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. Abstract

Video and computer games provide a rich platform for test-
ing adaptive decision systems such as value-based reinforce-
ment learning and neuroevolution. However, integrating such
systems into the game environment and evaluating their per-
formance in it is time and labor intensive. In this paper, an
approach is developed for using general integration and eval-
uation software to alleviate these problems. In particular, the
Testbed for Integrating and Evaluating Learning Techniques
(TIELT) is used to integrate a neuroevolution learner with an
off-the-shelf computer game Unreal TournamentTM5 (Aha and
Molineaux 2004). The resulting system is successfully used to
evolve artificial neural network controllers with basic naviga-
tion behavior. Our work leads to formulating a set of require-
ments that make a general integration and evaluation system
such as TIELT a useful tool for benchmarking adaptive deci-
sion systems.

1 Introduction
It is often necessary to compare new machine learning tech-
niques empirically against other similar techniques to gauge
how they improve on previous results. In order to minimize
the influence ofdata biasin the evaluation process, new al-
gorithms should be tested in as large a variety of domains as
possible, especially when general claims about their perfor-
mance are being made. Existing video and computer games
provide a rich platform for testing adaptive decision systems
such as value-based reinforcement learning and neuroevolu-
tion. However, integrating and evaluating multiple algorithms
and implementations against multiple simulation domains is
a difficult process. Moreover, any benchmarking results can
also be skewed byimplementation bias, or intentional or un-
intentional disparity in quality of implementation of the pro-
posed approach vs. the quality of implementation of compet-
ing approaches (Keogh and Kassetty 2002).

One potential way to make empirical comparisons of learn-
ing techniques easier and more principled is to build a flex-
ible software platform that provides a uniform interface for
the learning system across multiple rich simulation domains.
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Such a system allows researchers to concentrate on imple-
menting and optimizing their approach to solving the learn-
ing problem and to validate it empirically by comparing with
other approaches.

In this paper we present the results of using one such “glue”
framework to integrate an existing reinforcement learning
technique with an existing game environment. The “glue”
framework used is the Testbed for Integrating and Evaluating
Learning Techniques (TIELT), developed by David Aha and
Matthew Molineaux (Aha and Molineaux 2004). It has been
designed to “integrate AI systems with (e.g., real-time) gam-
ing simulators, and to evaluate how well those systems learn
on selected simulation tasks” (Molineaux and Aha 2005).

The project uses NeuroEvolution of Augmenting Topolo-
gies (NEAT) method as the learning technique (Stanley and
Miikkulainen 2002a). NEAT is a genetic algorithm that
evolves increasingly complex artificial neural network con-
trollers by applying mutation and crossover operators to their
populations based on a fitness function. A real time variant
of NEAT, called rtNEAT, has been used successfully in the
game NERO, produced by the Digital Media Collaboratory
at the University of Texas at Austin (Gold 2005; Stanley et al.
2005b).

Using TIELT, NEAT is embedded into Unreal
TournamentTM , a popular First Person Shooter (FPS)
computer game produced by Epic Games, Inc. in 1999
and winning a Game of the Year title for that year. Unreal
TournamentTMwas previously integrated with the TIELT sys-
tem and other learning methods were tested on it. However,
exploration-based learning algorithms such as value-function
and evolution-based reinforcement learning have not been
tested with Unreal/TIELT before (Molineaux 2004).

The next section describes the state of AI in gaming, the
learning technique of neuroevolution, and the TIELT ap-
proach to integration and evaluation. Section 3 gives an
overview of our system’s architecture, Section 4 summarizes
experiments performed and their results, and Section 5 anal-
yses the results and describes future work.

2 Background
2.1 AI in gaming
Video game technology can provide a rich platform for val-
idating and advancing theoretical AI research (Gold 2005).
On the other hand, the video game industry stands to benefit
from the adapting artificial intelligence and machine learning
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techniques into new, more interactive games.

Computer and video games constitute a large and lucrative
market, 7.3 billion dollars in the US in 2004 (ESA 2005).
This allows game studios to develop a variety of what can
be seen as high realism simulations for human-level control
tasks, such as navigation, combat, team and individual tactics
and strategy. The emergence of online multi-player and mas-
sively multi-player games offers unprecedented opportunities
for real-time interaction between human players and artifi-
cially intelligent elements. Because of these factors, com-
puter and video games may indeed be a ’killer application’
for developing and validating machine learning techniques
(Laird and van Lent 2000).

However, adaptive algorithms are used in the game indus-
try setting surprisingly rarely. Most popular video games on
the market today use scripted non-player characters to add
interactivity to their games (Gold 2005). A large fraction of
AI development in the industry is devoted to path-finding al-
gorithms such as A*-search and simple behaviors built us-
ing finite state machines. There may be several reasons for
why this is the case. One is that high-end game applications
have traditionally pushed hardware systems to their limits and
simply did not have the resources to perform online learning.
This is becoming less of a problem with the availability of
cheap processing power and true parallelism. Another, deeper
reason may be that it is difficult to adopt results from aca-
demic AI to games because they are not built and tested with
these applications directly in mind. Where the goal of an AI
researcher is often to build a system that is able to adapt to
an environment to solve difficult tasks, the goal of a game de-
veloper is to build a system that is “human-like” and “fun”.
Integration systems such as TIELT can allow researchers and
engineers to more easily integrate and test new learning algo-
rithms with games, benefiting both academic AI research and
commercial game development.

2.2 Neuroevolution

Neuroevolution is a powerful technique for solving non-
linear, non-Markovian control tasks (Gomez 2003). In neu-
roevolution, a genetic algorithm is used to evolve artificial
neural networks. NeuroEvolution of Augmenting Topologies
(NEAT) is a particularly efficient method of this kind able
to evolve both network weights and topologies (Stanley and
Miikkulainen 2002b). NEAT starts with a population of min-
imal network topologies and complexifies them when neces-
sary to solve the problem at hand. NEAT is able to protect
innovation through a speciation mechanism, and has an ef-
fective encoding scheme that allows it to perform mutation
and recombination operations efficiently.

Neuroevolution and NEAT in particular have been shown
to outperform other methods on a number of benchmark
learning tasks. For example, neuroevolution has been
successfully used in a number of game-playing domains
(Agogino et al. 2000; Stanley et al. 2005a). It is therefore
important to show that methods such as NEAT can benefit
from general integration and evaluation tools such as TIELT.

2.3 Testbed for Integration and Evaluation of
Learning Techniques (TIELT)

The Testbed for Integration and Evaluation of Learning Tech-
niques, or TIELT, is a Java application intended to connect a
game engine to a decision system that learns about the game
(Aha and Molineaux 2004). The goal of the system is to pro-
vide the researcher with a tool that simplifies the task of test-
ing a general learner in several different environments.

The application consists of fiveknowledge basesor mod-
ules which correspond to different areas of TIELT’s function-
ality. The Game Modelencapsulates the information about
the game from a single player’s perspective. TheGame In-
terface Modeldescribes how TIELT communicates with the
game. TheDecision System Interface Modeldescribes in-
teractions with the decision system. TheAgent Description
describes tasks performed by the system in order to play the
game, and theExperimental Methodologymodule is used as
an evaluation platform for particular games and learning tech-
niques.

During integration, TIELT is connected with the game en-
vironment and with the learning system using the appropriate
knowledge bases. The software allows the user to define the
communication protocols between TIELT, the game engine
and the learning system. TIELT also includes a visual script-
ing language that allows scripting of the game behavior and
update rules.

TIELT provides the ability to connect environments and
learners with arbitrary interfaces and rules into a cohesive
learning system and to automate the evaluation of this sys-
tem’s performance. This paper explores how well these fea-
tures support neuroevolution.

3 System architecture
At the highest level, the system consists of three parts: the
Unreal TournamentTMserver, the TIELT integration platform,
and the decision system based on NEAT. The game server
simulates the environment for the learning agent. TIELT
communicates with the environment and accumulates a state,
which is then communicated to the decision system. The de-
cision system selects an action in the environment and com-
municates it back through TIELT. The decision system con-
tinually adopts its behavior by evolving artificial neural net-
work controllers to perform the task.

3.1 Game engine
Unreal TournamentTM is a real-time first person shooter
(FPS) computer game in which a player navigates a three-
dimensional space. The player can walk, run, jump, turn,
shoot and interact with objects in the game such as armor,
doors and health vials. The goal of one variant of the game
(the tournament) is to be the first to destroy a certain number
of opponents. Up to 16 players can play the game concur-
rently in a single level. A player can be controlled either by a
human player connected over a network or an automated bot
controlled by a built-in script.

The Gamebots API from the University of Southern Cali-
fornia modifies the original game to allow players to be con-
trolled via sockets connected to other programs such as an
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adaptive decision system (Kaminka et al. 2002). The commu-
nication protocol consists of synchronous and asynchronous
sensory messages sent from the server to all the clients and
of commands sent from the clients back to the server. The
server has all the information about player locations, interac-
tions and status. The synchronous updates occur about every
100 milliseconds, and include updates to the player’s view
of the game state. Asynchronous events include collisions
with objects, players and projectiles, results of queries by the
player and game over events.

3.2 Integration System
TIELT communicates with the GameBots API using TCP/IP
sockets. The game interface model defines a subset of the
GameBots protocol which is used to update the game model
and trigger agent actions.

The Game Modelrepresents the knowledge that a player
has about the game at any given time. It includes the locations
and types of objects encountered in the game, the objects that
are currently visible or reachable, the location and heading of
players, health, armor and other player status indicators. Ad-
ditionally, the game model holds an array of eight Boolean
variables that correspond to whether the locations distributed
at a fixed radius around the player’s most recent position are
reachable. This game model allows the information from syn-
chronous and asynchronous updates to be combined into a
single state that can then be used by the decision system to
generate appropriate actions. Because TIELT scripting lan-
guage did not implement the operations necessary to combine
these values into useful sensory inputs, the final values were
calculated in our decision system implementation.

The Decision System Interface Modeluses Java Reflec-
tion to dynamically load and use libraries of Java classes.
These classes implement the NEAT learning system, as de-
scribed in more detail in the next subsection.

The Agent Description is a script that sends sensor infor-
mation from the Game Model to the Decision System and ex-
ecutes the resulting action on each synchronous update from
the Unreal TournamentTMserver. This process is performed
many times to evaluate a single individual.

The Experimental Methodologymodule in TIELT allows
the user to specify which Game Model, Decision System, and
Agent Description are to be used in an experiment and how
many repetitions of the experiment have to be run. In our
system, a single TIELT experiment corresponds to the eval-
uation of a single individual’s fitness, and must be repeated
e × p times, wheree is the number of epochs andp is the
population size. The state of the NEAT algorithm is persisted
in memory across TIELT experiments.

3.3 Decision System
The output of the decision system is controlled by evolving

neural networks. Each static neural network in a population
performs a number of decisions during a predefined lifetime
of the individual in the Unreal game environment. The re-
sulting behavior is analyzed to compute a fitness score (sec-
tion 4). The Unreal TournamentTMworld is then reset and a
new network is used for decision-making. The decision sys-
tem keeps track of individuals, their fitness functions, evalu-

Algorithm 1 Agent description tasks executed by TIELT

Population← RandomPopulation()
for each epoche do

for each individualI do
while time not expireddo

s← SensorV alues() // TIELT to NEAT
a← Action(I, s) // NEAT to TIELT
Act(a) // TIELT to Unreal

end while
Fitness(I, e)← C - MinDistanceToTarget

end for
Population← NextPopulation(P,Fitness)

end for

Obstacle sensor

Current heading

Radar sector
Step size

Action angle

New target

Figure 1: Agent sensors and actions.Each neural network has
11 sensory inputs: 8 radial Boolean obstacle sensors and 3 forward-
facing “radar” sensors, whose values are derived from the distance
to navigation points visible in each of the three sectors shown on the
figure.

ation times, populations and epochs. The resulting algorithm
is thus simply a serial variant of the neuroevolution algorithm,
which evaluates each individual in turn (Algorithm 3.3).
Sensors: Each neural network has 11 egocentric sensor in-
puts: eight boolean obstacle sensorsS0..S7 with a small ra-
dius (in relative scale of the game they are roughly equiv-
alent to stretching out the bot’s arms in 8 directions) and
three forward-directed 60-degree “radar” valuesR0..R2 (Fig-
ure 1). In addition to these 11 sensors, each network has a
bias input (a constant 0.3 value found appropriate in previ-
ous NEAT experiments). Each radar valueRI is computed
asRI =

∑
x∈NI

d(x)/C whereNI is the collection of nav-
igation landmarks visible in sectorI, d(x) is the distance to
each landmark, and C is a constant scaling factor. Thus, the
RI can be interpreted as the amount of free space in the di-
rection; with higher activations corresponding to more visible
navigation landmarks and to landmarks that are visible further
away (Figure 1).
Actions: At each update, the decision system scales the sin-
gle output of the network to a relative yaw angle∆α in the
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range of[−π, π]. TIELT then sends a command to the Unreal
game server to move towards a point(x+s cos(α+∆α), y+
s sin(α + ∆α), z) wheres is the step size parameter.

4 Experiments
A number of validation experiments were conducted to verify
that the learning system design is effective. The testing was
done on an Intel Pentium 4 machine with a 2.4GHz clock rate
and 1GB of RAM running Microsoft Windows XP. TIELT
version 0.7 alpha and a Java implementation of NEAT were
running on Sun Java Runtime Environment 1.5. An off-the-
shelf copy of Unreal Tournament Game of the Year Edition
was used in “dedicated server” mode (graphics disabled) in
conjunction with a June 8, 2001 build of GameBots API. The
following parameters were used:

• Number of epochs:100 generations were used due to time
constraints. This number of epochs was sufficient to evolve
networks that were able to approach a static target.

• Population size and target speciation:The population
size was set to 50, 100 and 200 individuals with the target
speciation of 5, 10 and 20 species, respectively.

• Number of repeated evaluationsIn order to improve con-
troller robustness in the presence of latency and noise, in-
dividual evaluations were repeated 1, 3 and 5 times and the
average was used as the fitness function.

• Evaluation time: Each individual was evaluated for 10,
20 and 30 seconds, which translates to about 100, 200 and
300 consecutive actions.

• Fitness function: Throughout the lifetime of an individ-
ual, the system tracks the minimum distancedmin to a
static target. The fitness functionf for the individual is
computed asD − dmin where D is a constant greater than
the largest measurement of the game level such thatf ≥ 0.

The task in the experiment was to navigate through the en-
vironment to a static target (Figure 2). At the beginning of
an evaluation, the bot is placed at the origin and performs
actions for the duration of the evaluation. The minimal dis-
tancedmin to the target is measured over the synchronous
updates received by the learning system. The fitness function
C − dmin grows to a maximum value ofC when the bot is
able to approach the target.

In our initial experiments, we are able to reliably evolve
controllers for the simple “go to target” task (Figure 3). Start-
ing from initially random behavior, the record population fit-
ness improved from 3080 to 3350 in 20 generations. At that
time the best agent was able to navigate reliably to within
650 distance units, and further evolution produced better con-
trollers.

Additional proof-of-concept experiments were performed
on a Condor cluster of Intel Pentium 4 (2.4GHz) machines
running Debian Linux. The results of these experiments were
consistent with the data presented here, and demonstrate that
it is possible to use a clustered environment to speed up eval-
uation of learning methods with TIELT.

Figure 2: Example of a path to target task. Three traces of the
best neural network navigating from the starting position to the end-
ing position in an Unreal TournamentTM level. The network shown
is the result of 33 generations of evolution and has the fitness score
of 3518 out of 4000.
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Figure 3: Average population fitness with epochs.Average fit-
ness of 100 individuals per epoch, calculated as a mean of 3 10-
second evaluations of the target navigation task in Figure 2. The
values shown are averages over 6 26-epoch runs with the standard
deviations shown by error bars.

5 Evaluation and Future Work

One important result of our work is an estimate of the time
and effort required when using TIELT to integrate and evalu-
ate a new decision system and the additional specifications for
the future evolution of such systems. The project discussed in
this paper consumed three academic hours of time for one un-
dergraduate and two graduate students during the course of a
semester, with regular consultation by the developer of TIELT
and by the authors of NEAT. TIELT made the work of apply-
ing neuroevolution to Unreal Tournament simpler in several
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ways. Above all, the communication layer between Unreal
and TIELT was already implemented and required only mi-
nor adjustments to integrate with the NEAT decision system.

At the end of the semester, the learner-environment system
had basic functionality to evolve agents as single actors in the
environment. However, the system was found to not be well-
suited for running and analyzing repeated experiments effi-
ciently. TIELT’s design did not provide a convenient way to
parallelize evaluations of agents or to evolve multiple agents
acting in the same environment. As a result, a large portion of
the functionality that can be taken care of in the “glue” frame-
work has to be implemented in the decision system. This
makes the decision system specific to the Unreal Tournament
application and reduces the advantages of the middle layer.

There are several ways in which the TIELT system could be
modified or other similar integration platforms be built in the
future to better support exploration-based learning. In partic-
ular, the system can be more efficient, provide better support
for batch experiments, easier to use, more flexible and more
open.

Efficiency: Because the integration, evaluation and deci-
sion systems are implemented as Java applications, they can
incur unexpected garbage collection delays and are often
slower than native implementations. The Unreal Tournament
server, which executes separately and as a native binary, does
not incur such delays. In addition, the extra layers of in-
direction between the environment and the decision system
add computational overhead to the process of making an in-
dividual decision. We observed these factors add up to cre-
ate highly variable per-action latency, which introduces new
challenges into learning a task in a simulated real-time envi-
ronment. A system such as TIELT can minimize these irreg-
ularities by providing a more efficient implementation or by
using low-pause garbage collection techniques.

Parallelism: TIELT is currently designed for evaluation of
a single player learning agent, against an external or a hu-
man opponent, and there is no directly supported way to com-
bine evaluations of several individuals in parallel into a single
learning system, even though such evaluation is possible in
the environment (Unreal Tournament supports up to 16 simul-
taneous players). Adding explicit multi-agent functionality to
TIELT would greatly increase the utility of the platform when
evaluating population-based learning systems like NEAT.

Support for Batch Experiments: While TIELT does pro-
vide some support for running experiments in batch mode,
some settings are only available through the graphical user
interface. This interactive component of TIELT makes it dif-
ficult to run long series of repeated experiments, especially
when distributing the work to a cluster of machines. For some
of our experiments, additional software was used to script
user interactions in a virtual environment, which created un-
necessary overhead. In designing a testbed such as TIELT,
care should be taken to ensure that all use cases can be recre-
ated in non-interactive batch mode.

TIELT has the capability to integrate the game engine, the
TIELT application itself, and the decision system while they
are running on different physical machines and communi-

cate via network messages. This is a powerful feature, and it
should be expanded with the ability to script experiments and
to distribute evaluations over several different computers run-
ning TIELT. This would help optimize use of computational
resources and researcher time.

Usability and Flexibility: In order to make TIELT integra-
tion less time-consuming, the framework can be simplified by
making use of existing technology. Instead of using a custom
scripting language, future integration systems can be made
more powerful and easier to approach by using an existing
scripting language such as Python or Ruby, bringing to bear
existing documentation, libraries, and experience.

If the goal of the middleware is to support many differ-
ent kinds of learning systems, its architecture should be flex-
ible enough to be usable in all those models. The knowledge
bases and modules of TIELT, while well-suited for rule-based
learning, are not as useful with neuroevolution or online rein-
forcement learning. For NEAT as well as other reinforcement
learning methods, the concepts of an evaluation episode, an
individual agent, and a population are beneficial. Future ver-
sions of TIELT and other integration and evaluation systems
can benefit from a more modular architecture which supplies
some specific features needed by different kinds of learning
agents and environments.

Access to Source: Learning agent benchmarking interfaces
such as TIELT must have their source open to the users. Do-
ing so will greatly shorten the debugging cycle as well as
allow researchers to have complete knowledge of the im-
plementation of their experimental system. Unfortunately,
TIELT is currently a closed source project.

6 Conclusion
The results in this paper show that a generic framework such
as TIELT can be used to integrate and evaluate adaptive de-
cision systems with rich computer game environments. Basic
target-seeking behavior was evolved with NEAT neuroevo-
lution method for an agent in the Unreal Tournament video
game. However, in order to make such frameworks practical
and their use more widespread, progress needs to be made in
several aspects. They must be designed and implemented as
high-performance and lightweight applications, better utilize
standard interfaces and existing scripting languages, and pro-
vide support for distributed and scripted operation for batch
computational experiments. With these extensions, it may be
possible to use sophisticated game playing domains in devel-
oping better exploration-based learning methods, as well as
develop more interesting adoptive elements for future games.
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