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Abstract

How orientation and ocular-dominance maps develop before visual experience begins is
controversial. Possible influences include molecular signals and spontaneous activity, but
their contributions remain unclear. This paper presents LISSOM simulations suggesting
that previsual spontaneous activity alone is sufficient for realistic OR and OD maps to
develop. Individual maps develop robustly with various previsual patterns, and are aided
by background noise. However, joint OR/OD maps depend crucially on how correlated the
patterns are between eyes, even over brief initial periods. Therefore, future biological exper-
iments should account for multiple activity sources, and should measure map interactions
rather than maps of single features.
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1 Introduction and related work

At the time newborn cats, ferrets, and monkeys open their eyes, their primary visual
cortex (V1) is already organized into maps of ocular dominance (OD) and orien-
tation (OR) [3, 9]. The mechanisms by which these maps initially develop remain
controversial. Changing or blocking the patterns of spontaneous neural activity be-
fore birth can alter the maps, suggesting that such activity is involved in normal
development (reviewed in [18]). Yet some researchers have argued that previsual
OD map development depends primarily on molecular signals or other activity-
independent processes, because maps develop even after removal of retinal activity
by enucleation [4]. It is also not clear whether the known sources of previsual ac-
tivity have the properties necessary to drive the development of maps that have
matching OR in both eyes [7] and specific interactions between OR and OD maps
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[1, 2]. On the other hand, concerns have been raised that the enucleation experi-
ments may not have entirely eliminated the earliest traces of retinal activity [14].
In addition, the retina is not necessarily the only relevant source of spontaneous ac-
tivity [14]. Thus it has been difficult to ascertain the role of spontaneous previsual
activity in initial map development.

Computational models allow a much wider variety of scenarios to be tested than
do current experimental techniques. Hence they can be used to gain insight into
the complex process of cortical map development, and to guide future experiments.
Many models of OR and OD development have achieved maps with realistic fea-
tures ([5, 8, 12, 13, 15, 16], review in [17]), but none of them models previsual
development using activity patterns that have a clear biological interpretation. The
first experiment described in this paper demonstrates that a balance of correlated
and uncorrelated spontaneous activities from different areas can generate initial
maps with realistic interactions. The second experiment further demonstrates how
random noise in such activity makes this process more robust.

2 The LISSOM model

The simulations are based on the LISSOM model of the primary visual cortex
[11], which is outlined in Fig. 1. The model includes three hierarchical levels of
two-dimensional sheets of neural units. The lowest-level sheets simulate the pho-
toreceptors in the two retinas. The middle level models the LGN ON-center/OFF-
surround and OFF-center/ON-surround cells, one ON/OFF-center pair of sheets for
each eye. Each LGN unit receives input from a circular receptive field on one of
the photoreceptor sheets. At the top level, a sheet of cortical units represents V1.
Because the focus is on the two-dimensional organization of V1, each cortical unit
corresponds to a vertical column of cells through the six anatomical layers of the
cortex. V1 units interact through short-range excitatory and long-range inhibitory
connections which model the net effect of lateral connections for the high-contrast
inputs that drive Hebbian learning [11].

Input to the model consists of a series of activity patterns on the two retinas, such as
grayscale photographic bitmaps. Each LGN unit computes its response by applying
a piecewise linear sigmoid activation function σ to the scalar product of a fixed
Difference-of-Gaussians weight vector w and its receptive fields:

ηLGN,ij = σ

(∑
ρ

γρ

∑
ab

Xρabwij,ρab

)
, (1)

where Xρab denotes the activation of unit (a, b) in receptive field ρ, wij,ρab denotes
the weight from that unit to LGN unit (i, j), and γρ is a constant scaling factor. In
this simulation, each LGN unit has one receptive field, on either the left or right
eye.

V1 units compute an initial response analogously, from their receptive fields on the
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Fig. 1. LISSOM model. Each sheet of LGN units receives input from its circular receptive
fields (RF) on the retina. Sample connections are shown for one unit in each sheet. V1 units
have circular RFs on LGN sheets of both types. Initial lateral excitatory and inhibitory
inputs to a V1 unit are illustrated by the small dotted and large dashed circle, respectively.

LGN sheets. The activity ηV1,ij of each V1 unit (i, j) then settles through short-
range excitatory and long-range inhibitory lateral interactions:

ηV1,ij(t) = σ

(∑
ρ

γρ

∑
ab

Xρab(t− 1)wij,ρab

)
, (2)

where ρ denotes one of the six receptive fields of V1 neurons (four afferent LGN
RFs and two lateral), γρ a constant scaling factor (negative for lateral inhibitory
connections), Xρab(t− 1) the activation of unit (a, b) (on either the LGN or V1) in
the previous settling step, and wij,ρab is the weight assigned to that unit. The V1 ac-
tivity pattern starts out diffuse, but within a few iterations of Eq. 2, it converges into
a small number of stable focused patches of activity, or activity bubbles. Through-
out settling, the LGN activity remains constant.

After the activity has settled, the connection weights of each V1 neuron are mod-
ified. Initially, the afferent weights for V1 units are random and identical for both
eyes, with locations centered around the corresponding location on the retina. All
V1 weights adapt according to a normalized Hebb rule with learning rate αρ for
each connection type ρ

w′
ij,ρab =

wij,ρab + αρηV1,ijXρab∑
ruv(wij,ruv + αrηV1,ij)

, (3)

where w′
ij,ρab is the new weight value. The afferent, lateral excitatory, and lateral

inhibitory connections are normalized separately. All weights are defined to be pos-
itive, including the inhibitory weights, whose inhibitory effect is due to a negative
multiplicative factor γ in Eq. 2. At long distances, very few neurons have correlated
activity and therefore most long-range connections eventually become weak. The
weak connections are eliminated periodically, resulting in patchy lateral connectiv-
ity similar to that observed in the visual cortex. The radius of the lateral excitatory
interactions starts out large, but is decreased to the nearest neighbors according to
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(a) Correlated disks (b) Uncorrelated disks with noise

Fig. 2. Sample input patterns from two conditions: (a) correlated disks without noise, and
(b) uncorrelated disks with uncorrelated random noise.

a preset schedule during self-organization.

In the experiments reported in the paper, the four 36 × 36 LGN ON/OFF-center
sheets received input from two 54 × 54 retina sheets. The V1 sheet was 64 × 64.
The learning parameters were the same as in earlier simulations [11], scaled for this
cortex size. The afferent receptive fields had a radius of 6.5, and the initial excita-
tory and inhibitory connections a radius of 6.4 and 15, respectively. The number
of settling steps was initially 13, and (to save computation time) was gradually re-
duced to 9 as neurons became selective. By 10,000 iterations, the maps had become
stable, changing little with further training.

3 Experiments

These LISSOM experiments concentrated on the developmental phase prior to vi-
sual experience. Spontaneous activity was modeled as disk-shaped regions of cor-
related activity combined with an overall level of uniform random noise over the
entire retina (Fig. 2, [11]). In each training iteration, a new input pattern was ran-
domly generated using the specified input components. Similar results were ob-
tained with stationary disks presented over several iterations, with a lower learning
rate. The fuzzy disks correspond to local patches of highly responding units over
a subcortical or cortical area. Such patterns can arise in various parts in the vi-
sual pathway. For simplicity, all such activity was presented to LISSOM through
the retina, modeling activity arising anywhere in the input pathway to V1; activity
arising within V1 itself and in other sources will be considered in greater detail in
future work.

The properties of these input patterns were varied to model different types and
sources of spontaneous activity. Binocularly correlated activity, such as that arising
from ponto-geniculo-occipital waves in the brainstem during sleep [10] and possi-
bly also spontaneous cortical activity [19], was modeled by presenting patterns at
the same random location in both retinas (Fig. 2). The positions for uncorrelated
inputs, simulating e.g. spontaneous waves of activity in the developing retina [6],
were determined independently for the left and right retina.
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3.1 OR and OD maps and their interactions

Using this model of spontaneous activity, we performed simulations to account
for four primary qualitative properties of previsual maps: (i) smooth, binocularly
matching OR maps [7], (ii) an OD map with significant left or right eye prefer-
ences and smooth transitions between them, (iii) orthogonal intersections of OR
and OD maps [1], and (iv) OR pinwheel centers located within OD columns [1].
Each simulation varied the number of disks, their correlation, and/or the amount of
noise. For each simulation, maps were developed by presenting 10,000 random in-
puts. The results suggest that a balance between correlated and uncorrelated inputs
determines the joint development of OR and OD maps.

In the extreme case of very strong correlation between patterns in the two eyes,
matching OR maps develop, but no OD map develops (Fig. 3a). Conversely, in the
extreme case of very weak correlation between the disk patterns in each eye (even
with perfect correlation of the noise), strong OD maps develop but the OR maps are
completely different in each eye (Fig. 3b). In the latter (uncorrelated) case, the OR
maps appear disorganized because neurons become nearly monocular, leaving only
the left or right-eye areas in each OR map well-organized. Thus spatial correlation
leads to matching OR maps, yet some degree of uncorrelation is required for OD
maps to develop, making it difficult to satisfy properties (i-iv).

In contrast to these extreme cases, joint OR and OD maps satisfying all the proper-
ties (i-iv) were obtained if one disk, modeled by a circular Gaussian with σ = 1.5,
was presented in each retina on a background of uncorrelated uniform random noise
of brightness 1.0. The disks’ brightness was varied randomly (µ = 1.2, σ = 0.5).
When correlation was decreased (from ratio 1:1 to 1:2) after 2000 iterations, oc-
ular selectivity became clearer (Fig. 4c) (than keeping the original ratio). The OR
maps still matched on both eyes (Fig. 4a,b), as they do in animals at eye-opening
[7]. An overlay of OR and OD maps (Fig. 4d) shows that pinwheel centers tend to
be located within OD columns, and orientation boundaries intersect the boundaries
of OD stripes (indicated by white lines) at right angles. Similar patterns have been
observed in macaque monkeys [1].

By comparing Fig. 4 with Fig. 3, it can be seen that the maps resulting from a bal-
ance between correlated and uncorrelated patterns are qualitatively different from
maps trained on nearly uncorrelated patterns, where the OR maps in each eye are
entirely unrelated, and from maps trained on nearly correlated patterns, where the
OD map is weak or absent. In future work, we will develop techniques to make
it computationally feasible to quantify these qualitative differences. However, the
results above already indicate that realistic maps of single features develop over a
wide range of input pattern types, whereas the joint development of realistically
interacting maps depends on the balance and possibly the schedule of correlation
in the input patterns.
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Fig. 3. Sample maps developed at two extreme levels of correlation in the input. In the OD
map, eye preference from left to right is encoded in grayscale from white to black; in the
OR map, the colors indicate orientation preference according to the key on the right. (a)
The input pattern consisted of two pairs of disks (two disks in each eye), one uncorrelated
with varying random brightness (µ = 0.0, σ = 1.0), and one correlated with brightness
level 1.0. In addition, there was correlated random noise with brightness level 1.0. Such
strong correlation and strong noise yield matching, strong OR maps but no OD map. The
weak uncorrelated input component is not enough to drive the development of the OD
map. (b) The input consisted of one uncorrelated pair of disks (one disk in each eye) with
varying, random brightness (µ = 0.5, σ = 1.0) together with correlated noise that had
random brightness (µ = 0.5, σ = 1.0). Such a weak correlation yields very strong ocular
dominance, but patchy and non-matching OR maps.

3.2 The effect of noise on selectivity in OD map development

In prior LISSOM experiments, we found that noiseless patterns that were uncor-
related between the eyes led to extremely strong selectivity in OD maps, similar
to adult maps in strabismic animals [11]. Those results suggested that uncorrelated
patterns like retinal waves could lead to the earliest maps being strabismic even
in normal animals, which is possible but has not yet been established experimen-
tally. However, the experiments in this section show that if the input patterns are
made more realistic by including an overall pattern of noise, normal OD maps can
develop even when the activity patterns are uncorrelated between the eyes.

In pairs of parallel experiments, during the first 1000 iterations the model was pre-
sented with uncorrelated disks of diameter 9 without noise, or with uncorrelated
disks on a noisy background. In the following 9000 iterations, the input only con-
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Left eye OR map Right eye OR map

OD map Joint OR/OD map (smoothed)
Fig. 4. Maps developed jointly with correlated and uncorrelated disks and uncorrelated
random noise input patterns. Similar to biological maps, the OR maps match in both eyes,
pinwheel centers tend to be located within OD columns, and OR and OD bands intersect
orthogonally. The maps in the Joint OR/OD plot have been smoothed so that the intersection
trends are easier to see.

sisted of disks without noise. The level of correlation was varied in the second
phase throughout different pairs of experiments. In the first phase, the level of un-
correlation of the disks was always 1.0. The resulting OD maps suggest that noise,
i.e. spontaneous spatially uncorrelated activity, prevents extreme ocular selectiv-
ity from forming (Fig. 5). The noise was only present during the first tenth of the
development, yet the equalizing effect persists long after it has disappeared. For
weaker noise, the effect was less pronounced. Even though the noise is also un-
correlated between the eyes, similar random activity patches occur in each eye by
chance, which apparently provides enough coincident activity to prevent extreme
values of ocular selectivity from developing. Since noise is likely to be part of
the natural input patterns of developing neurons, these results suggest that even
spatially uncorrelated patterns could lead to normal OD maps. In future research,
similar techniques will be applied to study the role of noise in joint OR/OD maps
like those in section 3.1. As part of this work, the parameter space will be explored
more thoroughly in a simplified, computationally less expensive model.
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(a) Without noise in phase 1 (b) With noise in phase 1

Fig. 5. OD map and ocular selectivity after 10,000 iterations. The brightness of the selectiv-
ity map represents how strongly the neurons prefer their dominant eye, with white denoting
maximum and black minimum. Below the selectivity map, a histogram illustrates the num-
ber of units at a particular level of selectivity. In a series of simulations, the input during the
first 1,000 iterations consisted of disks with an uncorrelation level of 1.0, (a) without and
(b) with uncorrelated random noise. In the following 9,000 iterations, noiseless disks were
presented with an uncorrelation level between 0.4 and 1.0 (0.4 for the map shown in this
figure). Without noise in the first 1,000 iterations, neurons become much more selective
(indicated by brighter and darker colors in the OD map, and lighter colors in the selectivity
map). Higher uncorrelation in the second phase does not change the maps significantly,
indicating that the effect is robust.

4 Discussion and Future Work

The computational results suggest that care must be taken in interpreting biological
experiments where only a portion of the total neural activity reaching the develop-
ing visual cortex is removed or modified. The long-lasting effects that were found
for even brief periods of noisy inputs in the model support the concern of Stell-
wagen et al. [14] that the Crowley and Katz [4] enucleation experiments might not
have removed all retinal activity. In the model, the removal of one type of activity
can cause development to be driven by other, usually less dominant inputs. For in-
stance, equally realistic joint OR/OD maps can develop from inputs with different
spatial positions in each eye, as shown in this paper, or with matching positions but
different strengths [11]. These latter patterns might correspond to residual LGN ac-
tivities present after enucleation. Hence it is crucial to consider the entire ensemble
of neural activities when determining the role of activity in development.

Similarly, the model suggests that it is important to measure multiple maps at once
rather than maps of single types. In simulations, many types of activity patterns
lead to realistic OD or OR maps alone [11], but a much smaller range yields real-
istic joint maps. For instance, small input position differences in each eye result in
realistic individual maps, but unrealistic joint maps, with OR and OD boundaries
aligned [11]. Shifting the balance of activities might have significant effects on the
interactions that are not visible in the single-feature maps. Hence the interactions
observed between previsual maps may provide a clue to what factors are driving
their development in nature, and can guide future biological experiments.
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As mentioned above, future work will include a thorough exploration of the para-
meter space comprising quantitative measures in a computationally less expensive
model. Moreover, we will study the effects of differences in the timing of activity
patterns in more detail. For instance, Crair et al. [3] found that orientation maps
develop sooner for the contralateral eye than for the ipsilateral. This condition can
be modeled using inputs presented later in one eye than the other. As with the pre-
vious work described above, it will be crucial to consider all the possible sources
of activity involved, including potential shared cortical inputs prior to the arrival of
ipsilateral projections.

5 Conclusion

The simulations suggest that realistic initial cortical maps can develop from pat-
terns of spontaneous activity likely to occur prenatally in animals. However, details
of the maps and the interactions between them depend critically on the balance of
correlated and uncorrelated patterns and the amount of noise, even over brief pe-
riods. Future work will be needed to determine which sources of activity are the
most crucial, focusing on differences between correlated and uncorrelated patterns.
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