Using Computational Patients to Evaluate Illness Mechanisms in Schizophrenia

Ralph E. Hoffman, Uli Grasemann, Ralitza Gueorguieva, Donald Quinlan, Douglas Lane, and Risto Miikkulainen

Background: Various malfunctions involving working memory, semantics, prediction error, and dopamine neuromodulation have been hypothesized to cause disorganized speech and delusions in schizophrenia. Computational models may provide insights into why some mechanisms are unlikely, suggest alternative mechanisms, and tie together explanations of seemingly disparate symptoms and experimental findings.

Methods: Eight corresponding illness mechanisms were simulated in DISCERN, an artificial neural network model of narrative understanding and recall. For this study, DISCERN learned sets of autobiographical and impersonal crime stories with associated emotion coding. In addition, 20 healthy control subjects and 37 patients with schizophrenia or schizoaffective disorder matched for age, gender, and parental education were studied using a delayed story recall task. A goodness-of-fit analysis was performed to determine the mechanism best reproducing narrative breakdown profiles generated by healthy control subjects and patients with schizophrenia. Evidence of delusion-like narratives was sought in simulations best matching the narrative breakdown profile of patients.

Results: All mechanisms were equivalent in matching the narrative breakdown profile of healthy control subjects. However, exaggerated prediction-error signaling during consolidation of episodic memories, termed hyperlearning, was statistically superior to other mechanisms in matching the narrative breakdown profile of patients. These simulations also systematically confused autobiographical agents with impersonal crime story agents to model fixed, self-referential delusions.

Conclusions: Findings suggest that exaggerated prediction-error signaling in schizophrenia intermingles and corrupts narrative memories when incorporated into long-term storage, thereby disrupting narrative language and producing fixed delusional narratives. If further validated by clinical studies, these computational patients could provide a platform for developing and testing novel treatments.

Key Words: Artificial neural network, delusions, derailment, memory, narrative language, prediction-error, schizophrenia

Certain language behaviors are characteristic of schizophrenia. Spoken discourse often fails to express a cohesive message (1–4). Many patients express fixed delusions as spurious narrative schema repeated over time intervals ranging from weeks to years (5,6).

Mechanisms causing these behaviors remain uncertain. Language disorganization has been associated with disrupted working memory, semantic processing, attention, and linguistic context (7–21), while delusions have been associated with aberrant emotion-based reasoning and associative learning, anomalous perceptions, and jumping to conclusions (22–25). Both syndromes have been associated with disturbed executive functioning (22,26,27), theory of mind (22,28,29), and dopamine neuromodulation (30,31) and elevated hippocampal/parahippocampal activation (32–34). In this situation, connectionist models employing artificial neural networks can be used to compare the likelihood of alternative mechanisms and tie together explanations of seemingly disparate symptoms and experimental findings.

Connectionist models have been used to simulate some cognitive impairments associated with schizophrenia (35–39) but not their characteristic narrative language. Below, we describe the generation of stories by an established connectionist model called DISCERN (40–42). Its details, many of which are not essential in understanding this study, can be found in the literature and in Supplement 1. Key aspects of DISCERN, however, can be summarized as follows: 1) DISCERN learns to recognize words and the sentences and stories incorporating them using interconnected neural network modules dedicated to these different language processing levels; 2) modules learn by updating their internal connection strengths to minimize prediction errors while processing sequential language; and 3) after a group of stories is learned, DISCERN can recall any single story when prompted with an initial segment. In this study, several different illness mechanisms were simulated in DISCERN, and the resulting story-recall distortions were compared with those of healthy human subjects and patients with schizophrenia during a delayed story-recall task.

Methods and Materials

The DISCERN Model

DISCERN is organized as a chain of neural network modules (Figure 1). These modules communicate using neural activation patterns that represent words in semantic memory: similar word activation patterns reflect similar roles in sentences. To process a story input (Figure 1A, left), word representations are presented to the sentence parser one at a time as a sequence of activation patterns. The sentence parser builds a representation of each sentence by sequencing word representations corresponding to agent, predicate, indirect object, modifier, and direct object. At the end of each sentence, the sentence representation is passed on to the story parser. The story parser transforms sequences of sentence representations into script representations. Scripts are standardized, multi-sentence schemas whose “slots” are filled by different sets of words. A story is a sequence of scripts stored in the episodic...
Figure 1. A schematic representation of the architecture of DISCERN. (A) Remembering and reproducing a story in DISCERN is achieved by a chain of modules (40–42). Tan-colored modules are simple recurrent networks (43). (B) The story generator simple recurrent network module shown in more detail. Hidden layer and recurrent layer interactions constitute a working memory (WM). The modules in DISCERN communicate using distributed representations of word meanings, i.e., fixed-size patterns of neuron activations, stored in a central lexicon. These representations are learned based on how the words are used in the example stories, using a modified version of backpropagation. The memory trace for each story was a compacted representation of a sequence of scripts and their slot fillers. Alternative illness mechanisms simulated in DISCERN include: 1.1) WM network disconnection; 1.2) disconnection extended to include hidden – output layer story generator connections; 2) WM noise; 3) WM gain reduction; 4) lowered WM neural bias simulating elevated arousal; 5) semantic network distortion; 6) excessive semantic network activation; 7) heightened semantic priming; 8.1) hyperlearning simulated as exaggerated prediction-error signal during memory consolidation in the memory encoder; and 8.2) hyperlearning extended to the story generator module. Details regarding the architecture, function, and training of DISCERN are provided in Supplement 1.
memory module with coherent slot fillers. To generate an output story, the process is reversed (Figure 1A, right): the story generator module accesses the episodic memory representation and translates it into a sequence of sentences. The sentence generator then produces the word sequence for each sentence.

In this study, DISCERN learned 28 stories, half autobiographical, describing a first-person character, a doctor, his relationships with boss, girlfriend, etc., and activities such as going to a wedding and receiving a traffic ticket. The other half were impersonal crime stories describing Mafia, police characters, and their activities. The lexicon was 159 words. Each story was organized as a sequence of three to seven scripts slotted with a coherent set of words/concepts and an emotion code ranging from very positive to very negative (+/+/+/+/+/+/−−−−). Memory recall is thus biased by emotionality analogous to human memory retrieval (44). Such emotionality could heighten simulated derailments and delusional language, as it does in patients (22,45). Autobiographical and crime stories at times incorporated common scripts, thereby providing opportunities for narrative confusion. For instance, an autobiographical story incorporated the following script (underlining indicates slot fillers):

- **I** was a [doctor](#)
- **I** worked in [New-York](#)
- **I** liked my job
- **I** was [good doctor](#)

whereas a crime story expressed the same script with different slot fillers:

- **Tony** was a [gangster](#)
- **Tony** worked in [Chicago](#)
- **Tony** hated his job
- **Tony** was a [bad gangster](#)

Story learning in DISCERN is based on discrepancies between observed and predicted language. Such discrepancies, or prediction errors, are propagated back from the output to the input neuron layers within each module (Figure 1B); through the backpropagation learning algorithm, they produce gradual, highly targeted changes in network connection strengths (46). This learning process requires thousands of repetitions. Successful learning for this study required between 5,000 and 30,000 backpropagation learning cycles for each module. Starting from different initial random connection weights, 30 DISCERN exemplars were independently developed in this fashion.

Story recall by each DISCERN exemplar was prompted by the first script of each story as input. DISCERN parsed this script, retrieved a story memory, and produced a story output.

Eight candidate illness mechanisms were applied to each of the 30 DISCERN exemplars after story learning was completed (Figure 1), based on prior studies of speech disorganization, delusions, and schizophrenia:

1. Working memory (WM) disconnection was prompted by neuroimaging studies suggesting cortical disconnection, especially involving WM networks, in schizophrenia (47–50). Disconnection was simulated by pruning excitatory and inhibitory WM connections in the story generator if their absolute connection strength fell below a specified threshold (51). An extended version of disconnection also pruned connections between the hidden → output layer of the story generator.

2. Noise added to WM networks was prompted by reports indicating excessive cortical noise, reduced signal-to-noise ratio, and inefficiency in frontal WM cortical systems in persons with schizophrenia (52–54). These conditions were simulated by adding Gaussian noise to story generator WM neuron outputs.

3. Working memory network gain reductions were prompted by a connectionist model of hypodopaminergic cortical neuromodulation in patients with schizophrenia expressed as reduced neural response (36) and neuroimaging studies showing reduced activation in WM circuits during task performance in patients with disorganization symptoms (55,56). This alteration was modeled as reduced gain (i.e., slope) of the response curve of neurons in the hidden and recurrent layers of the story generator module (36).

4. Response bias shifts. Elevated arousal, which could produce overactivation at neuronal level, was simulated as lateral shifts in the response curve of WM layer story generator neurons (57). This manipulation, in theory, could also simulate a failure to deactivate the superior temporal gyrus when performing a WM task detected in early-phase patients with schizophrenia (58).

5. Semantic network distortion demonstrated by lexical categorization, priming, and fluency tasks has been statistically linked to language disorganization and schizophrenia (11–13). These abnormalities were simulated by adding noise to word representations in the semantic memory.

6. Excessive activation in semantic networks. Increased temporal and prefrontal activity during semantic associations and increased activation of the cingulate cortex during object naming has been reported in schizophrenia (14,59). These disturbances were simulated by increasing output activation of neurons in the semantic network.

7. Heightened semantic priming. Studies have suggested heightened spread of activation in semantic networks in patients with schizophrenia based on word association data, especially among patients with language disorganization (10,15–17). This disturbance was simulated by blurring semantic network outputs so that words semantically linked to a target word were co-activated.

8. Exaggerated prediction-error signaling (hyperlearning). Elevated brain response to prediction error during learning has been linked statistically to delusion formation (25). Moreover, prediction-error coding and other salience-driven aspects of learning appear to be mediated, at least in part, by dopaminergic pathways (60–62); elevated dopamine release is associated with schizophrenia (31). Backpropagation learning in DISCERN is driven by prediction-error. Exaggerated prediction-error signaling was consequently represented as amplified backpropagation learning rates, termed hyperlearning, applied for 500 backpropagation learning cycles to the memory encoder after DISCERN was trained. An extended version of hyperlearning also applied this mechanism to the story-generator module (Figure 1A).

Based on evidence of an editor function during human speech production (63), an output sentence filter was incorporated into the story generator that estimates the distortion of a sentence as the average computational distance between each component word of a sentence representation and its nearest lexical template in semantic memory. If the distortion exceeds a certain threshold, the sentence is discarded. The filter reduces word selection errors and disorganized language at the cost of reducing successful recall.

Human Story Recall

Story-recall performance data from 20 normal subjects and 37 outpatients with schizophrenia or schizoaffective disorder were compared. All subjects provided written informed consent to par-
Seven-day recall data were used for this study. tape-recorded and transcribed for analysis blind to group and subject identification.

The experimental task consisted of three stories presented binaurally on headphones. Two of these stories, which are reproduced below, share references and themes:

“The Gift” (65)

In one seat of the bus a wispy old man sat holding a bunch of fresh flowers. Across the aisle was a young girl whose eyes came back again and again to the man’s flowers. The time came for the man to get off. He thrust the flowers into the girl’s lap. “I can see you love flowers,” he explained, “and I think my wife would like you to have them. I’ll tell her I gave them to you.” The girl accepted the flowers and watched the man get off the bus and walk through the gate of an old cemetery.

“Hitchhiker” (written for this study)

I hitched into town. A wispy old man driving a pick-up truck with his frail wife gave me a ride. I sat in the back and watched the tires kick up dust. We stopped and waited for a traffic light. I turned around and peered into the rear window. I hadn’t eaten all day and my eyes came back again and again to a bag of Fritos on the dashboard. The man got out of the truck and walked around to the back. “My wife noticed that you kept looking at the Fritos,” he explained, “and she wanted you to have them.”

The third was the “Anna Thompson” story taken from the logical memory subtest of the Wechsler Memory Scale-III (66). Immediate recall, 45-minute recall, and 7-day recall were tape-recorded and transcribed for analysis blind to group and subject identification. Seven-day recall data were used for this study.

<table>
<thead>
<tr>
<th>Proposition List</th>
<th>Subject Recall: “I remember a whispering man that had flowers on a bus and he saw a girl and she wanted them…”</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) A (man) sat in a seat on the bus</td>
<td>1 (“man on a bus…”)</td>
</tr>
<tr>
<td>1. a man rode or is on a bus</td>
<td></td>
</tr>
<tr>
<td>.5. there was a man in some sort of vehicle</td>
<td>0</td>
</tr>
<tr>
<td>(ii) man was a wispy/old</td>
<td></td>
</tr>
<tr>
<td>1. old man + indication of frailty</td>
<td></td>
</tr>
<tr>
<td>.5. old man or frail man</td>
<td></td>
</tr>
<tr>
<td>(iii) (man) was hold a bunch of flowers</td>
<td>1 (“[man] had flowers”)</td>
</tr>
<tr>
<td>1. (man) possessed, holding or carrying flowers</td>
<td></td>
</tr>
<tr>
<td>.5. (man) possessed something</td>
<td></td>
</tr>
<tr>
<td>(iv) A young girl was/sat across the aisle from the man</td>
<td>.5 (“he saw a girl”)</td>
</tr>
<tr>
<td>1. female sitting next to, near, or across from man</td>
<td></td>
</tr>
<tr>
<td>.5. female riding in the same vehicle as man</td>
<td></td>
</tr>
<tr>
<td>(v) The girl’s eyes came back again and again to the man’s flowers.</td>
<td>.5 (“[girl] wanted [the flowers]”)</td>
</tr>
<tr>
<td>1. female paid special attention to the flowers</td>
<td></td>
</tr>
<tr>
<td>.5 female noticed or wanted something</td>
<td></td>
</tr>
</tbody>
</table>

Comparing Human and DISCERN Story Recall

Four story-recall variables could be scored comparably for both human and DISCERN story recall, while demonstrating sufficient nonzero base rates, and thus were used for assessing goodness-of-fit (GOF) of DISCERN narrative breakdowns relative to human story recall:

Recall success for humans was the total number of story propositions successfully paraphrased (scored as 1) or partially paraphrased (scored as .5) divided by the number of propositions in the target stories (= 36). Sentences in the stories were mapped into propositions, with full and partial recall for each proposition defined a priori (Table 1). For DISCERN, the total number of propositions fully reproduced was tallied and divided by the total number of propositions in the target stories (= 550). No partial scores were given because DISCERN propositions were less complex than human propositions.

Agent-slotting errors were word substitution errors involving story agents or characters. An example by a patient (recalling “The Gift”):

The girl gave the old man the flowers as a gift reversing subject and indirect object. An example from DISCERN is:

The cop arrested me for speeding where the direct object, “me,” is substituted for the mafia character, “Vince.” Agent-slotting errors that are systematic across contexts provided a model of fixed delusions.

Lexical misfires are word or phrase substitutions not involving agents possessing sentence case roles paralleling target words or phrases that significantly change meaning. For human recall, an example of this type of recall error is (Table 1):

“wispy old man” → “whispering man”

For DISCERN, an example of a lexical misfire was:

www.sobp.org/journal
Significance Test (two-tailed)

Persons with Schizophrenia (\(n \))

<table>
<thead>
<tr>
<th>Age(^a)</th>
<th>Gender (M/F)</th>
<th>Parental Education (Grades)(^b/c)</th>
<th>WAIS Scaled Vocabulary Score(^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy Control Subjects ((n = 20))</td>
<td>36.6 (9.0)</td>
<td>(11/9)</td>
<td>13.7 (4.0)</td>
</tr>
<tr>
<td>Persons with Schizophrenia ((n = 37))</td>
<td>41.5 (9.6)</td>
<td>(16/21)</td>
<td>15.1 (7.6)</td>
</tr>
<tr>
<td>Significance Test (two-tailed)</td>
<td>(t(55) = 1.51, p = .14)</td>
<td>(\chi^2 = .72, p = .40)</td>
<td>(t(53) = .77, p = .44)</td>
</tr>
</tbody>
</table>

\(\text{F, female; M, male; WAIS, Wechsler Adult Intelligence Scale.} \)

\(^{a}\)Mean (standard deviation).

\(^{b}\)Data not available for two patients.

Results

Table 2 profiles the two subject groups; Wechsler Adult Intelligence Scale (WAIS) vocabulary scores were reduced for patients compared with control subjects. Table 3 shows narrative-recall breakdown profiles for the two human subject groups. Patients were more impaired than control subjects for recall success, derailment penetrance, and agent-slotting error penetrance but not for lexical misfire penetrance. Pooling data across subjects groups and repeating analyses within groups, there was no significant correlation between any of these variables and age, parental education level, or WAIS-scaled vocabulary score.

Illness mechanisms were initially simulated in terms of a single, corresponding mechanistic parameter combined with a variable output filter for each of the 30 DISCERN exemplars. These exemplars, by parameter adjustment, were optimized to match profiles of narrative breakdown distortions of the healthy control group and the patient group, respectively. With optimized GOF as the dependent variable, a mixed model revealed a significant group \(\times \) mechanism interaction [\(F(7,203) = 36.7, p < .0001 \)]. No mechanism had a significant advantage matching the narrative breakdown profile of control subjects [\(F(7,203) = .91, p = .07 \); Figure 2A]. In contrast, the eight mechanisms differed significantly in how well they matched the patients’ narrative breakdown profile [\(F(7,203) = \) ...
In DISCERN crime stories, Vince and Tony were gangsters working under Vito. A tendency to confuse Joe and Vito in human terms could lead to the emergence of a delusional belief, where a person comes to believe that his boss in the hospital is really a Mafia boss. Nonrandomness of recurrent cross-context agent-slotted confusions assessed via a randomization test was pronounced ($p < .0001$).

Table S1 in Supplement 1 shows comparable baseline characteristics of patients with and without fixed narrative delusions (FND). To test an agent-confusion model of these delusions, the number of agent-slotted errors on story recall was compared for patients and without these delusions and healthy control subjects. As predicted, FND+ patients made significantly more agent-slotted errors compared with both other subject groups ($F(2,54) = 4.5, p = .015$; Duncan post hoc comparisons, $\alpha = .05$; effect size contrasting FND+ patients versus control subjects $= .69$; effect size contrasting FND+ patients versus FND− patients $= .79$). The contrast between FND+ patients and healthy control subjects utilizing an analysis of covariance controlling for WAIS vocabulary score remained statistically significant ($F(1,44) = 7.0, p = .011$).

Correlations between global thought disorder ratings, medication level, number of hospitalizations, and the four story-recall variables (Table 3) computed for patients were nonsignificant.

Discussion

Whereas all eight illness mechanisms were equivalent in matching the healthy control narrative breakdown profile, hyperlearning was significantly better than the others in matching the narrative breakdown profile of patients. The differential advantage of hyperlearning in matching patient story-recall data suggests that exaggerated prediction-error signaling during memory consolidation captures pathophysiology underlying schizophrenia specifically rather than nonspecific story-recall distortions demonstrated by human subjects overall.

A majority of three-parameter best-fit hyperlearning simulations also recurrently confused specific agents in personal stories (including the self-representation) with specific agents in crime stories (and vice versa) in a highly nonrandom fashion. Noteworthy was the high frequency of agent-sloting exchanges between the hospital boss, Joe, and the Mafia boss, Vito, and parallel confusions between the "I" self-reference and underlying Mafia members, suggesting generalization of boss/underling relationships. Insofar as story scripts provide templates for assigning intentions to agents (68), a consequence of recurrent agent-slotted confusions could be assignment of intentions and roles to autobiographical characters (possibly including the self) that borrow from impersonal stories derived from culture or the media. Confusion between agent representations in autobiographical stories and those in culturally determined narratives could account for the bizarreness of fixed, self-referential delusions, e.g., a patient insisting that her father-in-law is Saddam Hussein or that she herself is the Virgin Mary. This
hypothesis is supported by data showing that the number of agent-slotting errors was greater in patients reporting delusions with plot-like narrative organization compared with patients without these delusions. These findings suggest that fixed delusions are story memories contaminated by misappropriated agents.

The hyperlearning model extends prediction-error abnormalities in schizophrenia during associative learning (25,69,70) to learning narrative sequences stored as episodic memories. The model is consistent with a mechanistic role of excessive dopaminergic release in schizophrenia (31,71,72) insofar as dopamine release appears to enhance memory consolidation and prediction-error signaling (61,73,74). In humans, hyperlearning would likely require greater activation in hippocampal structures central to consolidating episodic memories (75–77). This formulation accounts for elevated baseline activation in hippocampal regions demonstrated in patients with schizophrenia (33,34), which appears to be reduced by antipsychotic medication (78); these medications may therefore achieve antipsychotic effects by curtailing hyperlearning, possibly by dopamine antagonistic effects (79).

Insofar as stories provide templates for understanding intentions of others (68), hyperlearning provides a model for disrupted theory of mind detected in prior studies of schizophrenia (22,28,29).

Our study has multiple limitations. First, some candidate disturbances suggested by prior studies of schizophrenia, such as dysfunctional executive control (22,26,27) and disrupted sentence-level linguistic context (20,21), were not modeled. Moreover, some semantic disturbances associated with speech disorganization (11,12) could arise from semantic network disconnection rather than noise. These disturbances will be addressed in a future iteration of DISCERN.

Second, DISCERN learns stories by backpropagating prediction-error signals (40,41,46), which are exaggerated in hyperlearning. Backpropagation learning, which requires thousands of repetitions, is unlikely to be replicated precisely in the human brain. However, long-term memory consolidation in humans also appears to be gradual and incremental, occurring over days to weeks (77). During this process, memories are replayed repeatedly (80), as they are in backpropagation (81). Therefore, hyperlearning in DISCERN may have a parallel in human narrative memory consolidation. Relatively few cycles of amplified backpropagation learning (500 epochs) were needed to match the schizophrenia narrative-breakdown profile. This finding suggests that limited bursts of hyperlearning, perhaps lasting only a few days in human terms, could produce enduring schizophrenic psychosis.

Third, thought disorder scores for patients were not significantly correlated with dependent variables developed for this study. This

Table 4. Pairwise Comparisons of Optimized GOF for Two-Dimensional Hyperlearning and WM Disconnection Relative to the Other Six Two-Dimensional Models Based on Mixed Model Analysis

<table>
<thead>
<tr>
<th>Model</th>
<th>t Test</th>
<th>p Value</th>
<th>t Test</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WM Noise (2)</td>
<td>3.9</td>
<td><.0001</td>
<td>3.6</td>
<td>.0004</td>
</tr>
<tr>
<td>WM Gain Reduction (3)</td>
<td>7.8</td>
<td><.0001</td>
<td>7.2</td>
<td><.0001</td>
</tr>
<tr>
<td>Altered WM Bias (4)</td>
<td>14.7</td>
<td><.0001</td>
<td>13.3</td>
<td><.0001</td>
</tr>
<tr>
<td>Semantic Network Distortion (5)</td>
<td>9.9</td>
<td><.0001</td>
<td>9.2</td>
<td><.0001</td>
</tr>
<tr>
<td>Excessive Semantic Network</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activation (6)</td>
<td>8.2</td>
<td><.0001</td>
<td>7.7</td>
<td><.0001</td>
</tr>
<tr>
<td>Semantic Blurring/Overpriming (7)</td>
<td>9.5</td>
<td><.0001</td>
<td>8.8</td>
<td><.0001</td>
</tr>
</tbody>
</table>

2-D, two-dimensional; GOF, goodness-of-fit; WM, working memory.
a df = 203, all pairwise comparisons favored 2-D hyperlearning and disconnection over other models; numbers in parentheses correspond to mechanism code illustrated in Figure 1.

Comparison of 2-D hyperlearning versus 2-D WM disconnection in terms of optimized GOF with patient narrative breakdown profile was non-significant (t = .09).
could be due to the fact that these were stable outpatients demonstrating minimal evidence of impairment: mean Schedule for the Assessment of Positive Symptoms global thought disorder score fell between questionable and mild (Table S1 in Supplement 1). Including a more symptomatic, actively psychotic group may reveal correlations between story-recall distortions and thought disorder scores.

Fourth, DISCERN should be further validated by assessing its capacity to replicate patterns of story-recall failure within a healthy subject group.

These limitations notwithstanding, it is noteworthy that this is the first computational study of narrative disorganization and fixed delusional narratives characteristic of schizophrenia. Hyperlearning, hypothesized as a unitary mechanism producing both disturbances, is potentially detectable via functional neuroimaging as accelerated shifts from hippocampal to cortical representations during memory consolidation (82). If this prediction is confirmed in patients with early-phase schizophrenia, computational patients could be used to test novel somatic and psychological treatments.

This work was supported by National Institute of Mental Health Grant R01MH066228, National Institutes of Health Grant R21-DC009446, National Science Foundation Grant EIA-0303609, a Dana Foundation Grant, a National Alliance for Research on Schizophrenia and Depression Independent Investigator Award, Peterson 50th Anniversary Research Partner, and the Department of Mental Health and Addiction Services of the State of Connecticut through its support of the Abraham Ribicoff Research Center at the Connecticut Mental Health Center.

All authors report no biomedical financial interests or potential conflicts of interest.

Supplementary material cited in this article is available online.

correlate with formal thought disorder in schizophrenia. *Biol Psychiatry* 59:452–459.

