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Abstract A domain-independent problem-solving system based
on principles of Artificial Life is introduced. In this system, DIAS,
the input and output dimensions of the domain are laid out in a
spatial medium. A population of actors, each seeing only part of this
medium, solves problems collectively in it. The process is
independent of the domain and can be implemented through
different kinds of actors. Through a set of experiments on various
problem domains, DIAS is shown able to solve problems with
different dimensionality and complexity, to require no
hyperparameter tuning for new problems, and to exhibit lifelong
learning, that is, to adapt rapidly to run-time changes in the problem
domain, and to do it better than a standard, noncollective approach.
DIAS therefore demonstrates a role for ALife in building scalable,
general, and adaptive problem-solving systems.
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1 Introduction

Ecosystems in nature consist of diverse organisms each with a generic goal to survive. Survival may
require different strategies and actions at different times. Emergent behavior from the collective
actions of these organisms then makes it possible for the ecosystem as a whole to adapt to a changing
world, that is, to solve new problems as they appear (Begon & Townsend, 2021; Levin, 1998).

Such continual adaptation is often necessary for artificial agents in the real world as well. As
a matter of fact, the field of reinforcement learning was initially motivated by such problems: The
agent needs to learn while performing the task. While many offline extensions now exist, minimizing
regret and finding solutions in one continuous run makes sense in many domains (Auer et al., 2002;
Sutton & Barto, 2018).

There are indeed many such domains where the fundamentals of the domain are subject to rapid
and unexpected change. For instance, in stock trading, changes to the microstructure of the mar-
ket, such as decimalization in 2001, or the large volume of trade being handled by high-frequency
trading systems as of the early 2010s, introduce fundamental changes to the behavior of the stocks.
In common parlance, such shifts are known as regime change, and require trading strategies to
be adjusted or completely rethought (Bacidore, 1997; Malkiel, 2003; Menkveld, 2013; Moody &
Saffell, 2001). Another example is supply-chain management processes, which were drastically af-
fected by the abrupt changes in demand patterns introduced by the COVID-19 pandemic of 2020
(Ivanov, 2020).

More generally, any control system for functions that exhibit chaotic behavior needs to adapt
rapidly and continuously (Werbos, 2005). Similarly, in many game-playing domains, opponents
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improve and change their strategies as they play, and players need to adapt. There are also domains
in which numerous similar problems need to be solved and there is little time to adapt to each one,
such as trading systems with a changing portfolio of instruments, financial predictions for multi-
ple businesses/units, optimizing multiple industrial production systems, optimizing growth recipes
for multiple different plants, and optimizing designs of multiple websites.

However, current artificial intelligence (AI) systems are not adaptive in this manner. They are
strongly tuned to each particular problem, and adapting to changes in it and to new problems
requires much domain-specific tuning and tailoring.

The natural ecosystem approach suggests a possible solution: Separate the AI from the domain.
A number of benefits could result. First, the AI may be improved in the abstract; it is possible to
compare versions of it independently of domains. Second, the AI may more easily be designed to be
robust against changes in the domain or even switches between domains. Third, it may be designed
to transfer knowledge from one domain to the next. Fourth, it may be easier to make it robust to
noise, task variation, and unexpected effects and to changes to the action space and state space.

This article aims at designing such a problem-solving system and demonstrating its feasibility
in a number of benchmark examples. In this Domain Independent ALife-Based Problem Solving
System (DIAS), a population of actors is tasked with surviving in a spatial medium. As a result of
the actors’ emergent behavior, the current problem is solved. Populations continue surviving over
the span of several changing problems. The experiments demonstrate that (a) the behaviors of each
actor are independent of the problem definition; (b) solutions emerge continually from collective
behavior of the actors; (c) the actor behavior and algorithms can be improved independently of the
domains; (d) DIAS scales to problems with different dimensionality and complexity; (e) very little or
no hyperparameter tuning is required between problems; (f) DIAS can adapt to a changing problem
domain, implementing lifelong learning; and (g) collective problem solving provides an advantage
in scaling and adaptation.

DIAS can thus be seen as a promising starting point for scalable, general, and adaptive problem
solving, based on principles of Artificial Life.

2 Related Work

In most population-based problem-solving approaches, such as genetic algorithms (GAs; Eiben &
Smith, 2015; Mitchell, 1996), particle swarm optimization (Rodriguez & Reggia, 2004; Sengupta
et al., 2018), and estimation of distribution algorithms (Krejca & Witt, 2020), each population
member is itself a candidate solution to the problem. In contrast, in DIAS, the entire population
of actors together represents the solution.

Much recent work in Artificial Life concentrates on exploring how fundamentals of biological
life, such as reproduction functions, hyperstructures, and higher-order species, evolved (Gershenson
et al., 2018). However, some ALife work also focuses on potential robustness in problem solving
(Hodjat & Shahrzad, 1994). For instance, in robust first computing as defined by Ackley and
Small (2014), there is no global synchronization, perfect reliability, free communication, or excess
dimensionality. DIAS complies with these principles as well. Although it does impose periodic
boundary conditions, these boundaries can expand or retract depending on the dimensionality of
the problem.

This approach is most closely related to swarm intelligence systems (Bansal et al., 2019), such
as ant colony optimization (Deng et al., 2019). The main difference is that the problem domain
is independent from the environment in which the actors survive, that is, the ecosystem, and a
common mapping is provided from the problem domain to the ecosystem. This approach allows
for any change in the problem domain to be transparent to the DIAS process, which makes it
possible to change and switch domains without reprogramming or restarting the actor population.

Several other differences from prior work result from this separation between actors and problem
domains. First, the algorithms that the actors run can be selected and improved independently of
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the domain and need not be determined a priori. Second, the fitness function for the actors, as well
as the mapping between the domain reward function and the actors’ reward function, is predefined
and standardized and need not be modified to suit a given problem domain. Third, the actors’
state and action spaces are fixed regardless of the problem domain. Fourth, there is no enforced
communication mechanism among the actors. While the actors do have the facility to communicate
point to point, and communication might emerge if needed, it is not a precondition of problem
solving.

In terms of prior work in the broader field of universal and domain-independent AI (Hutter,
2000), most approaches are limited to search heuristics, such as extensions to the A* algorithm
(Stern, 2019). Such approaches still require domain knowledge, such as the goal state, state transi-
tion operators, and costs. Although efficient, these approaches lack robustness and are designed to
work on a single domain at a time. They do not do well if the domain changes during the optimiza-
tion process. In the case of domain-independent planning systems (Della Penna et al., 2009), the
elaborate step of modeling the problem domain is still required. Depending on the manner by which
such modeling is done, the system will have different performance. In this sense, DIAS is unique:
It is designed as a general domain-independent collective and dynamic problem-solving system.

3 Method

A population of independent actors is set up with the goal of surviving in a common environment
called a geo. The input and output dimensions of the domain are laid out across the geo. Each actor
sees only part of the geo, which requires that it cooperate in discovering collective solutions. This
design separates the problem-solving process from the domain, allowing different kinds of actors
to implement it, and makes it scalable and general. The population adapts to new problems through
evolutionary optimization, driven by credit assignment through a contribution measure.

3.1 Geo
Actors are placed on a grid called “geo” (Figure 1). The dimensions of the grid correspond to the
dimensions of the domain-action space (along the x axis) and the domain-state space (along the
y axis). More specifically, domain action is a vector A; each element Ax of this vector is mapped to
a different x location. Similarly, domain state is a vector S, and its elements Sy are mapped to
different y locations in the geo. There can be multiple actors for each (x, y) location of the grid.
These actors live in different locations of the z dimension. Each (x, y, z) location may contain an
actor, as well as a domain-action suggestion and a message, both of which can be overwritten by
the actor in that location.

Figure 1. General design of a DIAS system. Actors exist on a three-dimensional grid where x locations represent
the elements of the domain-action vector and y locations represent the elements of the domain-state vector. The z
locations form a space that the actors can occupy and use for messaging. The grid thus maps the domain space to an
actor space where problems can be solved in a domain-independent manner.
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3.2 Actors
An actor is a decision-making unit taking an actor-state vector σ as its input and issuing an actor-
action vector α as its output at each domain time step. All actors operate in the same actor-state and
actor-action spaces, regardless of the domain. Each actor is located in a particular (x, y, z) location
in the geo grid and can move to a geographically adjacent location. Each actor is also linked to a
linked location (x ′, y ′, z ′) elsewhere in the geo. This link allows an actor to take into account relation-
ships between two domain-action elements (Ax and Ax ′ ) and two domain-state elements (Sy and
S ′

y ) and to communicate with other actors via messages. Thus it focuses on a part of the domain
and constitutes a part of a collective solution.

The actor-action vectors α consist of the following actions:

1. Write a domain-action suggestion ax in the current location in the geo.

2. Write a message in the current location in the geo.

3. Write the actor’s reproduction eligibility.

4. Move to a geographically adjacent geo location.

5. Change the coordinates of the linked location.

6. No operation.

The actor-state vectors σ consist of the following data: (a) energy e, real ≥ 0; (b) age, integer ≥ 0;
(c) reproduction eligibility, true/false; (d) coordinates in the current location, integer x, y, z ≥ 0;
(e) message in the current location, [0..1]; (f) domain-action suggestion ax in current location, [0..1];
(g) domain-state value Sy in the current location, [0..1]; (h) coordinates in the linked location, inte-
ger x ′, y ′, z ′ ≥ 0; (i) message in the linked location, [0..1]; ( j) domain-action suggestion ax ′ in the
linked location, [0..1]; and (k) domain-state value Sy ′ in the linked location, [0..1].

Depending on the actor type, actors may choose to keep a history of actor states and refer to it
in their decision-making.

3.3 Problem-Solving Process
Algorithm 1 outlines the DIAS problem-solving process. It proceeds through time intervals (in the
main while loop). Each interval is one attempt to solve the problem, that is, a fitness evaluation
of the current system. Each attempt consists of a number of interactions with the domain (in the
inner while loop) until the domain issues a terminate signal and returns a domain fitness. The credit
for this fitness is assigned to individual actors and used to remove bad actors from the population
and to create new ones through reproduction.

More specifically, during each domain time step t, the current domain-state vector S is first
loaded into the geo (Step 2.1): Each (x, y, z) location is updated with the domain-state element Sy.
Each actor then takes its current actor state σ as input and issues an actor action α as its output
(Step 2.2). As a result of this process, some actors will write a domain-action suggestion ax in their
location. A domain-action vector A is then created (Step 2.3): The suggestions ax are averaged
across all locations with the same x to form its elements Ax. If no ax is written, Ax(t − 1) is
used (with Ax(−1) = 0). The resulting action vector A is passed to the domain, which executes it,
resulting in a new domain state (Step 2.4).

Actors start the problem-solving process with an initial allotment of energy. After each interval
(i.e., domain evaluation), this energy is updated based on how well the actor contributed to the
performance of the system during the evaluation (Step 4.1). First, to make the system scale-free and
to require fewer hyperparameters, the domain fitness F is converted into domain impact M, that is,
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it is normalized within [ 0..1] based on maximum and minimum fitness values observed in the past
R evaluations:

M = (F − FminR)/(FmaxR − FminR) (1)

Thus, even though F is likely to increase significantly during the problem-solving process, the en-
tire range [ 0..1] is utilized for M, making it easier to identify promising behavior.

Second, the contribution of the actor to M is measured as the alignment of the actor’s
domain-action suggestions ax with the actual action elements Ax issued to the domain during the
entire time interval. In the current implementation, this contribution c is

c = 1 − min
t=0..T

(|Ax(t) − ax(t)|) (2)

where T is the termination time; thus c ∈ [ 0..1]. The energy update �e consists of a fixed cost h
and a reward that depends on the impact and the actor’s contribution to it. If none of the actor’s
actions were “write ax(t),” that is, the actor did not contribute to the impact, then

�e = h(M − 1) (3)

that is, the energy will decrease inversely proportional to impact. In contrast, if the actor issues
one or more such “write” actions during the interval, then

�e = h(cM(1 − c)(1 − M) − 1) (4)
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In this case, the energy will also decrease (unless M and c are both either 0 or 1), but the relationship
is more complex: It decreases less for actors that contribute to good outcomes (i.e., M and c are
both high) and for actors that do not contribute to bad outcomes (i.e., M and c are both low).
Thus, regardless of outcomes, each actor receives proper credit for the impact. Overall, energy is
a measure of the credit each actor deserves for both leading the system to success and keeping it
away from failure. If an actor’s energy drops to or below zero, the actor is removed from the geo.

For example, if the domain is a reinforcement learning game, such as CartPole, each time interval
consists of a number of left and right domain actions until the pole drops or the time limit is
reached (e.g., 200 domain time steps). At this point, the domain issues a termination signal, and
the fitness F is returned as the number of time steps for which the pole stayed up. That fitness is
scaled to M ∈ [ 0..1] using the maximum and minimum F during the R = 60, 000 previous attempts.
If M is high, actors that wrote ax values consistently with Ax, that is, suggested left or right at
least once when those actions were actually issued to the domain, have a high contribution c and
therefore a small decrease �e. Similarly, if the system did not perform well, actors that suggested
left (right) when the system issued right (left) have a low contribution c and receive a small decrease
�e. Otherwise, the �e is large; such actors lose energy fast and are soon eliminated.

After each time interval, a number of new actors are generated through reproduction (Step 4.2).
Two parents are selected from the existing population within each (x, y) column, assuming that
the total energy in the column is below a threshold Emax. If it is not, the agents are already very
good, and evolution focuses on columns elsewhere where progress can still be made or alternative
solutions can be found. In addition, a parent actor needs to meet a maturity age requirement; that
is, it must have been in the system for more than V time intervals and not reproduced for V time
intervals. The actor also needs to have reproduction eligibility in its state set to true.

Provided all the preceding conditions are met, a proportionate selection process is carried out
based on actor fitness f, calculated as follows. First, the impact variable M is discretized into L
levels: M = {b0, b1, . . . , bL−1}. Then, for each of these levels bi, the probability pi that the actor’s
action suggestions align with the actual actions when M = bi is estimated as

pi = P(c = 1|M = bi) (5)

where c measures this alignment according to Equation 2. The same window of R past intervals is
used for this estimation as for determining the maximum and minimum M for scaling the impact
values. Finally, actor fitness f is calculated as the alignment-weighted average of the different im-
pact levels bi:

f =
L∑

i=0
pibi (6)

Thus f is the assignment of credit for M to individual actors. Note that whereas energy mea-
sures consistent performance, actor fitness measures average performance. Energy is thus most
useful in discarding actors and actor fitness in selecting parents.

Once the parents are selected, crossover and mutation are used to generate offspring actors.
What is crossed over and mutated depends on the encoding of the actor type; regardless, each
offspring’s behavior, as well as its linked-location coordinates, is a result of crossover and mutation.
Each pair of parents generates two offspring, whose locations are determined randomly in the same
(x, y) column as the parents are located.

Note that the parents are not removed from the population during reproduction; instead, energy
is used as basis for removal. In this manner, the population can shrink and grow, which is useful
for lifelong learning. It allows reproduction to focus on solving the current problem, whereas re-
moval retains individuals that are useful in the long term. Such populations can better adapt to new
problems and readapt to old ones.
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Energy, age, and actor fitness for all actors in an (x, y) column need to be available before re-
production can be done, so computations within the column must be synchronized in Step 4.2.
However, the system is otherwise asynchronous across the x and y dimensions, making it possible
to parallelize the computations in Steps 2 and 4. Thereby, the system scales to high-dimensional
domains in constant time.

3.4 Actor Types
The current version of DIAS employs six different actor types:

1. Random. It selects its next action randomly, providing a baseline for the comparisons.

2. Robot. It selects its next action based on human-defined, preprogrammed rules designed for
specific problem domains, providing a performance ceiling.

3. Bandit. It selects its next action using the UCB-1 algorithm (not including σ as context).
UCB-1 is an exploration-exploitation strategy for multiarmed bandit problems, using upper
confidence bounds to balance the trade-off between maximizing rewards and acquiring
new knowledge (Auer et al., 2002).

4. Q-learning. It selects its next action using Q values learned through temporal differences.

5. DQN. It learns to select its next action using a deep Q-learning neural network.

6. Rule-set evolution. It evolves a set of rules to select its next action.

Simple Q-learning (Watkins & Dayan, 1992) was implemented based on the actor’s state/action
history, with the actor’s energy difference from the prior time interval taken as the reward for the
current interval. Because the dimensionality of the actor state/action space is fixed by design, a
table of Q values can be learned through the standard reinforcement learning method of temporal
differences.

DQN (Mnih et al., 2015) is a more sophisticated reinforcement learning method that can po-
tentially cope with large state and action spaces. Each actor is a neural network with three fully
connected hidden layers of 512, 256, and 64 units with rectified linear unit activation functions.
The network is trained to map the actor’s current state to its Q values, using the same temporal
difference as the simple Q-learner as the loss. Stochastic gradient descent with mini-batches of size
64 and the Adam optimizer was used, with 0.0001 weight decay and mean squared error as the loss
function. A simple reproduction function copies the weights of a parent actor into the child actor.

Rule-set evolution (Hodjat et al., 2018) was implemented based on rule sets that consist of a de-
fault rule and at least one conditioned rule. Each conditioned rule consists of a conjunction of one
or more conditions and an action that is returned if the conditions are satisfied. Conditions consist
of a first and second term being compared, each with a coefficient that is evolved. An argument is
also evolved for the action. Evolution selects the terms in the conditions from the actor-state space
and the action from the actor-action space. Rules are evaluated in order and cut short upon reaching
the first to be satisfied. If none of the rules is satisfied, the default action is returned. In crossover,
a random index less than the number of rules in one individual is picked, and in the offspring rule
set, the remainder rules are replaced by rules past the crossover index from the other parent indi-
vidual. In mutation, a single element of the rule set is randomly changed; mutation can take place
at the condition level (changing an element of the condition), at the rule level (replacing, removing,
or adding a condition to the rule or changing the rule’s action), or at the rule-set level (removing an
entire rule from the individual, changing the default rule, or changing the rule order).

These actor types were evaluated in several standard benchmark tasks experimentally, as is
described next.
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4 Experimental Design

A simple XOR configuration domain and the OpenAI Gym control domain were used to evaluate
DIAS. The same setup was used in both domains.

4.1 Test Domains
In the n-XOR domain, the outputs of n independent XOR gates need to be maintained as 1. For
each gate, one of the inputs is generated randomly, and the other is generated by the actor such
that its XOR is 1. To make the domain a realistic proxy for real-world problems, 10% noise can
be added to the XOR outputs. Although a single XOR (or 1-XOR) problem can be solved by a
single actor, solving n > 1 of them simultaneously requires a division of labor over the population.
The different XOR input elements are in different y locations, and the different predicted outputs
are in different x locations. With n > 1, no actor can see or act upon the entire problem; instead,
emergent coordination is required to find behaviors that collectively solve all XORs. Increasing n
makes the problems exponentially more difficult (i.e., the chance of solving all n XORs by luck is
reduced exponentially with n).

The first set of experiments was run in the n-XOR domain. The experiments showed that the
DIAS design scales to problems of different dimensionality and complexity, both with and without
noise. The second set was run in a different domain: OpenAI Gym games, including CartPole,
MountainCar, Acrobot, and LunarLander. The same experimental setup was used across all of them
without any hyperparameter tuning. This second set showed that DIAS is a general problem-solving
approach, requiring little or no parameter tuning when applied to new problems. The third set
of experiments was run across these two domains to show that DIAS can adapt to the different
problems online, thats is, can exhibit lifelong learning.

4.2 Experimental Setup
Each experiment consisted of 10 independent runs of up to 200,000 time intervals. For each domain,
the number of x locations was set to the number of domain actions, and the number of y locations
was set to the number of domain states (1, 2 for 1-XOR; 2, 4 for 2-XOR; 3, 6 for 3-XOR; 2, 4
for CartPole; 3, 2 for MountainCar; 3, 6 for Acrobot; and 3, 6 for LunarLander). The number of z
locations was constant at 100 in all experiments. The initial population for each (x, y) location was
set to 20 actors, placed randomly in z. Each Q-learning actor was initialized with random Q values,
and each rule-set actor was initialized with a random default rule. The robot and bandit actors had
no random parameters; that is, they were identical.

The range R used for scaling domain fitnesses to impact values was 60,000 intervals, and the
impact M was discretized into 21 levels {0, 0.05, . . . , 0.95, 1} in calculating actor fitness. Each actor
started with an initial energy of 100 units, with a fixed cost h = 2 units at each time interval. The
energy threshold Emax for reproduction in each (x, y) column was set to the initial energy, that is,
20 * 100 = 2,000 (note that although each actor’s energy decreases over time, population growth
can increase total energy). Reproduction eligibility was set to true at birth, and the reproduction
maturity requirement V was set to 20. Small variations in these hyperparameters lead to similar
results; their interactions can be characterized more systematically in future experiments. In contrast,
each of the main design choices of DIAS is important for its performance, as verified in extensive
preliminary experiments.

Each experiment could result in one of three end states: (a) the actor population solves the
problem; (b) all actors run out of energy before solving the problem, and the actor population goes
extinct; or (c) the actor population survives but has not solved the problem within the maximum
number of time intervals. In practice, it is possible to restart the population if it goes extinct or
does not make progress in F after a certain period of time. Restarts were not implemented in the
experiments to evaluate performance more clearly.

266 Artificial Life Volume 30, Number 2



B. Hodjat et al. Lifelong Problem Solving Through ALife Actors

For comparison, direct evolution (DE) of rule sets was also implemented in the DIAS frame-
work. The setup is otherwise identical, but a DE actor receives the entire domain state vector S

as its input and generates the entire domain action vector A as its output. DE therefore does not
take advantage of collective problem solving. A population of 100 DE actors is evolved for up to
100,000 time intervals through a GA with F as the individual fitness, tournament selection, 25%
elitism, and the same crossover and mutation operators as in DIAS.

5 Results

Different actor types were first evaluated in preliminary experiments, finding that rule-set evolu-
tion performed the best. Rule-set evolution actors were then used to evaluate the performance of
DIAS in problems of complexity and type, as well as its ability to adapt to changing problems. The
dynamics of the problem-solving process were characterized and shown to be the source of these
abilities.

5.1 Comparing Actor Types
Each of the six actor types described earlier was tested in preliminary experiments on 1-XOR,
using the same settings. These results demonstrate that collective behavior resulting from the DIAS
framework can successfully solve these domains.

The robot actor specifically written for 1-XOR solves it from the first time interval. Similarly,
a custom-designed robot actor is always successful in the CartPole domain. On the other hand,
random, bandit, and simple Q-learning were not able to solve 1-XOR at all: Each attempt led to
extinction in fewer than 350 time intervals. Although it is possible that these actors could solve
simpler problems, the search space for 1-XOR is apparently already too large for them.

The DQN actors were able to solve the 1-XOR problem but could not scale to other n-XOR
problems and to the OpenAI Gym domain. DQN does not scale well to large populations, and a
partial gradient makes stochastic gradient descent difficult.

It is interesting to analyze why the DQN actor type was not successful in DIAS. Preliminary
experiments showed that the settings for rule-set evolution do not work well for DQN and needed
to be modified. First, the 100 time intervals were insufficient for the DQN actors to learn, and
therefore initial energy was increased to 1 million. Second, DQN has difficulty coordinating multiple
actors in each domain state, and they were thus reduced to only one. With these changes, DIAS with
DQN actors was able to solve the 1-XOR problem but failed at solving the more complex 2-XOR
and 3-XOR problems within the allotted number of time intervals (Figure 2).

Figure 2. DIAS with the DQN actor type solving (a) 1-XOR, (b) 2-XOR, and (c) 3-XOR in 10 independent runs. The
initial actor energy was set to 1,000,000, and the initial actor population was reduced to a single actor per domain
state. DIAS with DQN solves the 1-XOR consistently, but not the 2-XOR and 3-XOR, within the allotted 100,000
time intervals. The inconsistent partial gradients make it difficult to learn proper coordination for collective problem
solving; global search methods like rule-set evolution are needed instead.
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Note that actors in DIAS have only a partial view of the domain state, and they also have agency
over only one of the actions in the domain-action space. Thus the value of an actor’s action in a
given state, that is, the value function Q(s, a), depends on the behavior of other actors. This limita-
tion can result in contradictory Q values, making it very difficult to find a useful policy. The gradients
result in local hill climbing: They may push the actor in the wrong direction, and there is no way
for it to recover. Evolution is able to overcome this problem because it does not follow gradients;
that is, it is not based on hill climbing but is a global search method. Such search is essential in a
collective problem-solving system like DIAS.

Thus the preliminary experiments indicated that DIAS works best with the rule-set evolution
actor type; it will therefore be used in the main experiments we describe in the following sections.

5.2 Scaling to Problems of Varying Complexity
The first set of main experiments showed that the DIAS population solves n-XOR with n = 1, 2,
and 3 reliably (Figure 3). Even with 10% reward noise, the system is resilient and the population
collectively achieves the best possible reward, even if it is not constant over time (Figure 4). In
comparison, whereas DE solved the 1-XOR in fewer than 10,000 time intervals in 9 of 10 runs,
only 3 runs solved the 2-XOR, and none solved the 3-XOR within 100,000 time intervals. These
results show that DIAS provides an advantage in scaling to problems with higher dimensionality
and complexity.

The success was due to emergent collaborative behavior of the actor population. This result can
be seen by analyzing the rule sets that evolved, for example, that of the actor from a population

Figure 3. Number of time intervals needed to solve the (a) 1-XOR, (b) 2-XOR, and (c) 3-XOR problems in 10
independent runs with no noise added in the XOR outputs. No runs lead to extinction (they would have been shown
with red bars), though some do not completely solve the problem within the allotted 200,000 time intervals (these
runs are shown with blue bars). These experiments show that the DIAS framework scales naturally to problems with
increasing dimensionality and complexity.

Figure 4. Number of time intervals needed to solve the (a) 1-XOR, (b) 2-XOR, and (c) 3-XOR problems in 10
independent runs with 10% noise added to the XOR outputs. The results are similar to those without noise, suggesting
that the system can cope with uncertainty that is common in real-world problems.
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Figure 5. An example actor that solves the 1-XOR problem, consisting of a number of metrics, the current state, and a
set of rules. The “write” action writes its argument in the own_location_domain_action field as the actor’s suggested
domain action ax. Even though the rules explicitly describe the actor’s behavior, it is not possible to tell from this one
actor what the solution to the complete problem is. The actor does not see the whole problem or determine the
outcome alone: The population as a whole collectively solves it.

that solved the 1-XOR problem, shown in Figure 5. This actor is number 1,065 in its lineage. It
has contributed to the domain action 19 times, and all 19 times, its contribution has been in line
with the domain action issued. Therefore the vector consisting of alignment probabilities pi for
each impact level i has only one element: The probability is 1.0 for the impact level of 1.0. Its
current state is high in energy for its age, suggesting that it has contributed well. Its current linked
location has null values in message, domain-action, and domain-state fields.

In terms of rules, the second and fourth are redundant and never fired (redundancy is common
in evolution because it makes the search more robust). Rule 1 fired 49 times, Rule 3 six times, and
the default rule 19 times. Rules 1 and 3 perform a search for a linked location that has a large
enough domain-state value: They decrease the y coordinate of the linked location whenever they
fire. If such a location is found (Rule 1), and its own domain-state value is high enough (Rule 3),
0.93 is written as its suggested domain action ax (default rule). An ax > 0.5 denotes a prediction
that the XOR output is 1, whereas ax ≤ 0.5 suggests that it is 0; therefore this actor contributes to
predicting XOR output 1. Other actors are required to generate the proper domain actions in other
cases. Thus problem solving is collective: Several actors need to perform compatible subtasks to
form the whole solution.
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5.3 Solving Different Kinds of Problems
The second set of main experiments was designed to demonstrate the generality of DIAS, that is,
that it can solve a number of different problems out of the box, with no change to its settings.
CartPole, MountainCar, Acrobot, and LunarLander of OpenAI Gym were used in this role because
they represent a variety of well-known reinforcement-learning problems.

DIAS was indeed able to solve each of these problems without any customization and with the
same settings as the n-XOR problems (Figure 6). A histogram of the population dynamics as the
ecosystem evolves to a solution is shown in Figure 7 for the CartPole problem. The system gradually
finds higher domain fitness peaks, and every time it does so, the number of reproductions drops and
the population stabilizes. In this manner, DIAS is trying out different equilibria, eventually finding
one that implements the best solution.

An example actor from a population that solved the CartPole domain is shown in Figure 8. In
this case, the actor is relying on the domain-state value in the linked location, Sy ′ , to be large enough
(currently > (3 ∗ 0.14)/0.85 = 0.49), writing 0.26 when this is the case, and 0.77 otherwise. In other
words, it suggests a left push when the fourth element of the domain state is large, and otherwise a
right push. It is difficult to tell what role this actor plays in the overall solution, but clearly it does
not contain the complete solution to the CartPole problem. As with the n-XOR domain, the pop-
ulation discovers and represents the solutions collectively.

5.4 Adapting to Changing Problems
A third set of experiments was run in multiple domains to demonstrate the system’s ability to
switch between domains mid-run. In the first such experiment, the run started by solving the
1-XOR problem; then the problem switched to 2-XOR, then to 3-XOR, and back to 1-XOR
again. Note that the maximum domain fitness level also changes mid-run as problems are switched.
These switches require the geo to expand and retract, as the dimensions of x (i.e., the number of
domain actions) and y (i.e., the number of domain states) are different between problems. This
change, however, does not affect the actors, whose action and state spaces remain the same. When

Figure 6. Solving different kinds of problems in the OpenAIGym domain. Results of 10 independent runs in the (a)
MountainCar, (b) LunarLander, (c) CartPole, and (d) Acrobot problems are shown. Again, no runs resulted in ex-
tinction, although some MountainCar and Cartpole runs did not completely solve the problem within the allotted
maximum number of time intervals. Notably, DIAS solves all these problems, as well as all other domains in the article,
with the same hyperparameter and experimental settings, demonstrating the generality of the approach.
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Figure 7. Population dynamics in a sample run of the CartPole problem, showing (a) progression of domain fitness F
(the number of time steps for which the pole stays upright), (b) the number of live actors, and (c) the number of
reproductions at each time interval. The reproductions drop and the population becomes relatively stable during
periods when the ecosystem finds a peak in F; however, these peaks are unstable, and the population eventually moves
on to explore other solutions. Such dynamics make it possible not only to find solutions to the current problem but
also to adapt rapidly to changing domains and new problems (as seen in Figure 10).

retracting, actors in locations that no longer exist are removed from the system. When expand-
ing, new actors are created in locations (i, j, k) with i > x and/or j > y by duplicating the actor in
location (i mod x, j mod y, k), if any.

The results of 10 such runs are shown in Figure 9. In seven of these runs, DIAS was able to solve
the entire sequence of problems. Most interestingly, the time it needed for subsequent problems
often became shorter. For example, Run 1 took 55,574 time intervals to solve the 1-XOR problem,
another 35,363 to solve the 2-XOR, and 36,690 more to solve the 3-XOR. Then, switching back to
the 1-XOR problem, a solution was found within a mere 51 time intervals. The dynamics of these
adaptations, shown in Figure 10, take advantage of similar unstable equilibria as shown in Figure 7.
As a result, DIAS is able to adapt to new problems quickly, retain information from earlier problems,
utilize it in later problems, and avoid catastrophic forgetting when returning to old problems.

In contrast, while DE solved the 1-XOR quickly in the beginning and end of each sequence,
none of its 10 runs was able to adapt to 2-XOR and 3-XOR mid-run. Also, it did not solve the
second 1-XOR any more quickly than it solved the first one.

In a further problem-switching experiment (Figure 11), DIAS was required to adapt between two
easy and two hard OpenAI Gym problems. It had no trouble switching from Acrobot to LunarLan-
der; both problems can be solved easily within the allotted 100,000 intervals (as can also be seen in
Figure 6). Interestingly, whether or not it found a solution to CartPole within the 100,000 intervals,
it still switched successfully to MountainCar and found solutions in most cases, and actually more
often than expected based on Figure 6. Further more, as shown in Figure 12, DIAS was able to
switch between different domains, that is, from 1-XOR to CartPole and back, and again adapt more
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Figure 8. An example actor from a population that solves the CartPole Problem. This actor writes 0.26 (to its
own_location_action ax) when the fourth domain-state element (Sy with y = 3) is large, and otherwise writes 0.77.
Again, this behavior alone does not indicate how the population as a whole solves the problem, which is evidence of
a collective emergent solution.

Figure 9. Adapting to changing problems and back. Ten runs of (a) DIAS and (b) DE are shown where the problem
switched from 1-XOR to 2-XOR, then to 3-XOR, then back to 1-XOR as soon as the problem was solved or 100,000
time intervals had passed (dashed line). DIAS was able to adapt to new problems quickly and solve new problems more
quickly, and particularly quickly when returning to 1-XOR, thus avoiding catastrophic forgetting. In contrast, though
DE solved the first 1-XOR quickly, it was not able to adapt to 2-XOR or 3-XOR mid-run, and it did not solve the
second 1-XOR faster than the first. Thus collective problem solving in DIAS provides a significant advantage in adapting
to new problems, that is, in lifelong learning.

quickly to the second 1-XOR. These results demonstrate that DIAS can adapt robustly across many
different domain switches: easy, hard, converged, ongoing, familiar, and unfamiliar.

More generally, the experiments show that the collective problem solving in DIAS is essential
for solving new problems continuously as they appear and for retaining the ability to solve earlier
problems. In this sense, it demonstrates an essential ability for continual, or lifelong, learning. It
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Figure 10. Population dynamics in adapting to new problems in a sample run (Run 1 in Figure 9): (a) progression of
rewards, (b) population size, and (c) reproduction count. Throughout the run, problem dimensionality and complexity
vary, and even the maximum achievable domain fitness changes. However, the same population is able to explore and
solve new problems, demonstrating lifelong learning.

Figure 11. Adapting to easy and hard problems. (a) Problem switched from Acrobot to LunarLander. Both of these
problems are easy to solve (as can be seen in Figure 6), and DIAS adapts to the switch easily. (b) Problem switched
from CartPole to MountainCar once the problem was solved or 100,000 time intervals had passed. Both of these
problems are difficult, and in many cases, the switch occurs while DIAS is still working on solving the first problem.
Yet DIAS is often able to solve the second problem just the same, and actually more often than expected based on
Figure 6. Thus DIAS adapts robustly to both easy and hard problem switches.

also demonstrates the potential for curriculum learning for more complex problems: The same
population can be set to solve domains that get more complex with time. Such an approach may
have a better chance of solving the most complex problems than one in which they are tackled
directly from the beginning.
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Figure 12. Adapting to changes between different problem domains. The problem switched from 1-XOR to CartPole,
then back to 1-XOR as soon as the problem was solved or 100,000 time intervals had passed. DIAS was able to
adapt as expected, solving CartPole in 3 of the 10 runs, and also to solve the second 1-XOR more quickly in 7 of the
10 cases. Thus DIAS adapts robustly between very different problem domains.

6 Discussion and Future Work

The experimental results with DIAS are promising: They demonstrate that the same system, with no
hyperparameter tuning or domain-dependent tweaks, can solve a variety of domains, ranging from
classification to reinforcement learning. The results also demonstrate the ability to switch domains
in the middle of the problem-solving process and the potential benefits of doing so as part of
curriculum learning. The system is robust to noise and to changes to its domain-action space and
domain-state space mid-run.

The most important contribution of this work is its introduction of a common mapping between
a domain and an ecosystem of actors. This mapping includes a translation of the state and action
spaces, as well as a translation of domain rewards to the actors contributing (or not contributing)
to a solution. It is this mapping that makes collective problem solving effective in DIAS. With this
mapping, changes to the domain have no effect on the survival task that the actors in the ecosys-
tem are solving. As a result, the same DIAS system can solve problems of varying dimensionality
and complexity, solve different kinds of problems, and solve new problems as they appear—and do
it better than DE can.

In this process, interesting collective behavior analogous to biological ecosystems can be ob-
served. Most problems are being solved through emergent cooperation among actors (i.e., when
x and/or y dimensionality > 1). Problem solving is also continuous: The system regulates its pop-
ulation, stabilizing it as better solutions are found. Because of this cooperative and continual adap-
tation, it is difficult to compare the experimental results to those of other learning systems. Solving
problems of varying scales, solving different problems, and tracking changes in the domain generally
require domain-dependent setup, discovered through manual trial and error. A compelling direction
for the future is to design benchmarks for domain-independent learning, making such comparisons
possible and encouraging further work in this area.

In the future, a parallel implementation of DIAS should speed up and scale up problem solving,
making it possible to run DIAS even with large search spaces in reasonable time. Each actor would
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run in its own process, synchronized locally only in the event of reproduction with another actor.
By restricting the scope of an actor’s neighborhood, even the geo could potentially be distributed
over multiple machines (similar to the approach of Ackley & Small, 2014).

For high-dimensional domain-state and domain-action spaces, it may also be possible to fold
the axes of the geo so that a single (x, y) location can refer to more than one state or action in the
domain space. This generalization, of course, would come at the expense of larger actor-action and
actor-state space because each location would now have more than one value for domain state and
action, but it could make it faster with high-dimensional domains.

Another potential improvement is to design more actor types. Although rule-set evolution per-
formed well, it is a very general method, and it may be possible to design other methods that more
rapidly and consistently adapt to specific problem domains as part of the DIAS framework. In
particular, gradient-based reinforcement learning actor types, such as the DQN actor, work well
in simulation-based multiagent systems in which actor policies can be trained against many runs
(Vinyals et al., 2019), but they do not currently extend well to the continual learning that is a main
strength of DIAS. It would be interesting to augment the gradient-based learning in the DQN actor
type with evolution of weights and/or architecture based on the changing problem requirements.

7 Conclusion

DIAS is a domain-independent problem-solving system that can address problems with varying
dimensionality and complexity, solve different problems with little or no hyperparameter tuning,
and adapt to changes in the domain, thus implementing lifelong learning. These abilities are based
on Artificial-Life principles, that is, collective behavior of a population of actors in a spatially orga-
nized geo, which forms a domain-independent problem-solving medium. Experiments with DIAS
demonstrate an advantage over a direct problem-solving approach, thus providing a promising foun-
dation for scalable, general, and adaptive problem solving in the future.
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