also know
velopment in which she or he can rapidly grasp subtleties ofhat experts can categorize problems without solving them
complex problems, and produce very high quality solutions(Robinson and Hayes 1978). Finally, there is strong evidenc
A goal of formal education is to help students achieve an exthat routine problems are solved not by intense calculating
pert level of understanding in their chosen field. It is im-but rather by recognizing a type of problem (categorizing)
portant to understand the nature of expertise so that we caand then using the stored knowledge about how to solve prob-
improve educational strategies. As a result of many rekeardems of that type (Reiman & Chi ‘89 referenced in (Ross and
studies about expertise, we know a lot about the characteriSpalding 1991).
tics of experts. However, there is a lot we do not understand Most studies of expertise have focused on what an expert
about how to become an expert. It is not easy to create exknows, rather than the process by which she or he attained
perts, whether human or computational. The learning psocesxpertise. As a result, we know a lot less about this learn-
is complex and human studies are difficult. Understandingng process than we do about expertise itself. Expert be-
how to acquire intellectual expertise has proven elusive fohavior does not simply follow a script: the greatest exper-
educators, psychologists and students alike. tise is the result of long-term practice (Hayes 1989) that is
A primary goal of the study reported here is to increase uneonsciously goal directed, self-monitoring, and selfuating
derstanding of the process by which humans become intelleavithin the setting of each particular task (Garner 1990). In
tual experts. In particular, how can people develop thetgbil addition, many studies have shown that meta-cognitioff-(sel
to look at a problem statement and immediately select thie beappraisal and self-management of cognition) is critical fo
solution strategy? The second main goal is to understaad thsuccessful academic learning (literature surveyed bysPari
process in the context of formal instruction; specificallgyy ~ and Winograd (1990)). Since we know that experts catego-
does the strategy by which material is delivered to the kxarn rize extremely well, it is possible that categorizationligpi
affect learning and conceptual development? and goal-directed meta-cognition enhance one anothernWhe
This paper presents results from a series of computationdihese abilities merge, intuition may be the result: there is
experiments examining how different delivery methods in-strong evidence that experts rely upon their accuratetiatui
fluence learning and conceptual development. These expernd a holistic recognition of appropriate actions (Dreynd
ments use a real-world adult educational problem: thetgbili Dreyfus 1986).
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Cognitive scientists have often studied mathematics fearnegorization that they have learned to recognize via extensi
ing, due to the abstract nature of its concepts. Bruner hexs ev practice.
suggested that learning mathematics may be viewed as a mi- Successful problem solvers categorize math problems
crocosm of all intellectual development (Bruner and Kenneybased upon underlying structural similarities and fundame
1965). A particularly interesting early connectionistrebof  tal principles (Schoenfeld and Herrmann 1982). These cate-
mathematics learning was presented by Viscuso, Andersogories are often grouped based upon solution strategigs, th
and Spoehr (1989). Their artificial neural network (ANN) the experts then use to calculate an answer (Owen and Sweller
simulated qualitative reasoning while doing multipliceti  1989). How such strategies are formed is poorly understood.
In summarizing their model, Viscuso et al correctly pointedWhat regularities are most likely to be noticed, and how does
out that the most important contribution of their model wasthe form in which the initial procedure is learned affect wha
that it mimicked the manner in which experts rely not sois noticed? From the point of view of education, are there
much on formal logic and rules but on their "sense” of what isways of managing how learners practice, to enhance the like-
correct. Another interesting ANN system learned to perfornmlihood that they will notice these regularities, and inaraie
arbitrarily long addition problems (Cottrell and Tsung B99 this information into their problem-solving strategies?
Their model learned the implicit underlying rule of additio One of the first instructional decisions is what order to
This system showed that ANNs can account for conceptugbresent the material in, and how to move from one concept
development: the network learned an important concept oto the next. There are many possible orderings of material,
which it had not been explicitly trained. In the decade sinceand a computational model can be used to explore them. The
these studies were published, there has been quite a bit afodel presented in this paper, described in the next section
work in related areas, such as the development of basic nwwontributes to achieving this research goal.
merical abilities in infants and children (literature seyed
in (Ahmad, Casey, and Bale 2002)), and in childhood strategy The ANN Model
development (Bray, Reilly, Villa, and Grupe 1997). However The particular calculus problem chosen for the study is
we still do not understand how adult human experts learn t@o decide whether a given integration problem should be
“sense” important concepts. Itis important to understéigl t  solved with Simple Integration (Simple), Integration by U-
ability, so that we can better educate students. Substitution (Usub), or Integration by Parts (Parts). Beis-
tion describes the architecture of the artificial neuraivoek

The Calculus Domain as well as the training and test data, its encoding, and the ex

perimental methods used in all the experiments described in

Calculus, at its most fundamental level, is based uponatistr éhis paper.

cognitive concepts. As a result, understanding how peopl
best learn calculus requires understanding the mind. The CuArchitecture and Data

rent educational debates over mathematics and science efle mogel is an artificial neural network utilizing the back-
ucation partly result because we do not understand enou opagation algorithm (for details of the algorithm seehBis

about hoyv the brain produces cognition and conceptual u 995) created using the LENS network simulator (Rohde
derstanding. In order to become calculus experts, studen 99). The network is fully connected, and has 55 input
need to understand complex concepts and intuitively selecj ' ;

- des and 20 hidden nodes. The 55 input nodes make up
the most efficient methods to solve problems. Educators nee‘gpvector large enough to represent the features of one cal-
to understand what methods of delivering material will most

hel d hi h bilit culus integration problem containing up to four terms. The
elp students achieve these abl |t.|es. 20 hidden units were determined to be appropriate by exper-
In the last decade math and science have been at the cenfgfentation; the results were not effected by small changes |

of an increasingly wide-spread national concern with propjze.
erly educating citizens for the new technological age. lnco  The input data consists of 957 calculus integration prob-
lege, students who want to major in science or engineeringyms pased upon examples found in college level calculus
usually ha\(e to first perform well in calculus, which turng ou textpooks. Feature coding is a logical choice for represent
to be a major obstacle for many of them. ing them, given that both novices and experts use the fesature
In order to clearly identify what kinds of problems calculus of g problem to determine which approach to use (Chi et al.
students were having at at the University of Texas at Austin9g1). The 55 unit input vector contains a series of 0s and 1s
(UT), we conducted structured interviews with mathematicshat map operators/operands to their location in the cascul

faculty and teaching assistants (TAs). The results fit welintegration problem. Short problems are padded with blanks
with the psychological literature on expert/novice bebavi The vector consists of

Faculty and TAs reported that novice learners (in this case ) ) )

UT students) are often unable to select the correct solutiof Four 2-unit terms representing constants and variables.
strategy. This probllem ari_se§ before they even have a changegqoyr  8-unit Unary  Operators, representing
to exh_lblt c_omputatlonal dlﬁlcqltles and prevents manyniro sin, cos, tan, cot, sec, csc, In, exponentiatior(z).

reaching timely, correct solutions. Conversely, the etgper

claimed an ability to "just see” the correct strategy, yetave e Three 5-unit Binary Operators, representing multiplica-
unable to articulate how they knew. Probing revealed that al tion, division, exponentiation, addition, subtraction.
though there are "rules o_f thumb” to assist in this domain, For example, the problem

they are not comprehensive and do not cover many common
scenarios. Experts instead pointed to general patternsaand 3+ cos(z) — sin(y) + In(z)



is coded in postfix form as: 01 00000000 10 01000000 O(rediction that a different type of learning (Incrementab-
10000000 10 00000010 00010 00001 00010, where thduces the best performance.

t o . .
components are Validating the Modedl: Drill and Test Learning

01 : No Variable; Constant (i.8) The first set _of experiments, called “Drill and Test”, mim-
00000000 : NONE (i.e. no unary operator for the constant) icked a classic form of delivery that results in poor longzte

10 : Variable (i.ex); No Constant retention in humans (Resnick and Ford 1981). In this method,
01000000 : cos (of the variabig concepts are introduced to the learner one at a time, with no
10 : Variable (i.ey); No Constant overlap between topics. At the end of each topic, the learner
10000000 : sin (of the variabtg® is given a midterm exam (of previously unseen examples) on
10 : Variable (i.ex); No Constant that concept. _ _ _
00000010 : In (of the variable) After it has been trained with all concepts, the learner is
00010: + given an opportunity to “cram”, i.e. train on all concepts fo
00001 ; - a short period of time. At the end of all material, there is a
00010: + comprehensive exam consisting of the entire test set.

In order to monitor the progress of learning quantitatively

The network has three output nodes, each of which repre2nd to compare to other approaches, each network was also
sents one of the possible integration strategies, Simpsepl) tested during each epoch in two ways: (1) with the current
Parts. Because the network is trained with one active targdpidterm exam, illustrating the performance that the teache
at a time, it learns to represent how confident it is in eacivould see in the classroom (Figure 1a), and (2) with the com-
choice (Bourlard and Wellekens 1990). For example, if thePr€hensive exam, monitoring progress in learning the entir
network reports activation values at 12%, 85%, 3%, then it §aSk, but broken into separate numbers for the different con
quite confident in the second category, considers the fitst caCePts (Figure 1b). _
egory possible but unlikely, and the third category extrigme The main result was that the model, like humans, only re-
unlikely (but not absolutely impossible). This percenteaye mem_b_ers thle most recently mtroduced concept well. More
resents theonfidence levahat the network has in each an- SPecifically, in 100 experiments run using Drill and Testsino

Swer. networks (83%) rapidly learned to identify each of the con-
cepts in turn (Simple, Usub, Parts). On midterm exams, the
Experimental Design network often recognized 100% of the problems belonging

to the concept that had just been studied. However, in spite
The calculus integration problems were divided into 1@Hol of the opportunity to cram first, when the comprehensive fi-
cross-validation training and test sets (splits, or leagréx-  nal exam was given, these learners performed poorly, averag
periments). In each experiment the training set was input ting 41.65% (standard deviation 6.35). The highest score was
the network, one problem at a time, in random order, and th&4.55%. The remaining 17% of network learners were un-
test set was used to measure performance. Validation se#thle to make the switch from Simple to Usub problems, and
were not used because each learning experiment representden to Parts problems: their Usub and Parts midterms ysuall
training one subject and the training time had to be constanscored 0%. When these learners crammed and then took their
to compare how well the subjects learned. Three differentomprehensive exams, they scored on average 17.29% (stan-
types of learning experiments were run. Each experiment wagard deviation 4.95), with a high score of 26.92% All leamer
run ten times, randomly resetting the initial network weggh in these experiments were extremely confident in their an-
each time. Thus the whole study consisted of 300 learningwers, even when they were wrong.
experiments. This way it was possible to model the behav- = | .
ior of many different subjects and watch for both emergentvalidating the Model: Fully Integrated L earning
patterns and individual variation. A second set of experiments mimicked human learning us-
During the test phase, there was always only one corredfg an approach called “Fully Integrated Learning”. This
answer to a problem. This answer, called the "Best”, wagipproach is inspired by the immersion experiences popular
the answer suggested in a textbook, or by a calculus expeift foreign language learning (Spolsky 1989): the learner is
(faculty, TA). For each test problem the network reporteatho placed in an environment where she or he is completely sur-
confident it was that the solution strategy was either Simplerounded by the stimuli to be learned. The cognitive mecha-
Usub or Parts. If the confidence level for all solutions washisms that enable a foreign language student to sort out im-
below 80%, the problem was considered having "stumpedportant grammatical features might not be that differewrtfr
the network. those cognitive mechanisms that sort out features of mathe-
matical structures. In the Fully Integrated Learning ekper
Results ments, there was only one training period, during which the
networks were trained on all of the problem types simultane-
Two sets of experiments (Drill and Test, Fully Integratedously. During each epoch, the Simple, Usub and Parts train-
Learning) validated the ANN as a model of human learninging problems were input to the network in random order. Ex-
These experiments showed that the model accurately matchems using the entire test set were given after every training
results from past educational research. In addition, tb&se epoch.
periments provide insight into how the learning process oc- Fully Integrated Learning produced significantly better re
curs. The third set of experiments provided a computationasults than the Drill and Test delivery experiments (Figure
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. . . Figure 2: Fully Integrated Learning. (a) The classroom perfor-
Figure 1: Drill and Test Learning. (a) The classroom perfor-  mance of 12 representative learners on the comprehensiveee
mance of 12 representative learners, i.e. their accuradp@nur-  oyer the course of learning. The learners initially failed exams,

rent midierm (Simple, Usub, Parts, Cram periods) and comepre ¢ their scores rapidly increased, and finally plateauetprove-
sive exam. Exam scores are on the y-axis, and the traininghepo ment was not smooth, reflecting the trial and error processanh-

is shown along the x-axis. Scores on the comprehensive &8 W ing The best exam score was 80.76%. (b) Average performaince
poor - even with the aid of a cram session the highest score wag|'learners broken down by concept. Usub problems weredear

54.55%. (b) The average performance of all learners on th® Co fgtest, Simple problems slowest. Final results for Sigigib and
prehensive exams, broken down by concept. Each problemigype paris were similar.

forgotten when a new topic is learned.

2. Th the final hensi ing their complexity (Elman 1991; Gomez and Miikkulainen
). The average score on the final comprehensive exam W91§97). When there are a large number of co-dependent vari-

76.99% (standard deviation 7.94). The highest score Wa3bles, it is hard to discover the role that each one playsan th
80.76%. In contrast to Drill and Test, confidence in Fully problém and its solution. Therefore, an Incremer?taI)/Learn—

{Etetgrated Iezrnmgtﬁlosely reffleﬁted (ejxam tstcoresf. 'Il'hemrro-ng delivery introduces new, increasingly complex consept
atwere made on the exams lollowed a pattern of siow, gra along with reinforcement of old concepts.

ual learning, spread across all problem types. The Fully In- . : .
tegrated Learning results as a whole replicated human da%a As with the Drill and Test experiments, there were three

showing that immersion results in better longer-term reten@iNing periods. The network was first trained to identify
tion than does Drill and Test. Simple problems. During the second training period, Usub

problems were added to the Simple problems, and for the
Extending the Model: Incremental Learning third training period, Parts problems were added. The ¢lass

room performance was measured with Simple tests during
The third set of experiments was designed to test the hypottthe the first period, Simple and Usub test problems during
esis that the best learning of material is obtained by a delivthe second, and the entire test set during the third (Figure
ery approach called “Incremental Learning”. This approactBa). The progress in learning the entire task was monitored
is inspired by the result in the machine learning communitywith the entire test set, broken down by concept (Figure 3b).
that it is often most effective to tackle large computationa As in the Drill and Test experiments, Simple-only midterms
tasks by starting with small problems and gradually increasvery rapidly reached scores of 100%. When Usub prob-



lems were introduced, test scores began to fluctuate SBVerel g, [fesimtse-——simpe-usub-pars
Scores would drop to, or near, zero, rebound, and then drofe=-
again, as the network struggled to distinguish the new con—:a‘z’:
cept (Usub) from the old concept (Simple). Over time, al- 4. |
though fluctuation continued, overall test scores incre:alse 7%
a few cases, SU midterm scores reached 100%, however th 7 |
majority of cases peaked at 70-75%. When Parts problems,g, |
were introduced, the pattern of fluctuating scores was accen
tuated. Midterm scores immediately plummeted, although it **
is interesting to note that even the downward drop was often ,, |
not smooth, but marked by brief plateaus and recoveries. Per
formance continued to deteriorate for longer than in the SU **
training segment, with scores fluctuating lower and lower. | . |
contrast to the SU midterm scores, SUP midterm scores ap:
peared to tighten in closer and closer to complete failwe (f

a while nearly all midterms fluctuated well under 20%). This g,
behavior is predictable, because it is harder to distifguis
three concepts from one another than two concepts. Even
tually, performance began to improve, with prominent indi- 1oof
vidual differences, as each network learner identifiedlsubt
patterns to accurately identify each concept. Eventuailly,
tually all midterm scores surpassed 70%. The average scor s
on the final comprehensive exam was 81.9% (standard devia _,
tion 8.23). It is important to note that the final test restdis
Incremental Learning were better than either Drill and Test sof
or Fully Integrated Learning, in spite of interim resultsth
sometimes appeared poorer than either other type of exper
iment. The maximum exam SUP score was 95.6%, higher [
than any score reached in a Fully Integrated learning exper-
iment. As evaluated with a t-test, the Incremental Learning
final exam scores were higher than those of the Fully Inte- 2=
grated learningt(= 1.9574, df = 11.869, p = 0.07423).

The types of errors that the network made followed a pat-
tern. As each new training period began, the network ap- °*q¢75
peared to “flail”, choosing first one answer then another on
successive exam questions. However, this “flailing” gradu-
ally lessened and the network learned to correctly selett ea Figure 3: Incremental Learning. (a) The classroom perfor-
problem type simultaneously. As with the Fully Integratedganﬁe of 12bregyese|ntativ% learners 0?] the currentmidﬁmmmvg
ey oo o el oo oepesmer L e 8 G Hghrhr ny s tocened ety

: rated learning experiment. (b) Average performance déatiners
showed that the best performance is achieved by introducingroken down bgy copncept. EaE:h) proble?'n tE)/pe followed the saae p
increasingly complex concepts gradually, allowing leasne tern of fluctuation between learning and apparent forggtti@ver

i i iati time fluctuation lessened and performance improved forralllem
;citglrjlltli?)r? ?Otgﬁlerreé(;;tilr? gtiEzZWIEdge’ and gradually pay moretypes. Simple problems fluctuated the most and the longest.
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Discussion and Future Work learning. The nearly perfect midterm exam scores seen in

Calculus integration problems that are often given to nevic Drill and Test experiments were misleading. They implied
learners were used to study the process of learning to acc@-level of interim learning and understanding which was not
rately categorize them by solution strategy. These stiegeg supported when the final exam require the learner to distin-
Simple Integration, Integration by U-substitution, Integon ~ guish complex concepts.

by Parts - represent complex concepts that students need toi Fully Integrated learning experiments supported the hy-
tuitively master in order to become calculus experts. @rili  pothesis that if problems that belong to one concept are in-
Test experiments and Fully Integrated experiments valitiat troduced along with problems that belong to other concepts,
the model by showing that it can mimic known data about hu-€rror rates are smaller than when the same concepts are in-
man learning. Drill and Test experiments supported the hytroduced separately. Over time, Fully Integrated learpers
pothesis that delivery methods that rigidly separate cotsce formed quite well on their exams and although they are not
during learning result in poor long-term retention of mater ~ perfect, can be claimed to have learned the task.

Also supported was the hypothesis that when concepts are The results for Incremental Learning were very different
reinforced inconsistently, only the most recently introéld  from either Drill and Test or Fully Integrated learning. By
concept is remembered, and that cramming does not improvatroducing new problem types in a structured manner, the



network learner is allowed to focus on a smaller set of characBruner, J. S., and Kenney, H. J. (1965). Representation and
teristics at the beginning of learning. Just as the first ephc mathematics learning. In Morrisett, and Vinsonhaler, ed-
(Simple integration problems) is acquired, additionallpro itors, Monographs of the Society for Research in Child
lems (Usub) are mixed in. The resulting confusion is apparen Development Ser. 990l. 30-1. Univ. Chicago Press.

in the fluctuating midterm scores. Over time, as the learnechj, M., Feltovich, P., and Glaser, R. (1981). Categorirati

grapples with the two contrasting problem types, confusion  and representation of physics problems by experts and
diminishes and midterm scores rise. When Parts problems  npovices.Cognitive Scienges:121-152.

are introduced, it becomes again more difficult to discrimi-cqurell . and Tsung, F. S. (1993). Learning simple arith
nate between the concepts. However, it is far more difficult métic'F’Jroceduresc’on.ne;:tion Sciencé(l):37—58.

to compare three related problem types than two. The confu- .

sion lasts longer and is more difficult to resolve, and iraivi UDrenyrJ‘_s, H. 'Il:h agd Dfeyf]tlz’ S. E. (|198.5M'nd (gvlgr Ma-

ual learner differences become more apparent. Fortunately chine. k.e OW?J of Human Intuition and Expertise

the "priming” effect of the previous training segments aio New York: Macmillan. . .

most Incremental Learning learners to eventually dowatl, a Elman, J. L. (1991). Incremental learning, or the imporéanc

in most cases better than the Fully Integrated learners. of starting small. Technical Report 9101, CRL, La Jolla,
An interesting direction of future research is to analyze th CA.

conceptual development that took place in the model duringsarner, R. (1990). When children and adults do not use

the different types of delivery methods. Using techniques  learning strategies.Review of Educational Research

such as Independent Component Analysis (ICA) of hidden  60(4):517-529.

layer representations it may be possible to discover how th&omez, F., and Miikkulainen, R. (1997). Incremental evo-

network learners represent the problems as the learning pro  lution of complex general behavioAdaptive Behavigr

gresses. In addition, the predictions on Incremental Lingrn 5:317-342.

can be tested in a study with human subjects. If confirmedyayes, J. R. (1989 he Complete Problem Solvetillsdale,
these results strongly suggest that a structured incrahent ~ NJ: LEA.

approach should be used in teaching for expertise. Owen, E., and Sweller, J. (1989). Should problem solving
be used as a learning device in mathematic3RME,
20(3):322-328.

aris, S. G., and Winograd, P. (1990). How metacognition can

Conclusion
The experiments reported in this paper support the follgwin P
three hypotheses: 1) An artificial neural network can be used promote academic learning and instruction. Diimen-

as a model to investigate how people learn under different ;¢ of Thinking and Cognitive InstructioHillsdale,
training scenarios 2) Different delivery methods resulfiia NJ: Erlbaum

ferent overall performance 3) Incremental Learning resualt )

better performance than either Drill and Test or Fully Incre Resnlck,hL. B., an]g Ford, W. W. (.ﬁggllxhe Esyt:lgology of
mental learning. These results provide new insight into how .Mat ematics for InstructionHillsdale, NJ: E_r aum.
humans learn complex cognitive tasks. As a result, educaRobinson, C. S., and Hayes, J. R. (1978). Making inferences

tors have computational evidence that structured, intedra about relevance in understanding problems. In Revlin,
delivery methods lead to better performance for learnens th R., and Mayer, R. E., editorsjluman ReasoningVash-
oversimplification and isolation of learning tasks. Thesoal ington, DC: V.H. Winston and Sons.

have evidence that introducing many complex concepts at thRohde, D. L. (1999). A connectionist model of sentence
same time does not produce the best learning either. The comprehension and production. Dissertation Proposal,
work encourages educators to focus on finding the optimal  School of Computer Science, Carnegie Mellon Univer-

balance between introducing complexity and providingcstru sity, Pittsburgh, PA.
tured guidance. Finally, educators are reminded thatimter Ross, B. H., and Spalding, T. L. (1991). Some influences of
results that reflect struggle with complex concepts willfes instance comparisons on concept formation. In Fisher,
in longer term performance gains than near perfect results i D.H. J., Pazzani, M. J., and Langley, P., edit@sncept
the short term. Formation San Francisco: Kaufmann.
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