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Abstract Such a system allows researchers to concentrate on imple-
menting and optimizing their approach to solving the learn-
Video and computer games provide a rich platform for test- ing problem and to validate it empirically by comparing with
ing adaptive decision systems such as value-based reinforce- other approaches.
ment Iear.nlng and neuroevqlutlon. However, mtegratlng.such In this paper we present the results of using one such “glue”
systems into the game environment and evaluating their per- gamework to integrate an existing reinforcement learning
formance in it is time and labor intensive. In this paper, an technique with an existing game environment. The “glue”

approach is developed for using general integration and eval- X . .
uation software to alleviate these problems. In particular, the framework used is the Testbed for Integrating and Evaluating

Testbed for Integrating and Evaluating Learning Techniques L€arning Techniques (TIELT), developed by David Aha and
(TIELT) is used to integrate a neuroevolution learner with an  Matthew Molineaux (Aha and Molinealx 2C04). It has been

off-the-shelf computer game Unreal Tournam#&nt(Aha and designed to “integrate Al systems with (e.g., real-time) gam-
Molineauy, 2004). The resulting system is successfully used to ing simulators, and to evaluate how well those systems learn
evolve artificial neural network controllers with basic naviga-  on selected simulation tasks” (Molineaux and /Aha 2005).
tion behavior. Our work Iead_s to forr_nulating a set OT require- The project uses NeuroEvolution of Augmenting Topo|0_
ments that make a general integration and evaluation system giag (NEAT) method as the learning technique (Stanley and
such as TIELT a useful tool for benchmarking adaptive deci- Miikkulainen '2002a). NEAT is a genetic algorithm that
sion systems. - : g
evolves increasingly complex artificial neural network con-
trollers by applying mutation and crossover operators to their
. populations based on a fitness function. A real time variant
1 Introduction of NEAT, called rtNEAT, has been used successfully in the
It is often necessary to compare new machine learning tectgame NERO, produced by the Digital Media Collaboratory
niques empirically against other similar techniques to gauget the University of Texas at Austin (Gold 2005; Stanley et al.
how they improve on previous results. In order to minimize2005b).
the influence oflata biasin the evaluation process, new al- Using TIELT, NEAT is embedded into Unreal
gorithms should be tested in as large a variety of domains akournament, a popular First Person Shooter (FPS)
possible, especially when general claims about their perforeomputer game produced by Epic Games, Inc. in 1999
mance are being made. Existing video and computer gamesd winning a Game of the Year title for that year. Unreal
provide a rich platform for testing adaptive decision systemsTournament“was previously integrated with the TIELT sys-
such as value-based reinforcement learning and neuroevoltem and other learning methods were tested on it. However,
tion. However, integrating and evaluating multiple algorithmsexploration-based learning algorithms such as value-function
and implementations against multiple simulation domains isind evolution-based reinforcement learning have not been
a difficult process. Moreover, any benchmarking results catested with Unreal/TIELT before (Molineaux 2004).
also be skewed bynplementation bigsor intentional or un- The next section describes the state of Al in gaming, the
intentional disparity in quality of implementation of the pro- learning technique of neuroevolution, and the TIELT ap-
posed approach vs. the quality of implementation of competproach to integration and evaluation. Section 3 gives an
ing approaches (Keogh and Kassetty 2002). overview of our system’s architecture, Section 4 summarizes
One potential way to make empirical comparisons of learnexperiments performed and their results, and Section 5 anal-
ing techniques easier and more principled is to build a flexyses the results and describes future work.
ible software platform that provides a uniform interface for
the learning system across multiple rich simulation domains. 2 Background
2.1 Alingaming
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techniques into new, more interactive games. 2.3 Testbed for Integration and Evaluation of

Computer and video games constitute a large and lucrative ~ L€arning Techniques (TIELT)
market, 7.3 billion dollars in the US in 2004 (ESA 2005). The Testbed for Integration and Evaluation of Learning Tech-
This allows game studios to develop a variety of what camiques, or TIELT, is a Java application intended to connect a
be seen as high realism simulations for human-level controfjame engine to a decision system that learns about the game
tasks, such as navigation, combat, team and individual tactiqgf\ha and Molineaux 2004). The goal of the system is to pro-
and strategy. The emergence of online multi-player and masride the researcher with a tool that simplifies the task of test-
sively multi-player games offers unprecedented opportunitieing a general learner in several different environments.
for real-time interaction between human players and artifi- The application consists of fidenowledge basesr mod-
cially intelligent elements. Because of these factors, comules which correspond to different areas of TIELT’s function-
puter and video games may indeed be a ’killer applicationality. The Game Modekncapsulates the information about
for developing and validating machine learning techniqueshe game from a single player’s perspective. Tame In-
(Laird and van Lent 2000). terface Modeldescribes how TIELT communicates with the

However, adaptive algorithms are used in the game indusg@me. TheDecision System Interface Modeescribes in-
try setting surprisingly rarely. Most popular video games onteractions with the decision system. TAgent Description
the market today use scripted non-player characters to ad¢scribes tasks performed by the system in order to play the
interactivity to their games (Gald 2005). A large fraction of 9ame, and thé&xperimental Methodologyodule is used as
Al development in the industry is devoted to path-finding al-an evaluation platform for particular games and learning tech-
gorithms such as A*-search and simple behaviors built usfMdues. . . _
ing finite state machines. There may be several reasons for During integration, TIELT is connected with the game en-
why this is the case. One is that high-end game applicationgironment and with the learning system using the appropriate
have traditionally pushed hardware systems to their limits an¢nowledge bases. The software allows the user to define the
simply did not have the resources to perform online learningcommunication protocols between TIELT, the game engine
This is becoming less of a problem with the availability of and the learning system. TIELT also includes a visual script-
cheap processing power and true parallelism. Another, deep#td language that allows scripting of the game behavior and
reason may be that it is difficult to adopt results from aca-Update rules.
demic Al to games because they are not built and tested with TIELT provides the ability to connect environments and
these applications directly in mind. Where the goal of an Allearners with arbitrary interfaces and rules into a cohesive
researcher is often to build a system that is able to adapt t¢arning system and to automate the evaluation of this sys-
an environment to solve difficult tasks, the goal of a game detem’s performance. This paper explores how well these fea-
veloper is to build a system that is “human-like” and “fun”. tures support neuroevolution.
Integration systems such as TIELT can allow researchers and .
engineers to more easily integrate and test new learning algo- 3 System architecture

rithms with games, benefiting both academic Al research angt the highest level, the system consists of three parts: the
commercial game development. Unreal Tournament'server, the TIELT integration platform,
and the decision system based on NEAT. The game server
2.2 Neuroevolution simulateg the en'vironmentl for the learning agent. TIELT
communicates with the environment and accumulates a state,
which is then communicated to the decision system. The de-
Neuroevolution is a powerful technique for solving non- cision system selects an action in the environment and com-
linear, non-Markovian control tasks (Gon‘ez 2003). In neu-municates it back through TIELT. The decision system con-

roevolution, a genetic algorithm is used to evolve artificialtinually adopts its behavior by evolving artificial neural net-
neural networks. NeuroEvolution of Augmenting Topologieswork controllers to perform the task.

(NEAT) is a particularly efficient method of this kind able
to evolve both network weights and topologies (Stanley and.1 Game engine
Miikkulainen 2002b). NEAT starts with a population of min- \jnreal TournamefiVis a real-time first person shooter
imal network topologies and complexifies them when NeCeSIEps) computer game in which a player navigates a three-
sary to solve the problem at hand. NEAT is able to protecljimensional space. The player can walk, run, jump, turn,
innovation through a speciation mechanism, and has an elygat and interact with objects in the game such as armor
fective encoding scheme that allows it to perform mutationy,ors and health vials. The goal of one variant of the game
and recombination operations efficiently. (the tournament) is to be the first to destroy a certain number
Neuroevolution and NEAT in particular have been shownof opponents. Up to 16 players can play the game concur-
to outperform other methods on a number of benchmarkently in a single level. A player can be controlled either by a
learning tasks. For example, neuroevolution has beehuman player connected over a network or an automated bot
successfully used in a number of game-playing domainsontrolled by a built-in script.
(Agogino et al. 2000; Stanley et al. 2005a). It is therefore The Gamebots API from the University of Southern Cali-
important to show that methods such as NEAT can benefitornia modifies the original game to allow players to be con-
from general integration and evaluation tools such as TIELT trolled via sockets connected to other programs such as an
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adaptive decision system (Kaminka el al. 2002). The commuAlgorithm 1 Agent description tasks executed by TIELT
nication protocol consists of synchronous and asynchronous pg,yiation — RandomPopulation)

sensory messages sent from the server to all the clients and¢,, aach epoch do

of commands sent from the clients back to the server. The for each individuall do

server has all the information about player locations, interac- hile ti t expired]

tions and status. The synchronous updates occur about every while ime not expireio

100 milliseconds, and include updates to the player’s view s « SensorValues() I/ TIELT to NEAT

of the game state. Asynchronous events include collisions a « Action(I,s) Il NEAT to TIELT
with objects, players and projectiles, results of queries by the Act(a) Il TIELT to Unreal
player and game over events. end while
) Fitness(I,e) < C - MinDistanceToTarget
3.2 Integration System end for

TIELT communicates with the GameBots API using TCP/IP Population «+ NextPopulation(P,Fitness)
sockets. The game interface model defines a subset of the end for
GameBots protocol which is used to update the game modef
and trigger agent actions.

The Game Modelrepresents the knowledge that a player
has about the game at any given time. Itincludes the locations
and types of objects encountered in the game, the objects that
are currently visible or reachable, the location and headingof |- -~ - ~=——t——=—-- - -~
players, health, armor and other player status indicators. Ad-
ditionally, the game model holds an array of eight Boolean
variables that correspond to whether the locations distributedRadar sector
at a fixed radius around the player's most recent position are
reachable. This game model allows the information from syn-
chronous and asynchronous updates to be combined into a
single state that can then be used by the decision system to
generate appropriate actions. Because TIELT scripting lan- Current heading {}
guage did not implement the operations necessary to combine
these values into useful sensory inputs, the final values were
calculated in our decision system implementation.

. The DeC'S'O.n System Interface MOdeUSGS Java Reflec- Figure 1: Agent sensors and actions.Each neural network has

tion to dynamically load and use libraries of Java classes; 1 sensory inputs: 8 radial Boolean obstacle sensors and 3 forward-
These classes implement the NEAT learning system, as dgscing “radar” sensors, whose values are derived from the distance
scribed in more detail in the next subsection. to navigation points visible in each of the three sectors shown on the

The Agent Descriptionis a script that sends sensor infor- figure.
mation from the Game Model to the Decision System and ex-
ecutes the resulting action on each synchronous update from
the Unreal TournamefYserver. This process is performed . ] ]
many times to evaluate a sing'e individua'_ _at|0n tlm_eS, pOpula_tlonS and epOChS. The reSU-Itlng algquthm

The Experimental Methodologymodule in TIELT allows 1S thus simply a serial variant of the neuroevolqtlon algorithm,
Agent Description are to be used in an experiment and howsensors: Each neural network has 11 egocentric sensor in-
many repetitions of the experiment have to be run. In ouuts: eight boolean obstacle sens6gs S7 with a small ra-
system, a single TIELT experiment corresponds to the evaldius (in relative scale of the game they are roughly equiv-
uation of a single individual’s fitness, and must be repeate@lent to stretching out the bot's arms in 8 directions) and
e x p times, wheree is the number of epochs andis the  three forward-directed 60-degree “radar” valdgs. R» (Fig-
population size. The state of the NEAT algorithm is persistedire 1). In addition to these 11 sensors, each network has a

Obstacle sensor

Step size

New target

Action angle

in memory across TIELT experiments. bias input (a constant 0.3 value found appropriate in previ-
o ous NEAT experiments). Each radar valRe is computed
3.3 Decision System asR; = >, cy, d(x)/C whereNy is the collection of nav-

The output of the decision system is controlled by evolvingigation landmarks visible in sectd, d(x) is the distance to
neural networks. Each static neural network in a populatioreach landmark, and C is a constant scaling factor. Thus, the
performs a number of decisions during a predefined lifetime?; can be interpreted as the amount of free space in the di-
of the individual in the Unreal game environment. The re-rection; with higher activations corresponding to more visible
sulting behavior is analyzed to compute a fitness score (se@avigation landmarks and to landmarks that are visible further
tion 4). The Unreal Tournamettworld is then reset and a away (Figure 1).
new network is used for decision-making. The decision sysActions: At each update, the decision system scales the sin-
tem keeps track of individuals, their fitness functions, evalu-gle output of the network to a relative yaw anglev in the
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range off—m, 7]. TIELT then sends a command to the Unreal
game server to move towards a pdiatt- s cos(a+ Aa), y+
ssin(a + Aa), z) wheres is the step size parameter.

TARGET

4 Experiments

A number of validation experiments were conducted to verify
that the learning system design is effective. The testing was
done on an Intel Pentium 4 machine with a 2.4GHz clock rate
and 1GB of RAM running Microsoft Windows XP. TIELT
version 0.7 alpha and a Java implementation of NEAT were
running on Sun Java Runtime Environment 1.5. An off-the-
shelf copy of Unreal Tournament Game of the Year Edition
was used in “dedicated server” mode (graphics disabled) in
conjunction with a June 8, 2001 build of GameBots API. The
following parameters were used:

e Number of epochs:100 generations were used due to time
constraints. This number of epochs was sufficient to evolve

networks that were able to approach a static target. Figure 2: Example of a path to target task. Three traces of the
best neural network navigating from the starting position to the end-

e Population size and target speciation: The population  ing position in an Unreal Tournaméfftevel. The network shown
size was set to 50, 100 and 200 individuals with the targeiS the result of 33 generations of evolution and has the fitness score
speciation of 5, 10 and 20 species, respectively. of 3518 out of 4000.

e Number of repeated evaluationdn order to improve con- si50 ‘ _ Maximum Fitness over Epochs
troller robustness in the presence of latency and noise, in- T
dividual evaluations were repeated 1, 3 and 5 times and the w0 T ] 1
average was used as the fitness function.

3350 T T il

e Evaluation time: Each individual was evaluated for 10, T 1
20 and 30 seconds, which translates to about 100, 200 and wor T 1
300 consecutive actions.

e Fitness function: Throughout the lifetime of an individ-
ual, the system tracks the minimum distantg;, to a 1
static target. The fitness functigh for the individual is 8150- - 1
computed ad — d,,;, Where D is a constant greater than L - -
the largest measurement of the game level such/thab.
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The task in the experiment was to navigate through the en-
vironment to a static target (Figure 2). At the beginning of s, : - = - = o
an evaluation, the bot is placed at the origin and performs Epoch
actions for the duration of the evaluation. The minimal dis-__ o ) )
tanced,,;» to the target is measured over the synchronoug '9ure 3: Average population fitness with epochs Average fit-
updates received by the learning system. The fitness functigffSS Of 100 individuals per epoch, calculated as a mean of 3 10-

C — d.. grows to a maximum value af when the bot is second evaluations of the target navigation task in Figure 2. The
min 9 values shown are averages over 6 26-epoch runs with the standard

able to approach the target. , deviations shown by error bars.
In our initial experiments, we are able to reliably evolve

controllers for the simple “go to target” task (Figure 3). Start-

ing from initially random behavior, the record population fit- ;

ness improved from 3080 to 3350 in 20 generations. At that 5 Evaluation and Future Work

time the best agent was able to navigate reliably to withinOne important result of our work is an estimate of the time

650 distance units, and further evolution produced better corand effort required when using TIELT to integrate and evalu-

trollers. ate a new decision system and the additional specifications for
Additional proof-of-concept experiments were performedthe future evolution of such systems. The project discussed in

on a Condor cluster of Intel Pentium 4 (2.4GHz) machineghis paper consumed three academic hours of time for one un-

running Debian Linux. The results of these experiments werelergraduate and two graduate students during the course of a

consistent with the data presented here, and demonstrate tismester, with regular consultation by the developer of TIELT

it is possible to use a clustered environment to speed up evadnd by the authors of NEAT. TIELT made the work of apply-

uation of learning methods with TIELT. ing neuroevolution to Unreal Tournament simpler in several




ways. Above all, the communication layer between Unreakate via network messages. This is a powerful feature, and it

and TIELT was already implemented and required only mi-should be expanded with the ability to script experiments and

nor adjustments to integrate with the NEAT decision systemto distribute evaluations over several different computers run-
At the end of the semester, the learner-environment systeming TIELT. This would help optimize use of computational

had basic functionality to evolve agents as single actors in theesources and researcher time.

environment. However, the system was found to not be well;

suited for running and analyzing repeated experiments effiySablllty and Flexibility: — In order to make TIELT integra-

ciently. TIELT's design did not provide a convenient way to tion less time-consuming, the framework can be simplified by

parallelize evaluations of agents or to evolve multiple agentiakmg use of existing technology. Instead of using a custom

acting in the same environment. As a result, a large portion o cripting language, future integration systems can be made
9 : ’ gep ore powerful and easier to approach by using an existing

the functionality that can be taken care of in the “glue” frame-___. . P
work has to be implemented in the decision system. This:cnptmg language such as Python or Ruby, bringing to bear

- o f(isting documentation, libraries, and experience.
makes the decision system specific to the Unreal Tournamen If the goal of the middleware is to support many differ-
application and reduces the advantages of the middle layer. 9 PP y

There are several ways in which the TIELT system couid pe&nt kinds of learning systems, its architecture should be flex-

modified or other similar integration platforms be built in the Ible enough to be usable in all those models. The knowledge

future to better support exploration-based learning. In particPaSes and modules of TIELT, while well-suited for rule-based
arning, are not as useful with neuroevolution or online rein-

%?rt’) ;Tghsgjgirnrggﬂtgfeen;gifr ?g 'ﬁ'se(; t’n?(;?g 'ﬁ gx?tige;nsdufrfggrcement learning. For NEAT as well as other_remfor_cement
open. learning methods, the concepts of an evaluat_lon episode, an

individual agent, and a population are beneficial. Future ver-
Efficiency: Because the integration, evaluation and deci-sions of TIELT and other integration and evaluation systems
sion systems are implemented as Java applications, they caan benefit from a more modular architecture which supplies
incur unexpected garbage collection delays and are oftesome specific features needed by different kinds of learning
slower than native implementations. The Unreal Tournamenagents and environments.

Servef, which executes separat(_el_y and as a native binary, .dogécess to Source: Learning agent benchmarking interfaces
not incur such delays. In addition, the extra layers of in- :

direction between the environment and the decision syste Such as TIELT must have their source open to the users. Do-

. : .%g so will greatly shorten the debugging cycle as well as
add computational overhead to the process of making an N low researchers to have complete knowledge of the im-

gl\g?#aﬁl|devC§i'§Q|'eW§r%?;Stf; rr\]'elgté?]isevt/?ﬁé%risn?rgguucrzeéonge'Iementation of their experimental system. Unfortunately,
gnly P Y IELT is currently a closed source project.

challenges into learning a task in a simulated real-time envi-
ronment. A system such as TIELT can minimize these irreg- ;
ularities by providing a more efficient implementation or by 6 Conclusion
using low-pause garbage collection techniques. The results in this paper show that a generic framework such
Parallelism:  TIELT i tiv desianed f luati fas TIELT can be used to integrate and evaluate adaptive de-
aralielism. IS curréntly designed for evaluation o g4, systems with rich computer game environments. Basic
a single player learning agent, against an external or a hL{I':\rget-seeking behavior was evolved with NEAT neuroevo-
man opponent, and there |s_no_d_|rectly_supp0rted_ way t0 COMyiion method for an agent in the Unreal Tournament video
bine evaluations of several individuals in parallel into a single ame. However, in order to make such frameworks practical
learning system, even though such evaluation is possible i nd their use mére widespread, progress needs to be made in

the environment (Unre_al Tournament supports up to 16 .S'mUIéeveraI aspects. They must be designed and implemented as
taneous players). Adding explicit multi-agent functionality to high-performance and lightweight applications, better utilize

TIELT WOUld greatl_y increase the u_t|I|ty of the ple}tform when standard interfaces and existing scripting languages, and pro-
evaluating population-based learning systems like NEAT. ;40 s nnort for distributed and scripted operation for batch
Support for Batch Experiments: While TIELT does pro- computational experiments. With these extensions, it may be
vide some support for running experiments in batch modepossible to use sophisticated game playing domains in devel-
some settings are only available through the graphical useping better exploration-based learning methods, as well as
interface. This interactive component of TIELT makes it dif- develop more interesting adoptive elements for future games.
ficult to run long series of repeated experiments, especially

when distributing the work to a cluster of machines. For some A Acknowledgments
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