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Abstract The distributed evolutionary computation platform EC-Star is extended in
this paper to probabilistic classifiers. This extension, called PRETSL, allows the dis-
tributed age-layered evolution of probabilistic rule sets, which in turn makes more
fine-grained decisions possible. The method is tested on 20 UCI data problems, as
well as a larger dataset of arterial blood pressure waveforms. The Results show con-
sistent improvement in all cases compared to binary classification rule-sets. Prob-
abilistic rule evolution is thus a promising approach to difficult classification tasks
and particularly well suited for time-series classification.
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1 Introduction

Rule sets utilize the notion of predicate logic and form collections of statements of
the form “IF antecedent condition A is met THEN consequence Boccurs”. These
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are ideal candidate models for use in medical diagnostic applications due to their ex-
plicit, interpretable, structure and their ability to uncover nonlinear relationships and
interactions in large data domains. The interpretability of rules is a vital attribute for
medical applications, where predictions need to be auditable so that experts can un-
derstand how and why a recommendation or forecast was made. The ability of rule
sets to deal naturally with nonlinear relations and interactions is another key attrac-
tion. The recent emergence of large-scale genetic epidemiology case-control studies
has taught us that simple genotype-phenotype models can only explain a small pro-
portion of the known heritable (genetic) risk component of adisease. Probabilistic
rule sets hold great potential for uncovering cryptic relationships and can maximize
the use of available information contained in the data.

Up to now, rule-set models have been hampered by the computational challenges
that are needed to implement them effectively. In addition,there has been no way
to accommodate uncertainty into rule-set predictions, so that they cannot be sta-
tistically characterized. The computational challenge ofrule sets arises from the
enormous search space of potential rules that might apply for any particular system,
due to all the possible combinations of antecedents and consequences. Conventional
optimization methods are ill suited to scale to such spaces.

Age-varying fitness calculation is an approach suitable fordata problems in
which evolved solutions need to be applied to many fitness samples in order to mea-
sure a candidate’s fitness confidently Hodjat and Shahrzad (2013). This approach
is elitist: Best candidates of each generation are retainedto be run on more fitness
cases to improve confidence in the candidate’s fitness. The number of fitness evalua-
tions in this method depends on the relative fitness of a candidate solution compared
to others at any given point.

EC-Star OReilly et al (2013) is a massively distributed evolutionary platform that
uses age-varying fitness as the basis for distribution, thusallowing for easier distri-
bution of big-data problems through sampling or hashing/feature reduction tech-
niques, breaking the data stash into smaller chunks, each contributing to the overall
evaluation of the candidates.

In this paper, the power of EC-star search is combined with a probabilistic exten-
sion of rule-based logic into a new method called PRETSL (Probabilistic Rule Evo-
lution for Time-Series cLassification). In a probabilisticrule set the consequences of
rules are used to update a conditional probability statement. For example, a proba-
bilistic rule might be, “IF conditionA is present THEN the probability of the disease
occurring increases byZ”, whereA andZ are parameters to be learned by the sys-
tem. The probabilities suggested by all rules of the set are combined and thresholded
to produce the final classification.

The EC-Star platform and related work in probabilistic classifiers is first reviewed
below. The PRETSL approach for using fuzzy logic and probabilistic rule-sets in an
age-layered distributed evolutionary run is then outlined. Initial results are presented
from experimentation on 20 data sets from the UCI collection, as well as on an
application on a blood-pressure prediction task, comparing the probabilistic with
a binary classifier rule-set representation. The results suggest that PRETSL is an
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effective approach, making it possible to combine knowledge at a more fine-grained
level, and thus increasing classification accuracy.

2 Prior Work

In EC-Star, age is defined as the number of fitness samples uponwhich a candidate
has been evaluated. This system uses a hub-and-spoke architecture for distribution,
where the main evolutionary process is moved to the processing nodes (Figure 1).
Each node, or Evolution Engine, has its own pool of candidaterule-sets, or individu-
als, and independently runs through the evolutionary cycle. At each new generation,
an Evolution Engine submits its fittest candidates to the Evolution Coordinator (i.e.,
the server) for consideration. This step takes place typically after a set number of
evaluations, referred to as the maturity age.

Fig. 1 The EC-Star hub-and-spoke distribution architecture. Each Evolution Engine runs an in-
dependent evolution on its own pool of candidates on a limited amount of data, and periodically
reports the results to the Evolution Coordinator. The Evolution Coordinator maintains a list of the
best candidates found so far and periodically sends the bestof them back to the Evolution Engines
for further evaluation. In this manner, EC-Star utilizes age-layering to speed up evolution, and takes
advantage of heterogeneous and potentally unreliable computing resources across the internet.

The server side, or Evolution Coordinator, maintains a listof the best of the best
candidates so far. EC-Star achieves scale through making copies of genes at the
server, sending them to Evolution Engines for aging, and merging the aged results
received back from them (Figure 2). This process also allowsthe spreading of the
fitter genetic material. EC-Star is massively distributable by running each Evolution
Engine on a processing node (e.g., CPU) with limited bandwidth and occasional



4 B Hodjat et al

availability Hodjat et al (2014). Typical runs utilize hundreds of thousands of pro-
cessing units spanning across thousands of geographicallydispersed sites. In the
Evolution Coordinator, only candidates of the same age range are compared with
one another (thus implementing age-layering). Each age range has a fixed quota.

EC-Star has previously been used e.g. in the blood-pressureprediction task, and
found to be an effective implementation for rule evolution on time-series data sets
- a class of problems that is not as well suited for traditional classification methods
such as Random Forest Deng et al (2013). In this paper, it willbe extended into
probabilistic classification.

3 Design

EC-Star’s default representation is a Pitts-style rule-based representation Smith
(1980), where the genotype consists of a header and body. Theheader includes
fields such as a unique ID, Age, and Master Fitness (which represents the aggregate
fitness over samples evaluated so far). The gene body is a ruleset with the following
grammar:

<rules> ::=<rule> |<rule><rules>
<rule> ::=<conditions>→<action>
<conditions> ::=<condition> |<condition>& <conditions>
<action> ::=<prediction label> |<action>
<condition> ::=<predicate> |<condition> |<condition> [lag]
<predicate> ::=<truth value on a feature>

Predicates can be calculated as an inequality (e.g., less-than) against an evolved
threshold on the data. For example, in the case of a normalized feature, a threshold
between 0 and 1 is evolved into the predicate (say, 0.4), and it will return true, should
the inequality (i.e.,feature < 0.4) evaluate to true in the presence of that threshold.

EC-Star allows for applying fuzzy logic Klir and Yuan (1995)to the evaluation of
predicates and rules. The fuzzy value for a predicate inequality is derived by apply-
ing a sigmoid function on the inequality: The closer the feature is to the threshold,
the closer the resulting continuous value is to 1. Fuzzy logic is then used to calculate
a fuzzy value for the rule as a whole.

In order to represent a probabilistic rule-set De Raedt and Thon (2010), an action
is defined to be an evolvable probability between 0 and 1, representing the likelihood
of a sample to belong to a class label defined over the data-set. In its simplest form,
the probabilities of different rules that fire over a data sample are aggregated into
a single probability for a binary classification system. Forexample, if three rules
fire, returning 0.2, 0.4, and 0.6 respectively, the output verdict on the sample can be
calculated as the average of the probabilities (0.4). Taking the fuzzy logic value of
each rule into account gives us the opportunity to calculatethe rule-set verdict as a
weighted average using the fuzzy value of each rule as the weight. The last step, if
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needed by the domain, is to convert this value to the binary classification, with 0.5
as the threshold.

Note that it is possible that, for a given fitness sample, no rules fire, in which case,
depending on the problem domain requirements, either a default action is selected,
or the fitness sample is said to have resulted in a no-action state. The no-action state
can thus be treated separately in the fitness function.

The fitness of a probabilistic rule-set is then calculated asthe mean absolute
error (MAE) of its predictions. Below, this method is referred to as PRETSL, for
Probabilistic Rule Evolution for Time-Series cLassification.

4 Experiments

First, the PRETSL approach is demonstrated on 20 standard UCI data sets (Asun-
cion and Newman (2007). Each data set consists of a number of data points (e.g.,
patients), each with a number of predictors (e.g., biometrics and health history),
some of which are missing for each data point. These data are partitioned randomly
such that the training set has roughly 70% of data points, andthe remaining 30%
data points are witheld and used as the test set.

The EC-Star platform is used to train 50 binary and 50 probabilistic classifiers
using the training set. For each entry in the dataset, the binary classifiers outputz =
P(y = 1|x)∈ {0,1}, while the probabilistic classifiers outputz = P(y = 1|x)∈ [0,1],
in both cases giving the problem specific predicted probability (e.g., that the patient
does not survive the study).

To compare methods, the mean squared error (MSE) of each classifier’s predic-
tions is calculated using the test set:

MSE(dv) =
1

Nv

Nv

∑
n=1

(P(y = 1|x = xv
n)− yv

n)
2. (1)

Note that in the case of hard classifiers, this measure reduces to the misclassification
rate.

Figures 2, 3, and 4 give the results. The PRETSL approach improves classifi-
cation performance in every single case and is comparable toresults from random
forest.

Second, PRETSL is demonstrated on a much larger real world problem of classi-
fying time series of arterial blood pressure data. Our particular area of investigation
is acute hypotensive episodes.

A large number of patient records are time series based. Someare at the gran-
ularity of high resolution physiological waveforms recorded in the ICU or via the
remote monitoring systems. Given a time-series of trainingexemplars each of length
T (in samples), to build a discriminative model capable of predicting an event, fea-
tures are extracted by splitting the time series into non-overlapping (or overlapping),
divisions of sizek samples each, up to a certain pointh < T such that there are
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(f) Breast Cancer Wisc Diag

Fig. 2 Distribution of MSE on the test set for the 50 binary (i.e. hard) classifiers and the 50 proba-
bilistic classifiers (i.e. PRETSL) for the first six of the 20 UCI datasets. The probabilistic classifiers
outperformed the binary classifiers in each case in this figure as well as in figures 3 and 4, demon-
strating the advantage of the PRETSL approach.
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(f) Ionosphere

Fig. 3 Continuing from Figure 2, results for the second six of the 20UCI datasets.
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(g) Ozone 8hr
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(h) Spambase

Fig. 4 Continuing from Figure 3, results for the remaining eight ofthe 20 UCI datasets.
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m = h/k divisions. A number of aggregating functions are then applied to each of
these divisions (a.k.a windows) to give features for the problem.

The blood-pressure dataset consists of roughly 4000 patient’s ABP waveforms
from MIMIC II v3, with a sampling rate of 125Hz Goldberger et al (2000), recorded
invasively from one of the radial arteries. The raw data sizewas roughly one Ter-
abyte. The labels in the data are imbalanced; the total number of Low events is just
1.9% of the total number of events. In total, there are 45,693EC-Star data packages
from 4,414 patient records. Of these, 32,898 packages with 100 data points each
(i.e., events) were used as the training set and 12,795 samples as the test set.

Figure 5 gives the results, again showing that the probabilistic classifiers outper-
form the binary classifiers. Indeed, the worst performing soft classifier outperforms
the best of the hard classifiers. An example probabilistic rule-set evolved by the sys-
tem is given below, whereVn represents features from the wavelets in the data set,
and prob is the probability for the patient to have developedcritically low blood
pressure after a 30 minute blackout window:

(!V4 < 35.13∧V78< 176.75∧V52< 6) =⇒ prob = 0.04
(V78< 79.3∧V36< 3.09∧V69< 0.08∧!V38<−0.25) =⇒ prob = 0.95
(V78< 79.3∧V36< 3.09∧!V38<−2.61) =⇒ prob = 0.95
(V78< 128.03∧V63< 0) =⇒ prob = 0.14
(V1 < 143.24) =⇒ prob = 0.84

5 Discussion and Future Work

One key advantage of probabilistic predictions is that theycan be combined with a
formal loss function for misclassification in order to make optimal risk-based deci-
sions, such as whether a patient should be given a new drug, orwhether the patient
requires further tests to make an accurate diagnosis or prognosis. Such an extension
will allow for the integration of rule set models directly into the clinic.

Note that the rule sets are readily interpretable and may provide scientific insight;
their probabilistic combination reduces the risk of overfitting that accompanies the
use of a single classifier, and may facilitate model selection and hypothesis testing.

By framing the rule sets within a probabilistic system, formal methods from
Bayesian statistics can be utilized to combine predictionsacross the population of
rule sets in a coherent fashion Polson et al (2013); this approach should improve the
performance further in future work.

More work is also in order to determine the source of consistently improved
performance of PRETSL versus binary classification, as demonstrated in the exper-
iments above.
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Fig. 5 Distribution of MSE on the test set for the 50 binary (i.e. hard) classifiers and the 50
probabilistic classifiers (i.e. PRETSL) for the MIMIC arterial blood pressure dataset. All PRETSL
classifiers outperformed all binary classifiers in this scale-up experiment, demonstrating the power
of the PRETSL approach in challenging problems in general, and time-series classification in par-
ticular.

6 Conclusion

In this paper, evolution of rule sets for classification tasks is extended into proba-
bilistic rule sets. This method, PRETSL, is implemented in the EC-Star distributed
computing platform and evaluated in 20 UCI datasets as well as in a scale-up appli-
cation of blood-pressure prediction. Probabilistic formulation allows making more
refined decisions, which leads to improved performance in all cases. PRETSL is
therefore a promising approach to difficult classification tasks.
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