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Abstract

Hardware Implementation of Inference in Deep Neural

Networks

by

Kimble Derek Houck, Ph.D.

The University of Texas at Austin, 2022

Supervisor: Risto Miikkulainen

Deep learning neural network algorithms, including convolutional and recurrent

networks, have risen to popularity in recent years. Along with this popularity has

come a wide range of implementations that optimize the performance of these algo-

rithms on existing hardware, including GPU architectures and with modern x86 CPU

SIMD capabilities. Likewise, e�ort has been put into developing hardware speci�cally

for running these algorithms, either focusing on speci�c algorithms or on a range of

building block operations common to many deep learning variations. While some of

these architectures, have large power requirements and are generally designed to run

in a datacenter environment, hardware architectures that are designed to run most

deep learning well while being small, low cost and/or power are also important for

applications where these are limiting factors.

In this work I will describe the implementation of both convolutional and recur-

rent network layer types on such a novel hardware architecture. This novel ultra-wide

SIMD architecture is built around a ring of simple data movement and register units

that feed simple arithmetic units, attached accumulator registers and post-processing

units. Unlike many other architecture designs however, this class of hardware designs

posses few methods for e�ciently rearranging data over even moderate distances in

memory but rather relies on shifting data between adjacent or nearby data units

in the ring. Thus, neural network implementations that take the geometry of the
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inputs into account as much as possible are needed. I present one such implementa-

tion, M3inM2V , and show that it allows such simple hardware architectures to be

e�ciently used for neural network inference, analyzing both it's performance on the

described novel architecture and the very di�erent AVX-512 SIMD architecture.

Furthermore, I show the applicability of recurrent network architectures to a novel

domain; the decoding of information encoded in the electrical spiking activity ob-

served from ensembles of neurons. By comparing the ability of a classi�er to infer

di�erent pieces of information from the data and/or comparing classi�ers trained

using di�erent methods of transforming the observed activity into feature vectors in-

ferences can be made about what information is encoded in the neural signal, and

how. By showing that deep learning classi�ers can perform useful classi�cation on

such a dataset, possibly with less parameter tuning than other classi�ers, I show that

such tools can contribute to increasing scienti�c understanding of the brain. Fur-

thermore, for future applications for decoding neural signals such as the control of

prosthetic devices, the ability to run the decoding algorithms on relatively low power

hardware would be highly advantageous.
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Chapter 1

Introduction

This dissertation presents a novel algorithm for performing convolution operations

like those used in deep learning networks, on a proposed class of massively parallel,

yet relatively simple, hardware architectures. Speci�cally, these architectures sacri�ce

�exibility in the ability to rearrange data in the SIMD vectors in exchange for the

ability to support SIMD widths in the thousands of bytes. My algorithm facilitates

this trade-o� by performing the convolution in a geometry aware manner that elimi-

nates the need for many complex data movement patterns, thus allowing it to be run

on hardware that provides limited data movement capabilities.

1.1 Motivation

The rise in popularity of deep learning has spawned the development of new

tools and hardware capabilities to run the algorithms more e�ciently. This includes

methods of computing deep network layers that take advantage of operations that

have already been optimized on various architectures using standard compute libraries

such as BLAS (Chellapilla et al., 2006, Mathieu et al., 2013). It also includes higher

level software packages that separate the selections of these optimized methods and

hardware on which to run them from the design of the deep networks themselves

(Dieleman et al., 2015, Al-Rfou et al., 2016). On the hardware side new architectures

have even been proposed, such as those by Chen et al. (2014), Qadeer et al. (2015),

or Liu et al. (2016), which provide varying levels of generalizability to di�erent and

potentially novel deep-learning architectures. Some of these architectures have large

power requirements and are generally designed to run in a datacenter environment.

However, hardware architectures that are designed to run most deep learning

architectures well while being small, low cost and/or power are important for ap-

plications where these are limiting factors. One obvious route for supporting deep

learning algorithms with such hardware is expanding the on-chip parallelism while

keeping the circuitry as small and simple as possible. This can be achieved either by

(1) increasing the number of cores or arithmetic units on the chip, or by (2) increas-

ing the number on simultaneous arithmetic operations that each core can perform
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at once. The �rst approach leads to duplication of overhead for each core and the

need for more complex control mechanisms to coordinate between them. This design

goes against the goals of simplicity and e�ciency. The second approach, increasing

Same Instruction, Multiple Data (SIMD) capabilities for a smaller number of cores

requires less overhead to implement and extends the trend started by the growth of

Intel's AVX instruction set to include 512 bit wide SIMD capability (Intel, 2021).

However, while the amount of circuitry required to perform arithmetic operations on

each element scales linearly with the SIMD vector width, the requirements for many

data movement operations do not. Thus, algorithms' data movement requirements

are the main obstacle in making ultra-wide SIMDs practical.

1.2 Proposed approach

This dissertation proposes a solution to this limitation in the context of infer-

ence in deep learning. The idea is to show that the �at approach to parallelism is

feasible for these applications by implementing deep learning algorithms using the

types of local data movement operations that do scale linearly with SIMD width.

This approach, called Memory Movement Minimizing Matrix Math - Vectorized

Convolution (M3inM2V Conv or MinMV Conv) is the main contribution of this

dissertation. In this work I will describe the implementation of both convolutional

network and recurrent network algorithms on such a novel, ultra-wide SIMD vector

hardware architecture.

The target hardware in question, ncore by Centaur Technology (Henry et al.,

2020), aims to provide enough �exibility to implement a wide range of current and

future deep learning algorithms, as will be shown by the implementation of a wide

range of such algorithms on an emulator of the hardware. The hardware design

attempts to create this �exible platform by way of an ultra-wide SIMD architec-

ture, utilizing simple arithmetic units arranged in a ringlike fashion that allows for

some simple data shift operations to be performed with extremely high e�ciency. If

this architecture were implemented in a form that kept cost and power consumption

down it could be deployed in a wider range of commodity devices including small

servers, laptops, gaming platforms and perhaps even smaller devices, allowing for the

increased use of pretrained networks for things like facial, voice, gesture and/or hand-
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writing recognition closer to the "edge". These tools could be applied to a wide range

of use cases, from data input and device control to interacting with video games.

Furthermore, e�cient, widely deployable hardware support for deep learning models

would facilitate support for such capabilities without the speed, security and privacy

concerns associated with o�oading these functions to the cloud.

1.3 Real world application: decoding neural signals

Building on the above approach, this dissertation shows that learning algorithms

on such hardware provides an advantage in solving practical problems. In addition to

consumer applications such a hardware accelerator might be applicable to a range of

other scienti�c and industrial uses, especially if it addresses power consumption con-

cerns. While �traditional� deep learning applications such as computer vision/image

processing, audio and speech recognition and text processing have applications in a

wide range of domains, one could imagine that other applications of deep learning

algorithms could expand this applicability even further.

As an example of a lesser explored application of deep learning I will look at the

application of recurrent deep networks to computational neuroscience, speci�cally

the decoding of information encoded in the electrical spiking activity observed from

ensembles of biological neurons. Simpler recurrent network models with a limited

number of learned parameters have been recently shown to be e�ective at decoding

neural spiking activity (Sussillo et al., 2012). In this work I will show that such

meaningful information can be gleaned by gated recurrent networks from a dataset

consisting of behaviorally correlated activity of neurons in an auditory processing area

of the rat brain (Sloan et al., 2009, Sloan, 2009).

While most of the computational time is spent on training the networks, running

such neural decoding algorithms on hardware that is optimized for inference using

deep networks is still relevant. Speci�cally, while much current work on observed

neural signals is focused simply on �guring out how the brain encodes information,

many researchers hope that someday such decoding of neural signals could be used

to drive brain-machine interface and neuro-prosthesis systems (Smith et al., 2013).

While most research applications can make use of relatively large compute clusters,

simpler hardware with lower power requirements would be better suited for running
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a controller for a prosthetic device.

One limitation of this approach is that the training stage will not be considered

on the proposed hardware architecture. However, the ability to decode neural signals

using a trained network running on small and relatively low-power hardware is still an

important advancement towards eventual applications in the domain of neural con-

trolled prosthetic devices. Even without training capability such applications would

bene�t from the fast and potentially low power inference capabilities that could be

o�ered by hardware architectures like the ultra-wide SIMD. Having such highly mo-

bile and low power hardware available when the rest of the scienti�c and engineering

hurdles have been cleared to make such prosthetics a reality, will be the �nal piece of

the puzzle. Furthermore, there are likely many other applications in other domains,

where the ability to perform inference using deep learning without the need for large

and power hungry hardware will similarly help facilitate the deployment of practical

innovations stemming from basic scienti�c advancement.

The �eld of neuroscience, along with many modern other biology disciplines, in-

creasingly reliant on machine learning algorithms to not only analyze data, but to

build models that can provide clues as to what theories might be fruitful to test ex-

perimentally, or what variables to look for in the data. Even old datasets can be

reanalyzed with new algorithms that were previously computationally intractable to

yield new insights. Thus, given that most researchers' budgets are �nite, anything

that increases the amount of usable computational power available for that budget

increases the ability to analyze data.

1.4 Guide to the reader

The dissertation begins in Chapter 2 with an overview of related work, algorithms

and hardware. Then I will provide an in depth description of the proposed hardware

that MinMVConv will run on. Chapter 3 follows with the details of the convolu-

tion algorithm itself, including some interesting variants. Next, in Chapter 4, the

performance of my proposed algorithm is analyzed as a function of the hardware

parameters.

In order to provide an example of implementation of MinMVConv on existing,

widely available hardware, an AVX-512 implementation is presented in Chapter 5.

4



My accompanying analysis of this implementation compares the hardware utilization

e�ciency to that on the proposed class of ultra-wide SIMD architectures for which

the geometry-aware convolution algorithm was developed. While the number of data

elements contained within a 512b SIMD line is insu�cient to fully showcase the

strengths of my MinMVConv, the implementation does still show that the algorithm

can be implemented and run in real, existing hardware.

In further support of the general utility of algorithms like MinMVConv Chapter

6 addresses the issue of recurrent network layers. While the implementation of even

�complex� recurrent layer types, such as LSTMs, is relatively simple. The fact that

they can be implemented with an MinMVConv like approach shows that the proposed

hardware and programming approach is capable of supporting networks that contain

these layers, possibly in combination with convolutional layers.

To demonstrate the practical utility of MinMVConv to a new domain, Chapter 7

discusses the application of convolutional and recurrent deep networks to the emerging

area of using deep learning to decode neural signals. While interesting in of itself from

a scienti�c perspective, the proposed MinMVConv algorithm and the simple, ultra-

wide SIMD architecture that it supports open the door for low power requirement

applications of neural decoding, such as the control of prosthetic devices.
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Chapter 2

Background

From the �rst perception model proposed by Rosenblatt (1958), neural networks

have evolved into often large modern networks composed of many layers of varying

types. These networks have inspired new algorithms and hardware architectures in

order to run them, and have found their way into a wide range of applications. In

this chapter I will give a brief overview of some of the neural network layer types used

in modern deep neural networks. I will then describe some of the algorithms and

hardware architecture proposed to train and perform inference on these networks,

including a description of the proposed class of new ultra-wide SIMD architectures

whose development I was involved with and that my work presented here describes

algorithms for. Finally I will describe emerging applications of deep learning to the

decoding of information from the spiking activity of real neurons.

2.1 Neural nets and deep learning

Starting from the simple perception model, neural network algorithms have evolved

to include networks with many layers, and often with diverse topologies among these

layers. Here I will brie�y discuss this evolution, and then I will describe two of the ma-

jor topologies that expand on the classical fully connect layer; convolutional networks

and recurrent networks.

2.1.1 Deep learning and the resurgence of Neural Network

Algorithms

While arti�cial neural network algorithms are much older than the current popu-

larity of �deep learning� several factors have made the training and evaluation of large

scale neural networks practical. The �rst factor is the increase in available computing

power. The second factor is related to this, and it is the increase in the amount of

training data available in certain domains. This is especially image processing, where

the ability to crowd source much of the work in generating a dataset led to the cre-

ation of the well known ImageNet dataset (Deng et al., 2009), which then gave rise
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to successful deep networks such as AlexNet (Krizhevsky et al., 2012). While more

ambitious datasets and networks have been developed since, they all share common

building blocks in their use of variations on convolutional, or ConvNet layers. Unlike

fully connected layers, ConvNets utilize relatively small �lters that are then used to

perform a 2D convolution with the input. This requires fewer total parameters, and

allows the networks to more easily capitalize of the spatial relationships within the

input.

Likewise, for domains such as text and speech processing, where temporal infor-

mation is important, improvements in recurrent network algorithms have made such

algorithms practical in more applications. These improvements, which include adding

gates to the recurrent units that determine what information is used to determine the

unit's output (Hochreiter and Schmidhuber, 1997). These gates help prevent useful

information from being lost over larger timestep intervals, and aid in training the

networks.

Convolutional Networks

The �rst well known use of convolutional networks was the use of the LeNet

architecture on the MNIST handwritten digit dataset (LeCun et al., 1998). While

much simpler than most modern convolutional network applications this network had

all of the building blocks used in those newer networks, including the reuse of weights

through the convolution of the same �lters with all locations across the input image,

and the use of max pooling to reduce the dimensionality of each layer's output.

As an example I will discuss a simpli�ed version of the LeNet network, with

fewer layers, that is used as part of the tutorial for the deep learning toolkit Theano

Al-Rfou et al. (2016). This network takes as it's input the 28 × 28 images from

the MNIST dataset. Unlike the 224 × 224 × 3 RGB inputs that AlexNet uses from

the ImageNet dataset the MNIST inputs have only one channel. This means that

while convolutional network �lters are generally described as being R× S ×C �lters

where R is the number of rows, S is the number of columns and C is the number of

channels the �lters for this LeNet variation on the single channel MNIST dataset are

5 × 5 × 1 �lters. There are 20 such �lters in the �rst layer of this network, are they

are commonly referred to as �lter groups.

The term �lter groups makes more sense in terms of the second layer of the
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network. Here each of the 50 �lter groups take a 20 channel input (for a 5× 5 �lter).

Each channel is the output of the previous layer. Within a �lter group the 2D �lter

for each channel is convolved with that channel's 2D input by sliding the window

across the input and summing the products of the �lter coe�cients with the �pixels�

covered by the �lter. The 2D matrices resulting for the convolutions of all channels

are then summed to create a single output per �lter group.

If same size convolutions are used then the input image is padded with zeros and

the output of the convolution for each �lter group has the same number of rows and

columns as the input. If only the valid convolutions are used then the output is

slightly smaller than the input, as convolutions where the �lter hangs o� the edge are

not used. In either case, since the outputs of each �lter group have roughly the same

2 dimensional size as each input channel the total size of the input to each layer will

grow if the layers have more �lter groups than input channels. To combat this, and

to build some degree of translational invariance into the network a technique known

as max pooling is used.

In max pooling the �nal output of each �lter groups convolution is divided up into

small sectors. In the basic case these sectors are small non-overlapping squares, and

in the case of the modi�ed LeNet network example discussed above are 2 × 2. Out

of the convolution results in this square only the largest value is selected as part of

the actual output to the full layer. Thus for the LeNet MNIST example, the 24× 24

output of each �lter group of the �rst convolution is subsampled via max pooling to

yield a 12× 12× 20 output across all �lter groups in the layer.

Recurrent Networks

Convolutional layers can be mixed with fully connected layers to form powerful

classi�ers for inputs that represent a single point in time (or consist of information

properly combined over a period of time). They cannot, however, form a repre-

sentation that includes information about inputs that the network has recently seen,

without modifying the weights through training. Recurrent neural networks can accu-

mulate information over time, however. Thus they are natural choices for application

where the data is best viewed as a timeseries. Practical applications include speech

and text processing, music identi�cation, and even handwriting recognition when

sequence of the actual penstrokes is known (Cho et al., 2014, Gre� et al., 2015)
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The most basic recurrent network layers simply consist of fully connected layers

where the outputs are connected back to the units in that layer, as well as being

used as inputs to the next layer. However, many modern recurrent layers make

use of gating mechanisms to control what gets output from each unit. These gates

are sigmoid functions of the inputs (recurrent and non-recurrent) to each unit, or

cell. The �rst such recurrent architecture to be proposed was the Long-Short Term

Memory(LSTM) networks proposed by Graves and Schmidhuber (2005).

A LSTM cell contains three gates, along with a cell state. The three gates, know

as the input(i), forget(f) and out(o) gates are computed as follows, where σ is the

standard sigmoid function, with a range between zero and one:

i = σ(Wi ∗ xt + Ui ∗ ht−1 + wci ∗ ct−1 + bi) (2.1)

f = σ(Wf ∗ xt + Uf ∗ ht−1 + wcf ∗ ct−1 + bf ) (2.2)

o = σ(Wo ∗ xt + Uo ∗ ht−1 + wco ∗ ct + bo) (2.3)

The W ∗ x and U ∗ ht−1 terms are vector multiplications between the weights

and in incoming and recurrent connections respectively. The w ∗ c terms are scalar

multiplications that are used to include the cell state in the calculation of the gate

values themselves. These connections are known as peephole connections, and some or

all are left out of some LSTM variants. It should be noted that if peephole connections

are used the outgate (Eq. 6.3) uses the cell state for that timestep. The input and

forget gets, which are used to calculate the cell state, get their peephole connections

from the cell state at the previous timestep.

The new cell state is computed using the input and forget gates as follows, where

the input gate controls the contribution of the incoming and recurrent connections

to the new state, while the forget get determines the contribution of the previous

timestep's cell state:

ct = i ∗ tanh(Wc ∗ xt + Uc ∗ ht−1 + bc) + f ∗ ct−1 (2.4)

The cell's actual output is then determined by taking the tanh of the state and
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scaling it by the output gate:

ht = o ∗ tanh(ct) (2.5)

While LSTM networks have proven e�ective on a wide range of tasks, the model

is complex, and each gate adds a potentially large number of parameters to train.

This is especially true as the number of cells in a layer increases, as the number of

recurrent connections is N2, where N is the number of cells in the layer. A newer

type of gated recurrent layer, known as Gated Recurrent Units (GRUs) reduces the

number of parameters by reducing the number of gates by one, and eliminating the

cell state (Cho et al., 2014).

The remaining two gates in the GRU model are known as the update(z) and

reset(r) gates, and are computed as follows:

zt = σ(Wz ∗ xt + Uz ∗ ht−1 + bz) (2.6)

rt = σ(Wr ∗ xt + Ur ∗ ht−1 + br) (2.7)

Like the LSTM cells, the tanh function is then used in the calculation of the cell

output, however the GRU cell determines it's output directly from the gates and the

previous output, with no need to maintain a seperate state value:

ht = z ∗ ht−1 + (1− z) ∗ tanh(Wh ∗ xt + r ∗ (U ∗ ht−1) + bh) (2.8)

It should be noted that the z ∗ ht−1 term is a scalar multiplication between the

update gate and the previous timestep's output for that cell, while the U ∗ht−1 term is

the dot product between the recurrent portion of the weight matrix and the previous

timestep's output from all cells in the layer. Thus the intuition behind the update

and reset gates is that the update gate determines how much the previous timestep's

output for the cell determines the new output directly, compared to the in�uence of

the connections coming into the cell. The reset gate on the other hand determines

how much in�uence the recurrent connections have on the incoming connections' part

of the output.
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2.2 Computing hardware and deep learning

While, historically limitations created by contemporary compute hardware hin-

dered the development of neural network algorithms, in recent years neural networks

and deep learning have driven the development of algorithms and even new hardware

architectures to facilitate more e�cient training and evaluation of neural networks.

This includes both e�orts to simply speed up the matrix/vector multiplication inher-

ent in evaluating all neural network layers, especially fully connected and recurrent

layers, and algorithms and hardware to speci�cally speed on convolutional layers. It is

convolutional layers that I will focus on most speci�cally here, but with respect to al-

gorithms for their evaluation on standard CPU and GPU hardware, and on hardware

architectures designs speci�cally for neural network computations.

2.2.1 Implementation of Convolutional Networks across Hard-

ware Architectures

Due to their popularity and use is a wide array of research and production applica-

tions, many optimized implementations of ConvNets have been developed for di�erent

architectures, including standard x86 CPUs, GPUs and other prototype hardware ar-

chitectures. Many of these implementations are part of deep learning tools such as

Theano/Lasagne (Al-Rfou et al., 2016), Ca�e, or TensorFlow. These tools often break

up networks into modular layers, such as a convolution layer or a recurrent layers.

Layers of a speci�c type have meta-parameters for their size, training options etc,

and allow for the architecture of the network itself to be speci�ed with limited con-

sideration for the actual implementation or even the hardware it will be run on. It is

the implementation however, that I am concerned about in the �rst part of my work.

Here I will discuss implementations that others have developed, for x86 based CPU

architectures, GPU architectures and novel, deep learning speci�c hardware.

2.2.2 x86 Implementations

The most naive approach to implementing a convolutional or recurrent network is

to simply calculate the output to each layer serially, performing single multiply-add

operations between each weight and the appropriate input value(s). While this might
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yield code that is easy to understand and debug, it does not take full advantage of

the capabilities of modern CPUs. Even if the work were parceled out such that each

core is performing calculations, the SIMD capabilities of the cores are ignored, with

only one multiply-add operation be performed at once as opposed to the eight to 16

such single precision �oating point operations that can be performed simultaneously

on many modern Intel CPUs (Intel, 2021). Common compilers, including Intel's

C/C++ compilers and the open source gcc and g++ compilers, have optimization

options that can attempt to allow code to automatically make use of these SIMD

capabilities, and many libraries exist with optimization implementations of common

mathematical operations.

For a fully connected neural network layer it is simple to take advantage of this

SIMD capability, through the use of these optimized libraries. Assuming that the

weights are arranged properly the bulk of the computational load can be performed as

a simple matrix dot product, with an element wise addition for the bias terms. These

are both operations for which there are many well optimized libraries to perform,

such as the well known BLAS library. The connectivity of more complex network

layer times is not this simple, however any many cases it can still be transformed into

a matrix operation. Likewise, the primary computations for simple fully connected

recurrent layers can be broken up into the sum of two dot products, one for the layer

input, and the other for the recurrent connections. For gated recurrent networks the

bulk of the computation comes from multiplying the values from the incoming and

recurrent connections to compute the values for the gates and cell state or output. In

the case of an LSTM layer, this means calculating the product of the same incoming

and recurrent inputs with weights for the in, forget and out gates along with the cell

state (Hochreiter and Schmidhuber, 1997). All of these values can be computed at

once using a similar sum of dot products strategy.

Unlike many basic and recurrent neural network layer types, one key feature of

convolutional networks is that they are not fully connected (LeCun et al., 1998). This

however means that more complex manipulations are required to formulate the layer's

computations in a way such that they can be carried out using a small number of

standard matrix computations. One such method is proposed by Chellapilla et al.

(2006). This method duplicates the input values to create a matrix where each row

contains all of the values needed to compute a given output. The weight values
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are then arranged appropriately, with no duplication, to allow the majority of the

computations needed to compute the layer output to be performed as part of a single

dot product.

2.2.3 GPU implementations

While the matrix method of performing convolutions can was developed to take

advantage of optimized matrix multiplication libraries and SIMD capabilities of mod-

ern CPUs the same method can also be used on GPUs. One such implementation

is cuDNN (Chetlur et al., 2014). Another method developed for implementing large

convolutional networks on GPUs involves the use of an Fast-Fourier Transform (FFT)

(Mathieu et al., 2013). The FFT transform is used to transform a layer's �lters and

inputs from 2d spatial images to the frequency domain, where the the actual convo-

lution operation can be performed with a single step. Like the duplication of data

in the matrix method, the FFT transform incurs extra overhead, however since the

transformed values can be reused the overhead is made worthwhile by the savings in

computational operations across all computations performed.

2.2.4 Custom and experimental hardware implementations

Besides optimized CPU and GPU implementations, a third route for implementing

neural network algorithms is to use hardware that was designed primarily for running

neural network algorithms. While still much less �exible in their capabilities than a

modern CPU or GPU some of this architectures have been designed for the general

types of calculations performed as part of neural network algorithms, and posses the

�exibility to implement a wide range of neural network algorithms.

In their DianNao architecture, Chen et al. (2014) focus on such an approach,

implementing a SIMD architecture that is designed with the memory locality structure

of convolutional networks in mind, maximizing the usage of data elements that have

been fetched from RAM. They take advantage of the structure of input (x,y, channel)

and of the 2D convolution to inform arrangement of data in memory and order of

operations and accomplish this by having a circular input bu�er that feeds the data

to the SIMD unit. This bu�er is �lled with input values from di�erent channels but

the same x, y location, and all calculations that need this values are accomplished and
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stored in another bu�er before the initial set of inputs are replaced with a new one.

Their hardware design is somewhat unusual, however, in that it broadcasts the input

channels the 16 inputs that it can handle at once to all 16 arithmetic units, while the

162 total weight values read in together are divided up among the arithmetic units.

The focus behind this scheme is memory reuse. It achieves reuse of the data values,

as multiple partial calculations that use the same X,Y locations are completed before

that data is removed from the bu�er nd replaced with new data. The temporary

storage registers for the partial sums do add additional complexity to the hardware

however, and the number of such bu�ers places an upper limit on the number of

partial sums that can be stored, and by extension limits data reuse.

A successor architecture to DianNao, Cambricon (Liu et al., 2016), addresses some

of the �exibility concerns of DianNao by implementing more general matrix operation

primitives. However, both proposed architectures are limited in the width of their

SIMD capability and would likely not scale well. This means that a higher clock

speed would be required to get the same throughput as more highly parallel methods.

Another novel design, proposed by Han et al. (2016), focuses speci�cally on accel-

erating deep networks with sparse weights. This proposed architecture, the E�cient

Inference Engine, consists of many, relatively small SIMD compute units. The authors

claim improvements in inference speed and power consumption compared to CPU or

GPU based inference algorithms. However, this speed and e�ciency is achieved by

putting strict requirements on the sparsity of both the data and the weights, and by

constraining the �nal weight values of the network to belong to a small set of discrete

values. While this might work for some networks and result in a very e�cient hard-

ware design for certain situations it is unlikely to work for all networks, limiting the

architecture's usefulness as a general deep learning inference engine.

2.2.5 TPUs

Another major hardware architecture that should be mentioned is Google's Tensor

Processing Unit (TPU), as it has seen production use as a data center based device

designed for neural network inference. The TPU utilizes pipelined CISC instructions

that allow for many clock cycles to by spent in each pipeline stage. Additionally, the

pipeline is designed such that data movement operations and auxiliary post-processing

operations can be performed simultaneously with the main fused-multiply-add (FMA)
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workload, preventing these background operations from delaying the arithmetic op-

erations that need their results whenever possible (Jouppi et al., 2017).

The primary arithmetic operations are either 8b×8b, 8b×16b, or 16b×16b integer

multiplies added to a 32b accumulator, with wider operations taking multiple clock

cycles. The FMAs are performed in chunks of 256 elements at a time inside a 256×256
systolic array Matrix Multiply Unit, and once they leave the Matrix Multiply Unit the

accumulators' values can be stored for later or sent to a separate hardware unit that

handles activation functions and similar post-processing operations (Jouppi et al.,

2017). While custom ASICs could previously be tailored to a speci�c neural network

workload, the TPU's neural network speci�c design secures is a �rst as a drop in,

neural network speci�c hardware solution for use in production systems.

2.3 AVX-512 Overview

However, just because solutions exist that are speci�cally targeted for neural net-

work inference exist doesn't mean that general purpose hardware shouldn't be con-

sidered - especially since most neural networks are part of a bigger system made up

of more general code. Thus, the �nal SIMD paradigm that deserves more through

discussion is Intel's AVX-512 instruction set, as it is built in to many modern high

end Intel server and consumer grade CPUs (Intel, 2019), and has many open source

libraries that take advantage of it, including tensor�ow (Abadi et al., 2015). unlike

the previously mentioned architectures, the AVX-512 instruction set was not built

with neural network workloads speci�cally in mind, but instead builds on a history of

SIMD technology developed for Intel x86 CPUs for multimedia, communication and

general purpose SIMD operations. This history begins with the MMX instruction

set extensions introduced on Pentium II CPUs, which provided integer operations

on a 64b vector width, mostly targeted at multimedia and internet communications

applications. Later improvements to SIMD functionality came with the Streaming

SIMD Extensions (SSE) which introduced 128b wide SIMD vectors along with �oating

point support. This expanded vector width then grew to 256b with the introduction

of Advanced Vector Extension (AVX and AVX2) instructions, which also introduce

fused multiply-add capability which is commonly used in neural network applications

(Intel, 2021). Finally, the AVX-512 instruction set increased the SIMD vector width
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to 512b, being released initially as a specialized many-core compute device in the

�rst generation of Xeon Phi, known as Knight's Landing. AVX-512 was brought to

standard CPUs designs with the Skylake-X consumer focused line, and as of 2022

can now be found in most recent Intel Core (consumer market) and Xeon Scalable

(server) CPUs, although it's not available on the latest 12th generation "Core" CPUs

(Intel, 2019).

2.3.1 Changes from previous AVX instructions

The most obvious change between AVX-512 and previous AVX instructions is the

increase in SIMD width. However, AVX-512 also follows the trend of increasing regis-

ter space for SIMD instruction with each generation of SIMD capability. Speci�cally,

while MMX instructions introduced only 8 64b SIMD registers, the SSE instruc-

tions increased this to eight larger 128b xmm registers could be split into 16 64b for

SSE/SSE2 instructions. The original AVX instructions introduced the 16 256b ymm

registers, which doubled in both number and size for 32 512b wide zmm registers

used for AVX-512 instructions (Intel, 2021). This increased register width allows for

a greater amount of data to be kept immediately available for use. Additionally,

while previous SIMD instruction sets have had a few iterations (e.g. SSE, SSE2,

etc), AVX-512 consists of multiple groups of instructions in addition to the original

"Foundation" instructions (AVX-512F) (Intel, 2021). While it is possible to detect

which of these instruction groups are supported on a given CPU, this ambiguity as to

what constitutes AVX-512 makes generalized development more di�cult, especially

since some the instruction groups include things like 16b �oating point support that

are potentially useful for neural network applications (Intel, 2021).

2.4 Ultra-wide SIMD hardware description

Finally, I will describe the proposed ultra-wide SIMD architecture for which the

algorithms described in this document were developed. This proposed architecture,

known as ncore, trades o� the ability to perform a wider array of data movement

operations such as those available in AVX-512 for the ability to do as many simple

arithmetic operations at once as possible, with SIMD widths an order of magnitude

wider than the TPU. This section describes this hardware design and the philosophy
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behind it.

2.4.1 New Ultra-wide SIMD Hardware

Relatively narrow SIMD operations, such as the 128, 256 and 512b wide SIMD

operations provided by current or upcoming x86 ISAs provide a larger amount of

�exibility in their use, since they operate on a relatively small amount of data at once,

compared to the size of many matrix operations used in deep learning applications.

Architectures with a higher degree of parallelism o�er the opportunity to complete a

larger chunk of a matrix operation within a single instruction. New implementations

of deep learning primitives however are likely needed in order to take advantage of of

the greater parallelism o�ered by such a new architecture. Here I will describe one

such proposed ultra-wide SIMD architecture, in order that I can de�ne new methods

to use the architecture for deep learning calculations. The hardware was developed by

a team that I worked with at Centaur Technology in Austin, TX, and is the hardware

for which I will develop implementations of convolutional and recurrent deep network

algorithms. In order to aid in the understanding of my implementations I will �rst

describe the basic functionality and unique aspects of the hardware on which it will

be run.

2.4.2 Hardware and Instruction Set Architecture (ISA) Overview

The primary building block of this proposed hardware architecture is a hardware

"slice" concept outlined by Henry (2020), consisting of memory, a Neural Data Unit

(NDU), a computational unit (Neural Processing Unit (NPU)) that can take two in-

put values and perform at least the limited set of arithmetic operations needed for

common neural network architectures, including a large number of multiply accumu-

lates, and a output/post-processing unit. These are arranged to form a determin-

istic pipeline, where each stage feeds the next while allowing data movement and

post-processing operations to take place simultaneously with the basic addition and

multiply operations that make up the bulk of neural network computations.

The main pipeline begins with the data movement stage, the NDU, that controls

the NPU inputs, allowing for inputs from memory registers, previous outputs, and

operations that allow the previous operation's input(s) to a unit to be be sent to an
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adjacent unit at a given distance and direction within a relatively smaller number of

SIMD units, either as a rotate, local broadcast, or similar operation. This movement

capability essentially makes a logical ring out of the processing units, facilitating

local data movement without the overhead of large scatter/gather operations, but

still allowing data to (eventually) reach any location across the SIMD width using a

sequence of rotations, but without changing the relative order of the data elements.

The data movement stage feeds the NPUs, where each computational unit includes

an arithmetic unit that performs FMAs and related operations, and an �accumulator�

register that is used to store the intermediate results of such sequences of simple

operations. The result of a string of these arithmetic unit operations can then be sent

to an Output/Activation unit, similar to that in the TPU, where a provided function

(e.g. tanh) or other post-processing step can be applied to the accumulator value

before it is either be written back to memory, or used as input to further arithmetic

operations.

This simplest such network layer that one can evaluate on this architecture is a

fully connected layer whose input and output sizes are less than or equal to the SIMD

width. Using this architecture the output of a single such layer can be computed as

follows:

1. The input to the network along with the �rst row of the weight matrix are

loaded from cache/memory.

2. Prior to performing any calculations the accumulator registers of all computa-

tional units are set to zero.

3. Element-wise multiplication is performed between the network input vector and

the �rst row of the weight matrix, and the result added to the computational

units' accumulator registers.

4. The values from the input vector are then shifted, such that the value that

was used by computational unit i for the last multiply-accumulate operation is

transferred from the input register of unit i to computational unit i + 1. This

value is then used as an input to the next element-wise multiply-accumulate

operation, along a new row of weights fetched from memory.

5. This process is repeated until all elements in the input vector have been provided
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to each computational unit along with the appropriate weight values. At this

point the accumulator register of each computational unit holds the weighted

sum of the inputs one of the layer's neurons.

6. The bias value is then added to each computational unit's accumulator register

as a single SIMD operation.

7. The appropriate activation function is applied to the contents of each compu-

tational unit's accumulator register, and the result written back to memory.

In fully connected layers where there are more inputs to the layer than can be �t

across a single SIMD row the additional inputs can be placed in another row. Steps

three through �ve are then repeated for each SIMD row of input data. Likewise,

layers that have more neurons in them than computational units in the hardware can

be computed be repeating the whole process M times, where M = ceiling(layersize
computationalunits)

.

While the above example uses the values in the computational units' accumulator

registers to write the layer output back to memory, as state previously, the capabil-

ity to use a function of these registers' contents directly as an input back into the

computational units is also provided. This functionality is important for e�ciently

implementing recurrent neural networks. To further facilitate the implementation of

gated recurrent networks limited ability use the computational units' output as input

to adjacent computational units is also provided.

2.4.3 Motivation for Ultra-wide Paradigm

While the high-level goal driving the design of ncore was performance per to-

tal system cost due to its nature as a on-die co-processor, the low-level design was

driven by multiply-accumulate (MAC) e�ciency, and design scalability (Henry, 2020).

Speci�cally, multiply-accumulate (MAC) e�ciency meant that both the hardware and

software algorithms were designed to maximize the usage of the main arithmetic units

each clock cycle, whether fused multiply-add (FMA) operation, or other simple arith-

metic operations that could reuse most of the hardware components of the FMA

units. The repetition of this simple hardware design in the slice concept described

above allows for groups of identical arithmetic units along with their supporting data

movement and output functions to be repeated across the SIMD width as a larger
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hardware module, simplifying the hardware design process and allowing the SIMD

width to be changed by simply changing the number of these modules.

While at a high-level ncore's pipeline is similar to the TPU, this design highlights

a major di�erence in low-level design. Namely, the organization of ncore around a

simple, repeated "slice" reduces the size of the hardware design problem, simplifying

the process of design and testing, allowing for a new version of the hardware to

be easily designed with a di�erent SIMD width as dictated or allowed by hardware

technology or application requirements, and potentially allowing more compute units

on the same physical chip by facilitating optimization. Plus, some would argue that

such simpler design paradigms are less vulnerable to the ever increasing scourge of

security vulnerabilities (Henry, 2021).

2.5 Machine Learning and Decoding Neural Signals

The reason that so many hardware solutions have been developed for neural net-

work training and/or inference is that these algorithms have proven themselves useful

in a large array of �elds. Well known examples include computer vision and speech

processing, but neural network algorithms can be used many �elds where sensor data

or other similarly large volume input needs to be interpreted or have a label assigned

to it. One such �eld is computational neuroscience and the interpretation of observed

neural signals.

Neuroscience researchers utilize a wide range of methods for observing, either

directly or indirectly, the activity of neurons. These methods range from invasive

methods for directly observing the activity of small numbers of individual neurons

in animal studies, to non-invasive methods, such as fMRI or EEG, that allow for

the observation of the entire human brain, albeit at a much coarser temporal and/or

spatial scale. The types of data generated by these observations varies. However,

almost all methods yield large amounts of data whose interpretation often requires

powerful analysis tools.
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2.5.1 Machine Learning Techniques for Neuroscience Time-

series Data

Some such analysis methods focus on inferring other aspects of the data such

as structure, as in (Huth et al., 2015) for example. However, here I will focus on

situations where some form of classi�cation or regression is performed on the data,

often to infer something about the stimulus that drove the observed neural activity, or

the behavior(s) of the organism that that resulted from it. My primary focus will be on

the challenges of inferring the information encoded in spikes observed from individual

or groups of neurons. However, I will also discuss techniques used for other modalities

of neural data, as most such methods share the challenge of extracting meaningful

information from a noisy and incomplete observation of the brain.

2.5.2 Simple Classi�ers

Perhaps the simplest method of quantifying the relationship between the spikes

observed from a neuron or group of neurons in correlation to a stimulus that has been

presented to the system is to simply count the number of spikes within a speci�c time

period after a given stimulus is presented. These spike totals can be collected for a

single neuron repeatedly as some parameter of the stimulus is varied. For example

Hubel and Wiesel (1962) used simple bars of varying angles to map the receptive

�elds of cells in the cat visual cortex.

While this spike counting approach is extremely simple, counting spikes over a long

period relies on the assumption that any information encoded by changes in spiking

within that period is not relevant. Fo�ani and Moxon (2004) expand this concept to

build a histogram of observed spikes over multiple time bins during and shortly after

the period in which a given stimulus is input into the system. These histograms can

then be used to create a simple classi�er that can infer which a stimulus label for a

new histogram of spikes. A smooth version of a PSTH histogram can also be created

by convolving a Gaussian kernel with a vector called a spike train, which contains a

one at all points in time where a neuron was observed to be active, and a zero at all

other locations. While this method, similar to that employed by Smith et al. (2013)

in their analysis of neural responses in the primate auditory system, helps remove

noise from the signal of observed neural activity further processing is needed to be
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ability to decode or quantify information about the stimulus that drove the observed

neural activity.

2.5.3 Machine Learning

Smith et al. (2013) use principal component analysis to reduce the dimensionality

of their histograms of neural activity and then use a linear discriminate analysis (LDA)

classi�er to decode the stimulus that drove the activity. Similarly, Support Vector

Machines have been used to expand the categorical classi�er into a multidimensional

space.

2.5.4 Neural Network Algorithms

Besides direct classi�cation on the observed data, machine learning tools that

build a lower dimensional representation of their input can also be used to transform

the stimulus thought to have evoked observed neural activity input a form that can

more easily be related to that activity. For example, Agrawal et al. (2014) utilize

convolutional neural networks to predict voxel intensities for fMRI data for vision

related brain regions ranging from V1 to higher level visual areas. They do this by

presenting the stimulus images used in the fMRI study to a ConvNet trained on the

ImageNet dataset. A feature vector can then be extracted from the intermediate

layers of the network that can be used to predict the observed voxel intensities using

a simple regression method.

Modern deep learning methods developed as machine learning tools are far from

being faithful models of real neurons. However, their simpli�ed nature makes them

tractable models of the brain that still can be valuable in some cases. One obvious

area where deep learning networks designed for machine learning problems might still

be helpful for modeling the brain is for low level vision. One surprising property of

even early deep convolutional networks trained on natural images is their tendency

to learn �lters in their initial layers that resemble the receptive �elds of cells in the

primary visual cortex (V1). Furthermore, Lee et al. (2007) show that higher layers

of some deep networks can learn �lter basis functions that resemble receptive �elds

found in a subsequent layer of the visual cortex (V2).

It is this tendency to learn representations at lower network levels that are sim-
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ilar to known receptive �elds at lower levels of sensory processing in the brain that

make them good candidates for generating feature vectors and representation for ap-

plications such as that of Agrawal et al. (2014). Furthermore, this tendency of deep

networks to mimic the known receptive �elds of actual cells in the brain extends be-

yond convolutional networks and the visual system. For example, Kanitscheider and

Fiete (2016) use LSTM networks as a model of areas of the hippocampus used for

navigation. Similar to computer vision networks trained on object recognition from

input image, these recurrent networks are trained to predict location in a simulated

environment using inputs similar to those believed to feed into regions of the hip-

pocampus responsible for navigation tasks. The recurrent cells in the hidden layers

networks display a tendency to learn �receptive �elds� similar to those observed in

actual cells in the hippocampus.

The task of decoding observed neural activity related to a sensory task in the brain

is di�erent from using a classi�er to perform a similar task. However if you consider

sensory processing in the brain to be a phenomenon that occurs in stages from input to

decision or behavior, then decoding neural activity observed at an intermediate stage

can be thought of as designing a classi�er to mimic the functionality of subsequent

stages. Such a classi�er need not necessarily process the the information in the

same manner as these later stages of processing in the brain. However, the fact

that deep networks tend to learn similar representations to those in the brain, with

the representations at subsequent deep network layers resembling subsequent known

stages over sensory processing, makes these networks a good candidate for mimics

the function of the later stages for such decoding applications.

2.5.5 Timeseries Algorithms for Neural Data

Some modalities of neural data, such as the fMRI study discussed above, have low

temporal resolution. In such cases algorithms that take temporal information into

account are less likely to be useful. However, other modalities of measuring activity

in the brain, such as EEG or MEG, or the observation of the actual spiking activity

from individual cells, has very high temporal resolution. In the case of data from

such an observation modality, using models or algorithms that take into account time

and/or frequency, which describes the variation of a signal over time might be more

useful.
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Buzsaki (2006) mentions the dichotomy between time and frequency domain mea-

sures of a signal, and compares the analysis of neural timeseries to the analysis for

speech or other acoustic timeseries where information from both the time and fre-

quency domains are important. LSTMs address time directly, frequency less so, but

speech and music processing are common applications of recurrent neural networks

(Gre� et al., 2015), showing their potential to handle such information. Furthermore,

LSTMs have been applied to decoding attention or emotion information from EEG

data (Soleymani et al., 2014). This shows that not is the application of LSTMs to

EEG data feasible, but that at least in some cases problems such as noisy training

sets of limited size are not barriers to the use of recurrent deep learning algorithms.
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Chapter 3

Convolutional Network Computations on Ultra-wide SIMD

Hardware

Many algorithms already exist for implementing convolutional network layers on

GPU hardware, or traditional CPU SIMD architectures. However, due to the unique

features and limitations of the previously described ultra-wide SIMD hardware, I

have implemented a new algorithm to compute the output of a convolutional network

layer that capitalizes on the strengths of this architecture and avoids its weaknesses.

It should be noted that this algorithm is only concerned with the forward pass through

the layer. However, it could be used as part of a training algorithm, with additional

steps to perform the backwards weight update step which would involve more tradi-

tional CPU instructions. However, the main goal of the algorithm is to facilitate fast

inference on new data by a previously trained network.

In the following sections I will describe how the input data and weight values are

laid out in memory to be used by the algorithm. Then I will describe the algorithm

itself, along with some extensions and modi�cations to maximize its e�ciency across

a wide variety of network sizes and variations on the standard convolution algorithm.

3.1 Insight

By its nature, convolution is a spatially local operation - to generate each out-

put a few �lter coe�cients are convolved with a few, adjacent elements of the input.

Moreover, spatially adjacent outputs have similarly adjacent input windows in all di-

mensions. Thus, if the data is arranged correctly, convolution can be performed using

only (relatively) local movements of data within a SIMD row. This design facilitates

the implementation of an e�cient convolution operation on SIMD hardware that does

not support scatter/gather operations across the full length of the row.

For convolution with a single channel of input this algorithm is straightforward. As-

suming the ability to shift data right by one element within the SIMD row, a row

of the input tensor begins lined up with the element of the output row for which

they are the rightmost input. These values are then multiplied by the rightmost �l-
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ter coe�cient for the �rst row of the �lter and the input rotated right for the next

�lter element until the �rst row of the convolution is complete. This process is then

repeated with new inputs for each horizontal row of the convolution �lter.

In practice however, deep learning convolution operation neither involves one chan-

nel of input, or is the input normally even close to �lling the element width of the

proposed SIMD architecture. This observation about the data leads to the second

main insight of my algorithm: the division of the SIMD row into equal width blocks.

The input tensor is then �attened such that row n and channel a of the input tensor

is initially placed in the �rst block of the input row, channel b of row n in the second

block, and so forth. This design di�ers from simply �attening the input matrix in

the row and then channel dimension, in that a small number of pad elements may be

inserted between each channel in order to maintain even number of equal size blocks

across the SIMD row, and allows for a slightly larger, but still local relative to the

total SIMD width, rotation to be used to line each block of input up with a new

combination of output elements.

Thus, by preserving the original geometry of the each input data, but packing

the rows of each channel to maximize the amount of data stored in each SIMD row,

convolution can be performed e�ciently while performing only local data movement

operations within the rows. This allows the algorithm to be run on hardware that

does not support global scatter/gather type data movement, or where such operations

are ine�cient.

3.2 Algorithm

The insights outlined above provide the framework for describing both a novel

algorithm, known as M3inM2V Conv, for performing a multi-channel convolution on

the ultra-wide SIMD hardware in question, as well as a data format to facilitate this

algorithm. Since the algorithm requires that the data be in a speci�c, Geometry-

preserving layout, I will describe this layout before describing the algorithm itself.

Also included in the description of the layout are methods for padding the data

to address the fact that unless a network was designed with performance on the

particular hardware in mind, it will likely not �t perfectly within the hardware's

SIMD width.
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Once I have established the required data layout I will describe the algorithm

itself. Once I describe its canonical form I will explore the modi�cations required to

support several variations on a standard multi-channel convolution algorithm. These

variations include depthwise, strided and dilated convolutions.

3.2.1 Layout of input data in cache memory

Unlike the matrix multiplication method for computing the output of a convo-

lutional neural network layer on SIMD hardware that was proposed by Chellapilla

et al. (2006), my method does not duplicate the layer's data input values. Instead,

I leave the inputs in their original 2D form, with each row of the input occupying a

di�erent SIMD row. While these SIMD rows could be laid out in physical memory in

any manner that makes sense for the hardware, it is helpful to think of these SIMD

blocks as being laid out in a matrix whose number of columns is equal to the SIMD

width and whose number of rows is equal to the number of SIMD blocks that can be

�t in the cache or other memory allocated to the network. Visualizing the memory

in this way, the input values to a layer are laid out in memory in the same manner

as they would be if they were pixel values in an image being displayed on the screen.

Unfortunately, the width of the inputs to most ConvNets layers is less than

the SIMD width of the proposed hardware (for example AlexNet, a successful Con-

vNet model utilizing the ImageNet dataset, takes three channels of 224 × 224 input

(Krizhevsky et al., 2012)). Obviously if you had a SIMD width of 512, or even greater,

it would be ine�cient to use an entire SIMD row for each row of a single channel's

input.

To address this issue I introduce the concept of a block, which I rely on heavily

in my convolutional network layer algorithm, Speci�cally, to allow for the utilization

of memory elements across the entire SIMD width the memory words are divided

up into blocks, where the width of a block is the smallest power of two that is wide

enough to �t the input width. For example, for a 224 pixel wide input and a 512 word

wide SIMD row two blocks of width 256 can be used, though some padding elements

are still required if the input width is not exactly a power of two. In the case of the

input of width 224, 256− 224 = 32 pad elements would be needed within each block.

Thus, in this case one 512-element-wide memory row could hold one row of the red

and green input channels of an ImageNet example. In the most basic version of this
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scheme the corresponding input row from the blue channel would then be stored in its

own memory row, where only one of the two 256 word blocks are used. If hardware's

SIMD width were wider, say 1024 elements, then all three channels would �t across

one set of SIMD rows, with a 4th block of 256 elements that would remain unused,

In general, if the SIMD row is divided into k blocks based on the width of the

input to the layer then the input data from up to k channels from that layer can be

�t in h memory rows, where h is the height of the layer's input. This principle is

illustrated in the top row of blocks in Figure 3.1, highlighted in purple.

Figure 3.1: Basic ConvNet memory layout for both data and weight values. The
�rst number in each green weight block is the �lter group number, and the second
number is the input channel number whose �lter weights are stored in those SIMD
rows. This layout arranges the data in a form to e�ciently feed an implementation
of the convolution algorithm that takes advantage of the hardware's strengths, while
minimizing its weaknesses.

It should be noted that within these blocks of size k, it might be the case that not

all elements within the memory row contain values that will be used in the calculation

of the layer's output. Speci�cally, if the actual width of the input is less than k then
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there will be some columns of �pad� elements within the block of h memory rows

used for the k channels of input data. This block layout aligns both the data and the

overall structure of the convolution to the structure of the hardware. As such it's use

will be continued for the convolution's other data and computational elements.

3.2.2 Layout of weight values in cache memory

In order to be able to not duplicate the input data elements to facilitate compu-

tation of the convolution layer output the weight values do have to be duplicated.

However, the duplication of the weight coe�cients o�ers an advantage over duplicat-

ing the data values, in that as long as the memory exists to store these duplicated

values the work of duplicating the value only needs to be done once, after which an

unlimited number of inputs examples can be processed.

Like for the input data, the SIMD rows that store the weight values are divided

up into blocks. However, instead of one input channel being assigned to each block

each block is assigned values from one �lter group. However for a given SIMD row,

each block only contains one weight value, duplicated r times, where r is the width of

the layer's output for that �lter group. Thus for a single channel �lter of size m× n
blocks from m× n SIMD rows are needed to hold the weight values.

While it is uncommonly seen in real networks, the simplest case weight layout is

one where each �lter group only receives one input channel. Here the �lter groups are

assigned to blocks such that each �lter's weight values are assigned to the block in the

same position in the SIMD row as the block containing the input data for that �lter

group's channels. In the more common case where there are multiple input channels,

each �lter group receives all channels as input. Assuming each �lter group is of size

m× n× c, where c is the number of channels, then in this case the �rst m× n rows

contain weight values from the channel whose input values are aligned in the same

block. There are then c − 1 more sets of m × n SIMD rows, where the location of

each channel's �lter weights are rotated by one additional block after each group of

m× n rows. The green regions of Figure 3.1 show this layer for k �lter groups, each

with k input channels. The reason for staggering the weight values in this manner is

to take advantage of the rotational ring of registers to allow the single copy of each

element in the layer input to be lined up with every arithmetic unit that needs it.
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3.2.3 Convolution Operation

Using this block paradigm for the structure of the input data, a description of the

algorithm to perform the actual convolution arithmetic can be described. Keeping

with the block motif described above, the implementation of the convolution operation

for the previously described ultra-wide SIMD hardware leaves the layer inputs in their

original 2D form to perform the convolution. Each row of the convolution output is

then computed all at one time, shifting the convolution input around the ring of

registers on the inputs the arithmetic units until each value has been provided to all

arithmetic units that need it. Figure 3.2 shows an example of this operation with

a single block, for a single input channel. The other blocks across the SIMD row

can be performing the same convolution simultaneously for other �lter groups, as the

register shift operation is shifting the values around across the entire SIMD row. The

�rst three panes show the computations for the �rst row of the 3 × 3 �lter, while

the fourth pane shows the �rst computation for the second �lter row. Note that the

rightmost column of each �lter row is handled �rst, and then the data shifted right

in the registers. Once the multiply-add operations for all columns in all rows of the

�lter have been performed the result in the arithmetic units' accumulators can can

be written back to memory and the computations for the next row of the convolution

output begun.

Figure 3.2: Example of part of a single block of the convolution operation. Note
that all columns in a single row of the convolution output are being computed simul-
taneously. The same �lter value (green) is used for all arithmetic lanes in a given
step of a convolution. This �lter element is highlighted in bold and all data inputs
that are convolved with this value are marked by its index number. Performing the
convolutions in this manner, rather than reshaping the input data, avoids the need
to perform data shu�e operations during network evaluation, something that the
proposed hardware does not support e�ectively.
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It should be noted that the convolution represented in Figure 3.2 is a valid con-

volution in that the �lter never hangs o� the edge of the image. Often however a

same size convolution is used, where the �lter is allowed to �hang o�� the edge (or

the image is padded with zeros), this implementation produces a convolution output

of the same dimensions as the input. The convolution method described in Figure

3.2 can be easily modi�ed to support same size convolutions, either by padding the

input with zeros or by replacing the �lter coe�cients with zero valued weights when

they don't line up with an actual input value. The latter method is preferable when

the width layer input size is close enough to the power-of-two block size such that

adding zero pad values to the actual SIMD memory row would necessitate the use

doubling of the block size, reducing the number of �lter groups that can be processed

simultaneously across the SIMD row.

Finally, this simple description of the convolution operation assumes that each

�lter group has only one channel of input. This is rarely the case in reality. However

an extension for handling multiple channels is relatively simple. Assuming that the

input data width is such that the SIMD row is divided into as many blocks as there

are input channels, then after the computations for the current channel for each �lter

row the input data is shifted further around the ring of input registers until it is lined

up to with a new �lter group block. The computations for that row of the �lter and

the new channel are then performed. This process is then repeated until all channels

have been processed for that �lter row. At that point new data is loaded into the

input registers from memory and the process repeated for the next row of the �lter.

This is the reason for the staggered layout of the �lter coe�cients by channel in

Figure 3.1. For ease of visualization all rows for a given channel from each �lter group

are grouped together. However in reality the only the �rst n rows of the m×n SIMD

rows holding �lter weights for each channel are used, corresponding to the n columns

in the �rst row of the �lter. Once all channels in the �rst row of the �lter have been

processed the next groups of n SIMD rows will be used, corresponding to the columns

for each channel in the next row of the �lter.

The hardware assembly instructions for this convolution operation starts out sim-

ilarly to the computation to a fully connected layer, in that an initial multiply-

accumulate is performed between a SIMD width memory row containing data values

and the row containing the �rst set of weights for the layer. However, unlike the
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algorithm for computing the output of a fully connected layer, there is no need to

line every input up with every computational unit. Instead, the basic premise of my

convolution algorithm is to divide the computational units into blocks corresponding

to those used to store the data and weights in memory. A single row of output to a

convolutional layer is then performed as follows:

1. Set the values in all accumulator registers to zero.

2. Load the �rst (or next) SIMD row of input data and on weight values into

the arithmetic units' input registers, and perform the multipy-add operations

of the �rst step of the convolution operation. On the �rst iteration this is the

convolution of the �rst row and column of the �rst channel of each �lter group

assigned to a block in a SIMD row's worth of blocks and is the beginning of the

next row on subsequent iterations.

3. Shift the input data over one element in its register, load the next SIMD row's

work of weight values, and perform the next multiply-add operation. Repeat

this until all columns for the current row and channel within the current SIMD

row's worth of �lter groups have been processed.

4. If unprocessed channels for this row remain: Shift the data in the registers

containing the input data such that the channels in each block of input data

are aligned with a new �lter group's block of accumulators. This may require

additional clock cycles beyond that required for the �rst multiply-add with the

channels aligned with the new �lter.

5. If unprocessed channels for this row remain: Load the new SIMD row's worth

of weight values, for the �rst column of the same �lter row for the channel now

aligned with each �lter groups.

6. If unprocessed channels for this row remain: Shift the input data over one

element in its register, load the next SIMD row's work of weight values, and

perform the next multiply-add operation. Repeat this until all columns for the

current row and channel within the current SIMD row's worth of �lter groups

have been processed.
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7. If unprocessed channels for this row remain: Branch back to step 4, Else: con-

tinue.

8. If unprocessed rows remain in �lters: Branch back to step 2, Else: continue.

9. Write contents of all accumulator registers back to memory.

To reach peak e�ciency this algorithm assumes certain sizes for the input data

and network layers that �t the block motif perfectly.

Variations for improved e�ciency

Of course, not all layers will have k input channels, or a multiple thereof. Un-

fortunately due to the nature of the convolution algorithm proposed above, and the

need to rotate the blocks around the ring to ensure that each convolution output sees

all of its inputs, in the general case there will be wasted e�ort if all k blocks cannot

be �lled with input data. In this case the unused block(s) can be though of as a

pause, or �gap� in the computation for whichever �lter group's computational units

with which they are aligned. To ensure that these computational units' accumulator

registers are not modi�ed while this gap in the data is aligned with them (and the

other units are performing useful calculations), the weight values that will coincide

with the gap blocks as they are rotated around the ring are set to zero. Figure 3.3

shows what the memory layout might look like for such a case where this is a single

gap block.

As alluded to above, some layers may have more than k input channels. This case

can easily be handled by �rst running the above described algorithm on the �rst k

input channels. Then, instead of writing the result for an output row back to memory

after the �rst k channels, the value is held in the arithmetic units' accumulators, and

the computations for the next k channels are performed. This process is repeated until

all channels are processed, possibly with the last iteration of the algorithm having

only some subset of the k blocks in its SIMD rows �lled with non-zero values. The

full result for the convolution output row can then be written back to memory and

the computations for the next row begun.

If a layer contains more than k �lter groups the solution is even simpler. The

above process is repeated for the �rst k �lter groups, until all convolution output
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Figure 3.3: Memory layout with k − 1 input channels and the kth block as a single
�gap� block. This method of arranging the inputs reduces e�ciency, as on any given
cycle some or the arithmetic units are essentially doing nothing. However, this method
allows for the 2D convolution method to still be used even when not all blocks can
be �lled on some SIMD rows, trading reduced arithmetic unit utilization for the
avoidance of costly and complex data shu�ing operations.

rows for those groups have been completed. Then the computations for the next k

�lter groups are performed, with the possibility that some of the blocks or arithmetic

units across the SIMD row do not have useful computations to perform, if the total

number of �lter groups is not a multiple of k.

Depending on the implementation details, the algorithm described above achieves

close to 100% hardware utilization on network layers have input channel counts that

are multiples of a power of two, when the width of such inputs is an exact power of

two. If the network has been designed from scratch to run on this hardware then

using meta parameters that meet these requirements would likely be a non-issue for

everything except the initial input to the network, as inputs such as three channels

for color images are common. However the hardware also needs to run networks that
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were designed for other hardware, or without any hardware considerations in mind.

In these cases the networks can still be run on the ultra-wide SIMD hardware, albeit

at less that full e�ciency.

Despite this, the block motif based convolution algorithm introduced in this sec-

tion as M3inM2V Conv presents an e�cient way to perform convolutional network

layer inference on ultra-wide SIMD hardware like ncore by organizing both the inputs

(data and weights) and the algorithm itself to �t the structure of the hardware. This

core algorithm however is designed for a basic convolutional layer, while in reality

a wide array of variations of convolution are found in real networks. Thus, to be

usefulM3inM2V Conv must be shown to be modi�able to work a wide range of these

variations.

3.3 Variations to accommodate new convolution algorithms

As convolutional networks have become more popular in a wide range of applica-

tions, new variations on have been developed, either to improve network accuracy, or

to decrease the computational requirements and/or parameters. Examples of these

variations include depthwise, strided convolutions, and dilated convolutions. I will

brie�y describe these variations and show how the M3inM2V Conv algorithm can

be modi�ed to accommodate them. Furthermore, I argue that this versatility shows

that my algorithm provides a good framework by which to perform other variations

on convolution like operations using the described ultra-wide SIMD hardware.

3.3.1 Depthwise Convolution

Depthwise convolution performs a 2d convolution on each channel separately, with

each output channel being derived from inputs from a single input channel (Chollet,

2016). Thus the depthwise convolution algorithm is simply the standard convolution

algorithm abbreviated such that input is never rotated to align a new set of channels

with each output. The proposed convolution algorithm for ultrawide SIMD easily

accommodates this trivial modi�cation, simply by setting the number of iterations

for the loop over channels to one.
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a0,0 b0,0 a0,1 b0,1 a0,2 b0,2 a0,3 b0,3 c0,0 d0,0 c0,1 d0,1 c0,2 d0,2 c0,3 d0,3
a1,0 b1,0 a1,1 b1,1 a1,2 b1,2 a1,3 b1,3 c1,0 d1,0 c1,1 d1,1 c1,2 d1,2 c1,3 d1,3
a2,0 b2,0 a2,1 b2,1 a2,2 b2,2 a2,3 b2,3 c2,0 d2,0 c2,1 d2,1 c2,2 d2,2 c2,3 d2,3

Table 3.1: Element locations for three rows of four interleaved output groups of a
M3inM2V Conv strided convolution

3.3.2 Strided Convolution

Another convolution variation, used in popular networks such as mobilnet, is

strided convolution (Howard et al., 2017). Strided convolution is a form of down-

sampling that takes advantage of the fact that adjacent elements of a convolution are

generally very similar. Downsampling methods like max-pooling compute all output

elements, and then downsample by applying some function, such as max, to reduce

groups of adjacent outputs to one element. In contrast, strided convolution simply

only computes every nth element, where n is the stride.

While in theory strided convolution reduces the total number of computations re-

quired by a factor of n, it presents potential problems for convolution algorithms that

rely on the geometry of the standard convolution problem, as in the case of the previ-

ously described ultra-wide convolution algorithm. However, assuming that n is very

small compared to the SIMD width, as is generally the case for a useful stride con-

volution, the geometry-preserving convolution algorithm can be modi�ed to compute

the down-sampled outputs of strided convolution at near full utilization, preserving

both the e�ciency of strided convolution and of the ultra-wide SIMD hardware.

Strided convolution can be handled by interleaving the elements of two output

groups, allowing the inputs that are �skipped� by one output channel to be utilized

as inputs to another. Thus, most/all available output elements are computing some-

thing useful every clock cycle, albeit at the expense of some simple post-processing

to separate the �nal outputs.

To facilitate this interleaving of outputs, the weights for the two channels need

to also be interleaved, however the input data remains in the standard data block

format. Table 3.1 shows the �rst three rows of four such interleaved output groups

of width four, originating from inputs blocks of width eight.

The input to a stride of two convolution stays in �normal� form, and like standard
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zero padding convolution is shifted left bfilter_width/2c elements such that the �rst

inputs to output elements in even groups (a, c, e...) start lined up with those outputs.

On the �rst step of the inner loop (�lter columns) only even output groups (a, c, e...)

receive valid inputs. The weights for the other output groups are set to zero to mask

out these multiples, as shown in Fig 3.4.

Figure 3.4: The initial step for a row of stride two convolution. Only output channel
a receives valid inputs, and as such the weights for channel b have been set to zero.
On the next step at least some elements from both channels will receive valid inputs

On the next next step, and on all remaining steps except the �nal one elements

in both groups within each block receive valid inputs. As the input is rotated the

output elements in the odd groups (b, d,...) see the input that was just seen by the

associated even group element, while the even group element get its input for the next

�lter column to the left. Note that after middle step in the convolution (Fig 3.4), as

is the input gets rotated further right, elements on the left need to be masked out to

prevent contamination with data from the convolution block on the left (Fig 3.6).

Figure 3.5: The middle step for a row of stride two convolution - note that all output
elements have a valid input and that there is no need for zero valued weights or other
masking

On the �nal step (Fig 3.7) of the inner loop only the even output groups (b, d, f ,

...) receive input. Thus the inner loop consists of filter_width plus one step, one

more than stride of one convolution.
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Figure 3.6: First step of a stride 2 interleave convolution where some output elements
of output channel a have seen all of their inputs

Figure 3.7: Final step for a row of stride 2 convolution interleaved output. Note that
the only non-zero weights are for output channel b

Due to the �rst and the last step of this algorithm for a geometry preserving stride

two convolution only providing inputs for one of the two interleaved channels in each

block 100% e�ciency cannot be achieved. However, depending on the size of the

input it can provide !00% utilization of the compute elements and output registers

on half of the multiplication steps for convolutions with a �lter width of three, and

more for larger �lter widths.

One disadvantage of this method is the requirement that the interleaved output

channels be separated after the convolution step has been completed, to facilitate

their use as input to another layer. However, for an output channel width of N , the

interleaved channels take up blocks 2N elements wide, where even 2N is assumed

to be signi�cantly narrower than the total SIMD width. Assuming that local gather

operations and circular rotates of the SIMD row are available and e�cient on the

scale of 2N then the output channels can be de-interleaved using only a few steps per

row.

Thus, while its e�ciency is not perfect, strided convolution can be implemented

using theM3inM2V Conv framework while maintaining a high utilization of the ultra-

wide SIMD hardware's compute capability.
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3.3.3 Dilated Convolution

Another convolution variant, dilated (atrous) convolution, transforms the �lter

to allow the same set of �lter weights to detect features in multiple scales. This is

done by convolving the �lter with every Rth image element, where R is the dilation

rate. For example, an atrous convolution with a dilation rate of two would convolve

the �lter with every other element, such as elements zero, two and four from rows

zero, two and four. A standard convolution can be thought of as having a dilation

rate of one, as the �lter is convolved with adjacent elements. A naive approach to

doing this is to rearrange the inputs into R matricies that only contain, as adjacent

elements, those elements involved in the same convolution. Then standard matrix-

based methods for performing a convolution can be applied, and the results then

appropriately rearranged. Some versions of dilated convolution in TensorFlow use

this matrix transformation approach (tensor�ow, 2018). On hardware that performs

convolutions in matrix form e�ciently such a method allows the main computational

work to be performed e�ciently, at the cost of some (somewhat) ine�cient pre and

post processing.

Figure 3.8: Initial step in the geometry-preserving convolution algorithm, modi�ed
to support dilated convolution. Note that besides the presence of few valid output
elements, this computation begins the same way as that for standard convolution

However, just as the described ultra-wide SIMD hardware does not lend itself

well to performing convolution as a matrix operation, it does not lend itself to the

rearranging of data required for this �default� implementation. Thus, a new solution

is needed. After observing that the sets of inputs from a given row used by adjacent

output elements in a dilated convolution are shifted by one (e.g. [0, 3, 6] and [1, 4, 7]),

a variant of the basic geometry-preserving convolution algorithm can be developed to

provide these input patterns using only ultra-wide SIMD friendly local shifts within

each row of data. Speci�cally, instead of shifting the data in each row by one in
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Figure 3.9: The next step to compute a single row of a �lter in the geometry-preserving
dilated convolution algorithm. Note that data has been rotated by R elements, which
in this case is two.

Figure 3.10: The �nal step to compute a single row of a �lter of width three in the
geometry-preserving dilated convolution algorithm.

between �lter elements, the data is shifted by R. Figure 3.8 shows the data and

weight layout for the �rst step of a row of a dilated convolution, in which the data

is aligned just as is would be for a standard convolution. Figure 3.9 shows the next

step, with the data rotated by R instead of one. Finally, Figure 3.10 shows the �nal

step of a convolution with a three element wide �lter, having once again rotated the

input row by R.

Assuming that the ability exists to rotate a SIMD row by R elements in a single

clock dilated convolution is just as e�cient as standard convolution. Furthermore,

since no "rearranged" form of the data is needed to perform a dilated convolution

using this method the same input data can be reused for multiple dilation sizes

(including standard convolution).

3.3.4 Other convolution variants

While the convolution variants described here are obviously not the entire space

of possible variations, it can be argued that even showing adaptions to this range

of variations proves the �exibility of M3inM2V Conv. Similar methods are likely to

allow M3inM2V Conv to be adapted to other variations, although the performance
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of these variations might vary, causing convolution variants that normally are faster

than standard conv to not experience the same speedups on the ultra-wide SIMD

hardware, if for example the computation of elements intended to be dropped must

still be performed, then later dropped on the ultra-wide SIMD hardware.

3.4 Summary of M 3inM 2V Conv Convolution Algorithms

In this chapter a baseline implementation ofM3inM2V Conv, a geometry-preserving

convolution algorithm for ultra-wide SIMD hardware is presented. This algorithm is

based on a block layout analogous to the layout of the hardware itself, minimizing

the need for complex data movements during the the algorithm itself. Further, by

providing modi�cations to the algorithm for several common convolution variations

it is shown that M3inM2V Conv is versatile and is likely to be able to be applied to

future convolution variations.

However, while it is shown thatM3inM2V Conv successfully implements convolu-

tion using the limited data movement capabilities of the ultra-wide SIMD hardware,

it still needs to be shown that it is e�cient. Speci�cally, the algorithm should min-

imize the memory used for padding or repetition of data that requires more space

that the initial size of the input. Additionally, M3inM2V Conv should ensure that as

many arithmetic units are used as possible each clock cycle (MAC e�ciency). Both

of these performance considerations will be discussed in the following chapter.
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Chapter 4

Quantitative Analysis on Proposed Ultra-Wide SIMD

Hardware

In this chapter I will focus on two di�erent aspects of the e�ciency of the above

described geometry preserving convolution algorithm: arithmetic unit utilization rate,

and memory usage requirements. Since the described algorithm is for a proposed class

of ultra-wide SIMD architectures, without set values for things like clock speed, power

requirements memory interfaces or even the actual SIMD width one cannot compute

more traditional measures of performance such as �oating (or �xed) point operations

per second (FLOPs). The equations I derive should however be able to be used

to estimate the maximum performance of any real incantation of this architecture.

Moreover, the estimates of memory usages can be used to help estimate the speed

of the memory interface needed to allow an actual implementation to approach the

theoretical maximum compute e�ciency.

Additionally, due to the nature of the convolution algorithm previously described,

the exact geometry of the network can have a large e�ect both on memory usage and

computational e�ciency. The reasons for this will be described when the memory

usage is quanti�ed, however the same utilization principles apply to computational

e�ciency.

4.1 Memory Usage

The following equations outline the memory usage of the above described method

for performing convolution operations as part of a convolutional network layer. The

size of the blocks that the SIMD row is divided into is denoted by B. The maximum

block size is B < 2 ∗ WIDTHinput, since if B were greater than or equal to the

2 ∗WIDTHinput the next smaller power of two could be used as the block size.

According to the weight coe�cient layout described above where the weight values

are replicated to align one copy with each arithmetic unit that is to us that weight

on a given clock. Thus, each weight requires B words of memory, either for the

replications of the weight value, or for the padding around it in it's block (Zeros in
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weight RAM due to a �gap� to �ll in a block to which a �lter group is not assigned

are not considered here). Thus, if F is the number of �lter groups, R and S are

the number of rows and columns in each �lter respectively, and C is the number of

channels in the input data, the total number of words needed to hold the weight

coe�cients in the form used as input to the previously described algorithm is as

follows:

TOTAL_WORDSweights = F ×R× S × C ×B (4.1)

Putting the block size in terms of the input width this equation becomes

TOTAL_WORDSweights < F ×R× S × C × 2×WIDTHinput (4.2)

This is an increase by a factor of 2 ∗ WIDTHinput over the original wordcount

for the weights, which is O(n). It should also be noted that the replication of the

original weight values needs to only occur once, assuming that there is room to store

the expanded weight matrix somewhere, either in ncore RAM or in main memory.

From this total number of words required to store the weight in the format that

the algorithm needs one can determine the number of SIMD rows work of mem-

ory required. The number of �lter groups in a given ConvNet layer might not

require all SIMD rows to be �lled with weights. However, since the ncore mem-

ory is only addressable by row the total number of memory rows required is, where

BLOCKS_PER_ROW = WIDTHSIMD

WIDTHBLOCK
:

TOTAL_MEMORY_ROWSweights = ceil
( F

BLOCKS_PER_ROW

)
∗R ∗ S ∗C

(4.3)

While this is clearly an increase over the F ∗R ∗ S ∗C words needed to store the

weights when the convolution is performed as a matrix multiply, it still presents the

advantage that it's the �lter coe�cients in this case that are being replicated, not the

input data. That means that assuming there this room to store it, it can be done

once and no further preprocessing operations are needed, as opposed to the need to

expand and reshape the input data matrix every time, at the input to every layer.

Likewise, the layout and memory requirements for each layer's input data can

be described in terms of the network parameters F , R, S, and C, along with the

width and height of the input data. Unlike the weight values, or the input data in
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the method by Chellapilla et al. (2006) to implement the convolution operation as a

matrix multiply, the data here isn't actually duplicated (beyond optional tiling across

SIMD rows that are less than half full). However padding to �t the data into the

selected block size does cause it to take up additional memory space. Since one block

within a SIMD row is used for each row and channel of the input the total number

of words needed is equal to:

TOTAL_WORDSdata = B ×HEIGHTinput × C (4.4)

Using the previous observation that B <= 2×WIDTHinput

TOTAL_WORDSdata < 2×WIDTHinput ×HEIGHTinput × C (4.5)

Since each SIMD row may only contain data from di�erent channels with the same

row of input data the total number of SIMD rows required is as follows:

TOTAL_MEMORY_ROWSdata = ceil
( C

BLOCKS_PER_ROW

)
×HEIGHTinput

(4.6)

This is an O(2) increase over the original size of the data. However this should be

compared to the method of Chellapilla et al. (2006), where the input data is expanded

into a matrix of size R ∗ S ∗ C × P ∗ Q where P and Q are the height and width

of the output, respectively. For valid only convolutions P = HEIGHTinput − R

and Q = WIDTHinput − S. For same-size convolutions P = HEIGHTinput and

Q = WIDTHinput. Thus

TOTAL_WORDS_MATRIXdata <= R× S × C ×HEIGHTinput ×WIDTHinput

(4.7)

Even in the worst case where almost half of the elements in each block are �lled

with zeros in the 2D convolution method the matrix method uses 1
2
∗R ∗S more data

words. Even for a small, 3× 3 �lter kernel this is a 4.5x increase.

Furthermore the use of the 2D convolution method reduces the amount of trans-

formation required for the data going into each network layer on the ultra-wide SIMD

architecture. Since whole output rows for multiple �lter groups are computed together

and output as one SIMD row the output from the previous layer will already be in a
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form very close to the required 2D form. The max-pooling operation used after most

convolutional layers will result in smaller block sizes being needed. However these can

be handled using simpler compression and rotation operations that take advantage

of the hardware's circular ring of registers, and do not require the use of arbitrary

swizzle or shu�e operations.

4.1.1 E�ect of Network Parameters on E�ecient Memory Us-

age

Due to the geometry based representation of the data in the proposed ultra-wide

SIMD convolution algorithm the exact network meta-parameters can have a large

impact on the utilization rate of the individual compute elements. Speci�cally, the

algorithm relies on the ability to rotate the data in such a fashion that each input

channel remains aligned with within some output �lane� as the input channels are

aligned as input to each output requiring them. In order to do this the SIMD row

must be divided into lanes of equal width with no remainder. Assuming that the

SIMD width itself is some power of two then the width of these lanes must also be

a smaller power of two, regardless of whether the entire lane can be �lled with data.

Thus networks whose layers have input widths of non power of two sizes will �waste�

memory with padding value to accommodate the algorithm. The worst such width is

2n + 1, as such inputs do not �t within a 2n wide block, requiring the use of a 2n+1

wide block, with 2n − 1 pad elements.

Another source of padding elements comes from situations where a layer does not

have enough channels, C, to completely �ll up a SIMD line's worth of data (or n SIMD

lines). Speci�cally, if BLOCKS_PER_ROW is not evenly divisible by C then some

blocks within the �remainder� SIMD line will have to be �lled with pad elements, the

worst case of this being cases where C%BLOCKS_PER_ROW == 1.

4.1.2 Summary of Memory Usage Analysis

In conclusion, while M3inM2V Conv does use extra memory space for storing the

�lter weight values, this is preferable to expanding or otherwise duplicating the input,

as the weight arrays tend to be smaller and are reused. Additionally, the addition of

even a local broadcast capability to the hardware, as described in (Henry, 2020), can
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considerably reduce the space needed to store the input weight arrays. Likewise, while

some padding might be needed to pack the input into the SIMD width input rows,

this padding is limited. Additionally, since the ideal case the padding is non-existent

designing a network width zero or minimal padding would be possible.

4.2 Computational E�ciency

For a network with ideal size parameters 100% arithmetic computation e�ciency

can be achieved, assuming that the hardware can perform the data movement op-

erations needed to feed the input to each arithmetic operation can be performed in

parallel with the arithmetic operations. Of course, in practice, less than 100% e�-

ciency can often occur. I go over the three reasons for this below; network parameters,

data movement and the e�ects of variations on the classical convolution algorithm

4.2.1 E�ect of Network Parameters on Computational E�-

ciency

Like the pad elements in the memory representation of the input data, depending

on the network parameters some computational units may go unused when calculating

the output to a layer. There are two situations that can lead to idle to computational

units dues to less than ideal network parameters - within block padding and whole

unused blocks.

If the input to a computational layer requires pad elements within each block

due to non power of two input sizes then there will be at least as many unused

computational units as pad elements in the input. Whether there are additional

computational units depends on whether the convolution itself is a �same-size� or a

� `valid� convolution. Same-size convolutions allow a partial convolution of the �lter

with the edges of the input, leading to an output that is the same size as the input,

despite the elements at the edges not being full convolutions. In contrast, a valid

convolution only includes elements where the �lter can be fully convolved with the

input elements, ensuring valid values with no edge e�ects at the expense of making

the output smaller than the input.

Additionally, just as entire blocks of a SIMD line in RAM can be �lled with pad

elements in there are insu�cient channels in the input to �ll the line, the results from
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whole blocks of computational units can be unused if there are insu�cient channels in

the layer output to titillate the full SIMD width. Speci�cally, the number of unused

blocks of arithmetic units is equal to the following:

Coutput%BLOCKS_PER_ROW (4.8)

where Coutput is the number of channels in the layer output.

Thus the ideal convolution layer from an e�ciency standpoint is one were the

width of the data is some power of two such that the entire lane of input contains

valid input data, and that uses �same-size� convolution, such that the entire lane

of computational units is producing useful output values as well. In fact, with the

described convolution algorithms the same-size convolution is always computed unless

the edge elements are masked out. And thus in the case of a valid convolution these

computational units are essentially unused, as are those being fed only pad elements

as input. Furthermore, the maximally e�cient network has numbers of channels in

each layer that are either power of two, or otherwise multiples of the appropriate

number of BLOCKS_PER_ROW .

4.2.2 E�ect of Data Movement on Computational E�ciency

For purposes of this metric it is assumed that the ultra-wide SIMD hardware as

a unit can be fed data from the outside world (system RAM, disk, etc) as fast as it

can process it. Thus the concern here is with computational cycles being utilized by

the ultra-wide SIMD unit solely for data movement purposes.

It is assumed that through the use of pipelining and/or parallel execution paths that

the ultra-wide SIMD hardware can perform data movement operations at the same

time as arithmetic operations. Thus most data movement will be hidden and not

have a e�ect on computational density. However, complex data movement operations

that take multiple clock cycles, or those that must be performed on the result of one

computation before the next computation is performed have the potential to result

in �dead clocks� where the computational unit utilization id 0%.

For basic convolution the primary way that these �dead clocks� can occur is for con-

volutions with small �lters (1x1 or 3x3 for example) and data widths such that the

SIMD row must be divided into blocks that are wider than the maximum amount
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that the hardware can rotate the data within the SIMD row within a single timestep.

4.2.3 E�ect of Convolution Variations of Computational E�-

ciency

Finally, I will discuss the e�ects of various modi�cations to the convolution al-

gorithm on computational e�ciency. Speci�cally I will address the three variants

described above; depth-wise convolution, strided convolutions and dilated convolu-

tion. The depthwise and dilated convolution variants can theoretically achieve the

same performance as standard convolution for the same layer input and output sizes.

The cases of strided convolution is more complicated however, as the algorithm itself

potentially introduces unused cycles for subsets of the arithmetic units as well as

further processing steps for the �nal output.

Depthwise Convolution

The major di�erence between depthwise convolution and standard convolution is

that depthwise convolution only provides one channel of input to each output channel.

Thus assuming that the fact that the data is not �reused� by using each channel of

input as input to multiple output channels does not cause the data input bandwidth

requirements to exceed the hardware's capabilities the depthwise convolution variant

shows no reduction in computational e�ciency compared to standard convolution.

Stride Two Convolution

Because stride of two convolutions are performed by interleaving two channels of

output within one block they are able to achieve better utilization of the input, despite

greater di�erence the set of input elements received by adjacent outputs compared to

standard convolution. However, this method of arranging the output computations

within the SIMD row still results in some instructions where only half of the arithmetic

units are doing work, even for ideal size parameters. Since these instructions are the

�rst and last instruction of the computation of each row of the convolution �lter, the

total utilization rate increases with the �lter size(width).

For example, for a 3× 3 �lter four arithmetic instructions are needed to compute

each row of the convolution �lter, with the �rst and the last instruction having only
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50% utilization. Thus for a 3× 3 �lter the overall utilization is 75%. In contrast, for

a 7× 7 �lter eight arithmetic instructions are needed per �lter row, so with the two

half utilization instructions the overall utilization is 7
8
, or 87.5%.

In addition to this incomplete utilization of the arithmetic units, stride two con-

volution potentially occurs an additional performance penalty due to the need to

deinterleave the resulting output channels after the computation is complete. It is

assumed that the same mechanism that rotates/transforms the data for input into

the arithmetic units can perform the local shifts and blend required the deinterleave

the output, however co-opting this for this purpose may hold up the availability of

data for subsequent arithmetic operations.

Dilated Convolution

For same size convolution and the proper input sizes dilated convolution can the-

oretically achieve 100% arithmetic unit utilization. The assumption here is that the

dilation rate is of a size such that the SIMD line can be rotated by the appropriate

amount a single clock and be ready for the next arithmetic operation. If this is not

the case the arithmetic unit utilization can drop rapidly, with 50% utilization for

dilation rates requiring two rotations, and 33% for those requiring three.

Like for regular convolution, dilated convolution using only the �valid� outputs

will lead to unused arithmetic units within each block even when the input has no

padding. However, due to the wider e�ective �lter width (WIDTHFILTER ∗R, where
R is the dilation rate) the amount of padding in the output due to the use of valid

only convolution will increase with R.

4.3 Performace Conclusions

In conclusion, while it's possible that tweaks might exist to improve the algo-

rithm's performance in at least some cases, overall M3inM2V Conv performs well on

the ultra-wide SIMD hardware with respect to both memory usage and computa-

tional e�ciency. Additionally, adaptations to the algorithm to account for modi�ed

convolution algorithms do not cause this performance to unravel.

Finally, it should be noted that this analysis is for the basic ultra-wide SIMD

paradigm described at the beginning of this document and the ring data movement
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paradigm. It does not take into account additions to the hardware's data movement

capabilities such as local broadcast that could help optimizeM3inM2V Conv without

requiring longer distance data movement.

Next the performance of M3inM2V Conv will be evaluation on another relatively

wide SIMD architecture, AVX-512, that was designed assuming that arbitrary data

movements are common, as they are much easier to implement e�ciently in hardware

at narrower SIMD widths.
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Chapter 5

Implementation on Existing AVX-512 Hardware

While the width of Intel's AVX-512 standard isn't of the same order of magnitude

as the Ultra-wide SIMD architecture proposed in this document, it's ability to accom-

modate 16 element wide f32 operations (or 32 element wide f32 operations on some

varients) allows it to support at least small implementations of the above proposed

convolution algorithm. Importantly, chips that support most of these instructions

have actually been produced and are available to the public, including the Xeon Phi

many-core processors, some high end Xeon server parts and the Skylake-X series of

desktop CPUs (Intel, 2019).

5.1 Purpose: Prove algorithm generalizes to other wide hard-

ware

While the proposed geometry-preserving convolution algorithm, MinMV, wasn't

designed with a narrower SIMD architecture in mind, implementing the algorithm

for AVX-512 shows that the algorithm can be applied to general purpose SIMD ar-

chitectures that either already exist or that might be invented in the future, with

out without deep learning in mind as the sole, or primary, application. While many

extensions to the AVX-512 standard have been released and are available in di�erent

subsets on various AVX-512 capable CPUs, this implementation uses instructions in

the AVX-512F foundation standard, which is available on Skylake-X consumer grade

desktop parts (i7 78xxX and i9 79xxX X-series) (Intel, 2019).

However, while AVX-512 represents a twofold increase in SIMD vector width over

previous x86 SIMD instructions, both the AVX-512 vector width and immediately

accessible memory register size are orders of magnitude smaller than those of the

ncore ultra-wide SIMD architecture paradigm for which MinMV Conv was designed.

Despite this, it is possible to implement MinMV Conv for a 3x3 convolution on a

small 8x8x2 �oating point input using AVX-512. While not practical for real world

applications, this implementation still allows MinMV Conv to be analyzed on AVX-

512, yielding insights into what other types of hardwareMinMV Conv might perform
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well on.

5.2 Implementation

The following C code is an example implementation of the previously described

geometry-preserving convolution algorithm utilizing Intel's AVX-512 instruction set

for a tiny 3x3 convolution, computing two same-size output channels on two 8x8 input

channels. While tiny, this convolution illustrates the geometry-preserving convolution

algorithm on AVX-512, while �tting within the 32 available 512b zmm registers (Intel,

2021). The full source code is included in appendix A, however the psuedocode is

provided in this chapter to make understanding the implementation easier.

Table 5.1: AVX-512 Convolution Setup

1. Declare zmm registers for expanded �lters, input data, and working memeory
for a single output row

� expanded_filters[18]

� output_2chan

� input_2chan[16]

2. Declare arrays of idencies to perform ncore style rotates using AVX-512 permute
operations

� filter_column_rotate_mask:

{15,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14}

� filter_column_initial_rotate_mask:

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0}

� channelwise_rotate_mask:

{11,12,13,14,15,0,1,2,3,4,5,6,7,8,9,10}

3. Load �lters and input into registers.

The convolution function starts with the setup steps described in Table 5.1. First

the zmm registers to be used are declared, and loaded with the appropriate values. Of

note are the use of registers to hold all rows of a pair of input channels (eight registers
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in this case), registers to hold the expanded arrays of �lter coe�cients (18 in this

case, for a 3x3 �lter times two input channel con�gurations). These are values that

are stored in the register space for geometry-preserving convolution on the proposed

ultra-wide SIMD hardware for which the algorithm was developed. Since AVX-512

does not include a concept of rotating elements around a circular SIMD width bu�er

like the proposed ultra-wide SIMD architecture does, additional registers are need

to support the general permute instructions that are supported. These masks are

constants for a given input con�guration. The filter_column_rotate_mask is used

to rotate the input data to align the input properly for each �lter column, with

filter_column_initial_rotate_mask having been used to align the data elements

one element to the left to ensure that the output is aligned with the original input.

Finally, the channelwise_rotate_mask index mask will be used to realign the input

channels as input to the other convolution output channel.

Once the �lter coe�cients have been loaded into their allocated zmm registers the

actual convolution loop can be performed. One output row is computed at a time,

with this out_row consisting of two eight element wide channels. At the beginning

of the loop for each output row out_row is set to zero, and then the convolution is

performed for each �lter input row, and each of the two channels therein, for each of

the two input channels the inner loop of the convolution is performed, multiplying the

coe�cients for each �lter column in the current �lter row by the appropriately aligned

inputs, as shown in Table 5.2. Since during same size convolution with no padding

inputs from one channel get rotated such that they are aligned with the output lanes

of the other channel the masked form of fused multiply add is used, allowing for the

appropriate bit mask for each �lter column to be used to prevent the output from

being contaminated with other channels' data. It should be noted that this mask is

separate from the index masks used with the _mm512_permutexvar_ps intrinsic to

rotate the data. Finally, after all the �lter input rows have been computed for both

channels the contents of the zmm register being used to store the output is store back

to memory so that the next row on convolution outputs can be computed.

Of course, this implementation of the algorithm is limited to a much smaller

convolution then is realistic. Even networks now considered �toy� problems, such is

LeNet (LeCun et al., 1998) have channel widths wider than 8 elements, and even the

narrowest layers have more the two input channels.
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Table 5.2: Convolution inner loop - unrolled with speci�c intrinsics for 3x3 �lter, two
input and two output channels.

1. perform multiply-add for rightmost element of conv �lter row:
_mm512_mask3_fmadd_ps(input[row], filters[i], output, 0x7F7F)

2. rotate one element for next column:
_mm512_permutexvar_ps(filter_column_rotate_mask, input[row])

3. perform multiply-add for middle element of conv �lter row:
_mm512_mask3_fmadd_ps(input[row], filters[i], output, 0xFFFF

4. rotate one element for next column:
_mm512_permutexvar_ps(filter_column_rotate_mask, input[row])

5. perform multiply-add for leftmost element of conv �lter row:
_mm512_mask3_fmadd_ps(input[row], filters[i], output, 0xFEFE)

6. Rotate one element for next column:
_mm512_permutexvar_ps(filter_column_rotate_mask, input[row])

7. rotate input row to align the input to the other output channel:
_mm512_permutexvar_ps(channelwise_rotate_mask, input[row])

8. Repeat 1-6 with appropriate �lter elements

5.3 Computational E�ciency

One major challenge with respect to performing the geometry-preserving convo-

lution algorithm using general purpose SIMD AVX-512 hardware is that while it can

be assumed that on the proposed ultra-wide SIMD architecture that data rotations

can be pipelined such that they are at least partially performed in parallel with the

arithmetic operations, no such pipelining is available with the AVX-512 standard, as

a data manipulation instruction must be completed and returned the results returned

to one of the AVX-512 general purpose registers, not fed directly to a subsequent

arithmetic operation, as with ncore. This means that in contrast to the ultra-wide

SIMD case where 100% e�ciency can be achieved for an ideal network, the best case

e�ciency for the AVX-512 implementation the inner loop alone is at best 50%, has
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only half of its instructions perform actual arithmetic, with every other instruction

performing a non-simultaneous data movement operation instead.

5.4 Register/memory usage

The second major challenge in implementing the geometry-preservingM3inM2vConv

algorithm on AVX-512 is accounting for a massive di�erence in directly accessible reg-

ister space. Speci�cally, the total combined space in the 32 512b registers available

for input for AVX-512 instructions is of the same order of magnitude as the amount

of space available to feed arithmetic and data operations on the hardware for which

M3inM2vConv was designed. In fact, the memory space from which the previously

described ultra-wide SIMD architecture is assumed to be able to feed data to the data

manipulation and arithmetic units directly like a register, is of a total size whose order

of magnitude is similar to a Skylake-X CPU's total cache size (Intel, 2019).

The lack of immediately accessible register space hobbles the application of the

geometry preserving convolution algorithm to even small input and �lter sizes on

AVX-512. However, it is still posiible to implement simple networks on AVX-512.

Thus, I will analyze a simple network's AVX-512 implementation's usage of the 32

AVX-512 SIMD registers, which at at 16kB is three orders of magnitude smaller than

that of the hardware on which M3inM2vConv was designed to run real networks.

Recall that in Eq 5.1 for the M3inM2vConv in the ultra-wide SIMD hardware:

TOTAL_MEMORY_ROWSdata = ceil
( C

BLOCKS_PER_ROW

)
×HEIGHTinput

(5.1)

where C is the number of channels in the input data and BLOCKS_PER_ROW =
WIDTHSIMD

WIDTHinput
. For the example case about this means that TOTAL_MEMORY_ROWSdata =

ceil
(

2
16
8

)
× 8, for a total of eight memory rows �lling eight SIMD registers.

Further, recall that in Eq 5.2:

TOTAL_MEMORY_ROWSweights = ceil
( F

BLOCKS_PER_ROW

)
∗R ∗ S ∗C

(5.2)

where F is the number of �lter groups, R and S are the number of rows and columns in

each �lter respectively, and C is the number of channels in the input data. Thus, a 3x3
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�lter for 2 input and 2 output channels requires ceil
(

2
BLOCKS_PER_ROW

)
∗ 3 ∗ 3 ∗ 2

registers to store the weight coe�cients. An input with a width of 8, as used in

the example above, allows for a maximum of 2 BLOCKS_PER_ROW . Thus,

ceil
(

2
2

)
∗ 3 ∗ 3 ∗ 2 = 18 registers are required to hold the weight coe�cients.

In the example above this means that in total for two eight element wide inputs

there is room for all eight input rows of the 8x8x2 input, along with both sets of nine

registers for weight coe�cients. This makes for 18 + 8 = 26 registers in total, and

does not leave room to support any more input channels.

5.5 Actual Run

While the above analysis' show why the M3inM2vConv algorithm is not well

suited to the smaller AVX-512 architecture, and that it is not a practical algorithm

for running real networks, it is still important to show the correctness of the algorithm

on even a toy problem in order to show that the above analysis is valid. To do this

the algorithm was run an an Intel eon Platinum 8375C by way of an Amazon EC2

instance running Ubuntu 20.04. See B for full output from convolution run showing

correctness of all output values.

The log �rst shows the input to the test network - small values with only an oc-

casional zero chosen to both make the log easy to read and ensure that arithmetic

errors get detected. Next, the inputs for computations made by the AVX-512 im-

plementation for each output row are shown, with the 16 values across the SIMD

width grouped into their eight element wide channels. Finally, the output of the

AVX-512 implementation from A is compared to the output of a simple nested loop

implementation also found in A. To account for di�erences in �oating point execution

order, values that matched the reference implementation within 0.0001 were counted

as correct. Further, several output values were checked by hand to ensure that the

reference implementation was also correct.

5.6 Lessons Learned

While it has been shown that M3inM2vConv can be correctly implemented on

AVX-512, it is also clear that it is not a good �t for the architecture. The issue of
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only being able to handle two channels worth of input in the zmm registers at once

can be mitigated by not loading all the input rows into the registers at once, allowing

space for multiple channel pairs worth of data for the rows currently being fed to the

convolution. The downside to this however is that the �lter coe�cients would also

have to be moved into and out of the zmm registers, since even for a 3× 3 �lter this

is only room for one pair of input channels' worth of coe�cients.

One option to make better use of the limited zmm register space is to stream in the

input rows, as the latter rows of the input are not needed for the initial convolutions,

and after the initial convolutions the �rst few rows of the input are no longer needed.

This would allow for two channels worth of 16 element wide input to be supported at

once, as the 20 zmm registers left available after the 18 registers have been assigned

for the coe�cients for two channels worth of 3x3 convolution is su�cient to support

the six registers (three rows times two channels) needed for the currently needed rows

of 16 element wide inputs, along with extra space for the accumulated result of the

convolution FMAs, and extra room for new rows of input being loaded in. However,

three input channels would require 27 registers to hold the �lter coe�cients, which

does not leave enough registers for the inputs required for the current convolution

output row, even in the case of eight element wide inputs, where two channels times

three rows worth of input would still �t in six zmm registers.

New AVX-512 instructions to allow multiple �lter coe�cients to be stored in the

same zmm register and only temporarily expanded out in a �scratch space� zmm

register right before they are used, or a new AVX-512 implementation with more

SIMD registers, would make small scale implementations of the proposed geometry-

preserving convolution algorithm feasible of current x86 SIMD hardware,though likely

with reduced computational e�ciency due to necessary "weight expansion" step.

Thus, barring such new developments, the geometry preserving SIMD algorithm

is best suited for less general purpose architectures that were designed for extremely

wide SIMD and that have a large amount of onboard, readily accessible, register-

like memory and a more e�cient means to immediately use the output of local data

movement operations as arithmetic inputs. However, despite not being well suited

for AVX-512 architectures, implementing even a simple version of M3inM2vConv in

AVX-512 was still useful as it helped to highlight these properties of hardware on

which M3inM2vConv excels.
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Chapter 6

Gated Recurrent Network Computations on Ultra-wide SIMD

Hardware

While my implementation of convolution algorithms on the described ultra-wide

SIMD hardware is the primary focus of this work, depending on the application many

modern networks also incorporate other types of neural network layers, including fully

connected and recurrent layers.

Assuming the ability to feed both input data and the associated weights to the

compute hardware fast enough, a fully connected layer is trivial on this hardware. The

input line can simply be rotated until every output has seen every input, with the

appropriate weights being provided for the multiply-add at each step. As I will show

below, the inference step of common recurrent neural network algorithms, including

the seemingly complicated gated recurrent networks are simply made up of fully

connected layers, with a few, computationally small, extra steps.

6.1 Insight

The main insight for performing computations for recurrent neural network layers

on the proposed ultra-wide SIMD hardware is the fact that the bulk of the compu-

tation for any recurrent neural network layer is a matrix multiply, the same as for a

classical, fully connected neural network. In fact, for a �vanilla� or classical recurrent

neural network where each neuron simply has as it's input the layer input and direct

recurrent connections between all neurons in the layer the computation is simply a

matrix multiply for two sets of fully connected inputs - the incoming connections and

the recurrent ones. This same idea applies to more complex recurrent networks that

use gates, such as LSTMs (Graves and Schmidhuber, 2005) or GRUs (Cho et al.,

2014). Likewise, a similar principle can be applied to more exotic variants such as

qRNNs (), which use convolution operations as part of the recurrent layer.
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6.2 LSTM Algorithm

I will discuss Long Short-Term Memory (LSTM) layers as a canonical example of

a gated recurrent network layer. While other types of gated recurrent layers exists,

such as the Gated Recurrent Unit, this same principles apply to their implementa-

tion. Unlike �vanilla� recurrent networks, whose output is simply a weighted sum of

the layer's inputs at that timestep and it's outputs at the previous timestep gated

recurrent networks use gates to control how much the new inputs e�ect the output,

and how much information from the old output is allowed to remain, creating a longer

range form of memory. These gates are themselves controlled by the weighted sum

of the incoming and recurrent connections, with unique weights for each gate, with

each neuron, or cell having it's own set of gates:

i = σ(Wi ∗ xt + Ui ∗ ht−1 + wci ∗ ct−1 + bi) (6.1)

f = σ(Wf ∗ xt + Uf ∗ ht−1 + wcf ∗ ct−1 + bf ) (6.2)

o = σ(Wo ∗ xt + Uo ∗ ht−1 + wco ∗ ct + bo) (6.3)

The key to implementing a gated recurrent layer is to recognize that the compu-

tation consists of two parts, the matrix multiply for the (fully connected) input and

recurrent connections for each gate, and a few scalar arithmetic steps for each gate.

While this can be computationally demanding if the fully connected multiplies are

large the steps are simple. Once the weighted sums from the inputs are computed

and the correct activation function applied to them the only new step is the gate

equations themselves. For example, for an LSTM the cell state(ct) and output(ht)

are computed as follows:

ct = i ∗ ĉ+ f ∗ ct−1 (6.4)

where

ĉ = tanh(Wc ∗ xt + Uc ∗ ht−1 + bc) (6.5)

and the �nal output is:

ht = o ∗ tanh(ct) (6.6)
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The data for the matrix multiply can be arranged in two ways to provide inputs for

these �nal gate equations. One approached, used by major deep learning frameworks

such as Tensor�ow, is to interleave the weighted sums for the gates and candidate state

(i, f , o and ĉ) (tensor�ow, 2018). While this is de�nitely possible on the proposed

ultra-wide SIMD hardware it then requires that the values in the resulting SIMD row

be locally shifted in order to line of the appropriate values to multiply together. Since

such operations are di�cult, even on a local scale on the proposed hardware, a better

approach is to compute a full SIMD line's worth of input gates (i), store it, then

compute a full line worth of cells f gates, and so forth until a line's worth of all four

values have been computed. The �nal state and output values can then be computed

for a full SIMD line's worth of cells at once, with only multiply-add operations and

no data shifting.

6.3 Hybrid Recurrent-Convolution: Quasi Recurrent Neural

Networks

Quasi Recurrent Neural Networks () expand of the idea of recurrent gated networks

by employing LSTM-like gates that are controlled by the output of convolutions over

the input, combining the computational e�ciency of convolution with the memory

capabilities of a gated recurrent network. While this sounds complicated, the building

block approach used for standard LSTMs can also be applied here - �rst the gate

control and input signals are computed, using the previously described geometry

preserving convolution algorithm in this case, and then those output can be used as

the inputs for the LSTM gate equations in the same way as the result of the standard

fully connected multiply is.

Thus, while recurrent neural networks appear complicated and are often computa-

tionally demanding to compute the bulk of this computation is the same as that used

for other, non-recurrent networks. By combining the right algorithms and adding

a few extra steps recurrent networks can easily be implemented on the proposed

ultra-wide SIMD hardware. While the resulting algorithms are not as interesting as

the geometry-preserving convolution algorithm used to make convolution e�cient on

the ultra-wide hardware showing that recurrent layers can also be implemented on

the proposed hardware, allowing all layers of a network with both convolution and
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recurrent connections to be executed on the hardware. This �exibility helps show

that the hardware can be used for problem domains beyond simple convolution based

image processing, including domains with a temporal element, language and signal

processing.
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Chapter 7

Proposed Application in Decoding Neural Signals

Furthermore, I will show the applicability of gated recurrent units, which will also

be implemented on the hardware, to a new domain; the decoding of observed neural

activity. Speci�cally, I use gated recurrent unit networks to predict the stimuli that

coincided with the observed activity of real neurons. GRU networks were trained

using a dataset consisting of the observed spikes from a small number ( 10 to 16)

of clusters of neurons in the rat primary auditory cortex (A1) recorded while the

animals performed a frequency discrimination task. The task stimuli consisted of a

variable length series of identical single frequency tones, followed by a �target� tone

of a slightly di�erent, single frequency. The animals were rewarded if they responded

correctly to this target stimulus. Additional details regarding the behavioral task and

the recording of the neural data found in this dataset can be found in Sloan et al.

(2009).

Previous analysis of this data show that the coincident stimulus can be predicted

from the observed neural activity using both the PSTH based classi�er Fo�ani and

Moxon (2004) discussed previously and a support vector machine (SVM) based clas-

si�er. The more powerful SVM based classi�er was shown to be more accurate than

the PSTH classi�er (Dodd et al., sion, Houck, 2012), however there is much room for

improvement over the performance of both classi�ers. Preliminary results have shown

that GRU networks are capable of decoding information from the neural signals. Thus

expanding the usefulness of gated recurrent networks to this domain.

I will further �ne-tune the performance of these networks, training them using

Theano (Al-Rfou et al., 2016), with layer implementations from the Lasagne frame-

work (Dieleman et al., 2015). I will then use the algorithm that I have developed to

evaluate GRU layers on the described hardware to perform inference on held out test

examples.

7.1 Problem De�nition

While many deep learning algorithms were developed for domains involving the

processing of visual spectrum images or video, speech or text, there is no reason
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that these algorithms cannot be applied to other signal processing domains. Here I

present one such domain that has received limited attention: the decoding of neural

signals, and speci�cally the decoding of information from the spiking activity of single

neurons or clusters of neurons. While recurrent neural networks are an obvious �t for

this domain due to the temporal element, I will also show that convolutional networks

convolving over time windows can also perform the decoding operation. First however

I will better de�ne the problem by describing the dataset that I use, along with the

performance metric I have chosen and why. Then I will discuss a method that I

developed to augment the relatively small dataset to reduce over�tting, and then

�nally I will describe my results with both recurrent and convolutonal networks,

showing the relevance to deep learning to this domain, and then �nally discuss why

the speci�c bene�ts of being able to implement these algorithms on simple, power

e�cient hardware

7.1.1 Predicting Task Relevant Stimulus Frequency Change

from Rat Auditory Cortex Spike Data

While I have not implemented LSTM or GRU network layers for the described

hardware yet, it is meant to run these algorithms as well as convolutional network

layers. In order to show the versatility of recurrent network layers, and show the

value of running these network types on the hardware due to their wide applicability

I apply gated recurrent networks to a new domain. Speci�cally, I use gated recurrent

unit networks to predict the stimuli that coincided with the observed activity of real

neurons. GRU networks were trained using a dataset consisting of the observed spikes

from a small number ( 10 to 16) of clusters of neurons in the rat primary auditory

cortex (A1) recorded while the animals performed a frequency discrimination task.

The task stimuli consisted of a variable length series of identical single frequency

tones, followed by a �target� tone of a slightly di�erent, single frequency. The animals

were rewarded if they responded correctly to this target stimulus. Additional details

regarding the behavioral task and the recording of the neural data found in this

dataset can be found in Dodd et al. (sion).

Previous analysis of this data show that the coincident stimulus can be predicted

from the observed neural activity using both the PSTH based classi�er Fo�ani and

Moxon (2004) discussed previously and a support vector machine (SVM) based clas-
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si�er. The more powerful SVM based classi�er was shown to be more accurate than

the PSTH classi�er (Dodd et al., sion, Houck, 2012), however there is much room for

improvement over the performance of both classi�ers.

Intuition Behind Measure of Classi�er Performance

Due to the fact that in the dataset I use examples of neural responses to tones

that were the same as the previous tone are much more numerous than responses to

tones that were di�erent. Thus, a degenerate classi�er could achieve high accuracy

simply by assigning the most common label to every example (�reference�/�same�, in

this case). This problem is a fairly common one in a wide variety of domains, and

performance measures have been developed to provide a more meaningful represen-

tation of classi�er or forecast accuracy. One such measure is called Peirce Skill Score

(PSS) (Peirce, 1884), which is de�ned as follows for a two label classi�cation problem:

PSS =
hits

hits+misses
− false_alarms
false_alarms+ correct_rejections

(7.1)

Here hits are de�ned as the number of instances where the classi�er correctly assigned

the label `True' to an example of class True. A miss is de�ned as the number of times

that the label `False' was assigned to an example of class `True'. Conversely, the term

false_alarms is the total number of times that the classi�er assigned the label `True'

to an example for class `False', and correct_rejections represents the number of times

that the classi�er correctly assigned a label of �False� to an example of class �False�.

Thus the �rst term in Equation 7.1 represents the percentage of examples of class

�True� that the classi�er correctly identi�ed. The second term is the proportion of

examples of class `False' that the classi�er incorrectly identi�ed, which can can also

be written as 1− percent_correct(False). Thus PSS for a binary classi�er can also

be written as:

PSS = percent_correct(True) + percent_correct(False)− 1 (7.2)

A perfect classi�er would have a PSS of 1 (1 + 1 − 1), and truly random classi�er a

PSS of 0 (0.5 + 0.5 − 1). However, unlike when the total percentage correct is used

as the performance measure, a classi�er that always assigns the most common label

will also have a PSS of zero, regardless of how unbalanced the labels are. While PSS
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is not the only such metric for solving this problem, the selection of some such metric

is necessary in order to represent classi�er accuracy for problems in which one label,

often the label of interest, is extremely uncommon.

7.2 Method for augmenting training data for neural spike datasets

Large amounts of training data is crucial to training neural network e�ectively.

While in some domains such as computer vision or speech recognition large amounts of

data can be pulled from the internet, often already labeled or at least easily labeled by

humans without specially skills. Unfortunately, in other domains data can be harder

to come by, and unfortunately in the case of neural spike datasets this is often the

case, and thus any method to create representative synthetic data would be helpful.

Over�tting and Dataset Extension

A speci�c challenge in the analysis of this data is the relatively small amount

fo data that was recorded simultaneously from any given set of neurons. Data was

recorded from the same animal in multiple sessions spanning days or even weeks using

a chronically implanted electrode array, as described in Sloan (2009). However, there

is no guarantee that the electrodes were detecting the activity of the same group of

neurons during subsequent days/sessions. Previous attempts to concatenate multiple

sessions from the same animal into one dataset to train the previously mentioned

nearest neighbor or SVM classi�ers were unsuccessful, likely due to this inconsistency.

Due to the lack of feasible method to combine the individual sessions into one large

dataset, any deep learning classi�er trained on this data will need to learn network

parameters using the small number of training examples available from a single session

once validation and tests sets have been removed. Unfortunately, when only provided

with this small training set even very small gated recurrent networks simply memorize

the training set within a few epochs, while failing to generalize to high performance on

the validation set. Figure 7.1 shows an example of such over�tting, with the network

achieving 100% accuracy on the training set, while validation set performance actually

dropped.

One logical approach for eliminating this rather dramatic case of over�tting is

to use the available training examples to generate �arti�cial� training examples that
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Figure 7.1: Example GRU Network training (red) and validation (aqua) set perfor-
mance by epoch, averaged over 20 fold cross validation. The blue diamonds represent
test set performance for the epoch with the best validation set performance within
each fold, and the blue line the mean test set performance. This shows the importance
of augmenting the small initial training set in order to achieve better generalization
performance.

provide a larger training set that is still representative of real neural activity patterns

observed in conjunction with each stimulus type. Such approaches are commonly

employed on image training sets for convolutional networks. Simard et al. (2003)

discuss a range of such transforms that could be used for images, from simple, small

translations, to complex nonlinear warping of the original training images. While

a wide range of transformations are presented as useful, the stipulation is that the

transformation create new, arti�cial, training examples whose occurrence would be

feasible if the original training set were larger.

The challenge for applying a similar approach for expanding a dataset consisting

of the spiking activity of a small number neurons or clusters of neurons as opposed

to pixel values in an image is selecting an appropriate transformation with which to

create new examples. One possibility would be to add noise in some form to the

existing training examples, creating several versions of each example, each with slight

variations.

However, other, unique properties of the dataset might yield transforms that pro-

vide more variation in the expanded training set, while not producing unrealistic
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examples that bear no resemblance to neural activity that would actually be ob-

served. One such potential property is the fact that individual neurons don't always

spike reliably in response to a given input

Speci�cally, I take advantage of the fact that spikes were recorded from multiple

multi-unit clusters at once. I create new training examples for stimulus class by

randomly sampling a sequence of spikes for each electrode channel from the pool of

all original sequences recorded from that electrode concurrent with a stimulus from

that class. This works on the assumption that correlations in activity between these

electrode channels that were important to the encoding of the stimulus property

in question (same di�erent) were present across all instances of a given stimulus

label, modulo some level of noise in the data. Thus these relevant correlations would

be preserved in the constructed training examples. If this theory is true then one

would expect over�tting to be reduced and performance increased by augmenting the

training set with examples built by independently selecting the spike-train for each

channel based on all observed responses on that channel in response to a stimulus

with the example's label.

7.3 Recurrent networks for decoding auditory cortex data

While recorded neural spike activity in response to a stimulus can be have it di-

mensionallity reduced to aid in classi�cation by binning or other methods that reduce

the temporal nature of the data, the signal is still by it's nature a time series. Thus,

while convolutional networks can be used wit time series data, recurrent networks are

by their nature designed are input in serial form, whether a time series or another

type of sequence, with gated networks being most suited for data where relations

between input values at points further apart in the series might be important.

Network Architecture

Due to the relatively small nature of the data, the gated recurrent networks used

here to perform the classi�cation task described above are quite small be modern

terms. Speci�cally, two layers of Gated Recurrent Unit (Cho et al., 2014) cells were

used, the �rst with eight units and the second with four. On top of that is a two

output linear softmax layer with a batch size of 400, with a learning rate of 0.01.
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Spikes from all channels that were observed in the �rst 50ms after stimulus onset

were used as input to the network. The spikes from each channel were represented as

a binary vector with a resolution of 1ms, with zeros for all times where no spikes were

observed, and ones at timesteps where a spike was observed. Separate networks where

these spikes were summed into �ve 10ms bins were also trained, to mirror previous

work on the dataset with classi�ers that could not handle the dimensionality created

by the higher resolution and to test whether the gated recurrent networks can take

advantage of that higher resolution.

The networks were trained using Theano (Al-Rfou et al., 2016), with layer imple-

mentations from the Lasagne framework (Dieleman et al., 2015).

Results

In all I trained GRU networks using the parameters described above on 28 di�erent

sessions from the dataset, from four di�erent animals and seven separate days each.

For each session I trained networks using two temporal resolutions for each channel

of spike data; raw spike times encoded with zeros (no spike) or ones(spike) in a 1ms

resolution vector, and the same spike data binned into �ve 10ms bins across the 50ms

window.

In addition to training networks using the original training set examples for each

fold I also trained separate networks using a training set expanded to 16 times the size

of the original training set using the electrode channel sampling method described

previously. Finally, as a control I trained networks for each session and at each tem-

poral resolution using training data where the electrode channels were shu�ed using

the same method as the 16x expanded training sets, but where the total number of

training examples was kept equal to the original. Table 7.1 shows the mean perfor-

mance of the networks trained on both temporal resolutions and all three training set

variations.

When trained with the larger training set created by augmenting the training

set the networks outperform those trained on the original training data when tested

on held out examples for each fold. While expanding the training data 16x may or

may not be optimal, this shows that this method of training set augmentation is

potentially helpful for this type of data. Speci�cally, since the networks are also no

longer able to achieve 100% performance on the training set, as shown in Figure 7.2,
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Orig Data 16x Data Shu�ed Channels Only
10ms bins 0.1739 0.2474 0.2155

Raw spikes 0.1711 0.2390 0.2103

Table 7.1: Performance (PSS) of GRU networks on all three training set variations,
for both temporal resolutions. Using a paired t-test across all sessions and training set
variations there is not a statistically signi�cant di�erence between the performance of
the classi�ers on the binned data compared to the full resolution data (p = 0.1972).
This shows that the full temporal resolution of the data might not be needed, meaning
networks that process fewer total timesteps and are faster to train and to run can
perform as well as those that use more, higher resolution timesteps.

the over�tting problem has been mitigated. While information might still be present

in the relationship between the spiking activity observed on each electrode channel,

the loss of this information has less impact than the gain in network generalization

performance a�orded by the augmentation of the training set.

If relevant information were being lost by shu�ing the channels between exam-

ples, and this loss were simply being made up for by the gains found in reducing

over�tting, then one would expect the networks trained on channel shu�ed training

data where the total number of training examples was not increased to perform worse

than networks trained on the original data for that session. Surprisingly however, this

is not the case. Simply shu�ing the channels within training examples that share the

same classi�cation label improves performance. This occurs despite the fact that the

networks over�t the training data similarly to those trained on the original training

examples. As shown in the example learning curve in Figure 7.3 the networks still

essentially memorize the training set, typically achieving 100% performance.

This surprising result implies that information useful to training the networks may

not be being lost at all by shu�ing the electrode channels within each classi�cation

label.

Overall, networks trained on both the expanded and merely channel shu�ed both

outperform networks trained on the original training data. Table 7.2 shows the p-

values for paired t-tests between each session compared to training on the original

training sets, for both temporal resolutions and training set variations.

The classi�ers trained with a 16x augmented training set show no statistically sig-

ni�cant di�erence in performance compared to SVMs trained on the original dataset
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Figure 7.2: Example GRU Network training (red) and validation (aqua) set perfor-
mance by epoch, averaged over 20 fold cross validation. The blue diamonds represent
test set performance for the epoch with the best validation set performance within
each fold, and the blue line the mean test set performance. This network was training
on training examples where each channel had been randomly sampled from a pool
of all original examples with that label. The total size of the training set is 16x the
original. This shows that even simple methods of training set augmentation are use-
ful for successfully applying gated recurrent network algorithms to relatively small
neuroscience datasets.

binned with 50ms bins (RBF kernel, C=1, gamma determined automatically by

sklearn's implementation). I also trained SVMs with a channel shu�ed training set

the same size as the original training set, which unlike for the GRU network classi�ers

did not improve performance.

7.4 Conclusion

In conclusion, this work shows the usefulness of neural networks in interpreting

neural spike timeseries, along with a potential tool for increasing available training

set size. This highlights the potential usefulness of neural network inference hardware

for running models to interpret such data both in a research context and eventually

potentially for the control of various prosthetics. Additionally, this highlights the

potential of neural networks in other signal processing �elds that might not have the

gigantic amounts of data available that things like speech or image processing do, but
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Figure 7.3: Example GRU Network training (red) and validation (aqua) set perfor-
mance by epoch, averaged over 20 fold cross validation. The blue diamonds represent
test set performance for the epoch with the best validation set performance within
each fold, and the blue line the mean test set performance. This network was training
on training examples where each channel had been randomly sampled from a pool of
all original examples with that label. The total size of the training set did not change
however. This implies that while increasing the size of the training set is helpful
the simple step of shu�ing the channels within each label in the training data helps
improve decoding performance.

that might have signi�cant economic, scienti�c, or humanitarian value.
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16x Data Shu�ed Channels Only
10ms bins 5.5660× 10−8 5.2323× 10−7

Raw spikes 1.9393× 10−7 2.6867× 10−5

Table 7.2: Paired t-test p-values. Tests compared network performance on pairs of
sessions between networks trained on the original training set and each training set
variation. The consistent increase in performance con�rms that the channel shu�ing
method is helpful for this type of data, making it's further investigation worthwhile.
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Chapter 8

Discussion and Future Work

This work presents algorithms for running various convolutional and recurrent

neural network algorithms on a novel class of simple but very wide SIMD hardware

architectures. It shows the application of convolutional and recurrent neural networks

to new domains in computational neuroscience. However, there are further questions

that can be answered regarding both the types of hardware architectures on which

the M3inM2V Conv algorithm performs well, and exploring new domains that can

take advantage of the speed and simplicity of the class of ultra-wide SIMD on which

M3inM2V Conv excels.

8.1 Exploring Performance on Other Hardware Types

While most other hardware types, such as GPUs and Google's TPU were designed

with other algorithms in mind, if implementing M3inM2V Conv is practical then

doing so still might be useful, if for nothing else than to learn what hardware aspects

result in M3inM2V Conv being e�cient.

8.2 Other domains - Cybersecurity applications such as anomaly

and malware detection

Another area that could be explored is other domains to which neural networks

are being or could be applied and that would bene�t from the use of hardware on

which the M3inM2V algorithms excel. One example of such a domain of increasing

social and economic importance where machine learning and neural networks have

the potential to play an increasing role is the domain of cybersecurity. Some common

subdomains of cybersecurity where machine learning has proven useful include source

code/binary analysis, intrusion/anomaly detection, and penetration testing (Hu et al.,

2020, Goh, 2021). To narrow the scope I will focus on possible applications to source

code and binary analysis and intrusion detection, along with special considerations

for the IoT domain.
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8.2.1 Source and Binary Code Analysis

The �rst application of machine learning to cybersecurity for which the appli-

cability of M3inM2V neural network implementations will be discussed is the area

of source code and binary analysis. This is important for the detection of embed-

ded malware, software vulnerabilities, and even potentially hardware bug exploits

(Xue et al., 2019), all of which have potential for both signi�cant economic cost (e.g.

ransomware), the disruption of critical infrastructure, and/or the compromise of cor-

porate secrets or personal privacy. One recent high pro�le example is the Solar Winds

hack, where software from what should have been a trusted source was compromised

(Alkhadra et al., 2021). This incident has furthered the demand of a "Software Bill

of Materials" detailing exactly which libraries and other third party components a

software package contains.

Some current subdomains of source or binary code analysis to which machine

learning have been applied include malware detection and function identi�cation,

using both techniques borrowed from natural language processing (NLP), and tech-

niques that take advantage of software's formal structure. (Xue et al., 2019). Speci�c

neural network based tools include one by Guo et al. (2018) that uses recurrent net-

works for both malware detection and binary code analysis, and Li et al. (2021)

perform binary analysis using a neural network model based on one used for NLP.

While machine learning is a clearly a valuable tool in the domains of source code

and even binary analysis, as this is frequently a development, or at least deployment

time activity, and as such, it stands to bene�t less from speed and e�ciency gains than

algorithms that need real time, or near real time results. There is still some potential

bene�t however, especially since any power savings for routine tasks supports green

computing initiatives. Additionally, if ultra-wide SIMD accelerators geared towards

M3inM2V algorithms are present on end user devices then the use of acceleration

could allow of robust virus and malware scanning with minimal impact on system

performance and if applicable, battery life.

8.2.2 Intrusion and Anomaly Detection

Another domain where the acceleration of machine learning algorithms would have

greater bene�t is machine learning for intrusion and anomaly detection. That is, the
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real time detection of malware activity and/or compromised systems by analyzing

network tra�c, application behavior, system logs and other sources for malicious or

simply unusual behavior. While at it's core the Solar Winds hack was a software

supply chain issue, it's recognized that network monitoring and anomaly detection

can still provide a last line of defense against compromised software (Alkhadra et al.,

2021), helping to identify in real time unexpected and potentially harmful behavior

by compromised applications. Additionally, intrusion/anomaly detection can iden-

tify unauthorized system access from other sources, including previously unknown

exploits, malicious users, or accounts compromised through social engineering. One

recent example of such a compromise is the Colonial Pipeline ransomware attack,

where a stolen VPN password ultimately lead to a pipeline shutdown and major fuel

shortages on the east coast of the United States. (Turton and Mehrotra, 2021).

While accuracy is always valued, such detection systems don't have to be perfect.

Existing heuristic based Security Information and Event Monitoring (SIEM) systems

already have a high false positive rate, and if a human-in-the-loop approach is main-

tained, even a reduced number of such false positives is an improvement, as current

systems often create too many reports for human analysis to properly address (Feng

et al., 2017).

However, for machine learning based intrusion/anomaly detection systems to be

used they �rst must be trained, and one challenge in using neural networks or machine

learning in general for network monitoring applications is the lack of standardized

training data, both due to a general hesitancy to release datasets that could reveal

information about private networks, and a wide range of types of information that

could be included in a dataset, along with di�erent ways to represent that data.

However, there has been a recent e�ort to generate useful public datasets for training

intrusion and anomaly detection systems, using both real and synthetic data and often

focusing on di�erent subdomains (Ring et al., 2019). These datasets have allowed for

the training of various network intrusion/anomaly detection systems with di�erent

specializations, include detecting DDOS attacks (Elsayed et al., 2020), high risk users

(Feng et al., 2017),

The (near) real time nature of intrusion and anomaly detection creates a high

potential bene�t from the use of accelerators. Additionally, in many cases e�ciency

is important, if one does not want to have to dedicate a signi�cant amount of a
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system's resources to security scanning, or dedicate too much power, data center

space, etc to single purpose scanning appliances.

8.2.3 IoT and Edge Security

Most domains of cybersecurity apply in some form to IoT, often with the added

challenge of limited power, compute capability and/or network bandwidth. However,

the need for security at (or near) the edge grows with the growing deployment of IoT

devices in applications ranging from safety critical domains such as medical, auto-

motive, or critical infrastructure; to the ever growing list of appliances and consumer

devices that are only available in an internet connected form, and whose security and

privacy, while generally not a matter of life and death, is still very important.

Because power is important at the edge, or even for an "edge" server, any security

application that actually runs at the edge can stand to bene�t from the potential

power savings of simple, ultra-wide SIMD hardware and M3inM2V implementations

of neural network algorithms. While most code and binary analysis functions can be

o�oaded to the cloud, only allowing previously veri�ed software to be installed on IoT

devices, o�oading real-time monitoring to the cloud is more di�cult, as the necessary

data must be uploaded, both using potentially limited bandwidth and, depending on

the application, transferring potentially private data to the cloud. Additionally, for

some applications, the need for more sophisticated machine learning tools is poten-

tially greater, as a su�ciently skilled human may not be readily available to monitor

the output of a SIEM system. Thus, a system with a low false positive rate that can

either send easy to understand alerts to a untrained user or take action on it's own

may be required.
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Chapter 9

Conclusion

This chapter summarizes the contributions of this dissertation, and its broader

impact with respect to both machine learning accelerator hardware and machine

learning applications.

9.1 Contributions

This document starts o� with a discussion of various machine learning hardware

acceleration schemes, both hypothetical and implemented, for neural network infer-

ence. An overview of the design scheme for the ultra-wide SIMD accelerator, "ncore",

for which the later described M3inM2V neural network algorithm implementations

are written is then presented, this establishes the concept of a new class of SIMD

arithmetic accelerator, for which new neural network implementations are needed in

order to take advantage of the new design.

Next, the basic convolution inference M3inM2V algorithm itself is described,

showing that convolutional network layer inference can be performance e�ciently on

the previously described ultra-wide SIMD hardware, and providing the basis of the

implementation of other convolution variations, Next, algorithms for several such vari-

ations on a basic convolutional layer are described, including strided and dilated con-

volution. Following the introduction of the M3inM2V convolutional algorithm and

some practical variations, an analysis of their performance characteristics is presented,

both on hardware similar to the ultra-wide SIMD ncore architecture for which the

algorithm was designed, and for comparison, on x86_64 using AVX-512. This analy-

sis shows that convolution can be preformed with high computational e�ciency and

memory requirements reasonable to the hardware design, showing that the previously

described ultra-wide SIMD hardware design as a viable approach to a co-processor

style, SoC integrated neural network accelerator.

Then, covering another major class of layers used by modern neural networks,

a description of a M3inM2V approach to inference for recurrent network layers is

presented, thus showing that another major class of neural network inference layer is

implementable on the ultra-wide SIMD hardware architecture in question. Next, the
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performance characteristics of these proposed recurrent network implementations on

hardware designs �tting in the ultra-wide SIMD ncore architecture class are presented,

showing once again that such hardware designs are viable from running inference on

networks that contain recurrent layers.

Finally, to illustrate to breadth of domains in which neural networks, and specif-

ically, the proposed M3inM2V algorithms, a summary is presented of work that

I performed applying recurrent and convolutional network algorithms to computa-

tional neuroscience, decoding information contained in neural activity recorded in

rodent sensory systems. Then, to further emphasize the diversity of the domains to

which neural networks can be applied I give an overview of current applications of

neural networks in cybersecurity, as well as future applications to which M3inM2V

and hardware for which it is designed might be useful.

9.2 Broader Impact

More broadly, this dissertation establishes two main sets of characteristics: those

of ultra-wide SIMD hardware on whichM3inM2V algorithms perform well, and those

of hardware on which M3inM2V algorithms may not be the best choice. Speci�cally,

hardware on which M3inM2V performs well is capable of extremely wide SIMD

operations, of the order of hundreds, or better yet, thousands, or elements wide.

Furthermore, such hardware needs to be pipeline in such a way that arithmetic and

supported localized data movement operations can be performed simultaneously to

minimize or avoid wasted clock cycles where no arithmetic is performed while waiting

for the result of a data operation, as seen in the AVX-512 example. Furthermore,

while it is possible to implement M3inM2V on hardware that in addition to the

above features also supports global memory scatter/gather capabilities that allow

for matrix elements to be e�ciently fed to arithmetic operations regardless of their

locations in memory or geometric context in relation to other data elements, existing

algorithms likely exist for such hardware that take advantage of a wider range of data

movement options. This however leads to much more complex hardware features,

which hardware designed with M3inM2V can avoid if such data movement features

aren't needed for other purposes.

Of course, one must ask why are such hardware designs worth looking at. A pri-
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mary reason is that the ultra-wide SIMD designs that lend themselves to M3inM2V

algorithms provide another tool for hardware engineers designing systems that must

run machine learning, or potentially other matrix math heavy algorithms, e�ciently.

While in some cases more complex parallel designs, such as those used in the TPU

or in GPUs might be appropriate, having other options available allows designers to

pick an approach (or combination of approaches) that best �t the cost, performance

and power consumption needs of the application and physical constraints of the SoC

or hardware device in question.

9.3 Next Steps: Continued Development

The algorithms introduced in this work shows that neural network inference can be

performed on the described class of ultra-wide SIMD hardware, despite the hardware's

limited data manipulation capability, establishing the hardware design as a viable

option for neural network inference. This section takes a step back and addresses

the importance of edge-based AI accelerators, the advantages of having them on

the same SoC as the general purpose CPU, and why M3inM2V and the ultra-wide

SIMD design paradigm it enables provide a promising approach to such on-die AI

accelerators. Additionally reasons why such hardware might be useful even in an

"unlimited power" datacenter environment are discussed.

The use of AI accelerators is important for edge applications for multiple reasons,

including bandwidth, latency, data privacy, and security. AI accelerators at the edge

enable use of neural network algorithms even when bandwidth is not available to

send data to centralized cloud servers, when network latency is too large for the

application, or when the application requires the system be robust to loss of network

connectivity. In an extreme case, such as critical infrastructure, you might even have

an air-gapped system that is not connected to the internet at all. Additionally, even

when a system has a su�cient internet connection, acceleration at the edge protects

privacy by reducing the amount of data that must be sent to the cloud, ideally

reducing it to zero if the intended operation is a purely local one (e.g. "turn on the

lights" instead of "get today's weather forecast"). Not only is this important from

an ethical standpoint, but growing public interest, and in some countries, regulation

regarding privacy such as the General Data Protection Regulation (GDPR) in Europe,
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will drive demand for systems that avoid sending unnecessary data to the cloud where

it must be protected.

However, to move AI inference to the edge, suitable hardware must be available.

The hardware limitations of many edge applications favor SoC integrated AI accel-

erators, the most prominent of these limitations being size and power. Even edge

"servers" that can rely on grid power might now have have at least soft power or

space limitations. For example, a smart home hub designed to protect privacy by

processing local sensor data instead of sending it to the cloud might not be popular

with consumers if it required a large form factor to accommodate GPU-like acceler-

ator cards, made too much noise, or generated too much heat. Other applications

might have very little leeway if there are hard power or size limitations due to battery

or form factor considerations.

Of course, placing an AI accelerator of the same die as a general purpose CPU

places limits on the accelerator design, and thus favors simple and �exible designs.

TheM3inM2V algorithms introduced in this document, combined with the ultra-wide

SIMD hardware design paradigm, provide a practical way to include a such a �exible

neural network accelerator on the same die as a high power CPU (Henry et al., 2020).

Speci�cally, the ring-based ultra-wide SIMD and M3inM2V combination described

in this work o�er a scalable approach that be parameterized to �t the available space

on an SoC. This approach is possible because the arithmetic unit and associated data

handling and storage hardware form a simple, replicatable unit, and the hardware

size grows essentially linearly with number of arithmetic units, with a small amount

of extra overhead for the distribution of control signals (Henry, 2020). The only

requirement imposed by software on SIMD width is that M3inM2V Conv requires

a power-of-two width for the block scheme to work. In addition to allowing the

SIMD width to be scaled to �t the hardware size supported by a particular SoC

design, the individual unit based approach to the design allows for the potential to

add additional operations, such as logical comparisons or bitwise operations, to each

unit without modifying the overall design paradigm. Such operations would be much

harder with the less �exible systolic array approach, which is built around multiply-

add operations only, often with completely separate data handling. As long as these

additional features are physically small, they have minimal e�ect on the hardware

layout, but enable much more �exible software with the ability to support a wider
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range of functionality. This design yields software that is more likely to be able to run

any future neural network design, or even more general forms of signal processing,

with less chance of having even a single new "exotic" operation not supported by

hardware that as a result requires an entire network layer to be transferred to the

general purpose CPU and back again.

Finally, while likely most valuable at the edge, on die AI accelerators also have

a place in datacenter applications, for two reasons. First, it simpli�es the system,

as there is no GPU or other separate hardware to buy, make space for in a chassis,

power, and cool - all things which require money, space, and energy. Thus on-die

AI accelerators lend themselves to cheaper and "greener" datacenter operations than

discrete accelerator based inference. Secondly, on-die accelerators allow for closer

integration with the CPU. This reduces latency and allows for more complex yet

performant software that performs tightly coupled operations on both the accelerator

and standard CPU hardware, since data transfer from an on-die accelerator, while

potentially time consuming, should still be signi�cantly faster then transferring the

same data from a separate, discrete accelerator.

Therefore, the combination of a new class of simple, but ultra-wide SIMD hardware

designs, and the accompanying M3inM2V algorithms presented in this dissertation,

improves the e�ciency, and even feasibility, of a broad spectrum of neural network

inference applications, thus laying a foundation for the expansion edge-based AI infer-

ence. Additionally, by enabling improved on-chip AI acceleration of edge applications,

the algorithms described in this document contribute technical solutions addressing a

range of important social, economic, and larger system engineering issues, including

network bandwidth congestion, energy e�ciency, and data security and privacy.
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Appendix A

AXV-512 Convolution Algorithm C Code (with intrinsics)

#include "immintrin.h"

#include <stdio.h>

#include <math.h>

#define TOTAL_ZMM_REGS 32

#define NUMBER_OF_INPUT_CHANNELS 2

#define NUMBER_OF_OUTPUT_CHANNELS 2

#define NUMBER_OF_CHANNELS 2

#define CHANNEL_WIDTH 8

#define CHANNEL_HEIGHT 8

// ***********************************************************************

// Unoptimized convolution one channel at a time to provide ground truth *

// ***********************************************************************

void slow_3x3x1_same_conv_8x8x2_input(float* input, float* filter_ch_1,

float* filter_ch_2, float* output)

{

int input_row, filter_row, output_row, output_column, filter_column,

input_column, input_channel, i;

for (output_row=0; output_row<CHANNEL_HEIGHT; output_row++)

{

for (output_column=0; output_column<CHANNEL_WIDTH; output_column++)

{

//zero out output element

output[output_row*CHANNEL_WIDTH+output_column] = 0;

//apply the filters

for (filter_row=0; filter_row<3; filter_row++)

{

input_row = output_row-1+filter_row;

// skip out of bounds input rows

if ( (input_row < 0) || (input_row >= CHANNEL_HEIGHT) ) continue;
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for (filter_column=0; filter_column<3; filter_column++)

{

input_column = output_column-1+filter_column;

// skip out of bounds columns

if ( (input_column < 0) || (input_column >= CHANNEL_WIDTH) )

continue;

// add this filter element's contribution to the output

output[output_row*CHANNEL_WIDTH+output_column] +=

filter_ch_1[filter_row*3+filter_column] *

input[input_row*CHANNEL_WIDTH*2+input_column]

+

filter_ch_2[filter_row*3+filter_column]*

input[input_row*CHANNEL_WIDTH*2+CHANNEL_WIDTH+input_column];

}//end for each filter column

}//end for filter row

}//end for each output column

}//end for output row

}//end slow_3x3x1_same_conv_8x8x2_input

//

**************************************************************************

// AVX-512 Convolution - Same size, 8x8x2 input, 3x3x2 filter, 8x8x2 output

*

//

**************************************************************************

void avx512_3x3xn_same_conv_8x8xn_input(float* input, float* filter, float*

output, int number_of_input_channels)

{

/*****************************************************************

* Declare zmm register for expanded filter *

* //each filter coefficient comes from RAM preexpanded, *

* assume time to build these vectors more costly than RAM space *

*****************************************************************/
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__m512 expanded_filters[18];

/****************************************

* Declare zmm register for output row *

* Only a single output row needs to be *

* stored in the zmm registers at once. *

***************************************/

__m512 output_2chan;

/**********************************************************

* Declare remaining zmm registers for the input data *

* 16 registers to hold inputs, room for 2 input channels *

**********************************************************/

__m512 input_2chan[8];

/*******************

* rotate indecies *

*******************/

int channelwise_rotate_mask_array[16] __attribute__ ((aligned (64))) =

{11,12,13,14,15,0,1,2,3,4,5,6,7,8,9,10}; //swap channels from

partially rotated state

__m512i channelwise_rotate_mask =

_mm512_load_epi32(channelwise_rotate_mask_array);

int filter_column_rotate_mask_array[16] __attribute__ ((aligned (64))) =

{15,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14};//rotate all elements

left one

__m512i filter_column_rotate_mask =

_mm512_load_epi32(filter_column_rotate_mask_array);

int filter_column_initial_rotate_mask_array[16] __attribute__ ((aligned

(64))) =

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0};//rotate all

elements left one

90



__m512i filter_column_initial_rotate_mask =

_mm512_load_epi32(filter_column_initial_rotate_mask_array);

/************************************

* Load initial data into registers *

***********************************/

int i;

for (i =0; i<18; i++)

expanded_filters[i] = _mm512_load_ps(&(filter[i*16]));

int number_of_input_channel_blocks = ceil(number_of_input_channels/2.0);

for (i=0; i<number_of_input_channel_blocks*8; i++)

{

printf("Loading row starting with %f into input register %u\n",

input[i*16], i);

input_2chan[i] = _mm512_load_ps(&(input[i*16]));

//rotate block of two input channels left by one, to set up for

rightmost element of same-size convolution

input_2chan[i] =

_mm512_permutexvar_ps(filter_column_initial_rotate_mask,

input_2chan[i]);

}//end for each input data element

/***********************************************

* For each row of output, perform convolution *

**********************************************/

int out_row, input_channel_block, channel, filter_row, filter_column,

filter_index, input_source_row;

float zero_array[16] __attribute__ ((aligned (64))) =

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

printf("Computing 8 output rows, from %d input channel blocks (%d input

channels)\n",

number_of_input_channel_blocks, number_of_input_channels);

float debug_row[16] __attribute__ ((aligned (64)));
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for (out_row=0; out_row<8; out_row++)

{

printf("[DEBUG] output row %d\n", out_row);

//zero output register

output_2chan = _mm512_load_ps(zero_array);

// for (input_channel_block=0;

input_channel_block<number_of_input_channel_blocks;

input_channel_block++)

// {

input_channel_block=0;

for (filter_row=0; filter_row<3; filter_row++)

{

input_source_row = input_channel_block*8+out_row+filter_row-1;

if ( ((out_row+filter_row)<1) || ((out_row+filter_row) > 8))

continue;

printf(" [DEBUG] filter row %d\n", filter_row);

for (channel=0; channel<2; channel++)

{

printf(" [DEBUG] channel %d, filter_row %d, out_row %d\n",

channel, filter_row, out_row);

//

*******************************************************************************

// Un-roll the loop over filter columns since a different mask is

needed each time

//

*******************************************************************************

// *****************

// Filter column 2 *

// *****************

printf(" [Filter column 2]\n");

filter_column = 2;

filter_index = filter_row*3*2+channel*3+(2-filter_column);

//subtract the index from 2 since the data is packed with the
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rightmost column first

_mm512_store_ps(debug_row, expanded_filters[filter_index]);

printf(" Current filter input: [%2.1f, %2.1f, %2.1f, %2.1f,

%2.1f, %2.1f, %2.1f, %2.1f], ",

debug_row[0], debug_row[1], debug_row[2], debug_row[3],

debug_row[4], debug_row[5], debug_row[6], debug_row[7]);

printf("[%2.1f, %2.1f, %2.1f, %2.1f, %2.1f, %2.1f, %2.1f, %2.1f]\n",

debug_row[8], debug_row[9], debug_row[10], debug_row[11],

debug_row[12], debug_row[13], debug_row[14],

debug_row[15]);

_mm512_store_ps(debug_row, input_2chan[input_source_row]);

printf(" Current input vector: [%.2f, %.2f, %.2f, %.2f, %.2f,

%.2f, %.2f, %.2f], ",

debug_row[0], debug_row[1], debug_row[2], debug_row[3],

debug_row[4], debug_row[5], debug_row[6], debug_row[7]);

printf("[%.2f, %.2f, %.2f, %.2f, %.2f, %.2f, %.2f, %.2f]\n",

debug_row[8], debug_row[9], debug_row[10], debug_row[11],

debug_row[12], debug_row[13], debug_row[14], debug_row[15]);

// perform multiply-add for rightmost element of conv filter row

(column 2)

output_2chan = _mm512_mask3_fmadd_ps(input_2chan[input_source_row],

expanded_filters[filter_index],

output_2chan, 0x7F7F);

// rotate one element for next column

input_2chan[input_source_row] =

_mm512_permutexvar_ps(filter_column_rotate_mask,

input_2chan[input_source_row]);

// *****************

// Filter column 1 *

// *****************

printf(" [Filter column 1]\n");

filter_column = 1;
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//subtract the index from 2 since the data is packed with the

rightmost column first

filter_index = filter_row*3*2+channel*3+(2-filter_column);

_mm512_store_ps(debug_row, expanded_filters[filter_index]);

printf(" Current filter input: [%2.1f, %2.1f, %2.1f, %2.1f,

%2.1f, %2.1f, %2.1f, %2.1f], ",

debug_row[0], debug_row[1], debug_row[2], debug_row[3],

debug_row[4], debug_row[5], debug_row[6], debug_row[7]);

printf("[%2.1f, %2.1f, %2.1f, %2.1f, %2.1f, %2.1f, %2.1f, %2.1f]\n",

debug_row[8], debug_row[9], debug_row[10], debug_row[11],

debug_row[12], debug_row[13], debug_row[14],

debug_row[15]);

_mm512_store_ps(debug_row, input_2chan[input_source_row]);

printf(" Current input vector: [%.2f, %.2f, %.2f, %.2f, %.2f,

%.2f, %.2f, %.2f], ",

debug_row[0], debug_row[1], debug_row[2], debug_row[3],

debug_row[4], debug_row[5], debug_row[6], debug_row[7]);

printf("[%.2f, %.2f, %.2f, %.2f, %.2f, %.2f, %.2f, %.2f]\n",

debug_row[8], debug_row[9], debug_row[10], debug_row[11],

debug_row[12], debug_row[13], debug_row[14], debug_row[15]);

//perform multiply-add for middle element of conv filter row

output_2chan = _mm512_mask3_fmadd_ps(input_2chan[input_source_row],

expanded_filters[filter_index],

output_2chan, 0xFFFF);

//rotate one element for next column

input_2chan[input_source_row] =

_mm512_permutexvar_ps(filter_column_rotate_mask,

input_2chan[input_source_row]);

// *****************

// Filter column 0 *

// *****************

printf(" [Filter column 0]\n");
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filter_column = 0;

//subtract the index from 2 since the data is packed with the

rightmost column first

filter_index = filter_row*3*2+channel*3+(2-filter_column);

_mm512_store_ps(debug_row, expanded_filters[filter_index]);

printf(" Current filter input: [%2.1f, %2.1f, %2.1f, %2.1f,

%2.1f, %2.1f, %2.1f, %2.1f], ",

debug_row[0], debug_row[1], debug_row[2], debug_row[3],

debug_row[4], debug_row[5], debug_row[6], debug_row[7]);

printf("[%2.1f, %2.1f, %2.1f, %2.1f, %2.1f, %2.1f, %2.1f, %2.1f]\n",

debug_row[8], debug_row[9], debug_row[10], debug_row[11],

debug_row[12], debug_row[13], debug_row[14], debug_row[15]);

_mm512_store_ps(debug_row, input_2chan[input_source_row]);

printf(" Current input vector: [%.2f, %.2f, %.2f, %.2f, %.2f,

%.2f, %.2f, %.2f], ",

debug_row[0], debug_row[1], debug_row[2], debug_row[3],

debug_row[4], debug_row[5], debug_row[6], debug_row[7]);

printf("[%.2f, %.2f, %.2f, %.2f, %.2f, %.2f, %.2f, %.2f]\n",

debug_row[8], debug_row[9], debug_row[10], debug_row[11],

debug_row[12], debug_row[13], debug_row[14], debug_row[15]);

//perform multiply-add for leftmost element of conv filter row

output_2chan = _mm512_mask3_fmadd_ps(input_2chan[input_source_row],

expanded_filters[filter_index],

output_2chan, 0xFEFE);

//rotate one element for next column

input_2chan[input_source_row] =

_mm512_permutexvar_ps(filter_column_rotate_mask,

input_2chan[input_source_row]);

// ********************************************************

// rotate input row (swap channels) to align the channels

// as input to the other output channel
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// ********************************************************

input_2chan[input_source_row] =

_mm512_permutexvar_ps(channelwise_rotate_mask,

input_2chan[input_source_row]);

}//end for each channel

}//end for each filter row

// }//end for each input channel block

//store this output block

_mm512_store_ps(&output[out_row*16], output_2chan);

printf("completed output row %u, first element stored: %f\n", out_row,

output[out_row*16]);

}//end for each output row

}// end avx-512 conv

int main()

{

float input[CHANNEL_WIDTH*CHANNEL_HEIGHT*NUMBER_OF_INPUT_CHANNELS]

__attribute__ ((aligned (64)));

float

filter[3*NUMBER_OF_INPUT_CHANNELS*3*NUMBER_OF_OUTPUT_CHANNELS*CHANNEL_WIDTH]

__attribute__ ((aligned (64)));

float output[CHANNEL_WIDTH*CHANNEL_HEIGHT*NUMBER_OF_OUTPUT_CHANNELS]

__attribute__ ((aligned (64)));

float ground_truth_output_channel_0[CHANNEL_WIDTH*CHANNEL_HEIGHT];

float ground_truth_output_channel_1[CHANNEL_WIDTH*CHANNEL_HEIGHT];

printf("Loading values into test filter...\n");

//load values into filter, including zeros for mask

unsigned int row, column, i, packed_column;

float filter_a_1[3*3] = {0, 1, 2, 10, 11, 12, 20, 21, 22};

float filter_b_1[3*3] = {0, 2, 4, 20, 22, 24, 40, 42, 44};

float filter_a_2[3*3] = {1, 2, 10, 11, 12, 20, 21, 22, 0};
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float filter_b_2[3*3] = {2, 4, 20, 22, 24, 40, 42, 44, 0};

printf("Filter B:\n");

printf(" Input channel configuration 1:\n");

for (row=0; row<3; row++)

{

printf("[ ");

for (column=0; column<3; column++)

{

printf(" %2.1f ", filter_a_1[3*row+column]);

}

printf("]\n");

}

printf(" Channel 2:\n");

for (row=0; row<3; row++)

{

printf("[ ");

for (column=0; column<3; column++)

{

printf(" %2.1f ", filter_a_2[3*row+column]);

}

printf("]\n");

}

printf("Filter B:\n");

printf(" Input channel configuration 1:\n");

for (row=0; row<3; row++)

{

printf("[ ");

for (column=0; column<3; column++)

{

printf(" %2.1f ", filter_b_1[3*row+column]);

}

printf("]\n");

}

printf(" Channel 2:\n");

for (row=0; row<3; row++)
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{

printf("[ ");

for (column=0; column<3; column++)

{

printf(" %2.1f ", filter_b_2[3*row+column]);

}

printf("]\n");

}

printf("Loading values into test filter...\n");

for (i=0;

i<3*NUMBER_OF_INPUT_CHANNELS*3*NUMBER_OF_OUTPUT_CHANNELS*CHANNEL_WIDTH;

i++) filter[i] = 0;

for (row=0; row<3; row++)

{

for (column=0; column<3; column++)

{

packed_column = 2-column;

for (i=0; i<CHANNEL_WIDTH; i++)

{

filter[(2*row)*3*CHANNEL_WIDTH*NUMBER_OF_INPUT_CHANNELS +

packed_column*CHANNEL_WIDTH*NUMBER_OF_INPUT_CHANNELS + i] =

filter_a_1[3*row+column];

filter[(2*row)*3*CHANNEL_WIDTH*NUMBER_OF_INPUT_CHANNELS +

packed_column*CHANNEL_WIDTH*NUMBER_OF_INPUT_CHANNELS + CHANNEL_WIDTH

+ i] = filter_a_2[3*row+column];

filter[(2*row+1)*3*CHANNEL_WIDTH*NUMBER_OF_INPUT_CHANNELS +

packed_column*CHANNEL_WIDTH*NUMBER_OF_INPUT_CHANNELS + i] =

filter_b_1[3*row+column];

filter[(2*row+1)*3*CHANNEL_WIDTH*NUMBER_OF_INPUT_CHANNELS +
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packed_column*CHANNEL_WIDTH*NUMBER_OF_INPUT_CHANNELS + CHANNEL_WIDTH

+ i] = filter_b_2[3*row+column];

}

}

}

printf("Expanded filters:\n");

for (row=0; row<18; row++)

{

if (row%2 == 0)

printf(" Row %d, filter A, both channels: [ ", row);

else

printf(" Row %d, filter B, both channels: [ ", row);

for (i=0; i<CHANNEL_WIDTH*NUMBER_OF_INPUT_CHANNELS; i++)

{

printf("%2.0f ", filter[row*NUMBER_OF_INPUT_CHANNELS*CHANNEL_WIDTH+i]);

}

printf("]\n");

}

printf("Loading fake input data...\n");

for (i=0; i<CHANNEL_WIDTH*CHANNEL_HEIGHT*NUMBER_OF_INPUT_CHANNELS; i++)

{

input[i] = (i%16)*0.1 + (i/(CHANNEL_WIDTH*NUMBER_OF_INPUT_CHANNELS));

}//end for i

int channel;

for (row=0; row<CHANNEL_HEIGHT; row++)

{

printf("Row %d: ", row);

for (channel=0; channel<NUMBER_OF_INPUT_CHANNELS; channel++)

{

printf("[ ");

for (column=0; column<CHANNEL_WIDTH; column++)

{

printf("%2.2f ", input[row*NUMBER_OF_INPUT_CHANNELS*CHANNEL_WIDTH +
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channel*CHANNEL_WIDTH + column]);

}//end for each column

printf("] ");

}//end for each channel

printf("\n");

}//end for each row

printf("Computing ground truth...\n");

slow_3x3x1_same_conv_8x8x2_input(input, filter_a_1, filter_b_1,

ground_truth_output_channel_0);

//note that the filters are swapped for output channel 2, since in the

original input channel

//configuration channel 1 is convolved with filter b, but for this test

case swapping the filters

//is easier

slow_3x3x1_same_conv_8x8x2_input(input, filter_b_2, filter_a_2,

ground_truth_output_channel_1);

printf("Running conv...\n");

avx512_3x3xn_same_conv_8x8xn_input(input, filter, output,

NUMBER_OF_INPUT_CHANNELS);

printf("Checking the results...\n");

int correct = 0;

float ground_truth_conv_value;

int output_channel;

for (i=0; i < CHANNEL_WIDTH*CHANNEL_HEIGHT*NUMBER_OF_OUTPUT_CHANNELS; i++)

{

printf("output[%u] = %4.4f ", i, output[i]);

if (i%(NUMBER_OF_OUTPUT_CHANNELS*CHANNEL_WIDTH) < CHANNEL_WIDTH)

{

ground_truth_conv_value =

ground_truth_output_channel_0[CHANNEL_WIDTH*(i/(NUMBER_OF_OUTPUT_CHANNELS*CHANNEL_WIDTH))

+

i%(NUMBER_OF_OUTPUT_CHANNELS*CHANNEL_WIDTH)];
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output_channel = 0;

}//end if channel 1

else

{

ground_truth_conv_value =

ground_truth_output_channel_1[CHANNEL_WIDTH*(i/(NUMBER_OF_OUTPUT_CHANNELS*CHANNEL_WIDTH))

+

i%(NUMBER_OF_OUTPUT_CHANNELS*CHANNEL_WIDTH)

- CHANNEL_WIDTH];

output_channel = 1;

}//end if channel 2

//check if value correct

if (abs(ground_truth_conv_value - output[i]) < 0.0001)

{

printf(" ~= %4.4f (Correct)", ground_truth_conv_value);

correct++;

}//end if correct

else printf(" != %4.4f (WRONG)", ground_truth_conv_value);

printf(" (Output channel %d, row %d)\n", output_channel,

i/(NUMBER_OF_OUTPUT_CHANNELS*CHANNEL_WIDTH));

}//end for i (check)

printf("%d out of %d output element correct!\n", correct,

CHANNEL_WIDTH*CHANNEL_HEIGHT*NUMBER_OF_OUTPUT_CHANNELS);

return 1;

}//end main
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Appendix B

AXV-512 Convolution Algorithm C Run Log

Loading values into test filter...

Filter B:

Input channel configuration 1:

[ 0.0 1.0 2.0 ]

[ 10.0 11.0 12.0 ]

[ 20.0 21.0 22.0 ]

Channel 2:

[ 1.0 2.0 10.0 ]

[ 11.0 12.0 20.0 ]

[ 21.0 22.0 0.0 ]

Filter B:

Input channel configuration 1:

[ 0.0 2.0 4.0 ]

[ 20.0 22.0 24.0 ]

[ 40.0 42.0 44.0 ]

Channel 2:

[ 2.0 4.0 20.0 ]

[ 22.0 24.0 40.0 ]

[ 42.0 44.0 0.0 ]

Loading values into test filter...

Expanded filters:

Row 0, filter A, both channels: [ 2 2 2 2 2 2 2 2 10 10 10 10 10 10 10 10 ]

Row 1, filter B, both channels: [ 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 ]

Row 2, filter A, both channels: [ 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 ]

Row 3, filter B, both channels: [ 4 4 4 4 4 4 4 4 20 20 20 20 20 20 20 20 ]

Row 4, filter A, both channels: [ 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 ]

Row 5, filter B, both channels: [ 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 ]

Row 6, filter A, both channels: [ 12 12 12 12 12 12 12 12 20 20 20 20 20 20 20 20 ]

Row 7, filter B, both channels: [ 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 ]

Row 8, filter A, both channels: [ 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 ]
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Row 9, filter B, both channels: [ 24 24 24 24 24 24 24 24 40 40 40 40 40 40 40 40 ]

Row 10, filter A, both channels: [ 22 22 22 22 22 22 22 22 24 24 24 24 24 24 24 24 ]

Row 11, filter B, both channels: [ 20 20 20 20 20 20 20 20 22 22 22 22 22 22 22 22 ]

Row 12, filter A, both channels: [ 22 22 22 22 22 22 22 22 0 0 0 0 0 0 0 0 ]

Row 13, filter B, both channels: [ 21 21 21 21 21 21 21 21 22 22 22 22 22 22 22 22 ]

Row 14, filter A, both channels: [ 20 20 20 20 20 20 20 20 21 21 21 21 21 21 21 21 ]

Row 15, filter B, both channels: [ 44 44 44 44 44 44 44 44 0 0 0 0 0 0 0 0 ]

Row 16, filter A, both channels: [ 42 42 42 42 42 42 42 42 44 44 44 44 44 44 44 44 ]

Row 17, filter B, both channels: [ 40 40 40 40 40 40 40 40 42 42 42 42 42 42 42 42 ]

Loading fake input data...

Row 0: [ 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 ] [ 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 ]

Row 1: [ 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 ] [ 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 ]

Row 2: [ 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 ] [ 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 ]

Row 3: [ 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 ] [ 3.80 3.90 4.00 4.10 4.20 4.30 4.40 4.50 ]

Row 4: [ 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 ] [ 4.80 4.90 5.00 5.10 5.20 5.30 5.40 5.50 ]

Row 5: [ 5.00 5.10 5.20 5.30 5.40 5.50 5.60 5.70 ] [ 5.80 5.90 6.00 6.10 6.20 6.30 6.40 6.50 ]

Row 6: [ 6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 ] [ 6.80 6.90 7.00 7.10 7.20 7.30 7.40 7.50 ]

Row 7: [ 7.00 7.10 7.20 7.30 7.40 7.50 7.60 7.70 ] [ 7.80 7.90 8.00 8.10 8.20 8.30 8.40 8.50 ]

Computing ground truth...

Running conv...

Loading row starting with 0.000000 into input register 0

Loading row starting with 1.000000 into input register 1

Loading row starting with 2.000000 into input register 2

Loading row starting with 3.000000 into input register 3

Loading row starting with 4.000000 into input register 4

Loading row starting with 5.000000 into input register 5

Loading row starting with 6.000000 into input register 6

Loading row starting with 7.000000 into input register 7

Computing 8 output rows, from 1 input channel blocks (2 input channels)

[DEBUG] output row 0

[DEBUG] filter row 1

[DEBUG] channel 0, filter_row 1, out_row 0

[Filter column 2]
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Current filter input: [12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0], [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0]

Current input vector: [0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80], [0.90, 1.00, 1.10, 1.20, 1.30, 1.40, 1.50, 0.00]

[Filter column 1]

Current filter input: [11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0], [12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0]

Current input vector: [0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70], [0.80, 0.90, 1.00, 1.10, 1.20, 1.30, 1.40, 1.50]

[Filter column 0]

Current filter input: [10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], [11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0]

Current input vector: [1.50, 0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60], [0.70, 0.80, 0.90, 1.00, 1.10, 1.20, 1.30, 1.40]

[DEBUG] channel 1, filter_row 1, out_row 0

[Filter column 2]

Current filter input: [24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0], [40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0]

Current input vector: [0.90, 1.00, 1.10, 1.20, 1.30, 1.40, 1.50, 0.00], [0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80]

[Filter column 1]

Current filter input: [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0], [24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0]

Current input vector: [0.80, 0.90, 1.00, 1.10, 1.20, 1.30, 1.40, 1.50], [0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70]

[Filter column 0]

Current filter input: [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0], [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0]

Current input vector: [0.70, 0.80, 0.90, 1.00, 1.10, 1.20, 1.30, 1.40], [1.50, 0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60]

[DEBUG] filter row 2

[DEBUG] channel 0, filter_row 2, out_row 0

[Filter column 2]

Current filter input: [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Current input vector: [1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80], [1.90, 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 1.00]

[Filter column 1]

Current filter input: [21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0], [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0]

Current input vector: [1.00, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70], [1.80, 1.90, 2.00, 2.10, 2.20, 2.30, 2.40, 2.50]

[Filter column 0]

Current filter input: [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0], [21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0]

Current input vector: [2.50, 1.00, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60], [1.70, 1.80, 1.90, 2.00, 2.10, 2.20, 2.30, 2.40]

[DEBUG] channel 1, filter_row 2, out_row 0

[Filter column 2]

Current filter input: [44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Current input vector: [1.90, 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 1.00], [1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80]

104



[Filter column 1]

Current filter input: [42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0], [44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0]

Current input vector: [1.80, 1.90, 2.00, 2.10, 2.20, 2.30, 2.40, 2.50], [1.00, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70]

[Filter column 0]

Current filter input: [40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0], [42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0]

Current input vector: [1.70, 1.80, 1.90, 2.00, 2.10, 2.20, 2.30, 2.40], [2.50, 1.00, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60]

completed output row 0, first element stored: 244.799988

[DEBUG] output row 1

[DEBUG] filter row 0

[DEBUG] channel 0, filter_row 0, out_row 1

[Filter column 2]

Current filter input: [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0], [10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]

Current input vector: [0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80], [0.90, 1.00, 1.10, 1.20, 1.30, 1.40, 1.50, 0.00]

[Filter column 1]

Current filter input: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]

Current input vector: [0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70], [0.80, 0.90, 1.00, 1.10, 1.20, 1.30, 1.40, 1.50]

[Filter column 0]

Current filter input: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

Current input vector: [1.50, 0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60], [0.70, 0.80, 0.90, 1.00, 1.10, 1.20, 1.30, 1.40]

[DEBUG] channel 1, filter_row 0, out_row 1

[Filter column 2]

Current filter input: [4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0], [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0]

Current input vector: [0.90, 1.00, 1.10, 1.20, 1.30, 1.40, 1.50, 0.00], [0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80]

[Filter column 1]

Current filter input: [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0], [4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0]

Current input vector: [0.80, 0.90, 1.00, 1.10, 1.20, 1.30, 1.40, 1.50], [0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70]

[Filter column 0]

Current filter input: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]

Current input vector: [0.70, 0.80, 0.90, 1.00, 1.10, 1.20, 1.30, 1.40], [1.50, 0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60]

[DEBUG] filter row 1

[DEBUG] channel 0, filter_row 1, out_row 1

[Filter column 2]

Current filter input: [12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0], [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0]
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Current input vector: [1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80], [1.90, 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 1.00]

[Filter column 1]

Current filter input: [11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0], [12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0]

Current input vector: [1.00, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70], [1.80, 1.90, 2.00, 2.10, 2.20, 2.30, 2.40, 2.50]

[Filter column 0]

Current filter input: [10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], [11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0]

Current input vector: [2.50, 1.00, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60], [1.70, 1.80, 1.90, 2.00, 2.10, 2.20, 2.30, 2.40]

[DEBUG] channel 1, filter_row 1, out_row 1

[Filter column 2]

Current filter input: [24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0], [40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0]

Current input vector: [1.90, 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 1.00], [1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80]

[Filter column 1]

Current filter input: [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0], [24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0]

Current input vector: [1.80, 1.90, 2.00, 2.10, 2.20, 2.30, 2.40, 2.50], [1.00, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70]

[Filter column 0]

Current filter input: [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0], [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0]

Current input vector: [1.70, 1.80, 1.90, 2.00, 2.10, 2.20, 2.30, 2.40], [2.50, 1.00, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60]

[DEBUG] filter row 2

[DEBUG] channel 0, filter_row 2, out_row 1

[Filter column 2]

Current filter input: [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Current input vector: [2.10, 2.20, 2.30, 2.40, 2.50, 2.60, 2.70, 2.80], [2.90, 3.00, 3.10, 3.20, 3.30, 3.40, 3.50, 2.00]

[Filter column 1]

Current filter input: [21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0], [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0]

Current input vector: [2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.60, 2.70], [2.80, 2.90, 3.00, 3.10, 3.20, 3.30, 3.40, 3.50]

[Filter column 0]

Current filter input: [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0], [21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0]

Current input vector: [3.50, 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.60], [2.70, 2.80, 2.90, 3.00, 3.10, 3.20, 3.30, 3.40]

[DEBUG] channel 1, filter_row 2, out_row 1

[Filter column 2]

Current filter input: [44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Current input vector: [2.90, 3.00, 3.10, 3.20, 3.30, 3.40, 3.50, 2.00], [2.10, 2.20, 2.30, 2.40, 2.50, 2.60, 2.70, 2.80]

[Filter column 1]
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Current filter input: [42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0], [44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0]

Current input vector: [2.80, 2.90, 3.00, 3.10, 3.20, 3.30, 3.40, 3.50], [2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.60, 2.70]

[Filter column 0]

Current filter input: [40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0], [42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0]

Current input vector: [2.70, 2.80, 2.90, 3.00, 3.10, 3.20, 3.30, 3.40], [3.50, 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.60]

completed output row 1, first element stored: 448.200012

[DEBUG] output row 2

[DEBUG] filter row 0

[DEBUG] channel 0, filter_row 0, out_row 2

[Filter column 2]

Current filter input: [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0], [10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]

Current input vector: [1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80], [1.90, 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 1.00]

[Filter column 1]

Current filter input: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]

Current input vector: [1.00, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70], [1.80, 1.90, 2.00, 2.10, 2.20, 2.30, 2.40, 2.50]

[Filter column 0]

Current filter input: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

Current input vector: [2.50, 1.00, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60], [1.70, 1.80, 1.90, 2.00, 2.10, 2.20, 2.30, 2.40]

[DEBUG] channel 1, filter_row 0, out_row 2

[Filter column 2]

Current filter input: [4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0], [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0]

Current input vector: [1.90, 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 1.00], [1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80]

[Filter column 1]

Current filter input: [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0], [4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0]

Current input vector: [1.80, 1.90, 2.00, 2.10, 2.20, 2.30, 2.40, 2.50], [1.00, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70]

[Filter column 0]

Current filter input: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]

Current input vector: [1.70, 1.80, 1.90, 2.00, 2.10, 2.20, 2.30, 2.40], [2.50, 1.00, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60]

[DEBUG] filter row 1

[DEBUG] channel 0, filter_row 1, out_row 2

[Filter column 2]

Current filter input: [12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0], [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0]

Current input vector: [2.10, 2.20, 2.30, 2.40, 2.50, 2.60, 2.70, 2.80], [2.90, 3.00, 3.10, 3.20, 3.30, 3.40, 3.50, 2.00]
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[Filter column 1]

Current filter input: [11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0], [12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0]

Current input vector: [2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.60, 2.70], [2.80, 2.90, 3.00, 3.10, 3.20, 3.30, 3.40, 3.50]

[Filter column 0]

Current filter input: [10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], [11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0]

Current input vector: [3.50, 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.60], [2.70, 2.80, 2.90, 3.00, 3.10, 3.20, 3.30, 3.40]

[DEBUG] channel 1, filter_row 1, out_row 2

[Filter column 2]

Current filter input: [24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0], [40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0]

Current input vector: [2.90, 3.00, 3.10, 3.20, 3.30, 3.40, 3.50, 2.00], [2.10, 2.20, 2.30, 2.40, 2.50, 2.60, 2.70, 2.80]

[Filter column 1]

Current filter input: [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0], [24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0]

Current input vector: [2.80, 2.90, 3.00, 3.10, 3.20, 3.30, 3.40, 3.50], [2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.60, 2.70]

[Filter column 0]

Current filter input: [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0], [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0]

Current input vector: [2.70, 2.80, 2.90, 3.00, 3.10, 3.20, 3.30, 3.40], [3.50, 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.60]

[DEBUG] filter row 2

[DEBUG] channel 0, filter_row 2, out_row 2

[Filter column 2]

Current filter input: [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Current input vector: [3.10, 3.20, 3.30, 3.40, 3.50, 3.60, 3.70, 3.80], [3.90, 4.00, 4.10, 4.20, 4.30, 4.40, 4.50, 3.00]

[Filter column 1]

Current filter input: [21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0], [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0]

Current input vector: [3.00, 3.10, 3.20, 3.30, 3.40, 3.50, 3.60, 3.70], [3.80, 3.90, 4.00, 4.10, 4.20, 4.30, 4.40, 4.50]

[Filter column 0]

Current filter input: [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0], [21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0]

Current input vector: [4.50, 3.00, 3.10, 3.20, 3.30, 3.40, 3.50, 3.60], [3.70, 3.80, 3.90, 4.00, 4.10, 4.20, 4.30, 4.40]

[DEBUG] channel 1, filter_row 2, out_row 2

[Filter column 2]

Current filter input: [44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Current input vector: [3.90, 4.00, 4.10, 4.20, 4.30, 4.40, 4.50, 3.00], [3.10, 3.20, 3.30, 3.40, 3.50, 3.60, 3.70, 3.80]

[Filter column 1]

Current filter input: [42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0], [44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0]
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Current input vector: [3.80, 3.90, 4.00, 4.10, 4.20, 4.30, 4.40, 4.50], [3.00, 3.10, 3.20, 3.30, 3.40, 3.50, 3.60, 3.70]

[Filter column 0]

Current filter input: [40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0], [42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0]

Current input vector: [3.70, 3.80, 3.90, 4.00, 4.10, 4.20, 4.30, 4.40], [4.50, 3.00, 3.10, 3.20, 3.30, 3.40, 3.50, 3.60]

completed output row 2, first element stored: 655.200012

[DEBUG] output row 3

[DEBUG] filter row 0

[DEBUG] channel 0, filter_row 0, out_row 3

[Filter column 2]

Current filter input: [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0], [10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]

Current input vector: [2.10, 2.20, 2.30, 2.40, 2.50, 2.60, 2.70, 2.80], [2.90, 3.00, 3.10, 3.20, 3.30, 3.40, 3.50, 2.00]

[Filter column 1]

Current filter input: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]

Current input vector: [2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.60, 2.70], [2.80, 2.90, 3.00, 3.10, 3.20, 3.30, 3.40, 3.50]

[Filter column 0]

Current filter input: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

Current input vector: [3.50, 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.60], [2.70, 2.80, 2.90, 3.00, 3.10, 3.20, 3.30, 3.40]

[DEBUG] channel 1, filter_row 0, out_row 3

[Filter column 2]

Current filter input: [4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0], [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0]

Current input vector: [2.90, 3.00, 3.10, 3.20, 3.30, 3.40, 3.50, 2.00], [2.10, 2.20, 2.30, 2.40, 2.50, 2.60, 2.70, 2.80]

[Filter column 1]

Current filter input: [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0], [4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0]

Current input vector: [2.80, 2.90, 3.00, 3.10, 3.20, 3.30, 3.40, 3.50], [2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.60, 2.70]

[Filter column 0]

Current filter input: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]

Current input vector: [2.70, 2.80, 2.90, 3.00, 3.10, 3.20, 3.30, 3.40], [3.50, 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.60]

[DEBUG] filter row 1

[DEBUG] channel 0, filter_row 1, out_row 3

[Filter column 2]

Current filter input: [12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0], [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0]

Current input vector: [3.10, 3.20, 3.30, 3.40, 3.50, 3.60, 3.70, 3.80], [3.90, 4.00, 4.10, 4.20, 4.30, 4.40, 4.50, 3.00]

[Filter column 1]
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Current filter input: [11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0], [12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0]

Current input vector: [3.00, 3.10, 3.20, 3.30, 3.40, 3.50, 3.60, 3.70], [3.80, 3.90, 4.00, 4.10, 4.20, 4.30, 4.40, 4.50]

[Filter column 0]

Current filter input: [10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], [11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0]

Current input vector: [4.50, 3.00, 3.10, 3.20, 3.30, 3.40, 3.50, 3.60], [3.70, 3.80, 3.90, 4.00, 4.10, 4.20, 4.30, 4.40]

[DEBUG] channel 1, filter_row 1, out_row 3

[Filter column 2]

Current filter input: [24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0], [40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0]

Current input vector: [3.90, 4.00, 4.10, 4.20, 4.30, 4.40, 4.50, 3.00], [3.10, 3.20, 3.30, 3.40, 3.50, 3.60, 3.70, 3.80]

[Filter column 1]

Current filter input: [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0], [24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0]

Current input vector: [3.80, 3.90, 4.00, 4.10, 4.20, 4.30, 4.40, 4.50], [3.00, 3.10, 3.20, 3.30, 3.40, 3.50, 3.60, 3.70]

[Filter column 0]

Current filter input: [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0], [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0]

Current input vector: [3.70, 3.80, 3.90, 4.00, 4.10, 4.20, 4.30, 4.40], [4.50, 3.00, 3.10, 3.20, 3.30, 3.40, 3.50, 3.60]

[DEBUG] filter row 2

[DEBUG] channel 0, filter_row 2, out_row 3

[Filter column 2]

Current filter input: [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Current input vector: [4.10, 4.20, 4.30, 4.40, 4.50, 4.60, 4.70, 4.80], [4.90, 5.00, 5.10, 5.20, 5.30, 5.40, 5.50, 4.00]

[Filter column 1]

Current filter input: [21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0], [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0]

Current input vector: [4.00, 4.10, 4.20, 4.30, 4.40, 4.50, 4.60, 4.70], [4.80, 4.90, 5.00, 5.10, 5.20, 5.30, 5.40, 5.50]

[Filter column 0]

Current filter input: [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0], [21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0]

Current input vector: [5.50, 4.00, 4.10, 4.20, 4.30, 4.40, 4.50, 4.60], [4.70, 4.80, 4.90, 5.00, 5.10, 5.20, 5.30, 5.40]

[DEBUG] channel 1, filter_row 2, out_row 3

[Filter column 2]

Current filter input: [44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Current input vector: [4.90, 5.00, 5.10, 5.20, 5.30, 5.40, 5.50, 4.00], [4.10, 4.20, 4.30, 4.40, 4.50, 4.60, 4.70, 4.80]

[Filter column 1]

Current filter input: [42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0], [44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0]

Current input vector: [4.80, 4.90, 5.00, 5.10, 5.20, 5.30, 5.40, 5.50], [4.00, 4.10, 4.20, 4.30, 4.40, 4.50, 4.60, 4.70]
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[Filter column 0]

Current filter input: [40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0], [42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0]

Current input vector: [4.70, 4.80, 4.90, 5.00, 5.10, 5.20, 5.30, 5.40], [5.50, 4.00, 4.10, 4.20, 4.30, 4.40, 4.50, 4.60]

completed output row 3, first element stored: 862.200012

[DEBUG] output row 4

[DEBUG] filter row 0

[DEBUG] channel 0, filter_row 0, out_row 4

[Filter column 2]

Current filter input: [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0], [10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]

Current input vector: [3.10, 3.20, 3.30, 3.40, 3.50, 3.60, 3.70, 3.80], [3.90, 4.00, 4.10, 4.20, 4.30, 4.40, 4.50, 3.00]

[Filter column 1]

Current filter input: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]

Current input vector: [3.00, 3.10, 3.20, 3.30, 3.40, 3.50, 3.60, 3.70], [3.80, 3.90, 4.00, 4.10, 4.20, 4.30, 4.40, 4.50]

[Filter column 0]

Current filter input: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

Current input vector: [4.50, 3.00, 3.10, 3.20, 3.30, 3.40, 3.50, 3.60], [3.70, 3.80, 3.90, 4.00, 4.10, 4.20, 4.30, 4.40]

[DEBUG] channel 1, filter_row 0, out_row 4

[Filter column 2]

Current filter input: [4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0], [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0]

Current input vector: [3.90, 4.00, 4.10, 4.20, 4.30, 4.40, 4.50, 3.00], [3.10, 3.20, 3.30, 3.40, 3.50, 3.60, 3.70, 3.80]

[Filter column 1]

Current filter input: [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0], [4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0]

Current input vector: [3.80, 3.90, 4.00, 4.10, 4.20, 4.30, 4.40, 4.50], [3.00, 3.10, 3.20, 3.30, 3.40, 3.50, 3.60, 3.70]

[Filter column 0]

Current filter input: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]

Current input vector: [3.70, 3.80, 3.90, 4.00, 4.10, 4.20, 4.30, 4.40], [4.50, 3.00, 3.10, 3.20, 3.30, 3.40, 3.50, 3.60]

[DEBUG] filter row 1

[DEBUG] channel 0, filter_row 1, out_row 4

[Filter column 2]

Current filter input: [12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0], [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0]

Current input vector: [4.10, 4.20, 4.30, 4.40, 4.50, 4.60, 4.70, 4.80], [4.90, 5.00, 5.10, 5.20, 5.30, 5.40, 5.50, 4.00]

[Filter column 1]

Current filter input: [11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0], [12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0]
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Current input vector: [4.00, 4.10, 4.20, 4.30, 4.40, 4.50, 4.60, 4.70], [4.80, 4.90, 5.00, 5.10, 5.20, 5.30, 5.40, 5.50]

[Filter column 0]

Current filter input: [10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], [11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0]

Current input vector: [5.50, 4.00, 4.10, 4.20, 4.30, 4.40, 4.50, 4.60], [4.70, 4.80, 4.90, 5.00, 5.10, 5.20, 5.30, 5.40]

[DEBUG] channel 1, filter_row 1, out_row 4

[Filter column 2]

Current filter input: [24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0], [40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0]

Current input vector: [4.90, 5.00, 5.10, 5.20, 5.30, 5.40, 5.50, 4.00], [4.10, 4.20, 4.30, 4.40, 4.50, 4.60, 4.70, 4.80]

[Filter column 1]

Current filter input: [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0], [24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0]

Current input vector: [4.80, 4.90, 5.00, 5.10, 5.20, 5.30, 5.40, 5.50], [4.00, 4.10, 4.20, 4.30, 4.40, 4.50, 4.60, 4.70]

[Filter column 0]

Current filter input: [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0], [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0]

Current input vector: [4.70, 4.80, 4.90, 5.00, 5.10, 5.20, 5.30, 5.40], [5.50, 4.00, 4.10, 4.20, 4.30, 4.40, 4.50, 4.60]

[DEBUG] filter row 2

[DEBUG] channel 0, filter_row 2, out_row 4

[Filter column 2]

Current filter input: [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Current input vector: [5.10, 5.20, 5.30, 5.40, 5.50, 5.60, 5.70, 5.80], [5.90, 6.00, 6.10, 6.20, 6.30, 6.40, 6.50, 5.00]

[Filter column 1]

Current filter input: [21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0], [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0]

Current input vector: [5.00, 5.10, 5.20, 5.30, 5.40, 5.50, 5.60, 5.70], [5.80, 5.90, 6.00, 6.10, 6.20, 6.30, 6.40, 6.50]

[Filter column 0]

Current filter input: [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0], [21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0]

Current input vector: [6.50, 5.00, 5.10, 5.20, 5.30, 5.40, 5.50, 5.60], [5.70, 5.80, 5.90, 6.00, 6.10, 6.20, 6.30, 6.40]

[DEBUG] channel 1, filter_row 2, out_row 4

[Filter column 2]

Current filter input: [44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Current input vector: [5.90, 6.00, 6.10, 6.20, 6.30, 6.40, 6.50, 5.00], [5.10, 5.20, 5.30, 5.40, 5.50, 5.60, 5.70, 5.80]

[Filter column 1]

Current filter input: [42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0], [44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0]

Current input vector: [5.80, 5.90, 6.00, 6.10, 6.20, 6.30, 6.40, 6.50], [5.00, 5.10, 5.20, 5.30, 5.40, 5.50, 5.60, 5.70]

[Filter column 0]
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Current filter input: [40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0], [42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0]

Current input vector: [5.70, 5.80, 5.90, 6.00, 6.10, 6.20, 6.30, 6.40], [6.50, 5.00, 5.10, 5.20, 5.30, 5.40, 5.50, 5.60]

completed output row 4, first element stored: 1069.199951

[DEBUG] output row 5

[DEBUG] filter row 0

[DEBUG] channel 0, filter_row 0, out_row 5

[Filter column 2]

Current filter input: [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0], [10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]

Current input vector: [4.10, 4.20, 4.30, 4.40, 4.50, 4.60, 4.70, 4.80], [4.90, 5.00, 5.10, 5.20, 5.30, 5.40, 5.50, 4.00]

[Filter column 1]

Current filter input: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]

Current input vector: [4.00, 4.10, 4.20, 4.30, 4.40, 4.50, 4.60, 4.70], [4.80, 4.90, 5.00, 5.10, 5.20, 5.30, 5.40, 5.50]

[Filter column 0]

Current filter input: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

Current input vector: [5.50, 4.00, 4.10, 4.20, 4.30, 4.40, 4.50, 4.60], [4.70, 4.80, 4.90, 5.00, 5.10, 5.20, 5.30, 5.40]

[DEBUG] channel 1, filter_row 0, out_row 5

[Filter column 2]

Current filter input: [4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0], [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0]

Current input vector: [4.90, 5.00, 5.10, 5.20, 5.30, 5.40, 5.50, 4.00], [4.10, 4.20, 4.30, 4.40, 4.50, 4.60, 4.70, 4.80]

[Filter column 1]

Current filter input: [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0], [4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0]

Current input vector: [4.80, 4.90, 5.00, 5.10, 5.20, 5.30, 5.40, 5.50], [4.00, 4.10, 4.20, 4.30, 4.40, 4.50, 4.60, 4.70]

[Filter column 0]

Current filter input: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]

Current input vector: [4.70, 4.80, 4.90, 5.00, 5.10, 5.20, 5.30, 5.40], [5.50, 4.00, 4.10, 4.20, 4.30, 4.40, 4.50, 4.60]

[DEBUG] filter row 1

[DEBUG] channel 0, filter_row 1, out_row 5

[Filter column 2]

Current filter input: [12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0], [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0]

Current input vector: [5.10, 5.20, 5.30, 5.40, 5.50, 5.60, 5.70, 5.80], [5.90, 6.00, 6.10, 6.20, 6.30, 6.40, 6.50, 5.00]

[Filter column 1]

Current filter input: [11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0], [12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0]

Current input vector: [5.00, 5.10, 5.20, 5.30, 5.40, 5.50, 5.60, 5.70], [5.80, 5.90, 6.00, 6.10, 6.20, 6.30, 6.40, 6.50]
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[Filter column 0]

Current filter input: [10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], [11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0]

Current input vector: [6.50, 5.00, 5.10, 5.20, 5.30, 5.40, 5.50, 5.60], [5.70, 5.80, 5.90, 6.00, 6.10, 6.20, 6.30, 6.40]

[DEBUG] channel 1, filter_row 1, out_row 5

[Filter column 2]

Current filter input: [24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0], [40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0]

Current input vector: [5.90, 6.00, 6.10, 6.20, 6.30, 6.40, 6.50, 5.00], [5.10, 5.20, 5.30, 5.40, 5.50, 5.60, 5.70, 5.80]

[Filter column 1]

Current filter input: [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0], [24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0]

Current input vector: [5.80, 5.90, 6.00, 6.10, 6.20, 6.30, 6.40, 6.50], [5.00, 5.10, 5.20, 5.30, 5.40, 5.50, 5.60, 5.70]

[Filter column 0]

Current filter input: [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0], [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0]

Current input vector: [5.70, 5.80, 5.90, 6.00, 6.10, 6.20, 6.30, 6.40], [6.50, 5.00, 5.10, 5.20, 5.30, 5.40, 5.50, 5.60]

[DEBUG] filter row 2

[DEBUG] channel 0, filter_row 2, out_row 5

[Filter column 2]

Current filter input: [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Current input vector: [6.10, 6.20, 6.30, 6.40, 6.50, 6.60, 6.70, 6.80], [6.90, 7.00, 7.10, 7.20, 7.30, 7.40, 7.50, 6.00]

[Filter column 1]

Current filter input: [21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0], [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0]

Current input vector: [6.00, 6.10, 6.20, 6.30, 6.40, 6.50, 6.60, 6.70], [6.80, 6.90, 7.00, 7.10, 7.20, 7.30, 7.40, 7.50]

[Filter column 0]

Current filter input: [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0], [21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0]

Current input vector: [7.50, 6.00, 6.10, 6.20, 6.30, 6.40, 6.50, 6.60], [6.70, 6.80, 6.90, 7.00, 7.10, 7.20, 7.30, 7.40]

[DEBUG] channel 1, filter_row 2, out_row 5

[Filter column 2]

Current filter input: [44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Current input vector: [6.90, 7.00, 7.10, 7.20, 7.30, 7.40, 7.50, 6.00], [6.10, 6.20, 6.30, 6.40, 6.50, 6.60, 6.70, 6.80]

[Filter column 1]

Current filter input: [42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0], [44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0]

Current input vector: [6.80, 6.90, 7.00, 7.10, 7.20, 7.30, 7.40, 7.50], [6.00, 6.10, 6.20, 6.30, 6.40, 6.50, 6.60, 6.70]

[Filter column 0]

Current filter input: [40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0], [42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0]
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Current input vector: [6.70, 6.80, 6.90, 7.00, 7.10, 7.20, 7.30, 7.40], [7.50, 6.00, 6.10, 6.20, 6.30, 6.40, 6.50, 6.60]

completed output row 5, first element stored: 1276.199951

[DEBUG] output row 6

[DEBUG] filter row 0

[DEBUG] channel 0, filter_row 0, out_row 6

[Filter column 2]

Current filter input: [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0], [10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]

Current input vector: [5.10, 5.20, 5.30, 5.40, 5.50, 5.60, 5.70, 5.80], [5.90, 6.00, 6.10, 6.20, 6.30, 6.40, 6.50, 5.00]

[Filter column 1]

Current filter input: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]

Current input vector: [5.00, 5.10, 5.20, 5.30, 5.40, 5.50, 5.60, 5.70], [5.80, 5.90, 6.00, 6.10, 6.20, 6.30, 6.40, 6.50]

[Filter column 0]

Current filter input: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

Current input vector: [6.50, 5.00, 5.10, 5.20, 5.30, 5.40, 5.50, 5.60], [5.70, 5.80, 5.90, 6.00, 6.10, 6.20, 6.30, 6.40]

[DEBUG] channel 1, filter_row 0, out_row 6

[Filter column 2]

Current filter input: [4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0], [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0]

Current input vector: [5.90, 6.00, 6.10, 6.20, 6.30, 6.40, 6.50, 5.00], [5.10, 5.20, 5.30, 5.40, 5.50, 5.60, 5.70, 5.80]

[Filter column 1]

Current filter input: [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0], [4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0]

Current input vector: [5.80, 5.90, 6.00, 6.10, 6.20, 6.30, 6.40, 6.50], [5.00, 5.10, 5.20, 5.30, 5.40, 5.50, 5.60, 5.70]

[Filter column 0]

Current filter input: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]

Current input vector: [5.70, 5.80, 5.90, 6.00, 6.10, 6.20, 6.30, 6.40], [6.50, 5.00, 5.10, 5.20, 5.30, 5.40, 5.50, 5.60]

[DEBUG] filter row 1

[DEBUG] channel 0, filter_row 1, out_row 6

[Filter column 2]

Current filter input: [12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0], [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0]

Current input vector: [6.10, 6.20, 6.30, 6.40, 6.50, 6.60, 6.70, 6.80], [6.90, 7.00, 7.10, 7.20, 7.30, 7.40, 7.50, 6.00]

[Filter column 1]

Current filter input: [11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0], [12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0]

Current input vector: [6.00, 6.10, 6.20, 6.30, 6.40, 6.50, 6.60, 6.70], [6.80, 6.90, 7.00, 7.10, 7.20, 7.30, 7.40, 7.50]

[Filter column 0]
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Current filter input: [10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], [11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0]

Current input vector: [7.50, 6.00, 6.10, 6.20, 6.30, 6.40, 6.50, 6.60], [6.70, 6.80, 6.90, 7.00, 7.10, 7.20, 7.30, 7.40]

[DEBUG] channel 1, filter_row 1, out_row 6

[Filter column 2]

Current filter input: [24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0], [40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0]

Current input vector: [6.90, 7.00, 7.10, 7.20, 7.30, 7.40, 7.50, 6.00], [6.10, 6.20, 6.30, 6.40, 6.50, 6.60, 6.70, 6.80]

[Filter column 1]

Current filter input: [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0], [24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0]

Current input vector: [6.80, 6.90, 7.00, 7.10, 7.20, 7.30, 7.40, 7.50], [6.00, 6.10, 6.20, 6.30, 6.40, 6.50, 6.60, 6.70]

[Filter column 0]

Current filter input: [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0], [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0]

Current input vector: [6.70, 6.80, 6.90, 7.00, 7.10, 7.20, 7.30, 7.40], [7.50, 6.00, 6.10, 6.20, 6.30, 6.40, 6.50, 6.60]

[DEBUG] filter row 2

[DEBUG] channel 0, filter_row 2, out_row 6

[Filter column 2]

Current filter input: [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Current input vector: [7.10, 7.20, 7.30, 7.40, 7.50, 7.60, 7.70, 7.80], [7.90, 8.00, 8.10, 8.20, 8.30, 8.40, 8.50, 7.00]

[Filter column 1]

Current filter input: [21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0], [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0]

Current input vector: [7.00, 7.10, 7.20, 7.30, 7.40, 7.50, 7.60, 7.70], [7.80, 7.90, 8.00, 8.10, 8.20, 8.30, 8.40, 8.50]

[Filter column 0]

Current filter input: [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0], [21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0, 21.0]

Current input vector: [8.50, 7.00, 7.10, 7.20, 7.30, 7.40, 7.50, 7.60], [7.70, 7.80, 7.90, 8.00, 8.10, 8.20, 8.30, 8.40]

[DEBUG] channel 1, filter_row 2, out_row 6

[Filter column 2]

Current filter input: [44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Current input vector: [7.90, 8.00, 8.10, 8.20, 8.30, 8.40, 8.50, 7.00], [7.10, 7.20, 7.30, 7.40, 7.50, 7.60, 7.70, 7.80]

[Filter column 1]

Current filter input: [42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0], [44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0, 44.0]

Current input vector: [7.80, 7.90, 8.00, 8.10, 8.20, 8.30, 8.40, 8.50], [7.00, 7.10, 7.20, 7.30, 7.40, 7.50, 7.60, 7.70]

[Filter column 0]

Current filter input: [40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0], [42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0, 42.0]

Current input vector: [7.70, 7.80, 7.90, 8.00, 8.10, 8.20, 8.30, 8.40], [8.50, 7.00, 7.10, 7.20, 7.30, 7.40, 7.50, 7.60]
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completed output row 6, first element stored: 1483.199951

[DEBUG] output row 7

[DEBUG] filter row 0

[DEBUG] channel 0, filter_row 0, out_row 7

[Filter column 2]

Current filter input: [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0], [10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]

Current input vector: [6.10, 6.20, 6.30, 6.40, 6.50, 6.60, 6.70, 6.80], [6.90, 7.00, 7.10, 7.20, 7.30, 7.40, 7.50, 6.00]

[Filter column 1]

Current filter input: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]

Current input vector: [6.00, 6.10, 6.20, 6.30, 6.40, 6.50, 6.60, 6.70], [6.80, 6.90, 7.00, 7.10, 7.20, 7.30, 7.40, 7.50]

[Filter column 0]

Current filter input: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

Current input vector: [7.50, 6.00, 6.10, 6.20, 6.30, 6.40, 6.50, 6.60], [6.70, 6.80, 6.90, 7.00, 7.10, 7.20, 7.30, 7.40]

[DEBUG] channel 1, filter_row 0, out_row 7

[Filter column 2]

Current filter input: [4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0], [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0]

Current input vector: [6.90, 7.00, 7.10, 7.20, 7.30, 7.40, 7.50, 6.00], [6.10, 6.20, 6.30, 6.40, 6.50, 6.60, 6.70, 6.80]

[Filter column 1]

Current filter input: [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0], [4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0]

Current input vector: [6.80, 6.90, 7.00, 7.10, 7.20, 7.30, 7.40, 7.50], [6.00, 6.10, 6.20, 6.30, 6.40, 6.50, 6.60, 6.70]

[Filter column 0]

Current filter input: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]

Current input vector: [6.70, 6.80, 6.90, 7.00, 7.10, 7.20, 7.30, 7.40], [7.50, 6.00, 6.10, 6.20, 6.30, 6.40, 6.50, 6.60]

[DEBUG] filter row 1

[DEBUG] channel 0, filter_row 1, out_row 7

[Filter column 2]

Current filter input: [12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0], [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0]

Current input vector: [7.10, 7.20, 7.30, 7.40, 7.50, 7.60, 7.70, 7.80], [7.90, 8.00, 8.10, 8.20, 8.30, 8.40, 8.50, 7.00]

[Filter column 1]

Current filter input: [11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0], [12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0]

Current input vector: [7.00, 7.10, 7.20, 7.30, 7.40, 7.50, 7.60, 7.70], [7.80, 7.90, 8.00, 8.10, 8.20, 8.30, 8.40, 8.50]

[Filter column 0]

Current filter input: [10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], [11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0, 11.0]
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Current input vector: [8.50, 7.00, 7.10, 7.20, 7.30, 7.40, 7.50, 7.60], [7.70, 7.80, 7.90, 8.00, 8.10, 8.20, 8.30, 8.40]

[DEBUG] channel 1, filter_row 1, out_row 7

[Filter column 2]

Current filter input: [24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0], [40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0]

Current input vector: [7.90, 8.00, 8.10, 8.20, 8.30, 8.40, 8.50, 7.00], [7.10, 7.20, 7.30, 7.40, 7.50, 7.60, 7.70, 7.80]

[Filter column 1]

Current filter input: [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0], [24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0]

Current input vector: [7.80, 7.90, 8.00, 8.10, 8.20, 8.30, 8.40, 8.50], [7.00, 7.10, 7.20, 7.30, 7.40, 7.50, 7.60, 7.70]

[Filter column 0]

Current filter input: [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0], [22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0, 22.0]

Current input vector: [7.70, 7.80, 7.90, 8.00, 8.10, 8.20, 8.30, 8.40], [8.50, 7.00, 7.10, 7.20, 7.30, 7.40, 7.50, 7.60]

completed output row 7, first element stored: 582.799988

Checking the results...

output[0] = 244.8000 ~= 244.8000 (Correct) (Output channel 0, row 0)

output[1] = 372.6000 ~= 372.6000 (Correct) (Output channel 0, row 0)

output[2] = 401.4000 ~= 401.4000 (Correct) (Output channel 0, row 0)

output[3] = 430.2000 ~= 430.2000 (Correct) (Output channel 0, row 0)

output[4] = 459.0000 ~= 459.0000 (Correct) (Output channel 0, row 0)

output[5] = 487.8000 ~= 487.8000 (Correct) (Output channel 0, row 0)

output[6] = 516.6000 ~= 516.6000 (Correct) (Output channel 0, row 0)

output[7] = 343.4000 ~= 343.4000 (Correct) (Output channel 0, row 0)

output[8] = 115.2000 ~= 115.2000 (Correct) (Output channel 1, row 0)

output[9] = 220.0000 ~= 220.0000 (Correct) (Output channel 1, row 0)

output[10] = 245.8000 ~= 245.8000 (Correct) (Output channel 1, row 0)

output[11] = 271.6000 ~= 271.6000 (Correct) (Output channel 1, row 0)

output[12] = 297.4000 ~= 297.4000 (Correct) (Output channel 1, row 0)

output[13] = 323.2000 ~= 323.2000 (Correct) (Output channel 1, row 0)

output[14] = 349.0000 ~= 349.0000 (Correct) (Output channel 1, row 0)

output[15] = 310.8000 ~= 310.8000 (Correct) (Output channel 1, row 0)

output[16] = 448.2000 ~= 448.2000 (Correct) (Output channel 0, row 1)

output[17] = 666.9000 ~= 666.9000 (Correct) (Output channel 0, row 1)

output[18] = 696.6000 ~= 696.6000 (Correct) (Output channel 0, row 1)

output[19] = 726.3000 ~= 726.3000 (Correct) (Output channel 0, row 1)
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output[20] = 756.0000 ~= 756.0001 (Correct) (Output channel 0, row 1)

output[21] = 785.7000 ~= 785.7000 (Correct) (Output channel 0, row 1)

output[22] = 815.4000 ~= 815.4000 (Correct) (Output channel 0, row 1)

output[23] = 533.1000 ~= 533.1000 (Correct) (Output channel 0, row 1)

output[24] = 289.8000 ~= 289.8000 (Correct) (Output channel 1, row 1)

output[25] = 495.0000 ~= 495.0000 (Correct) (Output channel 1, row 1)

output[26] = 524.7000 ~= 524.7000 (Correct) (Output channel 1, row 1)

output[27] = 554.4000 ~= 554.4000 (Correct) (Output channel 1, row 1)

output[28] = 584.1000 ~= 584.1000 (Correct) (Output channel 1, row 1)

output[29] = 613.8000 ~= 613.8000 (Correct) (Output channel 1, row 1)

output[30] = 643.5000 ~= 643.5000 (Correct) (Output channel 1, row 1)

output[31] = 517.2000 ~= 517.2000 (Correct) (Output channel 1, row 1)

output[32] = 655.2000 ~= 655.2000 (Correct) (Output channel 0, row 2)

output[33] = 963.9000 ~= 963.9000 (Correct) (Output channel 0, row 2)

output[34] = 993.6000 ~= 993.6000 (Correct) (Output channel 0, row 2)

output[35] = 1023.3000 ~= 1023.3000 (Correct) (Output channel 0, row 2)

output[36] = 1052.9999 ~= 1053.0000 (Correct) (Output channel 0, row 2)

output[37] = 1082.7001 ~= 1082.7000 (Correct) (Output channel 0, row 2)

output[38] = 1112.4000 ~= 1112.4000 (Correct) (Output channel 0, row 2)

output[39] = 722.1000 ~= 722.1000 (Correct) (Output channel 0, row 2)

output[40] = 487.8000 ~= 487.8000 (Correct) (Output channel 1, row 2)

output[41] = 792.0000 ~= 792.0000 (Correct) (Output channel 1, row 2)

output[42] = 821.7000 ~= 821.7000 (Correct) (Output channel 1, row 2)

output[43] = 851.4001 ~= 851.4000 (Correct) (Output channel 1, row 2)

output[44] = 881.1000 ~= 881.1000 (Correct) (Output channel 1, row 2)

output[45] = 910.8000 ~= 910.8000 (Correct) (Output channel 1, row 2)

output[46] = 940.5000 ~= 940.5000 (Correct) (Output channel 1, row 2)

output[47] = 724.2000 ~= 724.2000 (Correct) (Output channel 1, row 2)

output[48] = 862.2000 ~= 862.2000 (Correct) (Output channel 0, row 3)

output[49] = 1260.9000 ~= 1260.9000 (Correct) (Output channel 0, row 3)

output[50] = 1290.6001 ~= 1290.6001 (Correct) (Output channel 0, row 3)

output[51] = 1320.2999 ~= 1320.3000 (Correct) (Output channel 0, row 3)

output[52] = 1350.0000 ~= 1350.0000 (Correct) (Output channel 0, row 3)
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output[53] = 1379.7000 ~= 1379.7000 (Correct) (Output channel 0, row 3)

output[54] = 1409.4000 ~= 1409.4000 (Correct) (Output channel 0, row 3)

output[55] = 911.1000 ~= 911.1000 (Correct) (Output channel 0, row 3)

output[56] = 685.8000 ~= 685.8000 (Correct) (Output channel 1, row 3)

output[57] = 1089.0000 ~= 1089.0000 (Correct) (Output channel 1, row 3)

output[58] = 1118.7000 ~= 1118.7000 (Correct) (Output channel 1, row 3)

output[59] = 1148.4000 ~= 1148.4000 (Correct) (Output channel 1, row 3)

output[60] = 1178.1000 ~= 1178.1001 (Correct) (Output channel 1, row 3)

output[61] = 1207.8000 ~= 1207.8000 (Correct) (Output channel 1, row 3)

output[62] = 1237.5000 ~= 1237.5000 (Correct) (Output channel 1, row 3)

output[63] = 931.2000 ~= 931.2000 (Correct) (Output channel 1, row 3)

output[64] = 1069.2000 ~= 1069.2000 (Correct) (Output channel 0, row 4)

output[65] = 1557.9000 ~= 1557.9000 (Correct) (Output channel 0, row 4)

output[66] = 1587.6000 ~= 1587.6001 (Correct) (Output channel 0, row 4)

output[67] = 1617.2999 ~= 1617.2999 (Correct) (Output channel 0, row 4)

output[68] = 1647.0000 ~= 1647.0000 (Correct) (Output channel 0, row 4)

output[69] = 1676.7000 ~= 1676.7000 (Correct) (Output channel 0, row 4)

output[70] = 1706.4000 ~= 1706.4000 (Correct) (Output channel 0, row 4)

output[71] = 1100.1000 ~= 1100.1001 (Correct) (Output channel 0, row 4)

output[72] = 883.8000 ~= 883.8000 (Correct) (Output channel 1, row 4)

output[73] = 1386.0000 ~= 1386.0000 (Correct) (Output channel 1, row 4)

output[74] = 1415.7000 ~= 1415.7000 (Correct) (Output channel 1, row 4)

output[75] = 1445.4000 ~= 1445.4000 (Correct) (Output channel 1, row 4)

output[76] = 1475.1000 ~= 1475.1001 (Correct) (Output channel 1, row 4)

output[77] = 1504.8000 ~= 1504.7999 (Correct) (Output channel 1, row 4)

output[78] = 1534.5000 ~= 1534.5000 (Correct) (Output channel 1, row 4)

output[79] = 1138.2001 ~= 1138.2000 (Correct) (Output channel 1, row 4)

output[80] = 1276.2000 ~= 1276.2000 (Correct) (Output channel 0, row 5)

output[81] = 1854.9000 ~= 1854.9000 (Correct) (Output channel 0, row 5)

output[82] = 1884.6000 ~= 1884.6001 (Correct) (Output channel 0, row 5)

output[83] = 1914.2999 ~= 1914.2999 (Correct) (Output channel 0, row 5)

output[84] = 1944.0000 ~= 1944.0000 (Correct) (Output channel 0, row 5)

output[85] = 1973.7000 ~= 1973.7000 (Correct) (Output channel 0, row 5)
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output[86] = 2003.4000 ~= 2003.4000 (Correct) (Output channel 0, row 5)

output[87] = 1289.1000 ~= 1289.1001 (Correct) (Output channel 0, row 5)

output[88] = 1081.8000 ~= 1081.8000 (Correct) (Output channel 1, row 5)

output[89] = 1683.0000 ~= 1683.0000 (Correct) (Output channel 1, row 5)

output[90] = 1712.7001 ~= 1712.7000 (Correct) (Output channel 1, row 5)

output[91] = 1742.4000 ~= 1742.4000 (Correct) (Output channel 1, row 5)

output[92] = 1772.0999 ~= 1772.1001 (Correct) (Output channel 1, row 5)

output[93] = 1801.8000 ~= 1801.7999 (Correct) (Output channel 1, row 5)

output[94] = 1831.5001 ~= 1831.5000 (Correct) (Output channel 1, row 5)

output[95] = 1345.2000 ~= 1345.2000 (Correct) (Output channel 1, row 5)

output[96] = 1483.2000 ~= 1483.2000 (Correct) (Output channel 0, row 6)

output[97] = 2151.9001 ~= 2151.8999 (Correct) (Output channel 0, row 6)

output[98] = 2181.6001 ~= 2181.6001 (Correct) (Output channel 0, row 6)

output[99] = 2211.3003 ~= 2211.2998 (Correct) (Output channel 0, row 6)

output[100] = 2241.0000 ~= 2241.0000 (Correct) (Output channel 0, row 6)

output[101] = 2270.7000 ~= 2270.7000 (Correct) (Output channel 0, row 6)

output[102] = 2300.3999 ~= 2300.3999 (Correct) (Output channel 0, row 6)

output[103] = 1478.1000 ~= 1478.1001 (Correct) (Output channel 0, row 6)

output[104] = 1279.8000 ~= 1279.8000 (Correct) (Output channel 1, row 6)

output[105] = 1980.0001 ~= 1980.0000 (Correct) (Output channel 1, row 6)

output[106] = 2009.7000 ~= 2009.7000 (Correct) (Output channel 1, row 6)

output[107] = 2039.3999 ~= 2039.4001 (Correct) (Output channel 1, row 6)

output[108] = 2069.1001 ~= 2069.1001 (Correct) (Output channel 1, row 6)

output[109] = 2098.8000 ~= 2098.7998 (Correct) (Output channel 1, row 6)

output[110] = 2128.5000 ~= 2128.5000 (Correct) (Output channel 1, row 6)

output[111] = 1552.2000 ~= 1552.2000 (Correct) (Output channel 1, row 6)

output[112] = 582.8000 ~= 582.8000 (Correct) (Output channel 0, row 7)

output[113] = 816.6000 ~= 816.6000 (Correct) (Output channel 0, row 7)

output[114] = 827.4000 ~= 827.4000 (Correct) (Output channel 0, row 7)

output[115] = 838.2000 ~= 838.2000 (Correct) (Output channel 0, row 7)

output[116] = 849.0000 ~= 849.0000 (Correct) (Output channel 0, row 7)

output[117] = 859.8000 ~= 859.8000 (Correct) (Output channel 0, row 7)

output[118] = 870.6000 ~= 870.6000 (Correct) (Output channel 0, row 7)
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output[119] = 537.4000 ~= 537.4000 (Correct) (Output channel 0, row 7)

output[120] = 932.2000 ~= 932.2000 (Correct) (Output channel 1, row 7)

output[121] = 1204.0000 ~= 1204.0000 (Correct) (Output channel 1, row 7)

output[122] = 1220.8000 ~= 1220.8000 (Correct) (Output channel 1, row 7)

output[123] = 1237.6000 ~= 1237.6000 (Correct) (Output channel 1, row 7)

output[124] = 1254.4000 ~= 1254.4000 (Correct) (Output channel 1, row 7)

output[125] = 1271.2000 ~= 1271.2000 (Correct) (Output channel 1, row 7)

output[126] = 1288.0000 ~= 1288.0000 (Correct) (Output channel 1, row 7)

output[127] = 608.8000 ~= 608.7999 (Correct) (Output channel 1, row 7)

128 out of 128 output element correct!
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