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Using Computational Patients to Evaluate Illness
Mechanisms in Schizophrenia
Ralph E. Hoffman, Uli Grasemann, Ralitza Gueorguieva, Donald Quinlan, Douglas Lane, and
Risto Miikkulainen

Background: Various malfunctions involving working memory, semantics, prediction error, and dopamine neuromodulation have been
hypothesized to cause disorganized speech and delusions in schizophrenia. Computational models may provide insights into why some
mechanisms are unlikely, suggest alternative mechanisms, and tie together explanations of seemingly disparate symptoms and experimen-
tal findings.

Methods: Eight corresponding illness mechanisms were simulated in DISCERN, an artificial neural network model of narrative understand-
ing and recall. For this study, DISCERN learned sets of autobiographical and impersonal crime stories with associated emotion coding. In
addition, 20 healthy control subjects and 37 patients with schizophrenia or schizoaffective disorder matched for age, gender, and parental
education were studied using a delayed story recall task. A goodness-of-fit analysis was performed to determine the mechanism best
reproducing narrative breakdown profiles generated by healthy control subjects and patients with schizophrenia. Evidence of delusion-like
narratives was sought in simulations best matching the narrative breakdown profile of patients.

Results: All mechanisms were equivalent in matching the narrative breakdown profile of healthy control subjects. However, exaggerated
prediction-error signaling during consolidation of episodic memories, termed hyperlearning, was statistically superior to other mechanisms
in matching the narrative breakdown profile of patients. These simulations also systematically confused autobiographical agents with
impersonal crime story agents to model fixed, self-referential delusions.

Conclusions: Findings suggest that exaggerated prediction-error signaling in schizophrenia intermingles and corrupts narrative memories
when incorporated into long-term storage, thereby disrupting narrative language and producing fixed delusional narratives. If further

validated by clinical studies, these computational patients could provide a platform for developing and testing novel treatments.
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C ertain language behaviors are characteristic of schizophre-
nia. Spoken discourse often fails to express a cohesive mes-
sage (1– 4). Many patients express fixed delusions as spuri-

ous narrative schema repeated over time intervals ranging from
weeks to years (5,6).

Mechanisms causing these behaviors remain uncertain. Lan-
guage disorganization has been associated with disrupted working
memory, semantic processing, attention, and linguistic context (7–
21), while delusions have been associated with aberrant emotion-
based reasoning and associative learning, anomalous perceptions,
and jumping to conclusions (22–25). Both syndromes have been
associated with disturbed executive functioning (22,26,27), theory
of mind (22,28,29), and dopamine neuromodulation (30,31) and
elevated hippocampal/parahippocampal activation (32–34). In this
situation, connectionist models employing artificial neural net-
works can be used to compare the likelihood of alternative mecha-
nisms and tie together explanations of seemingly disparate symp-
toms and experimental findings.

Connectionist models have been used to simulate some cogni-
tive impairments associated with schizophrenia (35–39) but not
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heir characteristic narrative language. Below, we describe the gen-
ration of stories by an established connectionist model called
ISCERN (40 – 42). Its details, many of which are not essential in
nderstanding this study, can be found in the literature and in
upplement 1. Key aspects of DISCERN, however, can be summa-
ized as follows: 1) DISCERN learns to recognize words and the
entences and stories incorporating them using interconnected
eural network modules dedicated to these different language
rocessing levels; 2) modules learn by updating their internal con-
ection strengths to minimize prediction errors while processing
equential language; and 3) after a group of stories is learned,
ISCERN can recall any single story when prompted with an initial

egment. In this study, several different illness mechanisms were
imulated in DISCERN, and the resulting story-recall distortions
ere compared with those of healthy human subjects and patients
ith schizophrenia during a delayed story-recall task.

ethods and Materials

he DISCERN Model
DISCERN is organized as a chain of neural network modules

Figure 1). These modules communicate using neural activation
atterns that represent words in semantic memory: similar word
ctivation patterns reflect similar roles in sentences. To process a
tory input (Figure 1A, left), word representations are presented to
he sentence parser one at a time as a sequence of activation
atterns. The sentence parser builds a representation of each sen-

ence by sequencing word representations corresponding to
gent, predicate, indirect object, modifier, and direct object. At the
nd of each sentence, the sentence representation is passed on to
he story parser. The story parser transforms sequences of sentence
epresentations into script representations. Scripts are standard-
zed, multi-sentence schemas whose “slots” are filled by different

ets of words. A story is a sequence of scripts stored in the episodic
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Figure 1. A schematic representation of the architecture of DISCERN. (A) Remembering and reproducing a story in DISCERN is achieved by a chain of modules
(40 – 42). Tan-colored modules are simple recurrent networks (43). (B) The story generator simple recurrent network module shown in more detail. Hidden
layer and recurrent layer interactions constitute a working memory (WM). The modules in DISCERN communicate using distributed representations of word
meanings, i.e., fixed-size patterns of neuron activations, stored in a central lexicon. These representations are learned based on how the words are used in the
example stories, using a modified version of backpropagation. The memory trace for each story was a compacted representation of a sequence of scripts and
their slot fillers. Alternative illness mechanisms simulated in DISCERN include: 1.1) WM network disconnection; 1.2) disconnection extended to include hidden
¡ output layer story generator connections; 2) WM noise; 3) WM gain reduction; 4) lowered WM neural bias simulating elevated arousal; 5) semantic network
distortion; 6) excessive semantic network activation; 7) heightened semantic priming; 8.1) hyperlearning simulated as exaggerated prediction-error signal
during memory consolidation in the memory encoder; and 8.2) hyperlearning extended to the story generator module. Details regarding the architecture,

function, and training of DISCERN are provided in Supplement 1.
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memory module with coherent slot fillers. To generate an output
story, the process is reversed (Figure 1A, right): the story generator
module accesses the episodic memory representation and trans-
lates it into a sequence of sentences. The sentence generator then
produces the word sequence for each sentence.

In this study, DISCERN learned 28 stories, half autobiographical,
describing a first-person character, a doctor, his relationships with
boss, girlfriend, etc., and activities such as going to a wedding and
receiving a traffic ticket. The other half were impersonal crime sto-
ries describing Mafia, police characters, and their activities. The
lexicon was 159 words. Each story was organized as a sequence of
three to seven scripts slotted with a coherent set of words/concepts
and an emotion code ranging from very positive to very negative
(��/�/��/�/��). Memory recall is thus biased by emotionality
analogous to human memory retrieval (44). Such emotionality
could heighten simulated derailments and delusional language, as
it does in patients (22,45). Autobiographical and crime stories at
times incorporated common scripts, thereby providing opportuni-
ties for narrative confusion. For instance, an autobiographical story
incorporated the following script (underlining indicates slot fillers):

I was a doctor
I worked in New-York
I liked my job
I was good doctor

whereas a crime story expressed the same script with different slot
fillers:

Tony was a gangster
Tony worked in Chicago
Tony hated his job
Tony was a bad gangster

Story learning in DISCERN is based on discrepancies between
observed and predicted language. Such discrepancies, or predic-
tion errors, are propagated back from the output to the input neu-
ron layers within each module (Figure 1B); through the backpropa-
gation learning algorithm, they produce gradual, highly targeted
changes in network connection strengths (46). This learning pro-
cess requires thousands of repetitions. Successful learning for this
study required between 5,000 and 30,000 backpropagation learn-
ing cycles for each module. Starting from different initial random
connection weights, 30 DISCERN exemplars were independently
developed in this fashion.

Story recall by each DISCERN exemplar was prompted by the
first script of each story as input. DISCERN parsed this script, re-
trieved a story memory, and produced a story output.

Eight candidate illness mechanisms were applied to each of the
30 DISCERN exemplars after story learning was completed (Figure
1), based on prior studies of speech disorganization, delusions, and
schizophrenia:

1. Working memory (WM) disconnection was prompted by neu-
roimaging studies suggesting cortical disconnection, espe-
cially involving WM networks, in schizophrenia (47–50). Dis-
connection was simulated by pruning excitatory and
inhibitory WM connections in the story generator if their ab-
solute connection strength fell below a specified threshold
(51). An extended version of disconnection also pruned con-
nections between the hidden ¡ output layer of the story
generator.

2. Noise added to WM networks was prompted by reports indi-
cating excessive cortical noise, reduced signal-to-noise ratio,

and inefficiency in frontal WM cortical systems in persons with c
schizophrenia (52–54). These conditions were simulated by
adding Gaussian noise to story generator WM neuron
outputs.

3. Working memory network gain reductions were prompted by
a connectionist model of hypodopaminergic cortical neuro-
modulation in patients with schizophrenia expressed as re-
duced neural response (36) and neuroimaging studies show-
ing reduced activation in WM circuits during task performance
in patients with disorganization symptoms (55,56). This alter-
ation was modeled as reduced gain (i.e., slope) of the response
curve of neurons in the hidden and recurrent layers of the
story generator module (36).

4. Response bias shifts. Elevated arousal, which could produce
overactivation at neuronal level, was simulated as lateral shifts
in the response curve of WM layer story generator neurons (57).
This manipulation, in theory, could also simulate a failure to de-
activate the superior temporal gyrus when performing a WM task
detected in early-phase patients with schizophrenia (58).

5. Semantic network distortion demonstrated by lexical catego-
rization, priming, and fluency tasks has been statistically
linked to language disorganization and schizophrenia (11–
13). These abnormalities were simulated by adding noise to
word representations in the semantic memory.

6. Excessive activation in semantic networks. Increased tempo-
ral and prefrontal activity during semantic associations and
increased activation of the cingulate cortex during object
naming has been reported in schizophrenia (14,59). These
disturbances were simulated by increasing output activation
of neurons in the semantic network.

7. Heightened semantic priming. Studies have suggested
heightened spread of activation in semantic networks in pa-
tients with schizophrenia based on word association data,
especially among patients with language disorganization
(10,15–17). This disturbance was simulated by blurring se-
mantic network outputs so that words semantically linked to a
target word were co-activated.

8. Exaggerated prediction-error signaling (hyperlearning). Ele-
vated brain response to prediction error during learning has
been linked statistically to delusion formation (25). Moreover,
prediction-error coding and other salience-driven aspects of
learning appear to be mediated, at least in part, by dopami-
nergic pathways (60 – 62); elevated dopamine release is asso-
ciated with schizophrenia (31). Backpropagation learning in
DISCERN is driven by prediction-error. Exaggerated predic-
tion-error signaling was consequently represented as ampli-
fied backpropagation learning rates, termed hyperlearning,
applied for 500 backpropagation learning cycles to the mem-
ory encoder after DISCERN was trained. An extended version
of hyperlearning also applied this mechanism to the story-
generator module (Figure 1A).

Based on evidence of an editor function during human speech
roduction (63), an output sentence filter was incorporated into the
tory generator that estimates the distortion of a sentence as the
verage computational distance between each component word
f a sentence representation and its nearest lexical template in
emantic memory. If the distortion exceeds a certain threshold, the
entence is discarded. The filter reduces word selection errors and
isorganized language at the cost of reducing successful recall.

uman Story Recall
Story-recall performance data from 20 normal subjects and 37

utpatients with schizophrenia or schizoaffective disorder were

ompared. All subjects provided written informed consent to par-
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ticipate in the study. The DSM-IV diagnoses and symptoms were
determined using the Comprehensive Assessment of Symptoms
and History (CASH) (64). Patients were prospectively divided into
two subgroups: those who definitely demonstrated evidence of
fixed delusions expressing a plot-like, narrative scheme and those
where evidence for these delusions was questionable or absent.

The experimental task consisted of three stories presented bin-
aurally on headphones. Two of these stories, which are reproduced
below, share references and themes:

“The Gift” (65)

In one seat of the bus a wispy old man sat holding a bunch of
fresh flowers. Across the aisle was a young girl whose eyes came
back again and again to the man’s flowers. The time came for the
man to get off. He thrust the flowers into the girl’s lap. “I can see
you love flowers,” he explained, “and I think my wife would like
you to have them. I’ll tell her I gave them to you.” The girl
accepted the flowers and watched the man get off the bus and
walk through the gate of an old cemetery.

“Hitchhiker” (written for this study)

I hitched into town. A wispy old man driving a pick-up truck with
his frail wife gave me a ride. I sat in the back and watched the
tires kick up dust. We stopped and waited for a traffic light. I
turned around and peered into the rear window. I hadn’t eaten
all day and my eyes came back again and again to a bag of Fritos
on the dashboard. The man got out of the truck and walked
around to the back. “My wife noticed that you kept looking at
the Fritos,” he explained, “and she wanted you to have them.”

The third was the “Anna Thompson” story taken from the logical
emory subtest of the Wechsler Memory Scale-III (66). Immediate

ecall, 45-minute recall, and 7-day recall were tape-recorded and
ranscribed for analysis blind to group and subject identification.

Table 1. Illustration of Method for Assessing Story Reca

Proposition Lista

(i) A (man) sat in a seat on the bus
1. a man rode or is on a bus
.5. there was a man in some sort of vehicle

(ii) man was a wispy/old
1. old man � indication of frailty
.5. old man or frail man

(iii) (man) was hold a bunch of flowers
1. (man) possessed, holding or carrying flowers
.5. (man) possessed something

(iv) A young girl was/sat across the aisle from the man
1. female sitting next to, near, or across from man
.5. female riding in the same vehicle as man

(v) The girl’s eyes came back again and again to the man
flowers.

1. female paid special attention to the flowers
.5 female noticed or wanted something

aPropositional breakdown on the left with criteria fo
bOut of maximum score of 5, this segment assigned

inferred that the girl was riding on the bus. Only parti
inference that the girl paid special attention to the flowe
scored as a lexical misfire (see Methods and Materials).
even-day recall data were used for this study.

www.sobp.org/journal
omparing Human and DISCERN Story Recall
Four story-recall variables could be scored comparably for both

uman and DISCERN story recall, while demonstrating sufficient
onzero base rates, and thus were used for assessing goodness-of-
t (GOF) of DISCERN narrative breakdowns relative to human story
ecall:

Recall success for humans was the total number of story propo-
itions successfully paraphrased (scored as 1) or partially para-
hrased (scored as .5) divided by the number of propositions in the

arget stories (� 36). Sentences in the stories were mapped into
ropositions, with full and partial recall for each proposition de-
ned a priori (Table 1). For DISCERN, the total number of proposi-
ions fully reproduced was tallied and divided by the total number
f propositions in the target stories (� 550). No partial scores were
iven because DISCERN propositions were less complex than hu-
an propositions.

Agent-slotting errors were word substitution errors involving
tory agents or characters. An example by a patient (recalling “The
ift”):

The girl gave the old man the flowers as a gift

reversing subject and indirect object. An example from DISCERN
s

The cop arrested me for speeding

here the direct object, “me,” is substituted for the mafia character,
Vince.” Agent-slotting errors that are systematic across contexts
rovided a model of fixed delusions.

Lexical misfires are word or phrase substitutions not involving
gents possessing sentence case roles paralleling target words or
hrases that significantly change meaning. For human recall, an
xample of this type of recall error is (Table 1):

“wispy old man” ¡ “whispering man”

First Two Sentences of “The Gift”

Subject Recall: “I remember a whispering man
that had flowers on a bus and he saw a girl

and she wanted them . . . ”b

1 (“man on a bus . . . ”)

0

1 (”[man] had flowers”)

.5 (“he saw a girl”)

.5 (“[girl] wanted [the flowers]”)

nd partial scores.
re of 3. Partial credit given for (iv) because it could be

dit was given to (v) because there is no statement or
ertion of term, “whispering,” received no credit and was
ll for

’s

r full a
a sco

al cre
For DISCERN, an example of a lexical misfire was:
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Kate was interested in guns (substituting for books,
in DISCERN stories, both terms referred to objects of interest)

Derailed clauses were text insertions comprised of an entire
clause, not just a phrase or word, expressing extraneous meaning
not inferable from the target story. An example generated by a
control speaker when recalling “The Gift” (underlined scored as
derailed clause) was:

A girl was sitting on the bus near him and he noticed her looking
at his eyes.

An example while paraphrasing the same story produced by a
patient is:

I remember the generosity of the flowers. I remember that he
gave her flowers and she gave, she put the flowers on the tomb-
stone. And I remember there was a truck involved, I believe it
was a flatbed.

Here, three clauses were generated clearly departing from the
meaning of the target story, with the last two borrowing from the
“Hitchhiker” story.

For DISCERN, derailed clauses were those produced subsequent
to a jump from the target story to another story in the corpus. For
instance, DISCERN, after hyperlearning, initiated a story recounting
a description of Joe, the boss of the first-person character, but
then switched into another related story describing meeting
Mary, Joe’s fiancée, at a bar:

Joe was my boss.
I hated Joe.
Joe was in his 30s.
Joe had a beard.
Joe liked baseball.
Mary was the fiancée of Joe.
I liked talking to Mary.
I gave a kiss good-bye to Mary.

Interrater reliabilities for scoring these human performance vari-
ables were in the acceptable range (RI=s between .75 and .98).
DISCERN variables were scored algorithmically.

When comparing human and DISCERN story recall performance,
agent-slotting errors, lexical misfires, and derailed clauses were
recalibrated as penetrance scores, where totals for each type were
divided by recall scores (before correction by total number of prop-
ositions in target texts). This strategy adjusted for: 1) much greater
number of DISCERN stories compared with human stories, amplify-
ing opportunities for error for the former; and 2) effects of editing/
filtering language outputs, which reduced errors and successful
recall in parallel.

Goodness-of-Fit Analysis
To assess GOF of alternative illness mechanisms, we used the

following strategy: first, a four-variable story-recall profile was aver-

Table 2. Comparison of Two Groups of Subjects for Individuals Completing

Agea

Healthy Control Subjects (n � 20) 36.6 (9.0)
Persons with Schizophrenia (n � 37) 41.5 (9.6)
Significance Test (two-tailed) t(55) � 1.51, p � .14

F, female; M, male; WAIS, Wechsler Adult Intelligence Scale.
a
Mean (standard deviation).
bData not available for two patients.
ged for human control subjects, and for patients. For each of the
0 DISCERN exemplars and 8 illness mechanisms, parameters were
djusted to best reproduce these two story-recall group profiles.
his yielded 30 GOF measures for each mechanism and group pro-
le. These were then used as the dependant variable in subsequent
nalyses of variance to identify which mechanisms best matched
roup profiles. Each illness mechanism was studied initially by ad-

usting two parameters: the mechanism parameter itself (level of
oise, pruning, etc.) and the filter threshold. Goodness-of-fit used a
ean square deviation metric (67). A mixed model was used with
OF as the dependent variable, the 30 DISCERN exemplars as inde-
endent subjects, and type of mechanism (8 levels) and human
roup (healthy control subjects vs. schizophrenia patients) as fac-

ors. Pairwise comparisons were performed to interpret differences
etween mean GOF of the eight illness mechanisms relative to the
tory-recall profile of healthy control subjects and patients. The two

echanisms best-fitting patient data (hyperlearning and WM dis-
onnection) in two dimensions were extended by adding an addi-
ional mechanism parameter to each (Figure 1), followed by a sec-
nd analysis of variance.

To model fixed delusions, DISCERN’s agent-slotting errors need
o be systematic, i.e., the same confusion of an autobiographical
nd a crime story agent needs to recur in different output stories.
ystematicity of these errors was assessed using a randomization
est.

Detailed descriptions of DISCERN simulations, GOF metric, and
andomization test are provided in Supplement 1.

esults

Table 2 profiles the two subject groups; Wechsler Adult Intelli-
ence Scale (WAIS) vocabulary scores were reduced for patients
ompared with control subjects. Table 3 shows narrative-recall
reakdown profiles for the two human subject groups. Patients
ere more impaired than control subjects for recall success, derail-
ent penetrance, and agent-slotting error penetrance but not for

exical misfire penetrance. Pooling data across subjects groups and
epeating analyses within groups, there was no significant correla-
ion between any of these variables and age, parental education
evel, or WAIS-scaled vocabulary score.

Illness mechanisms were initially simulated in terms of a single,
orresponding mechanistic parameter combined with a variable
utput filter for each of the 30 DISCERN exemplars. These exem-
lars, by parameter adjustment, were optimized to match profiles
f narrative breakdown distortions of the healthy control group
nd the patient group, respectively. With optimized GOF as the
ependent variable, a mixed model revealed a significant group �
echanism interaction [F (7,203) � 36.7, p � .0001]. No mechanism

ad a significant advantage matching the narrative breakdown
rofile of control subjects [F (7,203) � .91, p � .07; Figure 2A]. In
ontrast, the eight mechanisms differed significantly in how well
hey matched the patients’ narrative breakdown profile [F (7,203) �

7 Delayed Recall of Stories

nder (M/F)
Parental Education

(Grades)a,b
WAIS Scaled Vocabulary

Scorea

(11/9) 13.7 (4.0) 12.2 (3.0)
(16/21) 15.1 (7.6) 9.9 (4.6)
.72, p � .40 t(53) � .77, p � .44 t(55) � 2.04, p � .046
Day

Ge

�2 �
www.sobp.org/journal
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50.5, p � .0001]: WM disconnection and hyperlearning were ro-
ustly superior to the other six models in terms of GOF to patient
erformance (p � .0005 on paired t tests) but were not different

from each other (Figure 2B, Table 4).
These two best-fit mechanisms were further studied by adding

another parameter to each: hyperlearning was extended to the
story generator module (Figure 1A), and disconnection was ex-
tended to hidden ¡ output layer projections in the story generator
module (Figure 1B). Goodness-of-fit to the patient narrative break-
down profile improved overall [F (1,29) � 37.3, p � .0001; Figure 2C]
with a significant mechanism � parameter interaction [F (1,29) �
10.3, p � .003]: three-parameter hyperlearning producing a signifi-
cantly better fit to the patient narrative breakdown profile than
three-parameter disconnection [t (29) � 4.2, p � .0002].

A content analysis was undertaken examining outputs of best-
fit three-parameter hyperlearning simulations to the patient group.
For derailments, jumps from one story to another by these simula-
tions occurred in a highly nonrandom fashion. The same emotional
valence was retained from the prederailment to the postderailment
story in 90.1% of instances averaged across all 30 best-fit simula-
tions. Moreover, autobiographical stories tended to derail to other
autobiographical stories, and impersonal Mafia/police stories
tended to derail to other Mafia/police stories, with only 15.1% of
derailments crossing the personal/impersonal context.

Regarding delusion-like narratives, best-fit three-parameter hy-
perlearning exemplars produced cross-context agent-slotting er-
rors in a highly organized fashion: the same two characters, one
from an autobiographical story and the other from a crime story,
were interchanged, on average, 2.4 occasions per exemplar. For
example, one exemplar generated the following when recalling
story 2:

Vito (substituting for Joe) was in his 30s.
Joe was a doctor.
Joe worked in New York
Joe was my boss.
I hated Joe.

Vito was the boss of the Mafia gang in the crime stories, while
oewas the boss of the first-person character in the autobiograph-

cal stories. Later, for story 10, this same simulation produced:

Vito was a famous gangster.
Vito was the boss of Tony
Tony hated Vito.
Tony feared Joe (substituting for Vito).

This confusion occurred again in recalling Story 27):

Vince went to Starbucks.
Vince sat at a table.
Vince liked Vito.

Table 3. Comparison of Two Subject Groups on 7-Day Story Recall

Recall Successa

Healthy Control Subjects (n � 20) .67 (.12)
Persons with Schizophrenia (n � 37) .41 (.23)
Significance Test (two-tailed, uncorrected) t(55) � 4.9, p � .00001 t

aMean (standard deviation).
bEqual variance not assumed.
cAfter square root transformation to normalize data.
Vince feared Joe (substituting for Vito). l

www.sobp.org/journal
n DISCERN crime stories, Vince and Tony were gangsters work-
ng under Vito. A tendency to confuse Joe and Vito in human
erms could lead to the emergence of a delusional belief, where a
erson comes to believe that his boss in the hospital is really a Mafia
oss. Nonrandomness of recurrent cross-context agent-slotting
onflations assessed via a randomization test was pronounced (p �

00001).
Table S1 in Supplement 1 shows comparable baseline character-

stics of patients with and without fixed narrative delusions (FND).
o test an agent-confusion model of these delusions, the number of
gent-slotting errors on story recall was compared for patients with
nd without these delusions and healthy control subjects. As pre-
icted, FND� patients made significantly more agent-slotting errors
ompared with both other subject groups [F (2,54) � 4.5, p � .015;
uncan post hoc comparisons, � � .05; effect size contrasting FND�
atients versus control subjects � .69; effect size contrasting FND�
atients versus FND� patients � .79]. The contrast between FND�
atients and healthy control subjects utilizing an analysis of covariance
ontrolling for WAIS vocabulary score remained statistically significant
F (1,44) � 7.0, p � .011].

Correlations between global thought disorder ratings, medica-
ion level, number of hospitalizations, and the four story-recall vari-
bles (Table 3) computed for patients were nonsignificant.

iscussion

Whereas all eight illness mechanisms were equivalent in match-
ng the healthy control narrative breakdown profile, hyperlearning

as significantly better than the others in matching the narrative
reakdown profile of patients. The differential advantage of hyper-

earning in matching patient story-recall data suggests that exag-
erated prediction-error signaling during memory consolidation
aptures pathophysiology underlying schizophrenia specifically
ather than nonspecific story-recall distortions demonstrated by
uman subjects overall.

A majority of three-parameter best-fit hyperlearning simula-
ions also recurrently confused specific agents in personal stories
including the self-representation) with specific agents in crime
tories (and vice versa) in a highly nonrandom fashion. Noteworthy
as the high frequency of agent-slotting exchanges between the
ospital boss, Joe, and the Mafia boss, Vito, and parallel confu-
ions between the “I” self-reference and underling Mafia members,
uggesting generalization of boss/underling relationships. Insofar
s story scripts provide templates for assigning intentions to agents
68), a consequence of recurrent agent-slotting confusions could
e assignment of intentions and roles to autobiographical charac-

ers (possibly including the self) that borrow from impersonal sto-
ies derived from culture or the media. Confusion between agent
epresentations in autobiographical stories and those in culturally
etermined narratives could account for the bizarreness of fixed,
elf-referential delusions, e.g., a patient insisting that her father-in-

nt Slotting Error
enetrancea

Lexical Misfire
Penetrancea Derailment Penetrancea

.023 (.033) .051 (.064) .011 (.040)

.086 (.121) .065 (.085) .122 (.226)
) � 3.0, p � .004b t(49.3) � .70, p � .49b t(50.7) � 3.8, p � .0004b,c
Age
P

(44.8
aw is Saddam Hussein or that she herself is the Virgin Mary. This
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hypothesis is supported by data showing that the number of agent-
slotting errors was greater in patients reporting delusions with
plot-like narrative organization compared with patients without
these delusions. These findings suggest that fixed delusions are
story memories contaminated by misappropriated agents.

Figure 2. Scatter plots of 30 independently generated simulations showing
each of the eight mechanisms mapped using a mean square deviation
metric of goodness-of-fit (GOF) to the language profile of control subjects
(A) and patients (B). Goodness-of-fit was log converted to normalize distri-

utions; smaller values represent a better fit. (C) Adding another mecha-
nism parameter to these disconnection and hyperlearning models im-
proved GOF to patient performance for both, with three-dimensional
hyperlearning mechanism demonstrating better GOF to patient language
compared with the three-dimensional disconnection mechanism. Thus, hy-
perlearning emerged as the illness mechanism most likely to underlie nar-
rative breakdown in schizophrenia. WM, working memory.
The hyperlearning model extends prediction-error abnormali-
t
s

ies in schizophrenia during associative learning (25,69,70) to learn-
ng narrative sequences stored as episodic memories. The model is
onsistent with a mechanistic role of excessive dopaminergic re-

ease in schizophrenia (31,71,72) insofar as dopamine release ap-
ears to enhance memory consolidation and prediction-error sig-
aling (61,73,74). In humans, hyperlearning would likely require
reater activation in hippocampal structures central to consolidat-

ng episodic memories (75–77). This formulation accounts for ele-
ated baseline activation in hippocampal regions demonstrated in
atients with schizophrenia (33,34), which appears to be reduced
y antipsychotic medication (78); these medications may therefore
chieve antipsychotic effects by curtailing hyperlearning, possibly
y dopamine antagonistic effects (79).

Insofar as stories provide templates for understanding inten-
ions of others (68), hyperlearning provides a model for disrupted
heory of mind detected in prior studies of schizophrenia (22,28,29).

Our study has multiple limitations. First, some candidate distur-
ances suggested by prior studies of schizophrenia, such as dys-

unctional executive control (22,26,27) and disrupted sentence-
evel linguistic context (20,21), were not modeled. Moreover, some
emantic disturbances associated with speech disorganization
11,12) could arise from semantic network disconnection rather
han noise. These disturbances will be addressed in a future itera-
ion of DISCERN.

Second, DISCERN learns stories by backpropagating prediction-
rror signals (40,41,46), which are exaggerated in hyperlearning.
ackpropagation learning, which requires thousands of repetitions,

s unlikely to be replicated precisely in the human brain. However,
ong-term memory consolidation in humans also appears to be
radual and incremental, occurring over days to weeks (77). During

his process, memories are replayed repeatedly (80), as they are in
ackpropagation (81). Therefore, hyperlearning in DISCERN may
ave a parallel in human narrative memory consolidation. Rela-

ively few cycles of amplified backpropagation learning (500 ep-
chs) were needed to match the schizophrenia narrative-break-
own profile. This finding suggests that limited bursts of
yperlearning, perhaps lasting only a few days in human terms,
ould produce enduring schizophrenic psychosis.

Third, thought disorder scores for patients were not significantly
orrelated with dependent variables developed for this study. This

able 4. Pairwise Comparisons of Optimized GOF for Two-Dimensional
yperlearning and WM Disconnection Relative to the Other Six Two-
imensional Models Based on Mixed Model Analysisa,b,c

2-D
Hyperlearning

2-D WM
Disconnection

t Test p Value t Test p Value

M Noise (2) 3.9 �.0001 3.6 .0004
M Gain Reduction (3) 7.8 �.0001 7.2 �.0001

ltered WM Bias (4) 14.7 �.0001 13.3 �.0001
emantic Network Distortion (5) 9.9 �.0001 9.2 �.0001
xcessive Semantic Network

Activation (6) 8.2 �.0001 7.7 �.0001
emantic Blurring/Overpriming (7) 9.5 �.0001 8.8 �.0001

2-D, two-dimensional; GOF, goodness-of-fit; WM, working memory.
aWM � working memory in story generator.
bdf � 203, all pairwise comparisons favored 2-D hyperlearning and

isconnection over other models; numbers in parentheses correspond to
echanism code illustrated in Figure 1.

cComparison of 2-D hyperlearning versus 2-D WM disconnection in

erms of optimized GOF with patient narrative breakdown profile was non-
ignificant (t � .09).
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could be due to the fact that these were stable outpatients demon-
strating minimal evidence of impairment: mean Schedule for the
Assessment of Positive Symptoms global thought disorder score
fell between questionable and mild (Table S1 in Supplement 1).
Including a more symptomatic, actively psychotic group may reveal
correlations between story-recall distortions and thought disorder
scores.

Fourth, DISCERN should be further validated by assessing its
capacity to replicate patterns of story-recall failure within a healthy
subject group.

These limitations notwithstanding, it is noteworthy that this is
the first computational study of narrative disorganization and fixed
delusional narratives characteristic of schizophrenia. Hyperlearn-
ing, hypothesized as a unitary mechanism producing both distur-
bances, is potentially detectable via functional neuroimaging as
accelerated shifts from hippocampal to cortical representations
during memory consolidation (82). If this prediction is confirmed in
patients with early-phase schizophrenia, computational patients
could be used to test novel somatic and psychological treatments.
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