
Architecture of a Cyberphysical Avatar

Song Han∗, Aloysius K. Mok∗, Jianyong Meng∗, Yi-Hung Wei∗, Pei-Chi Huang∗, Xiuming Zhu∗, Luis Sentis†

Kwan Suk Kim†, Risto Miikkulainen∗, Jacob Menashe∗

∗Department of Computer Science, The University of Texas at Austin
{shan, mok, jmeng, yhwei, peggy, xmzhu, risto, jmenashe}@cs.utexas.edu

†Department of Mechanical Engineering, The University of Texas at Austin
{lsentis@austin.utexas.edu, kskim@utexas.edu}

Abstract— This paper introduces the concept of a cyberphysical
avatar which is defined to be a semi-autonomous robotic sys-
tem that adjusts to an unstructured environment and performs
physical tasks subject to critical timing constraints while under
human supervision. Cyberphysical avatar integrates the recent
advance in three technologies: body-compliant control in robotics,
neuroevolution in machine learning and QoS guarantees in real-
time communication. Body-compliant control is essential for
operator safety since cyberphysical avatars perform cooperative
tasks in close proximity to humans. Neuroevolution technique is
essential for ”programming” cyberphysical avatars inasmuch as
they are to be used by non-experts for a large array of tasks, some
unforeseen, in an unstructured environment. QoS-guaranteed real-
time communication is essential to provide predictable, bounded-
time response in human-avatar interaction. By integrating these
technologies, we have built a prototype cyberphysical avatar
testbed.

I. Introduction
The utility of teleoperated robotic devices in mission-critical

tasks is undisputed. Despite the impressive progress by the
robotics community in recent years, we are still quite a way
from being able to trust fully autonomous robots to carry out
mission-critical and safety-critical operations by themselves.
On the other hand, today’s unintelligent teleoperated devices
cannot be counted on to perform well in physically difficult and
unstructured environments. Short of a gigantic leap in technol-
ogy that creates intelligent fully autonomous robots capable
of functioning in an unstructured environment, we propose
to chart a pathway to evolve the capability of teleoperated
robotic devices from primitive mechanical remote-control to
trustable autonomy and more intelligent teleoperation. Rather
than trying to build fully autonomous robots from scratch, we
do it gradually through less and less human teleoperation, all
the while deploying these robots in actual tasks. This is a
new and different approach, and likely to result in practical
applications and advances much sooner, and in more robust
and better adapted autonomous robots in the end.

This paper chronicles our attempt to explore such a pathway
by introducing for the first time the concept of a ”cyberphys-
ical avatar”. We define a cyberphysical avatar to be a semi-
autonomous robotic system that adjusts to an unstructured
environment and performs physical tasks subject to critical
timing constraints while under human supervision. A cyber-
physical avatar is semi-autonomous in that there are actions it
must take without human intervention because of the relatively
short timing constraints, e.g., the control loop that maintains
a fast walking gait. On the other hand, a cyberphysical avatar
should not be programmed to deal with only a fixed set of
scenarios because we cannot foresee all the contingencies in
all operational environments, e.g., a building on fire in a rescue

mission. An effective interface between the cyberphysical avatar
and its human supervisor is essential for success, and this
requires the avatar to be designed for predictable and timely
response. As the cyberphysical avatar gains more physical
skills, it can be trusted to perform more subtasks on its own.

Our research team consists of roboticists, computer scientists
and artificial intelligence researchers who have worked together
to define a system architecture for a cyberphysical avatar. There
are many technical challenges in realizing the cyberphysical
avatar concept. These challenges can be categorized into three
topics below:

• Dynamics and control of humanoid avatars: The cy-
berphysical avatar must be able to perform the physical
tasks in an unstructured and uncertain environment. In
this area, we need to develop a methodology for modeling
the dynamic behavior of physical avatars interacting with
unstructured environments and controllers that can adapt
to the changing physical conditions. We need to develop
software foundations that encapsulate the physical skills
supporting the full range of teleoperated to autonomous
behaviors.

• Evolutionary learning of skills under environment and
performance constraints: Evolutionary approach is need-
ed to learn the continuous control parameters of the skills,
as well as their discrete composition. The cyberphysical
avatar must be able to acquire skills so that it can perform
time-critical tasks autonomously. The level of autonomy
and the criticality of the timing constraints that can be
satisfied for practical physical tasks requires advances
in learning theory and engineering validation. Moreover,
learning strategies need to be applied to learn the tradeoff
between teleoperation and autonomy.

• Supporting reliable, real-time avatar-human communi-
cation: The cyberphysical avatar must be able to operate
untethered and maintain timely and reliably communica-
tion with the controller that is hierarchically implemented
with the human supervisor at the top of the control hier-
archy. The combination of real-time and robust commu-
nication in a wireless environment where communication
paths may be disrupted requires advance in both algorithm
design and engineering validation. We need a switching
policy between teleoperated and autonomous behaviors
that is based on communication quality as the primary
metric for making switching decisions.

The rest of this paper will describe in more detail the
system architecture of the cyberphysical avatar and the progress
we have made in formalizing and partially solving the above



technical challenges. We shall describe our prototype imple-
mentation using the Dreamer/Meka humanoid robot.

II. Control of wheeled humanoid avatars in unstructured
environments

The cyberphysical avatar must be able to maneuver in
irregular terrains while performing accurate physical whole-
body compliant interactions with the environment and with
human operators. To attain these capabilities, skill modeling
and control in unstructured environments must be carefully
designed. In this section, we first describe the dynamic model of
the wheeled base of our Dreamer/Meka humanoid robot under
varying contact conditions. We then present our model of the
whole-body compliant skill of the robot and the hierarchical
control structures that is used to handle task conflicts during
the execution of the behavior.

A. Dynamic model of the wheeled base

In unstructured and uncertain environments, wheel-based
avatars will often be in a situation of marginal contact, i.e.
not all the wheels are in contact. As such, the dynamics of the
robot, need to represent the contact state of the robot, its effect
on center of mass balance and the conservation of angular and
linear momentum due to marginally-stable contact conditions.
These characteristics become even more critical when the robot
engages into manipulation tasks while maintaining marginal
contacts.

We derive the model of the robot under varying contacts by
leveraging the generalized contact consistent Jacobian devel-
oped in [1] which specifies that for a given contact state Cm

the generalized Jacobian of an operational task (e.g. one of the
robot’s hands) is equal to

J∗task,Cm
, Jtask UNCm , (1)

where Jtask is the Jacobian of the hand Cartesian point with
respect to an inertial frame outside of the mobile base, U
describes the underactuated (i.e. uncontrollable directions) of
the base due to the contact state, NCm describes the current
contact state (i.e. how many wheels are in contact), and the
operator (.) indicates a dynamically consistent generalized
inverse of the argument. Therefore the control of the operational
task (e.g. the control of the robot’s hand) while taking into
account the mobility of the base and the uncertain contact state
is equal to

ΓCm = J ∗Ttask,Cm
Ftask (2)

where Ftask is the force or impedance command to control
the hand, J∗task,Cm

is the whole-body task Jacobian including the
base contact state (i.e. how many wheels are in stable contact),
and ΓCm is the whole-body command of torques sent to the base
and upper humanoid torso motors.

B. Skill definition and hierarchical control structure

In whole-body compliant control (WBC), a task is defined
via a mapping between the robot’s N-dimensional joint con-
figuration and some M-dimensional space which describes an
objective that the controller should achieve. The skill is defined
as a juxtaposition of multiple operational tasks to help translate
between high-level goals (such as provided by planning algo-
rithms) and the operational tasks. In our environment, a skill

is a human readable file (e.g. YAML) describing the points or
coordinates of the robot that are to be simultaneously controlled
to accomplish a behavior, plus their respective control policies,
and plus their hierarchical priorities in the execution pipeline.
In this work, however, as to be elaborated in Section III, the
control policies of the skill will be learned through machine
learning approaches.

Having now many operational task processes to simulta-
neously optimize, as defined in the skill, either as force or
impedance processes, we propose to use the following control
structure in Eq. 3. The intuition behind this control structure is
to instantiate several tasks, each of which tries to drive the robot
toward some state. The task contributions are accumulated
using null space projections to ensure that lower-priority tasks
do not interfere with higher levels. The motion is thus deter-
mined by each task in combination with their priorities. This
structuring provides two orthogonal ways of changing robot
behavior, either by influencing the tasks (e.g. changing their
gains or goals) or by rearranging the hierarchy (e.g. inserting
tasks or locally inverting their ordering).

ΓCm =
∑

k

(
J ∗Tk|prec(k),Cm

Fk

)
+ N ∗Tt,Cm

Γposture + J ∗Ti|l,Cm
Fint, (3)

In Eq. 3, Fk is the task space force or impedance command
for the k-th operational task, J∗k|prec(k),Cm

is the prioritized contact
consistent Jacobian of the task, Γposture is the command to
optimize the posture behavior, Fint is the command to optimize
the internal forces between the arms and the mobile base, and
J∗i|l,Cm

is the Jacobian of the internal forces. This structure is
a derivation of our previous work on whole-body compliant
control found in [2].

In the control structure, the low-level tasks describing the
skill are aggregated using a hierarchy, where more relevant
tasks, such as those who ensure the fulfillment of physical
constraints appear first, while those dealing with the operational
behavior appear with less priority. Fig. 1 gives an example
where the skill is composed of three tasks. The first task is
maintaining coordinates of center of mass(CoM) to prevent the
robot from falling down on irregular terrain. Second task is
compliant hand position which enables the robot to respond
compliantly to human interaction. The posture task here is
utilizing remaining degree of freedom to stabilize self-motion
and converge to a human-like posture. Lower-priority tasks
operate in the null space of all higher priority tasks. So when
the terrain changes the CoM task will temporarily override non-
critical tasks in order to prevent falling. The task becomes
unfeasible when the current higher priority tasks use all the
dynamic redundancy. This event can be easily monitored and
used to stop the behavior and communicate the problem to a
high level planner.

Because our control structures use effectively the dynamic
and contact model of the physical avatar in its environment,
they are able to optimize all task processes simultaneously
within the contact stance, thus achieving precise tracking of
forces and trajectories. Moreover, posture behavior, which is
specified as an optimization criterion instead of a trajectory is
also optimized within the residual manifolds left over by the
priority tasks.



Fig. 1. Whole-body compliant control with prioritized tasks. Left hand side of figure shows the Dreamer crosses a terrain with a slope while
responding to human interaction. And right hand side of the figure shows closed loop dynamic controller producing joint torque outputs based
on Center of mass, hand position and posture with prioritized Jacobians.

III. Skill acquisition by machine learning

Although much of the operation of the robot can be based
on carefully designed control algorithms, there are two is-
sues where machine learning methods can prove crucial: (1)
conversion of human operator behaviors to robot behaviors,
and (2) optimization of robot behaviors. In both of these
cases, it is possible to come up with measures of how good
the behaviors are, but the optimal behaviors are not known.
Therefore, machine learning methods based on exploration
need to be used. In this section, a particularly powerful such
a method, neuroevolution, is described first, followed by its
application to train the learning skills of the grasper on the
Dreamer humanoid robot to pick up objects with any shape.

A. Learning robust nonlinear control through neuroevolution

In the neuroevolution approach, evolutionary optimization
method such as a genetic algorithm is used to construct the
structure and the connection weights of a neural network so that
the network performs as well as possible in a given task [3], [4].
The neural network can be recurrent, implementing a sequence
memory, and thereby making it possible to use the approach
to discover sequential behaviors such as robot navigation, arm
control, and grasping.

Neuroevolution differs from other machine learning meth-
ods in two important ways. First, neuroevolution learning is
based on exploration and reinforcement: a population of neural
networks is evolved through crossover and mutation, directed
only by how well each network performs. It is thus possible
to discover successful behaviors that human designers would
find difficult to construct, and behaviors that are more general.
Second, the neural networks employed in neuroevolution can
disambiguate the system state based on their sequence memory.
Previous sensor values are part of the state representation, mak-
ing it possible to understand how the world is changing, and
how to respond to it optimally. The neuroevolution approach
can thus be used as a training mechanism for the Dreamer
robot. In particular, it is well suited for learning skills such as
picking up an object. In the following, we will first describe the
physics of the grasper on the Dreamer/Meka humanoid robot
and then present the training details. Training is done following
the NEAT [5] approach.

B. Physics of the grasper
We simulate the Meka hand using GraspIt! [6], an open-

source grasping simulation environment developed at Columbia
University. The Meka hand in GraspIt! is defined by one degree
of freedom for each knuckle in each finger, as well as degrees
of freedom for the thumb’s rotator. The mechanics of this model
will be modified in our studies because most degrees of freedom
in the Meka hand are not actuated. Each finger consists of
three joints, which are all connected by a single rubber tendon.
When the finger curls, all three knuckles curl in unison. We
will therefore adjust the torques that we feed to the simulator to
account for this interdependent joint behavior. A set of torques
given to a single finger will conform with one another such
that they are all equivalent to torques initiated by a stretching
of the rubber tendon, which we see in the real robot.

C. Training the grasper
In order to properly grasp with the Meka hand, we must first

design the input and output layers of our target neural network,
as well as a fitness function to allow a gradual climb toward an
efficient grasp. Because our Meka unit is primarily controlled
using the Whole-Body Control framework, the network is only
responsible to directly manipulate orientation and positions on
the wrist and the finger joints of the hand. Thus we designate
an output node for each of these degrees of freedom.

Designing the input layer is less trivial. It is necessary to
encode the entire state of the grasp in some way, which includes
positions of the hand, the fingers, and grasped object, as well as
the object’s shape. Proprioception is sufficient for determining
joint angles, so for each finger joint we designate a single
input node, and we do the same for the wrist rotation and
the hand position. To reduce dependency on the shape of the
target object, we encode the object’s state by simply taking a
depth from the robot’s Kinect Camera and assigning each depth
data a unique input node in the neural network. In this way
the net work is able to associate the state of the robot’s body
and the state of an arbitrary object with an appropriate grasping
hand gesture. Evaluation of the grasp is done by combining the
grasp quality metrics provided by the GraspIt! and the distance
between robot’s palm and center of gravity of the object.

D. Transitioning from simulated to physical controller
The training method described in Section III-C is primarily

done in simulation. However, transferring controllers evolved



in simulation to the physical robot is challenging [7], [8]. The
main reason is that it is difficult to simulate physical properties
such as friction and sensor and actuator characteristics with
high enough fidelity to reproduce the simulated behaviors on
real robots. To address this issue, we choose the following
methods to improve the results of transfer to the real robot.

First, if the simulator is accurate enough, controllers that
transfer well can be created simply by evolving them to
be robust. That is, if sensor values and actuator responses
frequently vary in simulation, the resulting controllers will
be robust against small discrepancies between simulation and
reality as well. Such uncertainties can be introduced into the
simulation simply as noise, and solutions evolve that do not
depend on accurate values and outcomes, thus transferring well.

If there are more systematic flaws in the simulation, be-
haviors may evolve that exploit them, and therefore transfer
poorly. Such behaviors can be discouraged by incorporating
transfer into evolution explicitly, by utilizing a multi-objective
evolutionary algorithm that optimizes both a task-dependent
controller fitness as well as a measure of how well the controller
transfers from simulation to reality [9]. In any given generation,
this method chooses at most one controller based on behavioral
diversity to be evaluated on the real robot, requiring only a
small number of hardware evaluations.

Another approach is to perform experiments on the real
robot in order to improve the simulator, typically in one of
two ways: (1) Experiments are performed on the real robot
before running evolution to collect samples of the real world
by recording sensor activations [10], [11]. When controllers are
evaluated later during evolution, these samples are utilized to
set the simulated sensor activations accurately. (2) Experiments
are performed on the real robot during evolution to co-evolve
the simulator and the controller, making an initially crude
simulation more and more accurate [12].

We will adopt the system-level simplex architecture [13]
to provide safety guarantees during the transitioning. In this
architecture, we use a simple and verified safety controller
to ensure the stability and safety of the robot operations.
This conservative safety control core is then complemented
by a high-performance complex controller, which will be used
whenever possible, but switch to the safety controller when
system integrity is jeopardized.

IV. Supporting Remote, Reliable, and Real-Time (R3)
Avatar-Human Communication

A key component of cyberphysical avatar technology is
reliable and real-time communication between the avatar and
remote human supervisor. Because of the mobility requirement
of avatars to work in unstructured environments as is often
the case in disaster recovery, wireless connection has to be
established at the edge of the communication infrastructure.
Owing to limited wireless communication range, a multi-hop
wireless network in mesh topology is necessary to cover a
larger area, and more importantly, can overcome transmission
blocking by objects such as metal doors in industrial facilities
where avatars operate.

We envision the use of a combination of multi-hop wireless
mesh networks and the existing Internet to support real-time
communication between the avatars and human supervisor.
However, the need for reliable and real-time communication
imposes several significant challenges. Specifically, the current

Kinect Camera


Kinect Laptop


Dreamer Control PC


WirelessHART Receiver


Mobile Humanoid Robot 

(
Dreamer
)


WirelessHART Gateway

Control Flow


Remote Control 

Client


OpenFlow Network


U

 S


 B



E

 t
h
 e
 r
n
 e
 t


WirelessHART Real
-
time Mesh Network


Wi
-
Fi Connection


Image 
+ 
Depth


Robot Position 

+ 
Orientation


Synchronized Image Flow
:


-
 
Image 
+ 
Depth from Kinect 

-
 
Position 
+ 
Orientation from Dreamer


Control Flow


Control Flow


Image Flow


Wi
-
Fi AP


Image Flow


Fig. 2. The R3 communication infrastructure for cyberphysical avatars

Internet architecture cannot guarantee any end-to-end QoS
requirement for time-critical control flows and most existing
wireless standards and routing protocols are not designed with
real-time delay constraint in mind and as a result cannot provide
any bound on end-to-end delay. Moreover, the inherent lossy
wireless medium, the constantly fluctuating traffic volumes
and channel conditions, together with complicated interference
relationship have made it challenging to achieve high end-
to-end reliability, which is essential for remote avatar-human
communication.

A cyberphysical avatar typically contains two types of data
flows. There is one or multiple data flows destinated to re-
mote human supervisor containing physical information of the
environment in which the avatar operates. These data flows
include image flows captured by the cameras installed either
on the avatar or in the operating environments, and real-time
position/direction information of the avatar. There is also a
control flow originated from the human supervisor to control
the robot and finish designated tasks. In our R3 communica-
tion infrastructure, we use Wi-Fi connection for transmitting
data flows because they usually require larger bandwidth but
have soft real-time requirements on packet delivery. On the
other hand, the time-critical control flow is transmitted on
WirelessHART [14] real-time mesh network which is set up
at the edge of the communication infrastructure to guaran-
tee the end-to-end delay in the avatar-human communication.
OpenFlow [15] network are deployed to enhance the existing
Internet architecture to provide better QoS support. Figure 2
summarizes our communication infrastructure, and it consists
the following key components.

A. Wi-Fi connection for supporting data flows

We set up a Wi-Fi connection at the edge of the commu-
nication infrastructure to help forward data flow to the remote
human supervisor. In our current setting, the data flow is an
image stream captured by the Kinect sensor installed on the
avatar. Both the color images and depth images from the Kinect
sensor will be synchronized with the position and orientation
information received from the avatar control PC and sent to
the remote supervisor. the remote control application receives
the images and renders them on the user interface. It allows
the supervisor to monitor the physical environment the avatar
is operating in and supervise it to execute designated tasks.

B. OpenFlow network for providing QoS guarantees

To meet the strict end-to-end delay constraint and jitter
requirement on the avatar-human communication, guaranteeing



the QoS requirement of the control and image flow on the
Internet should be achieved. However, this is not a trivial
problem because the current Internet architecture has no facility
to guarantee minimum bandwidth and end-to-end latency for
network flows. To address this problem, we are deploying
OpenFlow [15] switches to connect remote human supervisor
and the avatar operating environments. We use Beacon [16]
OpenFlow controller to set up a particular queue for the
control flow in the OpenFlow switch. For the image flow of
cyberphysical avatar system, we setup minimum rate queue that
the rate for image flow is guaranteed to be large enough.

C. WirelessHART mesh for supporting real-time control flow

The control flow from the remote human supervisor to the
robot control PC is time-critical and has hard deadline on its
delivery. Due to the pervasive Wi-Fi signals and the backoff
mechanism used in 802.11, the jitter in Wi-Fi transmission is
large and unpredictable. This is a fatal disadvantage of Wi-Fi to
be adopted for providing reliable and real-time communication
for the control data flow in cyberphysical avatars.

For this reason, in the R3 communication infrastructure
designed for cyberphysical avatars, we use WirelessHART [17]
real-time mesh network to replace Wi-Fi for transmitting the
control data flow to the avatar control PC. To improve the
service scalability and make the application development easier,
we further enhance the communication stack and the Gateway
with a 6LoWPAN adaptation layer, a UDP transportation layer
and a CoAP application layer. This enhancement makes the
WirelessHART device IP-enabled and the Gateway only needs
to take the role of the router and forward the IP packets to
the avatar control PC. Only the remote control application
and the application running on avatar control PC need to
understand the specific application protocol. The Gateway can
remain unchanged when new services are established between
the supervisor and the robot.

V. Designing and building a cyberphysical avatar

We are building a cyberphysical avatar to verify the effective-
ness of the proposed architecture. The remote control applica-
tion is installed in UT ACES building and the Dreamer robot
is located in UT Human Centered Robotics Lab. OpenFlow
switches are being deployed in UT campus network to provide
QoS guarantee especially for the control data flow between the
remote control application and the avatar control PC. In this
section, we will present the details of the system setup and give
a demo of remotely supervising the Dreamer robot to execute
specific tasks [18].

A. System setup in Human Centered Robotics Lab

Figure 3 describes the system setup in the Human Centered
Robotics Lab in UT mechanical engineering department. There
are three key components in the system setup:

The Dreamer/Meka Hardware: The main hardware tool that
we use for this study is the Dreamer/Meka mobile dexterous
humanoid robot. This robot includes the T2 Meka torso, the
A2 Series Elastic Meka arm, the H2 tendon driven Meka hand,
the Dreamer/Meka head co-developed by Meka and UT Austin,
and the torque-controlled holonomic UT Austin’s Tricky base.
The actuators for the base and the upper body, except for the
head, contain torque/force sensors that enable Elmo amplifiers
to implement current or torque feedback. An Ethercat serial bus

Fig. 3. An overview of the system setup in UT Human Centered
Robotics Lab. (1) The Dreamer robot. (2) Robot control PC. (3) Kinect
Laptop. (4) Kinect sensor. (5) WirelessHART receiver. (6) IP camera.
(7) WirelessHART Gateway. (8) WirelessHART access point.

communicates with sensors and motor amplifiers from a single
computer system. A PC running Ubuntu Linux with the RTAI
Realtime Kernel runs the models and control infrastructure
described in this project. The Tricky holonomic base contains
torque sensors as well as the inertial measurement unit (IMU)
3DM-GX3-25 from MicroStrain. It achieves holonomic motion
and force capabilities by utilizing Omni wheels located in a
equilateral triangular fashion.

Kinect/IP Cameras: We have two cameras installed in the
Human Centered Robotics Lab. An IP camera is installed
at the right upper corner to give an overview of the avatar
environment and a Kinect camera is installed on the Dreamer
robot to capture the image and depth information of the
target. Due to the limitation of the power and the computation
capability, the Kinect camera is installed on a separate Laptop
which is put on the Dreamer base and connect to the avatar
controller through Ethernet. The Kinect Laptop synchronizes
image streams (including the image and depth information)
captured from the Kinect camera and the Dreamer position
and orientation information together and sends to the remote
supervisor through a Wi-Fi Access Point connected to the
campus network.

WirelessHART real-time communication subsystem: A
WirelessHART Gateway/Network Manager is set up and con-
nected to the UT campus network. The Gateway contains an
access point through which WirelessHART devices can join
and talk to the Gateway/Network Manager. For simplicity, we
have one WirelessHART device connected to the avatar control
PC through serial port and form a one-hop communication.
More devices can be deployed to form a mesh network to cover
larger area if necessary. The WirelessHART device exchanges
the control commands and robot status with the avatar control
PC through shared memory. The robot status information is
transmitted back to the remote supervisor on WirelessHART
real-time wireless network in the reversed direction.

B. Remote Control Application

Figure 4 shows a screen capture of the remote control
application we developed for supervising the Dreamer robot.
The details of the interface messages between the control



Fig. 4. A screen capture of the remote control application for
supervising the Dreamer robot. (1)(2) Color and depth image from
Kinect sensor. (3) Image from IP camera. (4) Image snapshot when
user presses the color image.

application and the Kinect Laptop/Dreamer robot can be found
in the technical report [19].

The specific skill we are training the Dreamer robot is to
move itself close to a desk and pick up a designated target
under supervision. As shown in Fig. 4, in the remote control
UI, the color and depth images from Kinect camera and the
images from the IP camera are displayed in the three image
panels at the top of the UI. The human supervisor can choose
a target in the color image from Kinect panel by clicking on it.
After clicking on the target, a copy of the color image at this
moment is copied to the image of target object panel. A red dot
is added on the image showing the position the user clicked.
The coordinate of this position is also displayed in the mouse
clicked position label. Using the position of the click on the
image and the depth data at that point, we calculate the physical
coordinate of the target with respect to the Kinect. Once get
these information, user can issue commands to the Dreamer
robot to execute specific tasks. In our current testbed, two
commands have been implemented already: Default and Touch.
The Default command gets the robot back to the default gesture,
while the Touch command asks the robot to touch the target
we clicked on. A sequence of video snapshots is presented in
the technical report [19] to demonstrate an user issued Touch
commands to the robot. It is possible that the Kinect sensor has
small measurement error due to its hardware limitation. In that
case, we relied on visual feedback, and used incremental move
commands to direct the robot to touch the target object. The
grasp skill to lift up the target is under training and the Grasp
command will be added to the remote control application as
soon as the training is finished.

VI. Conclusion and Future works

This paper introduces the concept of a cyberphysical avatar
which is defined to be a semi-autonomous robotic system that
adjusts to an unstructured environment and performs physical
tasks subject to critical timing constraints while under human
supervision. A cyberphysical avatar is the bridge technology
that will help transition dumb teleoperated robotic devices to
autonomous robots capable of functioning in unstructured envi-
ronments. What makes the cyberphysical avatar possible today
is the convergence of three recent technologies: body-compliant
control in robotics, neuroevolution in machine learning and
QoS guarantees in real-time communication. By integrating
these technologies, we have built a prototype cyberphysical

avatar testbed. Building this physical testbed is an essential first
step for exploring the cyberphysical avatar concept because the
physical and computational complexities involved necessarily
require less than exact modeling and the use of mathematical
approximations to simulate physical processes; the viability
of the cyberphysical avatar must be validated by a physical
testbed. As of this time, the basic body-compliant controller
and the communication subsystems have been integrated; work
is ongoing to improve the interface between the robot and the
controller and to train the robot by the NEAT [5] algorithm.

Acknowledgment

We thank Hongkun Yang, Quan Leng and Sangki Yun for
their help in developing the remote control application, and we
are grateful to Meka robotics for their technical support.

References
[1] L. Sentis, Motion Planning for Humanoid robots, chapter Compliant

Control of Whole-Body Multi-Contact Behaviors in Humanoid Robots,
pp. 29–63, Springer Berlin Heidelberg, 2010.

[2] L. Sentis, J. Park, and O. Khatib, “Compliant control of multi-contact
and center of mass behaviors in humanoid robots,” IEEE Transactions
on Robotics, vol. 26, no. 3, pp. 483–501, June 2010.

[3] Risto Miikkulainen, “Neuroevolution,” in Encyclopedia of Machine
Learning. 2010.

[4] Dario Floreano, Peter Dürr, and Claudio Mattiussi, “Neuroevolution:
From architectures to learning,” Evolutionary Intelligence, vol. 1, pp.
47–62, 2008.

[5] Kenneth O. Stanley and Risto Miikkulainen, “Evolving neural networks
through augmenting topologies,” Evolutionary Computation, vol. 10, no.
2, pp. 99–127, 2002.

[6] “GraspIt!,” http://sourceforge.net/projects/graspit/files/
releases/.

[7] Nick Jakobi, Minimal Simulations for Evolutionary Robotics, Ph.D.
thesis, School of Cognitive and Computing Sciences, University of
Sussex, 1998.

[8] Hod Lipson, Josh Bongard, Victor Zykov, and Evan Malone, “Evo-
lutionary robotics for legged machines: From simulation to physical
reality,” in Proceedings of the 9th International Conference on Intelligent
Autonomous Systems., 2006, pp. 11–18.

[9] Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux, “Crossing
the reality gap in evolutionary robotics by promoting transferable con-
trollers,” in Proceedings of the 12th Annual Conference on Genetic and
Evolutionary Computation. 2010, pp. 119–126, ACM.

[10] Orazio Miglino, Henrik Hautop Lund, and Stefano Nolfi, “Evolving
mobile robots in simulated and real environments,” Artificial Life, vol.
2, pp. 417–434, 1995.

[11] Stefano Nolfi, Dario Floreano, Orazio Miglino, and Francesco Mondada,
“How to evolve autonomous robots: Different approaches in evolutionary
robotics,” in Proceedings of the Fourth International Workshop on the
Synthesis and Simulation of Living Systems (Artificial Life IV).

[12] Juan Cristóbal Zagal and Javier Ruiz-Del-Solar, “Combining simulation
and reality in evolutionary robotics,” Journal of Intelligent and Robotic
Systems, vol. 50, pp. 19–39, 2007.

[13] S. Bak, D.K. Chivukula, O. Adekunle, Mu Sun, M. Caccamo, and Lui
Sha, “The system-level simplex architecture for improved real-time
embedded system safety,” in Real-Time and Embedded Technology and
Applications Symposium, april 2009, pp. 99 –107.

[14] “WirelessHART,” http://www.hartcomm.org/protocol/wihart/
wireless_technology.html.

[15] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner, “Open-
flow: enabling innovation in campus networks,” SIGCOMM Comput.
Commun. Rev., 2008.

[16] “Beacon,” https://openflow.stanford.edu/display/Beacon/.
[17] Jianping Song, Song Han, Al Mok, Deji Chen, Mike Lucas, Mark Nixon,

and Wally Pratt, “WirelessHART: Applying wireless technology in real-
time industrial process control,” in Proc. of IEEE RTAS, 2008.

[18] “Avatar Demo,” http://www.cs.utexas.edu/˜shan/avatar.html.
[19] Song Han, Aloysius K. Mok, Jianyong Meng, Yi-Hung Wei, Xi-

uming Zhu, Luis Sentis, Kwan Suk Kim, Risto Miikkulainen, and
Jacob Menashe, “Architecture of a cyberphysical avatar,” UTC-
S Technical Report #TR-12-12. http://apps.cs.utexas.edu/tech_
reports/reports/tr/TR-2082.pdf .


