
Distributed Age-Layered Novelty Search

Babak Hodjat1, Hormoz Shahrzad1, and Risto Miikkulainen1,2

1Sentient Technologies, Inc.
2The University of Texas at Austin

babak,hormoz,risto.miikkulainen@sentient.ai

Abstract

Novelty search is a powerful biologically motivated method
for discovering successful behaviors especially in deceptive
domains, like those in artificial life. This paper extends the
biological motivation further by distributing novelty search
to run in parallel in multiple islands, with periodic migration
among them. In this manner, it is possible to scale novelty
search to larger populations and more diverse runs, and also
to harness available computing power better. A second exten-
sion is to improve novelty search’s ability to solve practical
problems by biasing the migration and elitism towards higher
fitness. The resulting method, DANS, is shown to find bet-
ter solutions much faster than pure single-population novelty
search, making it a promising candidate for solving deceptive
design problems in the real world.

Introduction
Novelty search is a new approach to population-based search
motivated by the creativity and diversity of biological evo-
lution (Stanley and Lehman, 2015; Lehman and Stanley,
2010a). Instead of optimizing a fitness objective, novelty
search maximizes phenotypical diversity. Individuals are
seeking novel niches to fill, developing emergent problem-
solving abilities in the process. Novelty search is partic-
ularly powerful in domains that are deceptive, where it is
necessary to discover low-fitness stepping stones first before
actual solutions can be reached. Many tasks in artificial life
are deceptive in this way, including behaviors that require
developing learning, memory, and communication abilities
(Lehman and Miikkulainen, 2014). Novelty search is thus
a promising approach to constructing complex behavior in
artificial life domains.

This paper aims to improve novelty search as a general
problem-solving method in two ways. First, a distributed
version of novelty search is developed. The idea is that
search progresses in parallel in separate islands, and the best
(i.e. most novel) individuals are periodically exchanged be-
tween them. Such a distribution is motivated by biological
evolution, potentially leading to an implementation that can
account for biological phenomena more accurately. It is also
a well known diversity-maintenance technique in evolution-
ary algorithms in general (Whitley et al., 1999). However,

the main motivation in this paper is to make novelty search
computationally more powerful. Distribution makes it pos-
sible to scale novelty search to a much larger pool of indi-
viduals, and to take advantage of diversity between differ-
ent novelty search runs. It also makes it possible to har-
ness available parallel computing resources to serve novelty
search. It therefore makes it possible to use novelty search
to solve harder problems faster.

Second, a principled way of guiding novelty search to-
wards high-fitness solutions is developed. Novelty is still
the primary selection mechanism, but fitness is used to bias
the process in two ways: (1) by migrating only the most fit
individuals across the islands, and (2) by selecting the more
fit of two similar individuals into the elitist pool. Such sub-
tle biases do not prevent novelty search from creating and
retaining novel individuals, but they make it more likely to
create individuals that are solutions to the given problem.

Together these two extensions result in a powerful version
of novelty search that can be used to solve difficult design
problems in the real world. As a demonstration, in this pa-
per they were implemented in an existing distributed evolu-
tion system called EC-Star (O’Reilly et al., 2013). This hub-
and-spoke architecture manages a number of clients running
separate evolutionary searches. A key feature of EC-Star is
age-layering (Hodjat and Shahrzad, 2013): candidates are
first evaluated in a small number of samples, and if they are
promising, with more samples. Age-layering makes evolu-
tion more efficient, decreasing run times an order of magni-
tude or more (Shahrzad et al., 2016). It is also well-suited for
evaluating novelty across many separate novelty searches.

The resulting method, Distributed Age-Layered Novelty
Search, or DANS, is demonstrated on two challenging engi-
neering design tasks: the 11-bit multiplexer, and the eight-
input sorting network. The results show that DANS can find
better solutions much faster than single-population novelty
search. It is therefore a promising artificial life approach for
solving deceptive problems in the real world.



Background and Related Work
The idea of divergent search, of which novelty search is an
example, is first discussed, followed by existing work on
combining novelty with fitness. The distributed evolution
platform of EC-Star with age-layering, used to implement
DANS, is then reviewed.

Objective vs. Divergent Search
In the traditional objective-based search, a population of
candidate solutions are evolved to maximize a specific mea-
sure, or objective, called a fitness function. Individuals are
selected for reproduction, and offspring are accepted into
the population, if they score high in that function. The idea
is that evolution thus gradually discovers better and better
individuals, until it finds some that optimize the chosen ob-
jective.

Even though objective-based search is effective in many
cases, there are two problems with it that are especially rel-
evant in artificial life. First, it is not always clear how the
objective function should be defined. The desired behavior
may consist of many aspects that interact (such as speed, en-
ergy consumption, effectiveness, quality of the result), and
some of them may be difficult to express formally (such as
believability, creativity, elegance). Second, the domains are
often deceptive, i.e. optimization requires creating individu-
als that do not perform well, but can serve as stepping stones
in constructing those that do. This effect can be seen in many
cognitive tasks that require memory, learning, or communi-
cation (Lehman and Miikkulainen, 2014), but it is also clear
in the process of creating interesting images (Secretan et al.,
2011).

Divergent search methods have recently emerged, mostly
in the field of artificial life, as a potential solution to these
issues. The idea is not to incrementally approach an op-
timum of a specified fitness function, but instead create as
much diversity in the search as possible. This idea has
been expressed in several forms, including empowerment
(Salge et al., 2013), entropy maximization (Wissner-Gross
and Freer, 2013), and behavioral diversity (Mouret and Don-
cieux, 2012). The particular formulation used in this paper
is novelty search (Stanley and Lehman, 2015; Lehman and
Stanley, 2010a), where individuals are rewarded based on
how different they are from other individuals encountered
so far. The novelty ρ for an individual x is defined as

ρ(x) =
1

k

k∑
i=0

dist(x, µi), (1)

where µi is the ith nearest neighbor of x according to the dis-
tance metric dist. Note that distance is measured in the phe-
notypic, i.e. behavioral, space, not in the genotypic space.
The motivation comes from biology: behavioral niches that
are novel will survive, regardless of what their genetic cod-
ing is.

Novelty search can be surprisingly effective in solving
problems, especially those that are deceptive. For instance,
evolving a robot to run through a simulated maze, using dis-
tance to the goal as the fitness, is easy if the maze is rela-
tively simple. However, dead ends close to the goal make
it deceptive, and objective-based search often gets stuck. In
contrast, novelty search will create individuals that explore
all the different parts of the maze, and eventually will find a
way to the goal even though such solutions require traveling
away from it occasionally (Lehman and Stanley, 2010a).

Novelty search also provides an interesting abstraction of
biological evolution. There is no specific goal in biologi-
cal evolution; instead individuals and species survive if they
find a niche that they can exploit. Life therefore rapidly
spreads through the available niches, leading to species that
are highly adapted to their environment, and to tremendous
diversity overall. Extinction events can serve to accelerate
this process by selecting for highly evolvable individuals and
species (Lehman and Miikkulainen, 2015).

One aspect of biological novelty search that is not cap-
tured by current methods is that such search takes place si-
multaneously and in parallel across the space of solutions.
Individuals and species do not necessarily compete with ev-
eryone in that space, but with those that are local to them. In
other words, biological novelty search is distributed. It may
result in discovering similar individuals multiple times, but
it may also result in discovering more diverse individuals.
This distribution is the first design principle of DANS in this
paper.

Combining Novelty and Fitness
The second design principle of DANS is incorporating fit-
ness as a component into divergent search. Even though
biology may not have a goal, engineering problem solving
does. At the very least there needs to be a mechanism for
detecting viable solutions produced by the divergent search,
but there may be a benefit in guiding it as well. Diversity
and novelty is necessary for discovering the stepping stones,
but since we know what we ultimately want to achieve, it
may be possible to guide the search towards promising ar-
eas, without diluting its power.

Several approaches for combining fitness and novelty
have been proposed, and shown to be effective in solving
practical problems (Gomes et al., 2015). Many of them com-
bine a fitness objective with a novelty objective in some way,
for instance as a weighted sum (Cuccu and Gomez, 2011),
or as different objectives in a multi-objective search (Mouret
and Doncieux, 2012). Another approach is to keep the two
kinds of search separate, and make them interact through
time. For instance, it is possible to first create a diverse pool
of solutions using novelty search, presumably overcoming
deception that way, and then find solutions through fitness-
based search (Krcah and Toropila, 2010). A third approach
is to run fitness-based search with a large number of objec-



tive functions that span the space of solutions, and use nov-
elty search to encourage search to utilize all those functions
(Cully et al., 2015; Mouret and Clune, 2015; Pugh et al.,
2015). A fourth category of approaches is to run novelty
search as the primary mechanism, and use fitness to select
among the solutions. For instance, it is possible to add local
competition through fitness to novelty search (Lehman and
Stanley, 2011). Another version is to accept novel solutions
only if they satisfy minimal performance criteria (Lehman
and Stanley, 2010b; Gomes et al., 2013).

This paper advances the techniques for combining novelty
and fitness in this fourth category, in two ways. First, novelty
search is run in each of the parallel and distributed clients,
but periodically their most novel solutions are harvested at
the system level for those that are the most fit—they are
then injected into the populations of the parallel searches to
bias them towards high fitness. This approach is an exten-
sion that utilizes the distributed nature of DANS. Second,
in selecting an individual to keep from the least novel pair,
each client search prefers the fitter choice, creating a fitness
bias within each search. The results show that the result-
ing fitness-biased novelty search is more powerful than the
standard version.

Distributed Evolution Through EC-Star and Age
Layering
Age-layered fitness calculation is an approach suitable for
data problems in which evolved solutions need to be applied
to many fitness samples in order to measure a candidates fit-
ness confidently (Hodjat and Shahrzad, 2013). Age layering
is an elitist approach: best candidates of each generation are
retained to be run on more fitness cases to improve confi-
dence in the candidates fitness. The number of fitness eval-
uations (i.e. samples shown) in this method depends on the
relative fitness of a candidate solution compared to others at
the current state of the search.

Note that this age-layering technique is distinctly differ-
ent from similarly named Age-Layered Population Structure
(ALPS) method (Hornby, 2006). ALPS partitions popula-
tions into layers according to generations, with the main goal
of maintaining diversity. Age layering in this paper is more
closely related to the Early Stopping method in evolutionary
robotics, where a complex evaluation is terminated if it is
guaranteed not to produce offspring even if evaluated fully
(Nolfi and Floreano, 2000; Bongard and Hornby, 2010; Bon-
gard, 2011).

EC-Star (O’Reilly et al., 2013) is a massively distributed
evolutionary platform that uses age-varying fitness as the ba-
sis for distribution, and thus makes it possible to distribute
large data problems through sampling, hashing, and fea-
ture reduction techniques. The available data is divided into
smaller chunks, each contributing to the overall evaluation
of the candidates.

In EC-Star, age is defined as the number of fitness samples

upon which a candidate has been evaluated. EC-Star uses a
hub-and-spoke architecture for distribution, where the main
evolutionary process is moved to the processing clients (Fig-
ure 1). Each client, or Evolution Engine, has its own pool
and independently runs through the evolutionary cycle. At
each new generation, an Evolution Engine submits its fittest
candidates to the server, or Evolution Coordinator, for con-
sideration. The submission takes place typically after each
candidate has been evaluated on fixed number of samples,
called the maturity age.

The Evolution Coordinator maintains a list of the best
candidates so far. EC-Star achieves scale through making
copies of genes at the server, sending them to Evolution
Engines for aging, and merging the aged results reported
back by the Evolution Engines. This process also allows
the spreading of the fitter genetic material. EC-Star is mas-
sively distributable by running each Evolution Engine on a
processing node (e.g. CPU) possibly with limited bandwidth
and occasional availability (Hodjat et al., 2014). Typical
runs utilize hundreds of thousands of processing units span-
ning across thousands of geographically dispersed sites.

In the Evolution Coordinator, only candidates of the same
age-range are compared with one another (i.e. they are age-
layered). Each age-range has a fixed quota, and a “shadow”
of a candidate that has aged out of an age-layer is retained
as a placeholder for filtering incoming candidates. In this
manner, unreliable estimates do not dominate the evaluation
process.

EC-Star with Age Layering is well suited for implement-
ing DANS, as will be described next.

Distributed Age-Layered Novelty Search
In the DANS approach, the Evolution Engines (clients) are
configured to use novelty search for their parent selection,
while the Evolution Coordinator (servers) continues to make
use of fitness to decide which individuals to allow in the
server pool. Evolution Engines still receive individuals from
Evolution Coordinators for aging, and these individuals are
added to the local elitist pool, participating as parents in cre-
ating the next generation. Each Evolution Engine, however,
solely operates on the basis of novelty rather than fitness,
selecting the most novel individuals in the local pool as par-
ents. The algorithm running in each Evolution Engine is
summarized in Table 1.

For each sample in the data set, a hash representation of
each individuals’ behavior is logged. Each individual re-
ceives a sample from the data set as its input and generates
an output that defines the action to be executed. For ex-
ample, in the 11-multiplexer problem, where there are eight
actions, each referring to one of the data bits in the multi-
plexer, the behavior logged is the address of the data bit that
the individual outputs for the given input.

After maturity age, individuals judged to be the most
novel are selected for the elitist pool. Instead of a global



Figure 1: Implementation of Distributed Age-Layered Nov-
elty Search (DANS) on the EC-Star System. DANS consists
of a number of Evolution Engines running novelty search
and a single Evolution Coordinator in a hub-and-spoke ar-
rangement. Each candidate in each Evolution Engine is eval-
uated with a fixed number of samples (called the maturity
age); each Engine then sends their most novel individuals
to the Evolution Coordinator. The Coordinator maintains a
list of these highly novel individuals ordered by fitness, and
sends the most fit ones back to other Evolution Engines for
further evaluation (i.e. aging) and evolution. In this man-
ner, multiple novelty searches execute in parallel, exploring
the space with more diversity, benefiting from each other’s
discoveries, biased towards areas with higher fitness.

archive, novelty is measured in the current population so
that every individual’s behavior log is based on the same
set of examples. Using this log as Cartesian coordinates,
Euclidean distances between individuals are calculated, and
one of the individuals in the pair of individuals nearest one
another is eliminated. This process is repeated until the
quota for parents in the elitist pool is met. The resulting
set of parents is then used to create the next generation.

Two different versions are implemented in forming the
elitist pool. The first one is based purely on novelty: in the
pair of most similar individuals, the one that’s nearer to at
least one of the other individuals in the pool is removed.
The second one is based partly on fitness: in that pair, the
one with the lower fitness is removed, thus subtly biasing
the system to favor genes with better fitness. These two ver-
sions, called Pure Novelty and Hybrid, will be compared in
the experiments that follow.

1. Receive a batch of individuals from the Evolution Co-
ordinator.

2. If pool has capacity, fill it with randomly generated
individuals.

3. Test each individual in the pool on a maturity-age
number of fitness samples (each individual is run on
the same sample as the others), and construct the rep-
resentation of its behavior.

4. The individuals received from Coordinator have now
been evaluated with more samples than before: report
the results back to the Coordinator.

5. Calculate the minimum of pair-wise distances of all
individuals in the pool and discard one of that pair
based on distance from all other genes (the pure-
novelty version), or fitness (the hybrid novelty/fitness
version). Do this until only the elitist percentage of
individuals remain.

6. Report the most novel individuals (i.e. the elitists from
prior step) to the Coordinator.

7. Refill the pool by applying crossover and mutation
operators on the elitist genes from Step 5.

8. Go to 1.

Table 1: The Evolution Engine Algorithm, i.e. the sequence
of steps in advancing evolution for one generation.

Experiments
DANS was tested on two practical design optimization prob-
lems: the 11-Multiplexer and the eight-input sorting net-
work. Each problem is described first, with its experimental
setup, and then results.

The 11-Multiplexer Domain
Multiplexer functions have long been used to evaluate ma-
chine learning methods because they are difficult to learn
but easy to check. In general, the input to the multi-
plexer function consists of u address bits Av and 2u data
bits Dv , i.e. it is a string of length u + 2u of the form
Au−1...A1A0D2u−1 ...D1D0. The value of the multiplexer
function is the value (0 or 1) of the particular data bit that is
singled out by the u address bits. For example, for the 11-
Multiplexer, where u = 3, if the three address bits A2A1A0

are 110, then the multiplexer singles out data bit number 6
(i.e. D6) to be its output (Figure 2).

A Boolean function with u + 2u arguments has 2u+2u

rows in its truth table. Thus, the sample space for the
Boolean multiplexer is of size 2u+2u . When u = 3, the
search space is of size 22

11

= 22048 ≈ 10616. However,
since evolution can also generate redundant expressions that
are all logically equal, the real size of the search space can
be much larger, depending on the representation.

Following prior work on the 11-Multiplexer problem
(Shahrzad and Hodjat, 2015), a rule-based representation
was used where each candidate specifies a set of rules of



Figure 2: The 11-Multiplexer. The three address bits (top)
specify one of the eight data bits (bottom) whose value will
then be output. Multiplexers are a good test domain for de-
sign optimization because the search space is very large, but
it is easy to check whether a design is valid.

the type

< rule > ::= < conditions > → < action > .

The conditions specify values on the bit string and the action
identifies the index of the bit whose value is then output. For
instance, the following rule outputs the value of data bit 6
when the first three bits are 110:

< A0 = 0 & A1 = 1 & !A2 = 0 > → D6.

These rules are evolved through the usual genetic operators
in genetic programming (Berlanga et al., 2010).

In the 11-multiplexer experiments, each evolution engine
has a pool size of 4000, an elitist percentage of 5%, and a
maturity age of 128. That is, in each generation, each of the
4000 candidates is evaluated once with 128 randomly cho-
sen multiplexer input samples, for a total of 512,000 evalu-
ations per generation. At the top age-layer each candidate
has thus seen 2048 samples. Crossover combines subsets of
rules of each parent; mutations modify components of each
rule. Fitness is defined as the number of samples an individ-
ual processes correctly, outputting the value of the data bit
specified by the address bits in the 11-bit input sample. The
novelty measure is the data bit address outputted by the in-
dividual for each sample. Each evolution is run until a valid
multiplexer is found, i.e. one that outputs the correct bit for
every possible combination of address bits.

Experiments were run comparing non-distributed runs to
distributed runs with eight evolution engines per run. Two
versions of distributed runs were compared: those with
pure-novelty elitism, and those with hybrid novelty/fitness
elitism. The non-distributed runs were implemented as hy-
brid runs on a single evolution engine, using the same pa-
rameters as the distributed version. Each experiments was
repeated ten times, and the results averaged.

Figure 3: Performance of Hybrid and Pure-Novelty DANS
vs. Non-Distributed Novelty Search on the 11-Multiplexer
Problem. The plot shows the average and standard deviation
of number of generations to find a valid solution. DANS sig-
nificantly outperforms non-distributed novelty search, and
the hybrid version of DANS the pure novelty version. The
speedup is approximately linear in Evolution Engines, sug-
gesting that DANS is an effective way to parallelize novelty
search.

11-Multiplexer Results
The results are summarized in the bar graph shown in Fig-
ure 3. The main conclusion is that DANS significantly out-
performs the non-distributed runs; within DANS, the hybrid
elitism outperforms pure novelty. The hybrid version found
a valid solution in 27.5 generations on average, pure novelty
in 89.1 generations, and non-distributed evolution in 242.2
generations. Thus, distribution across the eight Evolution
Engines makes evolution more reliable and speeds it up sig-
nificantly, i.e. approximately linearly in the number of Evo-
lution Engines.

The Sorting Network Domain
The second experimental domain is minimization of eight-
input sorting networks. A sorting network of n inputs is a
fixed layout of comparison-exchange operations (compara-
tors) that sorts all inputs of size n (Figure 4; Knuth 1998).
Since the same layout can sort any input, it represents an
oblivious or data-independent sorting algorithm, that is, the
layout of comparisons does not depend on the input data.
The resulting fixed communication pattern makes sorting
networks desirable in parallel implementations of sorting,
such as those in graphics processing units, multi-processor
computers, and switching networks (Kipfer et al., 2004;
Baddar, 2009; Valsalam and Miikkulainen, 2013).

Beyond validity, the main goal in designing sorting net-
works is to minimize the number of layers, because it deter-
mines how many steps are required in a parallel implemen-
tation. A tertiary goal is to minimize the total number of
comparators in the networks. Designing such minimal sort-



Figure 4: A Four-Input Sorting Network. This network
takes as its input (left) four numbers, and produces output
(right) where those number are sorted (small to large top to
bottom). Each comparator (connection between the lines)
swaps the numbers on its two lines if they are not in order,
otherwise it does nothing. This network has four layers and
five comparators, and is the minimal four-input sorting net-
work. Minimal networks are generally not known for input
sizes larger than eight, and designing them is a challenging
optimization problem.

ing networks is a challenging optimization problem that has
been the subject of active research since the 1950s (Knuth,
1998). Although the space of possible networks is infinite, it
is relatively easy to test whether a particular network is cor-
rect: If it sorts all combinations of zeros and ones correctly,
it will sort all inputs correctly (Knuth, 1998). Sorting net-
works are therefore a good domain to test the power of evo-
lutionary algorithms; indeed many of the recent advances
in sorting network design are due to evolutionary methods
(Valsalam and Miikkulainen, 2013). The eight-input case is
a good test case because the optimal network is known: it
has six layers and 19 comparators (Knuth, 1998).

The sorting network representation for DANS is built on
the rule-set representation of the 11-multiplexer. Each rule
represents a layer of comparators; each condition within
each rule identifies the input lines of the comparator; the
action is not used. In this manner, it is possible to evolve
sorting networks using the same methodology as for evolv-
ing rule sets. As a matter of fact, all Evolution Engine set-
tings are the same as for the 11-Multiplexer experiments. In
particular, the maturity age is 128 samples and the individu-
als in the top age layer have been tested with 2048 random
samples.

The fitness of the network is primarily based on its ability
to sort correctly, secondarily by the number of layers, and
tertiarily by the number of comparators:

F = aS − (2nL+ C), (2)

where a is a proportionality constant (10000 ∗ 216 in these
experiments), S is the number of samples the network sorts
correctly, n is the number of lines (8 in these experiments),
L is the number of layers, and C is the number of compara-
tors in the network. Because all three of these goals need
to be optimized simultaneously, sorting networks represent

a more challenging and open-ended, as well as more decep-
tive, domain than the 11-multiplexer.

In order to measure the novelty in sorting behavior, note
that there is no action to rely on, but instead the behavior
needs to be constructed from the structure of the network
itself. To this end, each input line is represented with a suc-
cessive prime number, i.e. 1, 2, 3, 5, 7, 11, 13, and 17. The
sorting network is run on the sample input, and for each pair
of lines that it exchanges, the corresponding prime numbers
are multiplied. The product of these values constitutes a
hash for the phenotypical behavior on that sample. For ex-
ample, if the sorting network has the structure

Layer 1: sort(line0, line3) and sort(line1, line2)
Layer 2: sort(line0, line4),

and the sample is 11010100 (with lines ordered 7..0), the
network will rearrange it to 11000011. The phenotypical
hash is then

(2 * 3) * (1 * 7) = 42.

A vector of these hash values for a number of samples (i.e.
the maturity age) represents the behavior of the network, and
the Euclidean distance between these vectors is used to mea-
sure novelty.

The sorting network experiments were all run until 1000
generations (which takes about two hours of total CPU time
on an Intel i7 2.60GHz machine). The two versions of
DANS and the non-distributed version were then compared
in three dimensions (1) how fast they found a valid sorting
network, (2) how many layers and (3) how many compara-
tors did the best network found have. The results were aver-
aged over ten runs.

Sorting Network Results
The DANS approach found valid sorting networks in 14.4
(hybrid) and 25 (pure) generations on average, compared to
the non-distributed approach which took 98.1 generations
on average (Figure 5. Similarly, DANS found solutions with
significantly fewer layers than the non-distributed version
(32.1), with the hybrid version significantly fewer than the
pure novelty version (7.4 vs. 15.7; Figure 6). It was also
most economical in the number of comparators: Whereas
the non-distributed version used 56.2 comparators on aver-
age, the pure novelty version used 32.2 and the hybrid ver-
sion only 21.7 (Figure 7).

Interestingly, two of the ten hybrid runs actually found
optimal sorting networks, with six layers and 19 compara-
tors, within the 1000 generations. These results suggest that
the hybrid version of DANS could be used to discover new
minimal networks, given sufficient computing effort.

Discussion and Future Work
The DANS approach can be seen as a highly robust artificial
life system in which islands of evolution are searching for



Figure 5: Number of Generations Hybrid and Pure-Novelty
DANS and Non-Distributed Novelty Search Need to Dis-
cover a Valid Eight-Input Sorting Network. DANS signif-
icantly outperforms the non-distributed version, and hybrid
version of DANS the pure novelty version.

behavioral niches to fill in the search space. Occasionally
their most novel solutions migrate to a coordinator that aims
to solve a particular problem, and therefore injects guidance
into the islands in terms of the most fit of those novel indi-
viduals.

As a practical method for problem solving, DANS finds
better solutions significantly faster than a similar non-
distributed search: In the test problems in this paper, the
speedup is approximately linear in the number of Evolution
Engines. This result is remarkable because the search prob-
lem cannot be simply divided into subproblems that could
be solved independently in parallel. Instead, the result is
likely due to the larger total population of individuals and
the increased diversity across multiple islands. The distribu-
tion makes it possible to combine fitness with novelty search
effectively, by incorporating it into the migration between
the islands, as well as in the selection of elitist individuals.
DANS thus makes it possible to apply novelty search effec-
tively to practical design problems.

Computationally, the system is scalable, and the coordi-
nators can be federated (Hodjat et al., 2014). The system
is also robust because it can tolerate temporarily losing its
ability to coordinate (e.g, due to communication problems,
or server outages, etc.), and it can even reconstruct its list
of candidate solutions, should the data be lost at the co-
ordinator. The system can also tolerate the loss of evolu-
tion engines. The approach can therefore be used to tackle
big data problems that require massive amounts of comput-
ing to solve, such as minimizing large sorting networks or
VLSI design in general, optimizing large-scale logistics and
scheduling problems, protein folding and other biomedical
optimization problems, and in general problems where each
processing node can only have access to a subset of the data
through sampling.

Figure 6: Number of Layers Discovered by Hybrid and
Pure-Novelty DANS vs. Non-Distributed Novelty Search in
1000 Generations on the Eight-Input Sorting Network Prob-
lem. After validity, minimizing the number of layers is the
main design goal; DANS significantly outperforms the non-
distributed version, and hybrid version of DANS the pure
novelty version.

DANS can also be useful in dynamic problems where the
fundamental attributes of the problem can change through
time: the evolution engines operate based on the behavior
of the solutions, striving to achieve maximal coverage of
the search space, versus concentrating on subspaces defined
by the peculiarities of the fitness landscape. DANS is thus
a mechanism that converts a powerful principle in artificial
life into a practical tool for solving challenging engineering
design problems.

Conclusion
This paper presents DANS, a parallel distributed design for
the novelty search algorithm, and a principled way of com-
bining fitness with novelty. These extensions result in a
system that can discover better solutions much faster than
standard novelty search. It thereby shows how fundamental
ideas in artificial life can be useful in problem solving in the
real world. DANS should be most useful in finding optimal
solutions to big-data problems such as those in engineering
design.

References
Baddar, S. W. A. (2009). Finding Better Sorting Networks. PhD

thesis, Kent State University.
Berlanga, F. J., Rivera, A., del Jesús, M. J., and Herrera, F. (2010).

Gp-coach: Genetic programming-based learning of compact
and accurate fuzzy rule-based classification systems for high-
dimensional problems. Information Sciences, 180(8):1183–
1200.

Bongard, J. C. (2011). Innocent until proven guilty: Reducing
robot shaping from polynomial to linear time. IEEE Transac-
tions on Evolutionary Computation, 15:571–585.

Bongard, J. C. and Hornby, G. S. (2010). Guarding against prema-
ture convergence while accelerating evolutionary search. In



Figure 7: Number of Comparators Discovered by Hy-
brid and Pure-Novelty DANS vs. Non-Distributed Novelty
Search in 1000 Generations on the Eight-Input Sorting Net-
work Problem. Number of comparators is the third, and least
important, component of fitness; again DANS significantly
outperforms the non-distributed version, and hybrid version
of DANS the pure novelty version.

Proceedings of the Genetic and Evolutionary Computation
Conference.

Cuccu, G. and Gomez, F. (2011). When novelty is not enough. In
Proceedings of the 2011 International Conference on Appli-
cations of Evolutionary Computation - Volume Part I, pages
234–243, Berlin, Heidelberg. Springer-Verlag.

Cully, A., Clune, J., Tarapore, D., and Mouret, J. B. (2015). Robots
that can adapt like animals. Nature, 521:503–507.

Gomes, J., Mariano, P., and Christensen, A. L. (2015). Devising
effective novelty search algorithms: A comprehensive empir-
ical study. In Proceedings of the 2015 Annual Conference
on Genetic and Evolutionary Computation, pages 943–950,
New York, NY, USA. ACM.

Gomes, J., Urbano, P., and Christensen, A. L. (2013). Evolution of
swarm robotics systems with novelty search. Swarm Intelli-
gence, 7:115–144.

Hodjat, B., Hemberg, E., Shahrzad, H., and OReilly, U.-M. (2014).
Maintenance of a long running distributed genetic program-
ming system for solving problems requiring big data. In Ge-
netic Programming Theory and Practice XI, pages 65–83.
Springer, New York.

Hodjat, B. and Shahrzad, H. (2013). Introducing an age-varying
fitness estimation function. In Riolo, R., Vladislavleva, E.,
Ritchie, M. D., and Moore, J. H., editors, Genetic Program-
ming Theory and Practice X, pages 59–71. Springer, New
York.

Hornby, G. S. (2006). ALPS: The age-layered population struc-
ture for reducing the problem of premature convergence. In
Proceedings of the Genetic and Evolutionary Computation
Conference, pages 815–822.

Kipfer, P., Segal, M., and Westermann, R. (2004). Uberflow: A
gpu-based particle engine. In HWWS ’04: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graph-
ics hardware, pages 115–122, New York, NY, USA. ACM.

Knuth, D. E. (1998). Art of Computer Programming: Sorting and
Searching, volume 3. Addison-Wesley Professional, 2 edi-
tion.

Krcah, P. and Toropila, D. (2010). Combination of novelty search
and fitness-based search applied to robot body-brain co-
evolution. In Proceedings of the 13th Czech-Japan Seminar
on Data Analysis and Decision Making in Service Science.

Lehman, J. and Miikkulainen, R. (2014). Overcoming deception
in evolution of cognitive behaviors. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO
2014), Vancouver, BC, Canada.

Lehman, J. and Miikkulainen, R. (2015). Extinction events can
accelerate evolution. PLoS ONE, 10(8):e0132886.

Lehman, J. and Stanley, K. O. (2010a). Abandoning objectives:
Evolution through the search for novelty alone. Evolutionary
Computation, 2011:189–223.

Lehman, J. and Stanley, K. O. (2010b). Revising the evolutionary
computation abstraction: Minimal criteria novelty search. In
Proceedings of the Genetic and Evolutionary Computation
Conference.

Lehman, J. and Stanley, K. O. (2011). Evolving a diversity of vir-
tual creatures through novelty search and local competition.
In Proceedings of the 13th Annual Genetic and Evolutionary
Computation Conference (GECCO 2011), Dublin, Ireland.

Mouret, J. B. and Clune, J. (2015). Illuminating search spaces by
mapping elites. arXiv, 1504.04909v1.

Mouret, J.-B. and Doncieux, S. (2012). Encouraging behavioral
diversity in evolutionary robotics: An empirical study. Evo-
lutionary Computation, 20:91–133.

Nolfi, S. and Floreano, D. (2000). Evolutionary Robotics. MIT
Press, Cambridge.

O’Reilly, U.-M., Wagy, M., and Hodjat, B. (2013). EC-Star: A
massive-scale, hub and spoke, distributed genetic program-
ming system. In Riolo, R., Vladislavleva, E., Ritchie, M. D.,
and Moore, J. H., editors, Genetic Programming Theory and
Practice X, pages 73–85. Springer, New York.

Pugh, J. K., Soros, L. B., Szerlip, P. A., and Stanley, K. O. (2015).
Confronting the challenge of quality diversity. In Proceedings
of the 2015 Annual Conference on Genetic and Evolutionary
Computation, New York, NY, USA. ACM.

Salge, C., Glackin, C., and Polani, D. (2013). Empowerment - an
introduction. CoRR, abs/1310.1863.

Secretan, J., Beato, N., D’Ambrosio, D. B., Rodriguez, A., Camp-
bell, A., Folsom-Kovarik, J. T., and Stanley, K. O. (2011).
Picbreeder: A case study in collaborative evolutionary explo-
ration of design space. Evolutionary Computation, 19:345–
371.

Shahrzad, H. and Hodjat, B. (2015). Tackling the Boolean mul-
tiplexer function using a highly distributed genetic program-
ming system. In Riolo, R., Worzel, W. P., and Kotanchek,
M., editors, Genetic Programming Theory and Practice XII,
pages 167–179. Springer, New York.

Shahrzad, H., Hodjat, B., and Miikkulainen, R. (2016). Estimating
the advantage of age-layering in evolutionary algorithms. In
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2016), Denver, CO.

Stanley, K. O. and Lehman, J. (2015). Why Greatness Cannot Be
Planned: The Myth of the Objective. Springer, Berlin.

Valsalam, V. K. and Miikkulainen, R. (2013). Using symmetry and
evolutionary search to minimize sorting networks. Journal of
Machine Learning Research, 14(Feb):303–331.

Whitley, D., Rana, S., and Heckendorn, R. B. (1999). The island
model genetic algorithm: On separability, population size and
convergence. Journal of Computing and Information Tech-
nology, 7:33–48.

Wissner-Gross, A. D. and Freer, C. E. (2013). Causal entropic
forces. Physical Review Letters, 110:168702.


	Introduction
	Background and Related Work
	Objective vs. Divergent Search
	Combining Novelty and Fitness
	Distributed Evolution Through EC-Star and Age Layering

	Distributed Age-Layered Novelty Search
	Experiments
	The 11-Multiplexer Domain
	11-Multiplexer Results
	The Sorting Network Domain
	Sorting Network Results

	Discussion and Future Work
	Conclusion

