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Abstract The distributed evolutionary computation platform ECr3taxtended in
this paper to probabilistic classifiers. This extensioliedePRETSL, allows the dis-
tributed age-layered evolution of probabilistic rule sethich in turn makes more
fine-grained decisions possible. The method is tested on(A0ddta problems, as
well as a larger dataset of arterial blood pressure wavefofime Results show con-
sistent improvement in all cases compared to binary claasiifin rule-sets. Prob-
abilistic rule evolution is thus a promising approach tdidifit classification tasks
and particularly well suited for time-series classificatio
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1 Introduction

Rule sets utilize the notion of predicate logic and formedtilons of statements of
the form “IF antecedent condition A is met THEN consequence&urs”. These
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are ideal candidate models for use in medical diagnostiicgipns due to their ex-
plicit, interpretable, structure and their ability to umeononlinear relationships and
interactions in large data domains. The interpretabilityutes is a vital attribute for
medical applications, where predictions need to be auditbthat experts can un-
derstand how and why a recommendation or forecast was madeaility of rule
sets to deal naturally with nonlinear relations and inteoas is another key attrac-
tion. The recent emergence of large-scale genetic epidegyicase-control studies
has taught us that simple genotype-phenotype models cgmeerplain a small pro-
portion of the known heritable (genetic) risk component disease. Probabilistic
rule sets hold great potential for uncovering cryptic lielaghips and can maximize
the use of available information contained in the data.

Up to now, rule-set models have been hampered by the congnabthallenges
that are needed to implement them effectively. In addittbare has been no way
to accommodate uncertainty into rule-set predictions hsd they cannot be sta-
tistically characterized. The computational challengeué sets arises from the
enormous search space of potential rules that might appbripparticular system,
due to all the possible combinations of antecedents ancqoesices. Conventional
optimization methods are ill suited to scale to such spaces.

Age-varying fitness calculation is an approach suitabledaa problems in
which evolved solutions need to be applied to many fithespkemin order to mea-
sure a candidate’s fithess confidently Hodjat and Shahr2zat3§2 This approach
is elitist: Best candidates of each generation are retaimée run on more fithess
cases to improve confidence in the candidate’s fitness. Timdawuof fithess evalua-
tions in this method depends on the relative fithess of a datelsolution compared
to others at any given point.

EC-Star OReilly et al (2013) is a massively distributed atiohary platform that
uses age-varying fitness as the basis for distribution,alowing for easier distri-
bution of big-data problems through sampling or hashiragifee reduction tech-
niques, breaking the data stash into smaller chunks, eatthmating to the overall
evaluation of the candidates.

In this paper, the power of EC-star search is combined wittobabilistic exten-
sion of rule-based logic into a new method called PRETSLI§®bdistic Rule Evo-
lution for Time-Series cLassification). In a probabilistite set the consequences of
rules are used to update a conditional probability staténfem example, a proba-
bilistic rule might be, “IF conditiorA is present THEN the probability of the disease
occurring increases ¥, where A andZ are parameters to be learned by the sys-
tem. The probabilities suggested by all rules of the set@mhined and thresholded
to produce the final classification.

The EC-Star platform and related work in probabilistic sifiers is first reviewed
below. The PRETSL approach for using fuzzy logic and prolisdigi rule-sets in an
age-layered distributed evolutionary run is then outlineiial results are presented
from experimentation on 20 data sets from the UCI collegtemwell as on an
application on a blood-pressure prediction task, compattire probabilistic with
a binary classifier rule-set representation. The resuljgest that PRETSL is an
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effective approach, making it possible to combine knowéeglipa more fine-grained
level, and thus increasing classification accuracy.

2 Prior Work

In EC-Star, age is defined as the number of fithess sampleswigioh a candidate
has been evaluated. This system uses a hub-and-spokeanat@tfor distribution,

where the main evolutionary process is moved to the praogssides (Figure 1).
Each node, or Evolution Engine, has its own pool of candiddéesets, or individu-

als, and independently runs through the evolutionary cyxtleach new generation,
an Evolution Engine submits its fittest candidates to thdufian Coordinator (i.e.,

the server) for consideration. This step takes place tilgiefter a set number of
evaluations, referred to as the maturity age.
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Fig. 1 The EC-Star hub-and-spoke distribution architecture hEamlution Engine runs an in-
dependent evolution on its own pool of candidates on a lanéieount of data, and periodically
reports the results to the Evolution Coordinator. The EtvotuCoordinator maintains a list of the
best candidates found so far and periodically sends theob&sm back to the Evolution Engines
for further evaluation. In this manner, EC-Star utilizes-d@yering to speed up evolution, and takes
advantage of heterogeneous and potentally unreliable atingresources across the internet.

Evoluti

The server side, or Evolution Coordinator, maintains adfghe best of the best
candidates so far. EC-Star achieves scale through makipigcof genes at the
server, sending them to Evolution Engines for aging, andymgrthe aged results
received back from them (Figure 2). This process also altmsspreading of the
fitter genetic material. EC-Star is massively distribuegiy running each Evolution
Engine on a processing node (e.g., CPU) with limited banthwéthd occasional
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availability Hodjat et al (2014). Typical runs utilize huedls of thousands of pro-
cessing units spanning across thousands of geographdiafigrsed sites. In the
Evolution Coordinator, only candidates of the same ageearg compared with
one another (thus implementing age-layering). Each aggerhas a fixed quota.

EC-Star has previously been used e.g. in the blood-prepsedéction task, and
found to be an effective implementation for rule evolutiontome-series data sets
- a class of problems that is not as well suited for traditi@essification methods
such as Random Forest Deng et al (2013). In this paper, itb&ilextended into
probabilistic classification.

3 Design

EC-Star's default representation is a Pitts-style rulsedarepresentation Smith
(1980), where the genotype consists of a header and bodyh&héer includes
fields such as a unique ID, Age, and Master Fitness (whiclesgmits the aggregate
fithess over samples evaluated so far). The gene body is satéth the following
grammar:

<rules> ;1= <rule> | <rule><rules>

<rule> ::= <conditions> — <action>

<conditions> ::= <condition> | <condition> & <conditions>
<action> ::= <prediction label > | <action>

<condition> ::= <predicate> | <condition> | <condition> [lag]
<predicate> ::= <truth value on a feature>

Predicates can be calculated as an inequality (e.g., hesg-against an evolved
threshold on the data. For example, in the case of a nornddiézdure, a threshold
between 0 and 1 is evolved into the predicate (say, 0.4) tavitl ieturn true, should
the inequality (i.e.feature < 0.4) evaluate to true in the presence of that threshold.

EC-Star allows for applying fuzzy logic Klir and Yuan (1996)he evaluation of
predicates and rules. The fuzzy value for a predicate inggigmderived by apply-
ing a sigmoid function on the inequality: The closer the dieats to the threshold,
the closer the resulting continuous value is to 1. Fuzzyclagihen used to calculate
a fuzzy value for the rule as a whole.

In order to represent a probabilistic rule-set De Raedt dr@hT2010), an action
is defined to be an evolvable probability between 0 and 1emsnting the likelihood
of a sample to belong to a class label defined over the dat&stt simplest form,
the probabilities of different rules that fire over a data pkerare aggregated into
a single probability for a binary classification system. Egample, if three rules
fire, returning 0.2, 0.4, and 0.6 respectively, the outputliee on the sample can be
calculated as the average of the probabilities (0.4). Tatte fuzzy logic value of
each rule into account gives us the opportunity to calculseule-set verdict as a
weighted average using the fuzzy value of each rule as thghivéihe last step, if
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needed by the domain, is to convert this value to the binaysdication, with 0.5
as the threshold.

Note that it is possible that, for a given fithness sample, fesriire, in which case,
depending on the problem domain requirements, either ailiefetion is selected,
or the fithess sample is said to have resulted in a no-active. fthe no-action state
can thus be treated separately in the fithess function.

The fitness of a probabilistic rule-set is then calculatedh@smean absolute
error (MAE) of its predictions. Below, this method is refedrto as PRETSL, for
Probabilistic Rule Evolution for Time-Series cLassifioati

4 Experiments

First, the PRETSL approach is demonstrated on 20 standafdiai€ sets (Asun-
cion and Newman (2007). Each data set consists of a numbexrtafpdints (e.g.,
patients), each with a number of predictors (e.g., biorogtaind health history),
some of which are missing for each data point. These datssatitigned randomly
such that the training set has roughly 70% of data points,tla@demaining 30%
data points are witheld and used as the test set.

The EC-Star platform is used to train 50 binary and 50 prdlsioi classifiers
using the training set. For each entry in the dataset, trerpitiassifiers output=
P(y= 1|x) € {0,1}, while the probabilistic classifiers outprit= P(y = 1|x) € [0, 1],
in both cases giving the problem specific predicted probiglfé.g., that the patient
does not survive the study).

To compare methods, the mean squared error (MSE) of eadifieds predic-
tions is calculated using the test set:

NV
MSE(d") = = 3 (Ply=1ix= %) —y¥)2 M
n=1

Note that in the case of hard classifiers, this measure redatke misclassification
rate.

Figures 2, 3, and 4 give the results. The PRETSL approachoweprclassifi-
cation performance in every single case and is comparabkstdts from random
forest.

Second, PRETSL is demonstrated on a much larger real warldgm of classi-
fying time series of arterial blood pressure data. Our paldr area of investigation
is acute hypotensive episodes.

A large number of patient records are time series based. Soenat the gran-
ularity of high resolution physiological waveforms receddin the ICU or via the
remote monitoring systems. Given a time-series of traiekemplars each of length
T (in samples), to build a discriminative model capable ofipoting an event, fea-
tures are extracted by splitting the time series into noaHapping (or overlapping),
divisions of sizek samples each, up to a certain pdm& T such that there are
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Fig. 2 Distribution of MSE on the test set for the 50 binary (i.e.d)alassifiers and the 50 proba-
bilistic classifiers (i.e. PRETSL) for the first six of the 2CUdatasets. The probabilistic classifiers
outperformed the binary classifiers in each case in thisdigsrwell as in figures 3 and 4, demon-
strating the advantage of the PRETSL approach.
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Fig. 3 Continuing from Figure 2, results for the second six of théJZ datasets.
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Fig. 4 Continuing from Figure 3, results for the remaining eighttef 20 UCI datasets.
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m = h/k divisions. A number of aggregating functions are then aupto each of
these divisions (a.k.a windows) to give features for théo[mm.

The blood-pressure dataset consists of roughly 4000 ppati@BP waveforms
from MIMIC Il v3, with a sampling rate of 125Hz Goldberger ¢{2000), recorded
invasively from one of the radial arteries. The raw data sias roughly one Ter-
abyte. The labels in the data are imbalanced; the total nuafhe®w events is just
1.9% of the total number of events. In total, there are 45B935tar data packages
from 4,414 patient records. Of these, 32,898 packages wWithdhta points each
(i.e., events) were used as the training set and 12,795 saraplthe test set.

Figure 5 gives the results, again showing that the prolsdiciltlassifiers outper-
form the binary classifiers. Indeed, the worst performirftclassifier outperforms
the best of the hard classifiers. An example probabiliste-set evolved by the sys-
tem is given below, wher¥, represents features from the wavelets in the data set,
and prob is the probability for the patient to have developetically low blood
pressure after a 30 minute blackout window:

(V4 < 35.13A V78 < 176.75A V52 < 6) = prob = 0.04

(V78 < 79.3A\ V36 < 3.09A Vgg < 0.08A1V3g < 70.25) = prob=0.95
(V78 < 79.3 A\ V36 < 3.09A1V3g < —2.61) = prob = 0.95

(V78 < 12803/ Vg3 < 0) = prob=0.14

(V1 < 14324) — prob=0.84

5 Discussion and Future Work

One key advantage of probabilistic predictions is that iteay be combined with a
formal loss function for misclassification in order to maksimal risk-based deci-

sions, such as whether a patient should be given a new drudhether the patient

requires further tests to make an accurate diagnosis onpgig Such an extension
will allow for the integration of rule set models directlytnthe clinic.

Note that the rule sets are readily interpretable and mayigescientific insight;
their probabilistic combination reduces the risk of ovérfg that accompanies the
use of a single classifier, and may facilitate model seladitd hypothesis testing.

By framing the rule sets within a probabilistic system, fatrmethods from
Bayesian statistics can be utilized to combine predictamress the population of
rule sets in a coherent fashion Polson et al (2013); thiscgmbrshould improve the
performance further in future work.

More work is also in order to determine the source of consitémproved
performance of PRETSL versus binary classification, as detnated in the exper-
iments above.
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Fig. 5 Distribution of MSE on the test set for the 50 binary (i.e.d)atlassifiers and the 50
probabilistic classifiers (i.e. PRETSL) for the MIMIC aiitdblood pressure dataset. All PRETSL
classifiers outperformed all binary classifiers in thisesagd experiment, demonstrating the power
of the PRETSL approach in challenging problems in general teme-series classification in par-
ticular.

6 Conclusion

In this paper, evolution of rule sets for classification tagkextended into proba-
bilistic rule sets. This method, PRETSL, is implementechim EC-Star distributed
computing platform and evaluated in 20 UCI datasets as wéli a scale-up appli-
cation of blood-pressure prediction. Probabilistic fotation allows making more
refined decisions, which leads to improved performancelicades. PRETSL is
therefore a promising approach to difficult classificatiaskss.
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