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Abstract
A domain-independent problem-solving system based on prin-
ciples of Artificial Life is introduced. In this system, DIAS,
the input and output dimensions of the domain are laid out in a
spatial medium. A population of actors, each seeing only part
of this medium, solves problems collectively in it. The process
is independent of the domain and can be implemented through
different kinds of actors. Through a set of experiments on var-
ious problem domains, DIAS is shown able to solve problems
with different dimensionality and complexity, to require no hy-
perparameter tuning for new problems, and to exhibit lifelong
learning, i.e. adapt rapidly to run-time changes in the prob-
lem domain, and do it better than a standard non-collective ap-
proach. DIAS therefore demonstrates a role for Alife in build-
ing scalable, general, and adaptive problem-solving systems.

Introduction
Ecosystems in nature consist of diverse organisms each with a
generic goal to survive. Survival may require different strate-
gies and actions at different times. Emergent behavior from
the collective actions of these organisms then makes it possi-
ble for the ecosystem as a whole to adapt to a changing world,
i.e. solve new problems as they appear.

Such continual adaptation is often necessary for artificial
agents in the real world as well. As a matter of fact, the field of
reinforcement learning was initially motivated by such prob-
lems: The agent needs to learn while performing the task.
While many offline extensions now exist, minimizing regret
and finding solutions in one continuous run makes sense in
many domains. For instance, there are domains where the
fundamentals of the domain are subject to rapid and unex-
pected change, such as trading in the stock market, and con-
trol systems for functions that exhibit chaotic behavior. Simi-
larly in many game-playing domains opponents improve and
change their strategies as they play. There are also domains
where numerous similar problems need to be solved and there
is little time to adapt to each one, such as trading systems with
a changing portfolio of instruments, financial predictions for
multiple businesses/units, optimizing multiple industrial pro-
duction systems, optimizing growth recipes for multiple dif-
ferent plants, and optimizing designs of multiple websites.

However, current Artificial Intelligence (AI) systems are
not adaptive in this manner. They are strongly tuned to each
particular problem, and adapting to changes in it and to new
problems requires much domain-specific tuning and tailoring.

The natural ecosystem approach suggests a possible solu-
tion: Separate the AI from the domain. A number of benefits
could result: First, the AI may be improved in the abstract;
it is possible to compare versions of it independently of do-
mains. Second, the AI may more easily be designed to be ro-
bust against changes in the domain, or even switches between
domains. Third, it may be designed to transfer knowledge
from one domain to the next. Fourth, it may be easier to make
it robust to noise, task variation, and unexpected effects, and
to changes to the action space and state space.

This paper aims at designing such a problem-solving sys-
tem and demonstrating its feasibility in a number of bench-
mark examples. In this Domain Independent Alife-based
Problem Solving System (DIAS), a population of actors co-
operate in a spatial medium to solve the current problem, and
continue doing so over the span of several changing problems.
The experiments will demonstrate that

• The behaviors of each actor are independent from the prob-
lem definition;

• Solutions emerge continually from collective behavior of
the actors;

• The actor behavior and algorithms can be improved inde-
pendently of the domains;

• DIAS scales to problems with different dimensionality and
complexity;

• Very little or no hyperparameter tuning is required between
problems;

• DIAS can adapt to a changing problem domain, imple-
menting lifelong learning; and

• Collective problem-solving provides an advantage in scal-
ing and adaptation.

DIAS can thus be seen as a promising starting point for scal-
able, general, and adaptive problem solving, based on princi-
ples of Artificial Life.

Related Work
In most population-based problem-solving approaches, such
as Genetic Algorithms (GA; Mitchell, 1996; Eiben and Smith,
2015), Particle Swarm Optimization (Sengupta et al., 2018;
Rodriguez and Reggia, 2004), and Estimation of Distribution
Algorithms (Krejca and Witt, 2020), each population member



is itself a candidate solution to the problem. In contrast in
DIAS, the entire population together represents the solution.

Much recent work in Artificial Life concentrates on explor-
ing how fundamentals of biological life, such as reproduction
functions, hyper-structures, and higher order species, evolved
(Gershenson et al., 2018). However, some Alife work also fo-
cuses on potential robustness in problem solving (Hodjat and
Shahrzad, 1994). For instance, in Robust First Computing as
defined by Ackley and Small (2014), there is no global syn-
chronization, perfect reliability, free communication, or ex-
cess dimensionality. DIAS complies to these principles as
well. While it does impose periodic boundary conditions,
these boundaries can expand or retract depending on the di-
mensionality of the problem.

This approach is most closely related to Swarm Intelligence
systems (Bansal et al., 2019), such as Ant Colony Optimiza-
tion (Deng et al., 2019). The main difference is that the prob-
lem domain is independent from the environment in which
the actors survive, i.e. the ecosystem, and a common map-
ping is provided from the problem domain to the ecosystem.
This approach allows for any change in the problem domain
to be transparent to the DIAS process, which makes it possi-
ble to change and switch domains without reprogramming or
restarting the actor population.

Several other differences from prior work result from this
separation between actors and problem domains. First, the
algorithms that the actors run can be selected and improved
independently of the domain and need not be determined a
priori. Second, the fitness function for the actors, as well
as the mapping between the domain reward function and the
actors’ reward function, is predefined and standardized, and
need not be modified to suit a given problem domain. Third,
the actors’ state and action spaces are fixed regardless of the
problem domain. Fourth, there is no enforced communica-
tion mechanism among the actors. While the actors do have
the facility to communicate point-to-point and communica-
tion might emerge if needed, it is not a precondition to prob-
lem solving.

In terms of prior work in the broader field of Universal AI
and Domain Independence (Hutter, 2000), most approaches
are limited to search heuristics, such as extensions to the A*
algorithm (Stern, 2019). Such approaches still require domain
knowledge such as the goal state, state transition operators,
and costs. While efficient, these approaches lack robustness,
and are designed to work on a single domain at a time. They
do not do well if the domain changes during the optimization
process. In the case of domain-independent planning systems
(Della Penna et al., 2009), the elaborate step of modeling the
problem domain is still required. Depending on the manner
by which such modeling is done, the system will have differ-
ent performance. In this sense DIAS aims at more general
domain-independent problem solving than prior approaches.
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Figure 1: General design of a DIAS system. Actors exist on
a three-dimensional grid where x-locations represent the ele-
ments of the domain-action vector and y-locations represent
the elements of the domain-state vector. The z-locations form
a space that the actors can occupy and use for messaging.
The grid thus maps the domain space to an actor space where
problems can be solved in a domain-independent manner.

Method
A population of independent actors is set up with the goal of
surviving in a common environment called a geo. The input
and output dimensions of the domain are laid out across the
geo. Each actor sees only part of the geo, which requires that
they cooperate in discovering collective solutions. This de-
sign separates the problem-solving process from the domain,
allowing different kinds of actors to implement it, and makes
it scalable and general. The population adapts to new prob-
lems through evolutionary optimization, driven by credit as-
signment through a contribution measure.

Geo
Actors are placed on a grid called geo (Fig. 1). The dimen-
sions of the grid correspond to the dimensions of the domain-
action space (along the x-axis) and the domain-state space
(along the y-axis). More specifically, domain action is a vec-
tor A; each element Ax of this vector is mapped to a differ-
ent x-location. Similarly, domain state is a vector S, and its
elements Sy are mapped to different y-locations in the geo.
There can be multiple actors for each (x, y)-location of the
grid. These actors live in different locations of the z dimen-
sion. Each (x, y, z) location may contain an actor, as well as
a domain-action suggestion and a message, both of which can
be overwritten by the actor in that location.

Actors
An actor is a decision-making unit taking an actor-state vec-
tor σ as its input and issuing an actor-action vector α as its
output at each domain time step. All actors operate in the
same actor-state and actor-action spaces, regardless of the do-
main. Each actor is located in a particular (x, y, z) location in
the geo grid and can move to a geographically adjacent loca-
tion. Each actor is also linked to a linked location (x′, y′, z′)
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elsewhere in the geo. This link allows an actor to take into ac-
count relationships between two domain-action elements (Ax

and Ax′ ) and two domain-state elements (Sy and S′
y) and to

communicate with other actors via messages. Thus, it focuses
on a part of the domain, and constitutes a part of a collective
solution.

The actor-action vectors α consist of the following actions:
• Write a domain-action suggestion ax in the current location

in the geo;
• Write a message in the current location in the geo;
• Write actor’s reproduction eligibility;
• Move to a geographically adjacent geo location;
• Change the coordinates of the linked location.
• NOP

The actor-state vectors σ consist of the following data:
• Energy e: real ≥ 0;
• Age: integer ≥ 0;
• Reproduction eligibility: True/False;
• Coordinates in the current location: integer x, y, z ≥ 0;
• Message in the current location: [0..1];
• Domain-action suggestion ax in current location: [0..1];
• Domain-state value Sy in the current location: [0..1];
• Coordinates in the linked location: integer x′, y′, z′ ≥ 0;
• Message in the linked location: [0..1];
• Domain-action suggestion ax′ in linked location: [0..1];
• Domain-state value Sy′ in the linked location: [0..1].

Depending on the actor type, actors may choose to keep a
history of actor states and refer to it in their decision making.

Problem-solving Process
Algorithm 1 outlines the DIAS problem-solving process. It
proceeds through time intervals (in the main while loop).
Each interval is one attempt to solve the problem, i.e. a fitness
evaluation of the current system. Each attempt consists of a
number of interactions with the domain (in the inner while
loop) until the domain issues a terminate signal and returns a
domain fitness. The credit for this fitness is assigned to indi-
vidual actors and used to remove bad actors from the popula-
tion and to create new ones through reproduction.

More specifically, during each domain time step t, the cur-
rent domain-state vector S is first loaded into the geo (Step
2.1): Each (x, y, z) location is updated with the domain-state
element Sy . Each actor then takes its current actor state σ
as input and issues an actor action α as its output (Step 2.2).
As a result of this process, some actors will write a domain-
action suggestion ax in their location. A domain-action vector
A is then created (Step 2.3): The suggestions ax are averaged
across all locations with the same x to form its elements Ax.
If no ax were written, Ax(t− 1) is used (with Ax(−1) = 0).
The resulting action vector A is passed to the domain, which
executes it, resulting in a new domain state (Step 2.4).

Algorithm 1: The DIAS problem-solving process
Initialize population; solved=False; interval=0
while interval < maxinterval & ¬ solved do

1. Initialize domain; terminated=False; t=0
2. while t < maxt & ¬ terminated do

2.1 Load S
2.2 for each actor do

input σ
output α

2.3 for each x do
Average ax

2.4 Execute A
2.5 t++

3. Obtain F
4. if ¬ solved then

4.1 for each actor do
Calculate f
Calculate ∆e
if e = 0 then

Remove from population

4.2 Reproduce
4.3 interval++

Actors start the problem-solving process with an initial al-
lotment of energy. After each interval (i.e. domain evalua-
tion), this energy is updated based on how well the actor con-
tributed to the performance of the system during the evalua-
tion (Step 4.1). First, the domain fitness F is converted into
domain impact M , i.e. normalized within [0..1] based on max
and min fitness values observed in the past R evaluations:

M = (F − FminR
)/(FmaxR

− FminR
). (1)

Thus, even though F is likely to increase significantly during
the problem-solving process, the entire range [0..1] is utilized
for M , making it easier to identify promising behavior.

Second, the contribution of the actor to M is measured
as the alignment of the actor’s domain-action suggestions ax
with the actual action elements Ax issued to the domain dur-
ing the entire time interval. In the current implementation,
this contribution c is

c = 1− min
t=0..T

(|Ax(t)− ax(t)|), (2)

where T is the termination time; thus c ∈ [0..1]. The energy
update ∆e, consists of a fixed cost h and a reward that de-
pends on the impact and the actor’s contribution to it. If none
of the actor’s actions were ’write ax(t)’, i.e. the actor did not
contribute to the impact,

∆e = h(M − 1), (3)

that is, the energy will decrease inversely proportional to im-
pact. In contrast, if the actor issues one or more such ’write’
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actions during the interval,

∆e = h(cM(1− c)(1−M)− 1). (4)

In this case, the energy will also decrease (unless M and c
are both either 0 or 1) but the relationship is more complex:
It decreases less for actors that contribute to good outcomes
(i.e. M and c are both high), and for actors that do not con-
tribute to bad outcomes (i.e. the M and c are both low). Thus,
regardless of outcomes, each actor receives proper credit for
the impact. Overall, energy is a measure of the credit each
actor deserves for both leading the system to success as well
as keeping it away from failure. If an actor’s energy drops to
or below zero, the actor is removed from the geo.

For example, if the domain is a reinforcement learning
game, like CartPole, each time interval consists of a num-
ber of left and right domain actions until the pole drops, or
the time limit is reached (e.g. 200 domain time steps). At this
point, the domain issues a termination signal, and the fitness
F is returned as the number of time steps the pole stayed up.
That fitness is scaled to M ∈ [0..1] using the max and min F
during the R = 60, 000 previous attempts. If M is high, ac-
tors that wrote ax values consistently with Ax, i.e. suggested
left or right at least once when those actions were actually is-
sued to the domain, have a high contribution c, and therefore
a small decrease ∆e. Similarly, if the system did not perform
well, actors that suggested left(right) when the system issued
right(left), have a low contribution c and receive a small de-
crease ∆e. Otherwise the ∆e is large; such actors lose energy
fast and are soon eliminated.

After each time interval, a number of new actors are gen-
erated through reproduction (Step 4.2). Two parents are se-
lected from the existing population within each (x, y) column,
assuming the total energy in the column is below a threshold
Emax. If it is not, the agents are already very good, and evo-
lution focuses on columns elsewhere where progress can still
be made, or alternative solutions can be found. In addition, a
parent actor needs to meet a maturity age requirement, i.e. it
must have been in the system for more than V time intervals
and not reproduced for V time intervals. The actor also needs
to have reproduction eligibility in its state set to True.

Provided all the above conditions are met, a proportionate
selection process is carried out based on actor fitness f , cal-
culated as follows. First, the impact variable M is discretized
into L levels: M = {b0, b1.., bL−1}. Then, for each of these
levels bi, the probability pi that the actor’s action suggestions
align with the actual actions when M = bi is estimated as

pi = P (c = 1|M = bi), (5)

where c measures this alignment according to Eq. 2. The
same window of R past intervals is used for this estimation
as for determining the max and min M for scaling the im-
pact values. Finally, actor fitness f is calculated as alignment-

weighted average of the different impact levels bi:

f =

L∑
i=0

pibi. (6)

Thus, f is the assignment of credit for M to individual actors.
Note that while energy measures consistent performance, ac-
tor fitness measures average performance. Energy is thus
most useful in discarding actors and actor fitness in selecting
parents.

Once the parents are selected, crossover and mutation are
used to generate offspring actors. What is crossed over and
mutated depends on the encoding of the actor type; regard-
less, each offspring’s behavior, as well as its linked-location
coordinates, is a result of crossover and mutation. Each pair
of parents generates two offspring, whose location is deter-
mined randomly in the same (x, y) column as the parents.

Note that the parents are not removed from the population
during reproduction, but instead, energy is used as basis for
removal. In this manner, the population can shrink and grow,
which is useful for lifelong learning. It allows reproduction to
focus on solving the current problem, while removal retains
individuals that are useful in the long term. Such populations
can better adapt to new problems and re-adapt to old ones.

Energy, age, and actor fitness for all actors in an (x, y) col-
umn need to be available before reproduction can be done, so
computations within the column must be synchronized in Step
4.2. However, the system is otherwise asynchronous across
the x and y dimensions, making it possible to parallelize the
computations in Steps 2 and 4. Thereby, the system scales to
high-dimensional domains in constant time.

Actor Types
The current version of DIAS employs five different actor
types:

• Random: Selects its next action randomly, providing a
baseline for the comparisons;

• Robot: Selects its next action based on human-defined pre-
programmed rules designed for specific problem domains,
providing a performance ceiling;

• Bandit: Selects its next action using a basic multi-armed
bandit algorithm (not including σ as context);

• Q-Learning: Learns to select its next action using temporal
differences; and

• Rule-set Evolution: Evolves a set of rules to select its next
action.

Simple Q-learning (Watkins and Dayan, 1992) was imple-
mented based on the actor’s state/action history, with the ac-
tor’s energy difference from the prior time interval taken as
the reward for the current interval. Because the dimensional-
ity of the state/action space is limited by design, this method
is a possible reinforcement learning approach.
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Rule-set evolution (Hodjat et al., 2018) was implemented
based on rule sets that consist of a default rule and at least one
conditioned rule. Each conditioned rule consists of a conjunc-
tion of one or more conditions, and an action that is returned
if the conditions are satisfied. Conditions consist of a first and
second term being compared, each with a coefficient that is
evolved. An argument is also evolved for the action. Evo-
lution selects the terms in the conditions from the actor-state
space, and the action from the actor-action space. Rules are
evaluated in order, and shortcut upon reaching the first to be
satisfied. If none of the rules are satisfied, the default action
is returned.

These actor types were evaluated in several standard bench-
marks tasks experimentally, as will be described next.

Experiments
DIAS was evaluated in a number of benchmark problems to
demonstrate the unique aspects of the approach. The system
was shown scalable, general, and adaptable. The dynamics of
the problem-solving process were characterized and shown to
be the source of these abilities.

Test Domains
In the n-XOR domain, the outputs of n independent XOR
gates, each receiving their own input, need to be predicted si-
multaneously. In order to make the domain a realistic proxy
for real-world problems, 10% noise is added to the XOR out-
puts. While a single XOR (or 1-XOR) problem can be solved
by a single actor, solving n > 1 of them simultaneously re-
quires a division of labor over the population. The different
XOR input elements are in different y-locations and the dif-
ferent predicted outputs in different x-locations. With n > 1,
no actor can see or act upon the entire problem. Instead,
emergent coordination is required to find behaviors that col-
lectively solve all XORs. Increasing n makes the problems
exponentially more difficult (i.e. the chance of solving all n
XORs by luck is reduced exponentially with n).

The first set of experiments in the n-XOR domain show that
the DIAS design scales to problems of different dimension-
ality and complexity. The second set shows that DIAS can
adapt to the different n-XOR problems online, i.e. to exhibit
lifelong learning.

Experiments were also run on a number of OpenAI Gym
games, including CartPole, MountainCar, Acrobot, and Lu-
narLander. The same experimental setup was used across
all of them without any hyperparameter tuning. The Ope-
nAI Gym domains thus show that DIAS is a general problem-
solving approach, requiring little or no parameter tuning when
applied to new problems.

Experimental Setup
Each experiment consists of 10 independent runs of up to
200,000 time intervals. For each domain, the number of x-
locations is set to the number of domain actions, and the num-

ber of y-locations to the number of domain states (1, 2 for 1-
XOR; 2, 4 for 2-XOR; 3, 6 for 3-XOR; 2, 4 for CartPole; 3,
2 for MountainCar; 3, 6 for Acrobot; and 3, 6 for LunarLan-
der). The number of z-locations is constant at 100 in all ex-
periments. The initial population for each (x, y) location is
set to 20 actors, placed randomly in z. Each Q-learning actor
is initialized with random Q-values, and each rule-set actor
with a random default rule. The robot and bandit actors have
no random parameters, i.e. they are all identical.

The range R used for scaling domain fitnesses to impact
values was 60,000 intervals, and the impact M was dis-
cretized into 21 levels {0, 0.05, .., 0.95, 1} in calculating actor
fitness. Each actor started with an initial energy of 100 units,
with a fixed cost h = 2 units at each time interval. The energy
threshold Emax for reproduction in each (x, y) column was
set to the initial energy, i.e. 20 * 100 = 2000 (note that while
each actor’s energy decreases over time, population growth
can increase total energy). Reproduction eligibility was set to
True at birth, and the reproduction maturity requirement V to
20. Small variations to this setup lead to similar results. In
contrast, each of the main design choices of DIAS is impor-
tant for its performance, as verified in extensive preliminary
experiments.

Each experiment can result in one of three end states: (1)
the actor population solves the problem; (2) all actors run out
of energy before solving the problem and the actor population
goes extinct; and (3) the actor population survives but has not
solved the problem within the maximum number of time in-
tervals. In practice, it is possible to restart the population if
it goes extinct or does not make progress in F after a certain
period of time. Restarts were not implemented in the experi-
ments in order to evaluate performance more clearly.

For comparison, direct evolution of rule sets (DE) was also
implemented in the DIAS framework. The setup is otherwise
identical, but a DE actor receives the entire domain state vec-
tor S as its input and generates the entire domain action vector
A as its output. DE therefore does not take advantage of col-
lective problem solving. A population of 100 DE actors is
evolved for up to 100,000 time intervals through a GA with F
as the individual fitness, tournament selection, 25% elitism,
and the same crossover and mutation operators as in DIAS.

Comparing Actor Types
The five actor types described above were each tested in pre-
liminary experiments on 1-XOR, using the same settings.
These results demonstrate that collective behavior resulting
from the DIAS framework can successfully solve these do-
mains.

The Robot actor specifically written for 1-XOR solves it
from the first time interval. Similarly, a custom-designed
Robot actor is always successful in the CartPole domain. On
the other hand, Random, Bandit, and Simple Q-Learning were
not able to solve 1-XOR at all: Each attempt leads to extinc-
tion in under 350 time intervals. While it is possible that these
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Figure 2: Number of time intervals needed to solve the 1-XOR (left), 2-XOR (middle) and 3-XOR (right) problems in 10
independent runs. No runs lead to extinction (they would have been shown with red bars), though some do not completely solve
the problem within the allotted 200,000 time intervals (these runs are shown with blue bars). These experiments show that the
DIAS framework scales naturally to problems with increasing dimensionality and complexity.

ancestor_count=1065
action counts={decrease_linked_location_y: 55, write: 19}
total_potential_contribution_count=19
total_contribution_count=19
impact_contribution_probabilities=1.0:1.0
state={energy: 66.0; age: 74;

reproduction_eligibility: True;
own_location_coordinates 0, 1, 18;
own_location_message: 0;
own_location_domain_action: None;
own_location_domain_state: 0;
linked_location_coordinates: 0, 1, 19;
linked_location_message: 0;
linked_location_domain_action: None;
linked_location_domain_state: 0;

Rule1<49>: (0.21*y <= 0.62*linked_location_domain_state)
--> decrease_linked_location_y(0.10)

Rule2<0>: (0.9*own_location_domain_state
> 0.15*reproduction_eligibility)&

(0.21*y <= 0.62*linked_location_domain_state)&
(0.21*y < 0.62*linked_location_domain_state)
--> decrease_linked_location_y(0.10)

Rule3<6>: (0.90*own_location_domain_state
> 0.15*reproduction_eligibility)

--> decrease_linked_location_y(0.10)
Rule4<0>: (0.21*y < 0.62*linked_location_domain_state)

--> decrease_linked_location_y(0.10)
Deflt<19>: --> write(0.93)

Figure 3: An example actor that solves the 1-XOR prob-
lem, consisting of a number of metrics, current state, and
a set of rules. The ’write’ action writes its argument in the
own location domain action field as the actor’s suggested
domain action ax. Even though the rules explicitly describe
the actor’s behavior, it is not possible to tell from this one
actor what the solution to the complete problem is. The actor
does not see the whole problem or determine the outcome
alone: The population as a whole collectively solves it.

actors could solve simpler problems, the search space for 1-
XOR is apparently already too large for them. Therefore, the
main experiments focus on the Rule-set Evolution actor type.

Scaling to Problems of Varying Complexity

The first set of main experiments showed that the DIAS pop-
ulation solves n-XOR with n =1, 2, and 3 reliably (Fig. 2).
Even with 10 percent reward noise, the system is resilient and
the population collectively achieves the best possible reward,
even if it is not constant over time. In comparison, while DE
solved the 1-XOR in less than 10,000 time intervals in nine of

10 runs, only three runs solved the 2-XOR and none solved
the 3-XOR within 100,000 time intervals. These results show
that DIAS provides an advantage in scaling to problems with
higher dimensionality and complexity.

The success was due to emergent collaborative behavior of
the actor population. This result can be seen by analyzing the
rule sets that evolved, for example that of the actor from a
population that solved the 1-XOR problem, shown in Fig. 3.
This actor is number 1065 in its lineage. It has contributed to
the domain action 19 times, and all 19 times, its contribution
has been in line with the domain action issued. Therefore, the
vector of alignment probabilities pi at each impact level i has
only one element: The probability is 1.0 for the impact level
of 1.0. Its current state is high in energy for its age, suggesting
that it has contributed well. Its current linked location has null
values in message, domain-action, and domain-state fields.

In terms of rules, the second and fourth are redundant, and
never fired (redundancy is common in evolution because it
makes the search more robust). Rule 1 fired 49 times, Rule 3
six times, and the default rule 19 times. Rules 1 and 3 perform
a search for a linked location that has a large enough domain-
state value: They decrease the y-coordinate of the linked lo-
cation whenever they fire. If such a location is found (Rule 1),
and its own domain-state value is high enough (Rule 3), 0.93
is written as its suggested domain action ax (Default rule).
An ax > 0.5 denotes a prediction that the XOR output is 1,
while ax ≤ 0.5 suggests that it is 0; therefore, this actor con-
tributes to predicting XOR output 1. Other actors are required
to generate the proper domain actions in other cases. Thus,
problem solving is collective: Several actors need to perform
compatible subtasks in order to form the whole solution.

Solving Different Kinds of Problems
The second set of main experiments was designed to demon-
strate the generality of DIAS, i.e. that it can solve a number
of different problems out of the box, with no change to its set-
tings. CartPole, MountainCar, Acrobot, and LunarLander of
OpenAI Gym were used in this role because they represent a
variety of well-known reinforcement-learning problems.

DIAS was indeed able to solve each of these problems
without any customization, and with the same settings as the
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Figure 4: Solving different kinds of problems in the OpenAIGym domain. Results of 10 runs in the MountainCar (left),
LunarLander (second from left), CartPole (second from right), and Acrobot (right) problems are shown. Again, no runs resulted
in extinction, although some MountainCar and Cartpole runs did not completely solve the problem within the allotted maximum
number of time intervals. Notably, DIAS solves all these problems, as well as all other domains in the paper, with the same
hyperparameter and experimental settings, demonstrating the generality of the approach.

Figure 5: Population dynamics in a sample run of the
CartPole problem, showing progression of domain fitness F
(the number of time steps the pole stays upright; top), number
of live actors (middle), and the number of reproductions
(bottom) at each time interval. The reproductions drop and
the population becomes relatively stable during periods when
the ecosystem finds a peak in F ; however, these peaks are
unstable and the population eventually moves on to explore
other solutions. Such dynamics make it possible to not only
find solutions to the current problem, but to also adapt rapidly
to changing domains and new problems.

n-XOR problems (Fig. 4). A histogram of the population dy-
namics as the ecosystem evolves to a solution is shown in Fig.
for the CartPole problem. The system gradually finds higher
domain fitness peaks, and every time it does so, the number of
reproductions drop and the population stabilizes. In this man-
ner, DIAS is trying out different equilibria, eventually finding
one that implements the best solution.

Adapting to Changing Problems
A third set of experiments were run in the n-XOR domain to
demonstrate the system’s ability to switch between domains
mid-run. The run starts by solving the 1-XOR problem; then
the problem switches to 2-XOR, 3-XOR, and back to 1-XOR
again. Note that the max domain fitness level also changes

mid-run as problems are switched. These switches require the
geo to expand and retract, as the dimension of x (i.e. number
of domain actions) and y (number of domain states) are differ-
ent between problems. This change, however, does not affect
the actors, whose action and state spaces remain the same.
When retracting, actors in locations that no longer exist are
removed from the system. When expanding, new actors are
created in locations (i, j, k) with i > x and/or j > y by du-
plicating the actor in location (imod x, j mod y, k), if any.

The results of 10 such runs are shown in Fig. 6. In seven
of these runs, DIAS was able to solve the entire sequence of
problems. Most interestingly, the time it needed for subse-
quent problems often became shorter. For example Run 1
took 55,574 time intervals to solve the 1-XOR problem, an-
other 35,363 to solve the 2-XOR, and 36,690 more to solve
the 3-XOR. Then, switching back to the 1-XOR problem, a
solution was found within a mere 51 time intervals. These re-
sults demonstrate that DIAS is able to adapt to new problems
quickly, retain information from earlier problems, and utilize
it in later problems.

In contrast, while DE solved the 1-XOR fast in the begin-
ning and end of each sequence, none of its 10 runs were able
to adapt to 2-XOR and 3-XOR mid-run. Also, it did not solve
the second 1-XOR any faster than the first one.

These experiments thus show that the collective problem
solving in DIAS is essential for solving new problems con-
tinuously as they appear, and for retaining the ability to solve
earlier problems. In this sense, it demonstrates an essential
ability for continual, or lifelong, learning. It also demon-
strates the potential for curriculum learning for more complex
problems: The same population can be set to solve domains
that get more complex with time. Such an approach may have
a better chance of solving the most complex problems than
one where they are tackled directly from the beginning.

Discussion and Future Work
The experimental results with DIAS are promising: They
demonstrate that the same system, with no hyperparameter
tuning or domain-dependent tweaks, can solve a variety of
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Figure 6: Adapting to changing problems. Ten runs of DIAS (left) and DE (right) are shown where the problem switched from
1-XOR to 2-XOR, 3-XOR, and back to the 1-XOR as soon as the problem was solved or 100,000 time intervals passed (dashed
line). DIAS was able to adapt to new problems quickly, solve new problems quicker, and particularly quickly when returning to
1-XOR. In contrast, while DE solved the first 1-XOR quickly, it was not able to adapt to 2-XOR nor 3-XOR mid-run, and it did
not solve the second 1-XOR faster than the first. Thus, collective problem solving in DIAS provides a significant advantage in
adapting to new problems, i.e. in lifelong learning.

domains, ranging from classification to reinforcement learn-
ing. The results also demonstrate ability to switch domains in
the middle of the problem-solving process, and potential ben-
efits of doing so as part of curriculum learning. The system is
robust to noise, as well as changes to its domain-action space
and domain-state space mid-run.

The most important contribution of this work is the in-
troduction of a common mapping between a domain and an
ecosystem of actors. This mapping includes a translation of
the state and action spaces, as well as a translation of domain
rewards to the actors contributing (or not contributing) to a
solution. It is this mapping that makes collective problem
solving effective in DIAS. With this mapping, changes to the
domain have no effect on the survival task that the actors in
the ecosystem are solving. As a result, the same DIAS system
can solve problems of varying dimensionality and complex-
ity, solve different kinds of problems, and solve new problems
as they appear, and do it better than DE can.

In this process, interesting collective behavior analogous
to biological ecosystems can be observed. Most problems are
being solved through emergent cooperation among actors (i.e.
when x and/or y-dimensionality > 1). Problem solving is also
continuous: The system regulates its population, stabilizing
it as better solutions are found. Because of this cooperative
and continual adaptation, it is difficult to compare the exper-
imental results to those of other learning systems. Solving
problems of varying scales, different problems, and tracking
changes in the domain generally requires domain-dependent
set up, discovered through manual trial and error. A com-
pelling direction for the future is to design benchmarks for

domain-independent learning, making such comparisons pos-
sible and encouraging further work in this area.

In the future, a parallel implementation of DIAS should
speed up and scale up problem-solving. It would be possible
to run DIAS with larger search spaces in reasonable time. For
high-dimensional domain-state and domain-action spaces, it
may also be possible to fold the axes of the geo so that a sin-
gle (x, y) location can refer to more than one state or action in
the domain space. This generalization, of course, would come
at the expense of larger actor-action and actor-state space be-
cause each location would now have more than one value for
domain state and action, but it could make it faster with high-
dimensional domains. Another potential improvement is to
design more actor types. While rule-set evolution performed
well, it is a very general method, and it may be possible to de-
sign other methods that more rapidly and consistently adapt
to specific problem domains as part of the DIAS framework.

Conclusion
DIAS is a domain-independent problem-solving system that
can address problems with varying dimensionality and com-
plexity, solve different problems with little or no hyperparam-
eter tuning, and adapt to changes in the domain, thus im-
plementing lifelong learning. These abilities are based on
artificial-life principles, i.e. collective behavior of a popula-
tion of actors in a spatially organized geo, which forms a
domain-independent problem-solving medium. Experiments
with DIAS demonstrate an advantage over a direct problem-
solving approach, thus providing a promising foundation for
scalable, general, and adaptive problem solving in the future.

8



References
Ackley, D. and Small, T. (2014). Indefinitely scalable computing=

artificial life engineering. In ALIFE 14: The Fourteenth Inter-
national Conference on the Synthesis and Simulation of Living
Systems, pages 606–613. MIT Press.

Bansal, J. C., Singh, P. K., and Pal, N. R. (2019). Evolutionary and
swarm intelligence algorithms, volume 779. Springer.

Della Penna, G., Magazzeni, D., Mercorio, F., and Intrigila, B.
(2009). UPMurphi: A tool for universal planning on PDDL+
problems. In Proc. International Conference on Automated
Planning and Scheduling. 19:106–113.

Deng, W., Xu, J., and Zhao, H. (2019). An improved ant colony op-
timization algorithm based on hybrid strategies for scheduling
problem. IEEE Access, 7:20281–20292.

Eiben, A. E. and Smith, J. E. (2015). Introduction to Evolutionary
Computing. Springer.

Gershenson, C., Trianni, V., Werfel, J., and Sayama, H. (2018). Self-
organization and artificial life: A review. arXiv:1804.01144.

Hodjat, B. and Shahrzad, H. (1994). Introducing a dynamic problem
solving scheme based on a learning algorithm in artificial life
environments. Proceedings of 1994 IEEE International Con-
ference on Neural Networks, 4:2333–2338.

Hodjat, B., Shahrzad, H., Miikkulainen, R., Murray, L., and Holmes,
C. (2018). PRETSL: Distributed probabilistic rule evolution
for time-series classification. In Genetic Programming Theory
and Practice XIV, pages 139–148. Springer.

Hutter, M. (2000). A theory of universal artificial intelligence based
on algorithmic complexity. arXiv:cs-ai-0004001.

Krejca, M. S. and Witt, C. (2020). Theory of estimation-of-
distribution algorithms. In Theory of Evolutionary Computa-
tion, pages 405–442. Springer.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT
Press, Cambridge, MA.

Rodriguez, A. and Reggia, J. A. (2004). Extending Self-Organizing
Particle Systems to Problem Solving. Artif. Life, 10:379–395.

Sengupta, S., Basak, S., and Peters, R. (2018). Particle swarm opti-
mization: A survey of historical and recent developments with
hybridization perspectives. Machine Learning and Knowledge
Extraction, 1(1):157–191.

Stern, R. (2019). Domain-dependent and domain-independent prob-
lem solving techniques. In IJCAI, pages 6411–6415.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning,
8(3):279–292.

9


