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A Computational Model of Language Pathology in Schizophrenia

Hans Ulrich Grasemann, Ph.D.
The University of Texas at Austin, 2010

Supervisors: Risto Miikkulainen and Ralph Hoffman

No current laboratory test can reliably identify patients with schizophrenia. Instead, key
symptoms are observed via language, including derailment, where patients cannot follow a coher-
ent storyline, and delusions, where false beliefs are repeated as fact. Brain processes underlying
these and other symptoms remain unclear, and characterizing them would greatly enhance our un-
derstanding of schizophrenia. In this situation, computational models can be valuable tools to for-
mulate testable hypotheses and to complement clinical research. This dissertation aims to capture
the link between biology and schizophrenic symptoms using DISCERN, a connectionist model of
human story processing. Competing illness mechanisms proposed to underlie schizophrenia are
simulated in DISCERN, and are evaluated at the level of narrative language, the same level used to
diagnose patients. The result is the first simulation of a speaker with schizophrenia. Of all illness
models, hyperlearning, a model of overly intense memory consolidation, produced the best fit to
patient data, as well as compelling models of delusions and derailments. If validated experimen-
tally, the hyperlearning hypothesis could advance the current understanding of schizophrenia, and
provide a platform for simulating the effects of future treatments.
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Chapter 1

Introduction

Stories are a crucial part of who we are. They enable us to entertain others, to learn from them,
and to see the world through their eyes. Stories are deeply informative, and their significance
goes beyond communication and social exchange: We make sense of the world and the people
around us by fitting our experience into a coherent narrative structure. In schizophrenia, this ongoing
narrative breaks down. Disturbances in the perception and expression of reality can be observed
through the stories a patient tells. Indeed, narrative language is the primary diagnostic tool, and
clinicians use it every day to observe and assess manifestations of schizophrenia. The purpose
of cinical interviews, then, is to use narrative language as a window into the schizophrenic mind.
The motivation behind this dissertation is the idea that computational models of narrative language
can provide mechanistic explanations of what is seen through that window. In other words, this
dissertation aims to understand the nature and pathophysiology of schizophrenia as disturbances in
computations involved in story processing

1.1 The Biology of Schizophrenia

Over a century ago, Emil Kraepelin, one of the founders of modern psychiatry, asked his assis-
tants Frank Nissl and Alois Alzheimer to look for brain abnormalities in “dementia praecox,” the
disorder now known as schizophrenia. The cortical and thalamic abnormalities they reported were
controversial, but the search for the biological underpinnings of schizophrenia had begun (Bogerts
et al. 2009). For much of the 20th century, Kraepelin’s view that schizophrenia was likely caused
by “a tangible morbid process in the brain” (Kraepelin 1896; c.f. Noll 2006) was overshadowed
by the Freudian concept of schizophrenia as a “psychogenic” disease. However, since the 1970s,
Kraepelin’s theory of genetic and biological defects as key contributors to psychiatric illness has
returned to prominence, and today it forms the foundation of biological psychiatry.

Schizophrenia research has come a long way since the days of Kraepelin. It is now clear
that schizophrenia is indeed a physical disease, and that structural brain abnormalities, genetic vul-
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nerabilities, and altered brain chemistry are all key components of the disorder. Extensive biomed-
ical research has implicated virtually every brain area and every major neurotransmitter system in
schizophrenia (Pearlson and Marsh 1999; Bogerts et al. 2009; Glenthoj et al. 2009). This wealth of
experimental findings has led to a large number of hypotheses regarding the causes and pathophys-
iology of schizophrenia, and recently, plausible accounts of possible interactions between biology,
genetics, and symptoms have begun to emerge.

Despite these advances, the precise nature of schizophrenia is still largely a mystery. No
laboratory or neuroimaging test can reliably identify persons who suffer from it, and the concept
of schizophrenia itself remains a purely diagnostic construct. None of the hypothetical links be-
tween biology and symptoms have gained wide-spread consensus, and thus the century-old debate
continues (Plum 1972; Ron and Harvey 1990; Kapur 2003).

At the same time, a better understanding of schizophrenia is badly needed, most impor-
tantly because the lack of knowledge translates directly into a lack of adequate treatment options.
Dopamine-blocking antipsychotic drugs, which have been the mainstay of treatment interventions
since the 1950s, are reasonably effective, but address only a subset of the symptoms, do not help
all patients, and often cause dangerous side effects (Kane 1997; Kapur and Mamo 2003). A better
understanding of the pathophysiology of schizophrenia would likely lead to more effective drugs,
and might suggest entirely new ways to treat or even prevent schizophrenia (Brewer 2005; Pearlson
2000).

Given all the advances in experimental techniques in neuroscience, and given the impor-
tance of developing a better understanding of schizophrenia, why has such an understanding has not
yet emerged? One major problem is that schizophrenia is highly heterogeneous, i.e. both symptoms
and observed biological abnormalities vary widely among patients. This heterogeneity suggests
that, rather than a single well-defined illness, schizophrenia is likely to be a family of clinically
related disorders that are, at least to some degree, the result of different underlying biological mech-
anisms. What these pathological mechanisms are, how they co-occur and interact, and how they
lead to different patterns of symptoms are all open questions. In short, heterogeneity complicates
the question of cause and effect, challenging researchers to infer complex combinations of causes
from highly variable patterns of symptoms.

The problem is further complicated by the fact that imaging, neuropathological, and cogni-
tive measures can associate schizophrenia with anatomical, neurochemical, and cognitive changes,
but they are in general not able to establish causality. For example, working memory impairment
is strongly associated with schizophrenia (Aleman et al. 1999), but it is currently unclear if one is
a result of the other, or if they are coincident effects of the same cause. Similar uncertainty exists
about many other brain abnormalities in schizophrenia.

In addition to these problems, however, I argue that an even more important obstacle on
the way to a better understanding of schizophrenia is the lack of an adequate language in which
to express hypotheses about the link between physiology and symptoms in schizophrenia. In other
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words, new and advanced ways to investigate the schizophrenic brain experimentally should be
complemented by new and equally powerful theoretical tools. Contributing to the development of
these tools is the principal motivation behind this dissertation.

1.2 Modeling The Brain and Other Complex Systems

The need for new theoretical tools is not unique to schizophrenia research. The traditional formal
approach of obtaining analytical solutions to systems of mathematical equations is inadequate for
many complex adaptive systems like markets, ecosystems, or the human brain. Until recently,
researchers in these areas were limited to verbal theories, which often lack precision and predictive
power.

During the last few decades, computational models have emerged as an alternative way to
formulate theories, and have gained a prominent role in many scientific disciplines that investigate
complex systems, including climate science, economics, meteorology, astrophysics, and many oth-
ers. Computational models are often based on purely mathematical models, but are distinct from
them in important ways. They do not demand a precise description of the system being modeled
or its boundaries; they often incorporate other models and span multiple levels of analysis; they
are able to approximate the performance of systems that are not well-defined or too complex for
analytical solutions; their predictions are explicit rather than implicit and often include unexpected,
emergent phenomena.

In cognitive science, computational models are often based on artificial neural networks,
where mental processes and behavior are modeled as emergent phenomena in interconnected net-
works of simple information-processing units. Most neural network-based models are not intended
to be physiologically accurate simulations of biological neurons and their interactions in the human
brain. Many details of biological neural networks, such as separate neurotransmitter and receptor
systems, the complex dynamics of single neurons, and time-dependent information exchange via
action potentials, are often either omitted or abstracted into higher level approximations.

Nevertheless, connectionist models tend to exhibit many characteristics of information pro-
cessing in biological systems, including massively parallel computation, robustness to noise and
input errors, and the ability to learn and generalize from limited experience. This property of brain-
like information processing in systems that simulate biological mechanisms on an abstract level
makes connectionist cognitive models attractive: the simplicity of the underlying framework makes
it possible to build models of high-level cognition using mechanisms that are plausible analogs of
the real neural substrate.

During the last few decades, neural networks have been used extensively to create models
of human cognition in many different domains, including language, learning, vision, and mem-
ory (McClelland et al. 1987; Elman 1990; Hinton 1991; Christiansen et al. 1999; Miikkulainen
et al. 2005; O’Reilly and Frank 2006). Neural network models such as these have given detailed
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computational accounts of human behavior and its underlying information processing mechanisms.
Moreover, since such models are explicit, running systems, many create unexpexted behavior that
will lead to further experimental hypotheses.

1.3 Modeling Schizophrenia

The principal strength of neural network models lies in their intrinsic ability to connect our un-
derstanding of biological systems at different levels of abstraction. They bridge the gap between
complex mental states and behavior on the one hand and underlying neural information processing
on the other. In schizophrenia research, where the central problem is determining the ways in which
biological abnormalities lead to altered behavior, this ability is precisely what is needed. A central
working hypothesis is that neural networks can be used meaningfully to model not only normal
human cognition but also its impairment in psychiatric illness. In other words, neural networks not
only function in a brain-like manner, but can also break down in the same way, creating an oppor-
tunity to advance our understanding of both the healthy and the disordered brain. This dissertation
is motivated by this opportunity. Its goal is to give a computational account of schizophrenia that
makes explicit the link between biology and symptoms in terms of altered information processing
in a neural network model. Several previous computational studies had similar goals. A number of
neural network-based models have been used to simulate research findings related to schizophrenia,
including altered working memory (Braver et al. 1999; Cohen and Servan-Schreiber 1992; Monchi
et al. 2000), hyperarousal states (Grossberg and Pepe 1970; Grossberg 1999), excessive semantic
priming (Spitzer 1997), alterations of functional connectivity between brain regions (Winder et al.
2007), attention (Wang and Fan 2007), impairments of facial affect recognition (Carter and Neufeld
2007), and hallucinations and delusions (Hoffman and McGlashan 1997; Ruppin et al. 1996; Loh
et al. 2007).

The approach taken in this work, however, is new and different in several respects. Most
importantly, in contrast to previous studies, this research simulates manifestations of schizophrenia
using a model of narrative language. This is significant for two reasons. First, conversational
language is the primary diagnostic tool used to assess whether a patient has schizophrenia or not.
Key symptoms of schizophrenia such as delusions and disorganized speech are observed directly
through language, which means that a model of schizophrenic language pathology can be evaluated
on a clinically relevant level.

Second, clinical interviews are used to diagnose schizophrenia for good reason: Narrative
language and storytelling are among the richest human behaviors, and are considered critical for
social intelligence (Bower and Morrow 1990), sense-making (Bruner 1991; Abolafia 2010), and
cognition and consciousness (Rubin and Greenberg 2003). Furthermore, narrative language cannot
be reduced to the function of a specific brain region or process. Its dysfunction in schizophrenia
reveals the disturbance of deeper underlying functions of memory and thought. The purpose of
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clinical interviews is to use narrative language as a window to the schizophrenic mind, and compu-
tational models should be able to do the same.

The modeling work reported here is based on DISCERN, a neural network-based model of
human story understanding and recall. The original DISCERN system was introduced by Miikku-
lainen (1993), and has since been extended to handle complex stories consisting of multiple events
(Fidelman et al. 2005; Grasemann et al. 2007). Other extensions in this dissertation include the
ability to process emotional context of stories, and the ability to filter distorted output language.
DISCERN represents another way in which the approach of this research differs from most previ-
ous work. DISCERN is a multi-modular system that combines different network architectures and
language-related functions into a single, unified model of human story processing. The complexity
of DISCERN translates into a wealth of opportunities to simulate illness mechanisms underlying
schizophrenia as network disturbances in the model. This work takes full advantage of these oppor-
tunities: A wide range of current research findings were simulated and compared using the model.
For instance, the candidate illness models included various disturbances of working memory (Potkin
et al. 2009), loss of cortical connectivity (Feinberg 1982/1983), and semantic memory dysfunction
(Spitzer 1997), as well as simulations of overarousal and neuromodulatory dysfunction suggested
by previous computational models (Grossberg and Pepe 1970; Servan-Schreiber et al. 1990).

Moreover, hyperlearning, a model of aberrant memory consolidation (Grasemann et al.
2009; Hoffman et al. 2010), turned out to be the most important illness model. The hyperlearn-
ing/DISCERN model is based on theories of psychosis advanced by Maher (1974) and Kapur
(2003), who propose that psychotic symptoms like delusions are due to abnormally intense, or
salient, experience, possibly driven by dopamine (DA) imbalance. Hyperlearning extends and for-
malizes this theory by implementing a possible mechanism by which this could occur: Aberrant
salience of experience leads to overly intense learning during memory consolidation, which distorts
and skews processing of narrative memory, causing psychotic symptoms. This process is simulated
in DISCERN using abnormally high network learning rates in language processing modules, and it
turns out to have significant predictive power.

The different illness models were applied to DISCERN, and their ability to recreate lan-
guage abnormalities in schizophrenia was evaluated both quantitatively and qualitatively. The goal
of these experiments, and of this dissertation, was to demonstrate that a neural network-based model
like DISCERN can be used meaningfully to compare separate illness mechanisms, and to assess
their viability as candidate causes of schizophrenia. Illness models can be distinguished by their
distinctive language behavior, and can furthermore generate predictions through unexpected, emer-
gent behavior.

Beyond proving the concept, a further goal was to make a contribution to the current under-
standing of schizophrenia. The need for testable, predictive hypotheses and the attempt to find them
are only partly academic. The illness models in DISCERN are detailed computational hypotheses
that produce complex behavioral changes at a clinically relevant level. As such, their language be-
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havior can explain and predict clinical data, and has the potential to complement and guide future
medical research.

If cognitive science can help advance schizophrenia research, no doubt the reverse is true as
well. Our understanding of cognition has greatly improved lately, but global, emergent faculties of
the mind like conciousness, intelligence, and personality are still largely a mystery. A mental illness
like schizophrenia, where these faculties change and break down in complex ways, offers a unique
window into the mind, and an opportunity to investigate how it emerges from its neural substrate.

1.4 Organization

This dissertation is organized as follows. The next chapter reviews the literature on several central
topics of this dissertation. The current understanding of story processing in psychology is discussed
first, followed by a review of computational models of story processing. The second part of the
chapter is dedicated to schizophrenia, including its symptoms and current research findings about
its underlying causes. The final section reviews previous computational models of schizophrenia
related to this work.

Chapter 3 introduces the computational modeling tools that will be used later to create simu-
lations of schizophrenic language. DISCERN, a connectionist model of human story understanding
and recall, is described in detail. Recent extensions of the model are discussed, including the abil-
ity to process multi-script stories, a mechanism to attach emotions to story segments, and a filter
mechanism that reduces errors at the cost of lower overall language output. Based on the DISCERN
model, eight simulations of candidate illness mechanisms that could underlie schizophrenia are then
introduced. Each of the illness models is motivated by a specific hypothesis about the pathophysi-
ology of schizophrenia. In each case, the relevant literature is reviewed and the implementation in
DISCERN is described.

Chapter 4 describes the steps necessary to develop a set of “healthy” DISCERN systems as
a basis for further experiments. An extensive corpus of input stories is designed, semantic word
representations are trained using the DISCERN model, and finally, network training methods are
optimized and used to produce concrete, running DISCERN systems.

In Chapter 5, the alternative illness models are evaluated experimentally. First, a human
subject study of story processing in schizophrenia is described, conducted at Yale as part of a joint
project with this dissertation research. The human subject data is used to evaluate quantitatively
how well the different illness models are able to match both healthy humans and patients with
schizophrenia.

Chapter 6 describes a second computational study that focuses on the more intense symp-
toms that occur during active stages of schizophrenia. The different illness models are again evalu-
ated and compared, this time focusing on reproducing derailments and delusions, two key symptoms
of schziophrenic psychosis.

6



Chapter 7 discusses and interprets the findings presented in the previous chapters. Strengths
and limitations of the modeling approach are evaluated, as well as possible directions for future
research.
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Chapter 2

Background

This chapter reviews the research literature on the three cornerstones of this dissertation: stories,
schizophrenia, and computational modeling. Current understanding of story processing in psychol-
ogy is discussed first, followed by a review of computational models of story processing. The second
part of the chapter is dedicated to schizophrenia. It provides information on its symptoms, empha-
sizing those expressed through language, and reviews current hypotheses about the link between
symptoms and possible causes. The final section of the chapter discusses previous computational
models of schizophrenia.

2.1 Stories

Stories are the central theme that binds this dissertation together. The concept of stories, and that of
experience related through language, is a key part of our understanding of schizophrenia, and it is
also the core of the computational model that forms the basis of this dissertation.

Stories viewed in a narrow sense, i.e. as narrative accounts of real or imaginary events
expressed through language, are an important social construct, because they enable us to understand,
learn from, and entertain each other. They are the principal tool by which we share experiences.
However, they are even more interesting because they reflect and reveal deeper processes through
which we interpret, predict, and understand ourselves, our world, and the people in it.

In a more general sense, then, the processes we use to encode ongoing experience can be
seen as a kind of narrative behavior, and the resulting memories that represent past (or even fictional)
events are stories, even if they are not exchanged with others. The concept that we are living our
own personal story is influential in philosophy of mind and consciousness research (Bruner 1991;
Rubin and Greenberg 2003). Dennett (1992), for example, in defining the concept of “self”, says
that

[...] it does seem that we are all virtuoso novelists, who find ourselves engaged in all
sorts of behavior, more or less unified, but sometimes disunified, and we always put the
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best “faces” on it we can. We try to make all of our material cohere into a single good
story. And that story is our autobiography.

Along the same lines, Flanagan (1992) observes:

Evidence strongly suggests that humans in all cultures come to cast their own identity
in some sort of narrative form. We are inveterate storytellers.

Our personal narrative, then, is at least part of what defines us and unifies our identity. But just as
importantly, processing stories involves every part of our mind. Memory, attention, problem solving,
and social cognition are all intrinsic and intricate parts of the process of encoding, remembering,
interpreting, applying, and exchanging stories.

In this sense, the stories we process are only partly linguistic: they are bundles of sensory,
interpersonal, emotive, and predictive information as well, and they play many critical roles in
our everyday lives. We use stories to give stucture to the events around us. We repeat them to
ourselves and to others — not just because they are entertaining or intriguing, but because they are
deeply informative. Stories are relentlessly formed, molded and linked in memory because their
representations provide the basis for predicting the world, and for understanding the actions and
mental states of ourselves and the people around us — a capacity of utmost importance in our
complex social world.

Given that story processing is such a rich and complex behavior, it is not surprising that
when it is impaired in psychiatric disorders, an equally rich range of symptoms is observed. An
important working hypothesis of this dissertation is that disturbances of narrative language allow
a deep look at how psychiatric disorders reshape and distort information processing in the brain.
A model of altered story processing can then be used meaningfully both to infer deep underlying
processes and to test hypotheses about them.

2.2 Script Theory

In order to create a model of altered story processing, it is necessary to start with a model of normal
story processing. Such a model must in turn be based on the current understanding of the human
psychology involved. Script theory (Schank and Abelson 1977) provides such a basis, and forms
the fundamental framework underlying the model used in this work.

Script theory models the way humans process stereotypical sequences of events. For ex-
ample, every time we walk into a restaurant, approximately the same thing happens: we wait to
be seated, order a meal and eat it, pay, then leave. The specific restaurant and the people with us
may not be the same; the price and quality of the food may change. The basic sequence of events,
however, rarely does, and can therefore be learned and reused as a script.

9



Scripts are best understood as templates for certain types of situations, including open slots
to be filled in (such as the kind of food), and constraints on what kinds of things can fill the slots
(e.g. you cannot order the decor). An instance of a script, then, is a template representation whose
slots have been filled to match a specific situation. In order to understand a specific event, all we
need to do is find out what kind of script it follows and fill the slots with the appropriate concepts.

Humans use scripts in may different ways to interact efficiently with each other, grasp com-
plex situations, and form expectations about a situation when faced with incomplete information.
The restaurant script, for example, would tell us that we are not allowed to pick a table ourselves,
unless explicily told to do so. We do not have to ask anybody to bring a menu, and we know without
asking that the soup comes first and the dessert last. If events and slot-fillers cannot be observed
directly, they can instead be inferred based on prior experience if a script for the current situation
is available. Scipts are also used to structure memories efficiently — instead of remembering every
detail about an event, the details can be reconstructed later using just a stored script instance and
whatever events violated expectations. In fact, when recalling a past experience, humans can often
not distinguish observed events from those that were inferred from a script (Graesser et al. 1980).

Script theory was originally conceived as a technique in artificial intelligence, intended as
a way to encode procedural knowledge that would enable artificial systems to form expectations
and to understand their surroundings in terms of story-like constructs. However, they were soon
recognized for their capacity to model aspects of human cognition and language processing, and
today scripts are central to the theory of human cognition and memory. The hypothesis that humans
use scripts is well supported by experimental evidence. For example, the degree to which events in
a story will be remembered can be predicted by whether those events are part of a script (Graesser
et al. 1980). Similarly, the amount of time it takes humans to understand a sentence can be predicted
by whether it fits into a script (Den Uyl and van Oostendorp 1980). Script theory therefore forms a
promising framework for computational models of story processing.

It is important to note, however, that scripts should not be understood simply as a way to
process stories efficiently. Rather, script theory provides a general model for the way humans think
and learn about the structure of events in their world — narrative language is only one prominent
facet of the theory, much like its impairment in schizophrenia is only one facet of deeper defects in
the use of knowledge and the flow of information in the brain.

2.3 Computational Models of Story Processing

Script theory was originally created in the context of contextual dependency theory (Schank 1972),
a model of natural language processing that attempts to represent meaning as a set of discrete tran-
formations of objects, times, mental states, etc., independently of grammatical structure. Defined
in this way, scripts are intrinsically a symbolic concept: Slots are filled by unambiguous concepts;
scripts are defined in terms of transitions between physical or mental states, and each script is cur-
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rently either occurring or it is not. Implementations of script theory were therefore almost without
exception symbolic systems. For example, SAM (Cullingford 1978) was the original script-based
story comprehension system. Schank (1991) applied the theory to story telling and the idea of an
intelligent tutor, and Schank and Cleary (1995) applied the same idea to educational software.

In terms of language and story processing, which was its original goal, script theory was
at first not very influential. However, the theory was extended into a model of dynamic memory
Schank (1982, 1999). This work was the basis for case-based reasoning (Kolodner 1993), which is
still influential in the area of knowledge representation and reasoning.

Recently, scripts have once again attracted interest, this time in the area of artificial intel-
ligence in games (Young et al. 2004; Riedl et al. 2011), intelligent teaching systems (Rowe et al.
2010), and in automatic content generation and the design of interactive media in general (Riedl
and Young 2006; Jhala and van Velsen 2009; Riedl 2010). These emerging applications are also
motivating new basic research that attempts to understand creative processes and narrative behavior
in humans (e.g. Young 2007).

Neural network-based natural language processing has also been an active field in the last
three decades. However, in contrast to the abundance of symbolic work on the level of stories and
discourse, the focus of connectionist models has been on more traditional problems in computational
linguistics, i.e. sentence parsing and representation of semantic knowledge (neural network-based
AI in games is an active field, but is not generally based on stories or language; e.g. Stanley et al.
2006).

Many connectionist models of sentence parsing are built on a variation of simple recurrent
networks (SRN; Elman 1990), and have modeled many aspects of human sentence understand-
ing successfully (Elman 1990; Miikkulainen 1990; Mayberry and Miikkulainen 2005; Farkas and
Crocker 2008; Collobert and Weston 2008). Models of semantic knowledge and lexical access are
often based on self-organizing maps (Kohonen 1982), and have been used to model the human
bilingual lexicon (Li et al. 2004), large-scale vocabulary acquisition (Sibley et al. 2008), and dis-
orders like dyslexia (Miikkulainen 1997; Plaut 1997) and aphasia (Miikkulainen and Kiran 2009;
Grasemann et al. 2011).

In contrast to these sentence- and word-level models of human language processing, the
DISCERN model (Miikkulainen and Dyer 1991; Miikkulainen 1993) took a wider view of natural
language processing: It was the first integrated subsymbolic system that could model the entire
process of human story understanding and recall, from plain-text words to episodic memories, and
back to words. Stories in the original DISCERN model each followed a single script, and the task
of understanding, remembering, and reproducing them was shared by a collection of cooperating
simple recurrent networks and self-organizing maps.

Before we take a closer look at the DISCERN model, the next section provides background
information on schizophrenia, including its symptoms and a review of current hypotheses about
its underlying pathology. The nature of these hypotheses, combined with the key role of abnormal
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narrative language in schizophrenia, will illustrate why a subsymbolic model of story processing like
DISCERN promises to be well suited to capture central aspects of schizophrenia and its biological
causes.

2.4 Schizophrenia

Schizophrenia is a disabling psychiatric disorder characterized by complex alterations in the per-
ception and expression of reality. Patients may suffer from a wide range of symptoms, including
hallucinations, bizarre and unusual behavior, delusions, and the inability to communicate effectively
via language. The onset of schizophrenia, which usually occurs in adolescence or early adulthood,
is often characterized by dramatic psychotic symptoms that tend to wax and wane over time. In
later stages of the disorder, these psychotic episodes often give way to other more enduring deficits,
including blunted emotions, social withdrawal, and reduced language output.

Schizophrenia is diagnosed by observing a patient’s behavior and self-reported experiences.
No laboratory test for schizophrenia exists, and in fact underlying brain mechnisms are unknown.
Schizophrenia is therefore defined as a collection of symptoms, and while the diagnosis is reliable,
its validity can be questioned (Pearlson 2000). Specifically, symptoms and outcome in schizophre-
nia are highly variable, suggesting that it may not be a single illness but a family of clinically related
disorders. This possibility is as real today as it was almost a century ago, when Eugen Bleuler de-
liberately referred to “the schizophrenias” in the plural when he coined that name (Bleuler 1911).

Despite the fact that its underlying causes are not known, partially effective treatments for
schizophrenia exist, mainly based on medication that can help manage psychotic symptoms. Such
antipsychotic medication is sometimes considered surprisingly effective given that the neurobio-
logical and neurocognitive basis of schizophrenia is so poorly understood (Kane 1997). However,
antipsychotic drugs often have severe and dangerous side-effects, they do not help all patients, and
they do not address negative symptoms or cognitive impairment, which can be equally disabling.
These shortcomings make better and more targeted treatment an important goal.

This section describes the symptoms of schizophrenia and discusses current hypotheses
about the brain mechanisms underlying it, focusing on those most relevant to this dissertation in
more detail.

2.4.1 Overview of the Symptoms of Schizophrenia

The manifestations of schizophrenia are complex and span a wide range of altered behavior, per-
ception, and emotion. The following descriptions cover the characteristic symptoms laid out in
the current American Psychiatric Association’s Diagnostic and Statistical Manual of Mental Dis-
orders (DSM IV-TR, 2000). They are commonly divided into two groups, positive and negative
symptoms.
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1. Positive Symptoms. These symptoms describe behavior or experiences that are not usually
present in healthy individuals, but can be present in schizophrenia. Positive symptoms are
often called psychotic symptoms, even though the term is less precise, and other, less inclusive
definitions exist. In this dissertation, positive and psychotic symptoms are synonyms.

Delusions are pathological false beliefs that are held despite evidence to the contrary.
Not all false or unsupported beliefs are pathological. For example, beliefs that are based on
deception or normal religious beliefs do not qualify as delusions (Andreasen 1984). Delusions
often share one of several common themes, like the belief that one is a famous person like
Napoleon, or that one’s thoughts, feelings, or behavior are controlled by outside forces.

Hallucinations are perceptions that appear real and occur without an outside stimulus.
Such perceptions are symptoms only if they occur in a concious and wakeful state. In schizo-
phrenia, auditory hallucinations are very common, often in the form of one or more voices
conversing or commenting on the patient’s actions.

Grossly disorganized or catatonic behavior includes inappropriate or bizarre behavior
that interferes with regular daily activities. For example, patients may dress inappropriately,
or frequently have unprovoked confrontations. Catatonic behavior may include peculiar or
absent motor behavior, or lack of reactivity to outside stimuli.

Disorganized speech is fluent spoken language that fails to communicate effectively or
follow a coherent discourse plan. It is a manifestation of positive formal thought disorder, i.e.
it is believed to reflect an underlying impairment of verbal thought. The most prominent signs
of disorganized speech are difficulties in maintaining a coherent story line (e.g. derailment
refers to speech that switches topics without apparent cause), but patients may also show
other signs like blocking (interruption of speech before it is complete), or (rarely) produce
completely incoherent language (word salad).

2. Negative symptoms, or deficit symptoms, describe the absence of a normal type of behavior
or emotional response.

Blunted affect describes the absence of normal emotional response, both positive and
negative. Anhedonia, a similar symptom that describes a decrease or absence of feelings of
pleasure, is also often mentioned in schizophrenia.

Alogia, or poverty of speech, is a lack of volume and content of voluntary speech. Pa-
tients with alogia tend to give only short answers to direct questions, and sometimes do not
say anything without prompting. Alogia is commonly thought to be a sign of negative formal
thought disorder, i.e. it is assumed to reflect an underlying poverty of thought.

Avolition is the general absence of drive, motivation and normal goal-directed behavior.
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In addition to these symptoms, cognitive impairments in schizophrenia are common but not
ubiquitous, including reduced working memory capacity, impaired verbal learning, and disturbed
lexical access. These deficits are not used for diagnosis, but they are relatively consistent across
the different clinical subtypes, and some researchers believe that cognitive impairment (especially
working memory impairment) should be regarded as a central pathology in schizophrenia (Lewis
and Gonzales-Burgos 2006). The true significance of cognitive impairment is currently unclear, but
it is by no means specific to schizophrenia (Crockett et al. 1988), and could also be the result of the
stress involved in such a severe psychiatric illness (Arnsten and Goldman-Rakic 1998).

Based on commonly co-occurring patterns of symptoms, five clinical subtypes of schizo-
phrenia have been identified, including the paranoid type, where symptoms include delusions and
hallucinations but not prominent thought disorder, and the disorganized type, where symptoms are
dominated by prominent thought disorder, disorganized behavior, and emotional blunting. The other
three types are catatonic, undifferentiated, and residual type schizophrenia.

2.4.2 Diagnosis

Patients with schizophrenia rarely have all of the above symptoms, and patterns of symptoms vary
widely from patient to patient. In addition, most symptoms are shared with other illnesses. Psy-
chosis, for example, occurs in a variety of other disorders, including bipolar disorder, drug abuse,
clinical depression, and other psychiatric or medical conditions. Delusions also occur in delusional
disorder. Negative symptoms overlap with the symptoms of depression; social withdrawal can be a
sign of anxiety disorder. These and other similarities make the differential diagnosis of schizophre-
nia difficult.

Several standardized diagnostic criteria exist for schizophrenia that are intended to make
consistent and reliabe diagnosis possible. For example, the criteria that are currently used in the
United States, as well as for most research studies, are those described in the DSM IV-TR. In order
to be diagnosed with schizophrenia according to these criteria, a patient must only display two of the
seven symptoms, at least one of them positive. If hallucinated voices are present that comment on
the patient’s life, or if delusions are judged to be bizarre, only that symptom is required. However, in
all cases, the patient must suffer from social or occupational dysfunction, and signs of the disorder
must persist for at least six months.

The diagnosis of schizophrenia relies almost entirely on language: A clinical interview is
conducted with the patient, and diagnosis is made based on the observed behavior. Information
comes from two primary sources: The symptoms reported by the patient, and the signs observed
through his or her language. Hallucinations, for example, would be diagnosed because the patient
says something like “I hear voices,” not because the interviewer is able to hear them. In contrast,
disorganized speech is observed directly in the discourse structure and in abnormal speech patterns.
Similarly, delusions can be observed directly, for example when a patient offers bizarre opinions or
states patently false things as fact. Alogia can also be directly observed when patients talk very little
and volunteers no information in a conversation.
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The focus of this research is on symptoms that can be observed directly in the language
of schizophrenic patients, most importantly disorganized language and delusions. The following
sections discuss these symptoms in more detail.

2.4.3 Disorganized Speech

Language disorganization can take a variety of different forms. Patients with schizophrenia often
have problems maintaining a consistent storyline. For example, circumstantiality describes extreme
long-windedness or speech that is delayed by unnecessary or irrelevant detail. Distractable speech
means the patient changes subjects easily, but in response to a real stimulus (i.e. not without apparent
cause). The following example was taken from the Scale for the Assessment of Positive Symptoms
(SAPS; Andreasen 1984):

Then I left San Francisco and moved to ... where did you get that tie? It looks like it’s
left over from the 50’s [...]

Derailment is a speech pattern where a patient switches from one topic to another that may
be only vaguely related or completely unrelated to the current one, leaving the listener in a bewil-
dered state. Even if no single derailment is particularly severe, steady slippage can lead to answers
that have nothing in common with the original question. Derailed language in schizophrenia often
seems disjointed and fragmented, giving the impression of an arbitrary juxtaposition of “discourse
shards.” The following example is part of an interview with a thought-disordered patient (Andreasen
1984):

Interviewer: Did you enjoy college?

Subject: Um-hum. Oh hey well, I really enjoyed some communities I tried it, and the,
and the next day when I’d be going out, you know, um, I took control like uh, I put,
um, bleach on my hair in, in California. My roommate was from Chicago, and she was
going to the junior college. And we lived in the Y.M.C.A., so she wanted to put it, um,
peroxide on my hair, and she did, and I got up and looked at the mirror and tears came
to my eyes. Now do you understand it, I was fully aware of what was going on but why
couldn’t I, I... why, why the tears? I can’t understand that, can you?

In extreme cases, disorganized language can be entirely incomprehensibe at times. The
main difference between such “word salad” and severe derailments is that the break-down occurs
within the sentence structure, which is not the case for derailments. This type of behavior is rare
in schizophrenia – in general, the sentence structure of thought-disordered schizophrenic patients is
intact.
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Apart from these difficulties in following a coherent discourse plan, thought-disordered pa-
tients sometimes repeat words or phrases (perseveration), make word choices based on rhymes and
puns rather than meaning (clanging), or stop speaking before a thought is completed (blocking).
Primarily, however, disorganized language in schizophrenia is characterized by a break-down at the
level of overall discourse structure, not at that of words and sentences.

2.4.4 Delusions

Delusions can take many different forms, but in almost all cases, they follow one of a surprisingly
small number of themes, for example:

• Grandiose delusions include the belief that one is a famous person, for example a rock star
or Jesus Christ, or believing that one has special powers or abilities.

• Persecutory delusions are beliefs that one is being conspired against or persecuted. Ex-
amples include secret agents being after the patient, coworkers or neighbors harassing the
patient, the phone being bugged and the mail opened, etc. Persecutory delusions can be ex-
tremely complex and self-consistent.

• Delusions of reference are delusions where the patient thinks that insignificant events refer
to him or have special significance. Items on the news, for example, may be seen as messages
intended specifically for the patient.

• Delusions of thought insertion, thought control, thought broadcasting. These are delu-
sions where the patient thinks his thought are controlled or inserted by an outside force, or
that his thoughts are being broadcast so that he or others can hear them.

• Delusions of control are the experience of one’s actions and feelings being controlled by an
outside force. For example, the patient may feel that aliens are controlling his brain with radio
waves.

Apart from the content, delusions are generally classified as bizarre (e.g. aliens removing
the patient’s brain) or non-bizarre (being followed by the CIA). The severity of a delusion is also
judged by its complexity and self-consistency, and by the patient’s ability to question his beliefs.

Delusions in schizophrenia are often bizarre and frequently have paranoid content. Patients
with persecutory delusions tend to confuse the actors and agents in their personal stories with those
of the shared stories of their culture. Often, patients inserts themselves into stories that are imaginary
or unrelated to the patient. Such “agency shifts” are thought to be the cause of the spurious plots
and imaginary conspiracies that characterize persecutory delusions.

The common themes of delusional beliefs change to some extent over time, and adapt to
cultural context. For example, unsurprisingly, delusions today include witches much less frequently
than a century ago. On the other hand, delusions of being controlled seem to have occured in a stable

16



fraction of schizophrenia patients between 1886 and 1946 (Kranz 1967). Such shared patterns in
delusional beliefs suggest that they have a common underlying cause, and that the same essential
stories are adapted to the individual and his cultural context in each case. The DSM-IV defines a
delusion as

A false personal belief based on incorrect inference about external reality and firmly
sustained in spite of what almost everyone else believes and in spite of what constitutes
incontrovertible and obvious proof or evidence to the contrary [...]

Maher (2002) pointed out several ways in which this definition is problematic. For example, many
delusions, like being followed by secret agents, are actually possible, and many others can only be
refuted with extreme difficulty. More importantly, the definition contains the assumption that delu-
sions are caused by incorrect inference. In fact, experimental data suggest that formal, syllogistic
reasoning in delusional patients is not impaired compared to healthy individuals (Kemp et al. 1997).
Furthermore, healthy persons frequently acquire beliefs by incorrect inference, and indeed often
hold irrational beliefs like having seen UFOs (Gallup and Newport 1991). Note that in this case as
well, proving incontrovertibly that no UFO has ever visited the Earth would be impossible.

If the abnormality underlying delusions is not incorrect inference, then, what other cause
could there be? Maher (1974, 2002) proposed that some delusional ideas are based on anomalous
experience. Simply stated, a failure to predict events leads to a feeling of undirected significance,
which causes the need for an explanation. Finding such an explanation, even a delusional one,
brings relief, and evidence to the contrary is ignored to protect the explanation. Maher also pointed
out that not all delusions need to be formed in the same way, just like non-delusional beliefs may be
acquired in many different ways.

2.5 Possible Causes of Schizophrenia

After many decades of research into the causes of schizophrenia, not much is known with any
certainty. Advances in neuroimaging, pharmacological, and post-mortem techniques have at least
demonstrated one fact: Schizophrenia is a physical illness, involving genetic, developmental, anatom-
ical, and neurochemical abnormalities (Weinberger 1995). The exact nature of these abnormalities,
which ones are central, and how they cause symptoms, are still open questions, and the debate
continues (Plum 1972; Ron and Harvey 1990; Kapur 2003).

This section discusses some current attempts to answer these questions. In order to manage
the vast research literature on the subject, I will focus on hypotheses about schizophrenia that es-
tablish a link between biological processes on the one hand and abnormal experience and behavior
on the other. Work that deals with only one of the two is only included if it provides converging
evidence.
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When discussing specific hypotheses about schizophrenia, it is important to keep in mind
that schizophrenia is heterogeneus, which makes the search for underlying illness mechanisms much
more complicated, and opens up a number of additional questions: How many different illnesses
are there? Do they correspond to known clinical subtypes? Which symptoms arise from which
underlying mechanisms, and why do they tend to occur together? The problem has become one of
inferring many different causes from many effects, and, as Maher and Deldin (2002) put it,

Arguing backwards from effect to cause is notoriously unreliable, but it is a constant
problem for the research pathologist who takes heterogeneity seriously.

Despite these difficulties, a number of plausible partial explanations have begun to emerge. The
remainder of this section reviews some of them, emphasizing the ones that are relevant to this
dissertation.

2.5.1 Abnormal Brain Connectivity

In schizophrenia, both local cortical connections (microcircuitry) and connectivity between different
regions of the cortex (macrocircuitry) were found to be altered (Bogerts et al. 2009). These alter-
ations are especially interesting because schizophrenia has long been considered a developmental
disorder (Weinberger 1987; Feinberg 1982/1983), and humans ordinarily lose about 40% of their
synapses through a developmental process called cortical pruning (Huttenlocher 1979; Chechik
et al. 1998; Abitz et al. 2007) — a process that ends during the same developmental period in which
schizophrenia usually begins, namely late adolescence to early adulthood. This suspicious timing is
the original motivation behind the pruning hypothesis of schizophrenia, which suggests that overea-
ger or prolonged developmental pruning contributes to the emergence of schizophrenia (Feinberg
1982/1983; Saugstad 1994).

The pruning hypothesis has received further support from several studies indicating that
neuropil (the tangle of axons and dendrites surrounding cortical neurons) is reduced in schizophre-
nia. Imaging studies have shown less gray matter in patients with schizophrenia than in normals
(Buchanan et al. 1998), especially in the prefrontal cortex (PFC), a brain area implicated in many
symptoms of schizophrenia, and also one where developmental pruning is especially pronounced
(Huttenlocher 1997). Furthermore, neurons are more dense than normal in several prefrontal areas
in schizophrenia (Selemon et al. 1995, 1998), while the actual number of cortical neurons is not
changed (Pakkenberg 1993). Taken together, these findings suggest that neuropil is reduced and
that the cortex is less well connected in schizophrenia.

Recently, advances in functional brain imaging and EEG analysis have revealed another
kind of abnormal connectivity in schizophrenia. Several researchers reported patterns of changed
functional connectivity between brain regions in schizophrenia. For example, Kim et al. (2003)
observed functional disconnection between prefrontal and parietal cortices during working memory
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processing in schizophrenia in a PET study. More recently, Karlsgodt (2008) reported anatomical
changes in frontal-parietal white matter connections and linked such changes to performance on
working memory tasks. Another imaging study (Meyer-Lindenberg et al. 2001) found similar dis-
ruptions of interactions between brain regions, and Sakkalis et al. (2006) observed disconnections
using EEG data. These findings support the view that schizophrenia may be a disorder of brain
connectivity and involve white-matter pathology.

Interestingly, both local PFC connectivity and frontal-parietal networks are thought to play
key roles in working memory function (Smith and Jonides 1997; D’Esposito et al. 2000; Postle
et al. 2003). In schizophrenia, working memory, along with other executive functions associated
with the frontal cortex, is definitely impaired (Nuechterlein and Dawson 1984; Bilder et al. 2000;
Gur et al. 2007), and PFC function in general is often considered central to the pathophysiology of
schizophrenia (Bogerts et al. 2009).

2.5.2 Dopamine

In its original form, the dopamine hypothesis of schizophrenia suggests that some symptoms of
schizophrenia are caused by abnormal dopaminergic transmission in the brain, probably involving
overactivity of midbrain dopamine (DA) neurons that project to limbic and cortical regions. It
originated with the observation that antipsychotic drugs are effective because they block the D2
dopamine receptor (Kapur and Seeman 2001), while DA agonists on the other hand can provoke
psychotic symptoms even in healthy individuals (Egan and Weinberger 1997; Curran et al. 2004),
and are much more likely to do so in psychotic patients (Lieberman et al. 1987). Imaging studies
have provided further evidence for excessive DA release in schizophrenia, especially when patients
are having active symptoms (Guo et al. 2003; Laruelle 2000).

On balance, the evidence that abnormal DA activity is involved in schizophrenia in some
form is strong. However, there is some uncertainty whether or not it is a direct cause of symptoms.
First, active schizophrenia is a very stressful condition (Dazzi et al. 2004), and stress is known to el-
evate midbrain DA release. Second, a number of studies have suggested reduced cortical DA release
in patients with schizophrenia (Lidow et al. 1997; Goldman-Rakic et al. 2004). Third, blocking DA
completely through drugs does not universally or immediately remove active symptoms.

Until recently, detailed accounts of how DA imbalance could lead to manifestations of
schizophrenia were rare. The complex functions of DA in the brain, including in reward and re-
inforcement, synaptic plasticity, and working memory were not sufficiently understood. However,
advances in the understanding of DA function have led to several plausible theories, and today the
DA hypothesis subsumes a number of different accounts of links between DA and schizophrenia.

One widely endorsed emerging theory is due to Kapur (Kapur 2003; Kapur et al. 2005).
Based on the view that DA activity mediates motivational salience (Berridge and Robinson 1998),
and extending Maher’s model of delusion formation (Maher 1974, 2002), Kapur proposes that in
schizophrenia, increased midbrain DA release leads to abnormally enhanced motivational salience.
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The salience in turn is thought to cause psychotic symptoms through normal mechanisms of mem-
ory, learning and inference, but based on abnormal and overly intense experience. Delusions, for
example, are explained as secondary reactions to an altered experience of the world — i.e. trying
to make sense of the aberrant significance assigned to insignificant events or facts. Hallucinations
are simply seen as normal percepts and memories that are pathologically enhanced by abnormal
salience.

A different take on the DA hypothesis was prompted by computational models of the role
of DA in working memory (WM; Servan-Schreiber et al. 1990; Trantham-Davidson et al. 2004).
In particular, Braver et al. (1999) offered a possible explanation of how abnormal DA transmis-
sion in the midbrain and frontal cortex might lead to cognitive deficits observed in schizophrenia.
According to this theory, tonic DA activity (possibly mediated by the D1 receptor) serves to stabi-
lize activation patterns stored in working memory, while phasic (D2) dopamine activity temporarily
destabilizes those patterns to facilitate updates. Thus, DA imbalance could make working memory
either unstable or too stable, possibly explaining cognitive impairment and negative symptoms in
schizophrenia. Additionally, overactivity of midbrain D2 dopamine could lead to faulty information
gating and spurious working memory updates without meaningful input, providing a possible model
for psychotic symptoms. Recent reports of excessive cortical noise, reduced signal-to-noise ratio,
reduced control, and reduced efficiency in frontal cortical systems linked to WM in persons with
schizophrenia Potkin et al. (2009); Tan et al. (2007); Winterer and Weinberger (2004) support the
view that WM dysfunction plays a role in schizophrenia.

The two versions of the dopamine hypothesis described above — abnormal working mem-
ory function and aberrant motivational salience — largely concern different complexes of symptoms
and are formulated at different conceptual levels. Nevertheless, a classic theory first proposed by
Weinberger (1987) suggests a possibility to unify the two. Weinberger postulates a “paradoxical
state” of DA function in schizophrenia, where low cortical DA levels and high midbrain DA levels
coexist. Combining the three hypotheses, low prefrontal DA activity could account for cognitive
deficits and negative symptoms, while high midbrain DA would produce heightened phasic D2
activity, a possible neural substrate of aberrant salience. According to Weinberger, such a paradox-
ical state could be caused by a primary impairment of prefrontal DA function wich could cause a
chain reaction involving cortical, midbrain, and limbic systems that induces excessive D2 midbrain
activity. However, the opposite direction of causality is also possible: A recent animal study by
Kellendonk et al. (2006) suggests that even temporarily increased midbrain DA transmission can
cause persistent abnormalities of prefrontal DA function and WM impairment.

In more recent version of the DA hypothesis, Assadi et al. (2009) proposed that dopamin-
ergic dysregulation of a network involving dorsal anterior cingulate cortex (dACC), striatum, and
thalamus could contribute to the pathophysiology of schizophrenia. The dACC and its related sub-
cortical structures are involved in decision making (Kennerley et al. 2006; Hampton and O’Doherty
2007), and the midbrain DA system regulates this network (Salamone et al. 2007). According to this
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hypothesis, failure of the decision-making process leads to negative symptoms and disorganization
in schizophrenia. The faulty decision network fnord does not cause delusions and hallucinations,
but delusions and hallucianations cause social dysfunction because of impaired decision-making.

In summary, there is strong evidence that DA is involved in schizophrenia, but there is no
consensus yet as to how DA dysregulation could cause symptoms. Given the wide range of DA
functions in the brain, DA imbalance could contribute to the manifestations of schizophrenia in
many different ways. Emerging hypotheses are often not mutually exclusive, and include working
memory impairment, aberrant motivational salience, and dysregulated decision-making networks.

2.5.3 Impaired Semantic Memory

Converging evidence from imaging, psycholinguistic, computational, and lesion studies suggests
that map-like cortical structures encode semantic knowledge in the human brain (Farah and Wallace
1992; Caramazza et al. 1994; Spitzer et al. 1995). Semantic concepts in such topographic maps are
localized, and the map structure is organized according to similarities in the use and meaning of
concepts.

Given this development in the understanding of associative semantic memory, Spitzer (1997)
argued that early characterizations of schizophrenic pathology in terms of association psychology
become significant again. Specifically, the classic observations that free word associations produced
by schizophrenic patients tend to “proceed along new lines” and that “indirect associations receive
unusual significance” (Bleuler, 1911, c.f. Spitzer, 1997) suggest that semantic maps, or access to
semantic maps, are disturbed in schizophrenia.

Disturbed lexical access in schizophrenia has been investigated recently using lexical de-
cision tasks, where subjects decide whether a given string of characters is a word or not. A ro-
bust phenomenon demonstrated in both healthy and schizophrenic subjects is semantic priming:
a target word is recognized faster if it is preceded by a closely related word called a prime (e.g.
black→ white). This effect has been attributed to activation in the semantic map that spreads from
the prime to related words and pre-activates the target word (Neely 1977, 1991). Several studies
demonstrated that this effect is more pronounced in thought-disordered (TD) schizophrenic patients
(Manschreck et al. 1988; Kwapil et al. 1990; Spitzer et al. 1993a), although those findings have not
been universally replicated (Chapin et al. 1989; Ober et al. 1995; but see Moritz et al. 2003). Even
greater increases in priming for TD schizophrenic patients were observed when the relation between
prime and target word was indirect, as in black → (white) → snow, or lion → (tiger) → stripes
(Spitzer et al. 1993a).

The increased priming effect, combined with the map-based model of semantic memory,
has led to the hyper-priming hypothesis, which states that excessive spreading activation in seman-
tic maps is a major contributor to the symptoms of thought disorder in schizophrenia (Maher et al.
1987; Spitzer et al. 1993b; Aloia et al. 1998; Moritz et al. 2003). The indirect priming effect sug-
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gests furthermore that the activation spreads not only faster, but also farther in TD patients with
schizophrenia (Spitzer et al. 1993a; Spitzer 1997).

Spitzer also argued that a combined dysfunction of semantic and working memory can ac-
count for other clinically relevant symptoms as well, including the pervasive lack of sensitivity to
context found in schizophrenia patients. He also pointed out that the observed differences in lexical
access could be due to deeper structural or functional cortical deficits. Indeed, studies of verbal
fluency and object comparisons suggest that semantic memory itself, not just access to it, may be
disorganized in TD schizoprenic patients (Goldberg et al. 1998; Tallent et al. 2001). This hypothesis
is also supported by the fact that semantic priming abnormalities are independent of medication, and
seem to persist over the entire course of schizophrenia (Moritz et al. 2003). To complicate things
further, imaging studies have shown cortical overactivation during semantic association tasks (Ku-
perberg et al. 2007; Assaf et al. 2006), suggesting that overpriming effects may be due to general
semantic overactivation.

In summary, abnormal lexical access in TD schizophrenic patients has prompted the hy-
pothesis that excessive spreading of activation in map-like semantic networks is a major contributor
to thought disorder in schizophrenia. Disturbances of semantic memory in TD schizophrenic pa-
tients are well established, but their exact nature, and whether or not they cause thought disorder, is
currently unclear.

2.5.4 Other Possible Causes

In addition to the hypotheses about the causes of schizophrenia discussed so far, numerous others
have been proposed. Structural abnormalities in many different parts of the brain have been linked
to schizophrenia, including in the hippocampus, basal ganglia, PFC, cingulate cortex, and others
(see Bogerts et al. 2009 for a review).

Apart from dopamine transmission, many other biochemical alterations have been reported,
implicating almost every major neurotransmitter system, including serotonin, GABA, glutamate,
norepinephrine, and others (see Glenthoj et al. 2009 for a review).

Historically the immune hypothesis of schizophrenia has received much attention, which
states that neuroinflammatory (possibly autoimmune) processes are significant in schizophrenia
(Bogerts et al. 2009). Another influential hypothesis is due to Crow and colleagues, who state
that abnormal brain development (possibly including connection pruning) could lead to a failure to
achieve left or right dominance, which could ultimately cause schizophrenia. (Crow 1990). Post-
mortem and imaging studies have confirmed that schizophrenic brains are sometimes less lateral-
ized, and schizophrenic patients are more likely to be left-handed or mixed-handed than the general
population (see Maher 2002 for a review).

More recently, a mechanism that has been implicated in schizophrenia is apoptosis, i.e. pro-
grammed cell death that is regulated by a complex mechanism of cell signals. Recent postmortem
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studies suggest that apoptotic mechanisms in several cortical regions are dysregulated (Glantz et al.
2006). Furthermore, certain pro-apoptotic triggers can lead to a “sub-lethal” form of apoptosis that
eliminates synapses without neuronal loss, a mechanism that could account for the reduced neuropil
(LF et al. 2005; Glantz and Lewis 2000).

In summary, there is evidencethat many different neurochemical, cognitive, and anatomical
abnormalities are involved schizophrenia. Competing hypotheses, which are not always mutually
exclusive, often involve dopamine imbalance, developmental abnormalities, or disturbed semantic
memory. The heterogeneity of schizophrenia makes the search for underlying causes more difficult,
and it is unlikely that any one theory will be able to explain the complex cognitive, emotional, and
behavioral changes in schizophrenia. Given the daunting nature of this task, new tools to formalize
and test hypotheses and to complement and guide clinical research are needed.

2.6 Computational Models of Schizophrenia

During the last two decades, neural network-based models have increasingly been used in research
that attempts to capture and express central aspects of psychiatric and neurological disorders in a
computational process. Models of many known disorders have been proposed, including condi-
tions as varied as Alzheimer’s disease (Finkel 2000; Adeli et al. 2005), epilepsy (Wendling 2008),
depression (Huys 2007), dyslexia (Harm and Seidenberg 1999; Miikkulainen 1997) and schizophre-
nia (Grossberg and Pepe 1970; Hoffman et al. 1986; Cohen et al. 1996; Reggia et al. 1999; Spitzer
1997).

These models are useful because they can potentially link underlying causes of brain disor-
ders to their behavioral manifestations, and because they can express hypotheses about such links
in a formal yet flexible and predictive way. This ability makes them attractive theoretical tools to
complement experimental research. Schizophrenia has been an important focus for computational
models of psychiatric disorders, both because of its complexity and because experimental research
has so far failed to identify its causes. Schizophrenia thus presents an opportunity to demonstrate the
value of computational models as well as a challenge to create testable computational hypotheses
of such a complex and heterogeneous disorder.

As early as 1970, based on the theory that schizophrenic patients are in a constant state of
overarousal, Grossberg and Pepe (1970) described a neural network model where pathological re-
ductions of spiking thresholds caused an increased span of learned associations, suggesting a model
for attention deficits and loose associations in schizophrenia. Later, Grossberg (1999) developed
a model of hallucinations based on Adaptive Resonance Theory (ART) where hyperactive mod-
ulatory signals intensify top-down predictions such that perceptions occur without external input.
Again based on ART, Grossberg (2000) advanced a model that attempts to explain negative symp-
toms in schizophrenia as imbalanced opponent processes between emotional centers and the cortex.

PARRY, another early simulation of schizophrenia, was introduced by Colby (1973). PARRY
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was a symbolic system rather than a neural network-based model, but it is especially relevant to this
dissertation because it attempted to simulate the language of a paranoid schizophrenic. The system
included a behavioral model based on conceptualizations and beliefs, i.e. judgments about specific
conceptualizations. Paranoid schizophrenia was modeled as a dysfunction of the belief system,
leading to abnormal judgments to accept or reject propositions.

In another early study of psychopathology, Hoffman (1987) investigated perturbations in
attractor networks (Hopfield 1982) to model dysfunctional associative memory in schizophrenia.
In response to information overload in such networks, instabilities and “parasitic” stable states
emerged, suggesting disorganization and delusions in schizophrenia.

Several other models have also focused on the positive symptoms of schizophrenia. Rup-
pin et al. (1996) studied a computational model of Stevens’s (1992) theory of the pathogenesis of
schizophrenia. This theory suggests that in schizophrenia, projections from the medial temporal
cortex to the frontal cortex are lost, and symptoms then emerge because synapses regrow at the
projection sites to compensate for the lost connectivity. Ruppin and colleagues simulated these hy-
pothesized synaptic changes in a model of the frontal cortex based on an attractor network. They
observed spontaneous, stimulus-independent retrieval of stored memories that focused on just a few
of the stored patterns, suggesting hallucinations and delusions that occur in schizophrenia without
apparent external cause.

In a more recent study, Loh et al. (2007) used similar but more biologically detailed net-
works to model symptoms of schizophrenia through changes in network dynamics. Reducing the
depth of basins of attraction in spiking attractor networks reduced the stability of memory states,
suggesting a cause for cognitive and working memory deficits. Lower firing rates were observed
that could account for negative symptoms, and spontaneous jumps into attractor states could explain
positive symptoms.

In a study closely related to this dissertation, Hoffman and McGlashan (1997) used sim-
ple recurrent networks (of Elman 1990) to model aspects of human speech perception. In order to
understand the mechanisms underlying hallucinated speech in schizophrenia, the impact of several
simulated pathologies on speech perception was investigated. When recurrent connections were
pruned excessively, the networks generated spontaneous speech percepts, thus emulating halluci-
nated speech. A further study (Hoffman and McGlashan 2006) compared the performance of “hal-
lucinating” networks to that of actual hallucinating patients. Overpruned networks with additional
simulated downregulation of dopamine activity matched human data best, suggesting that schizo-
phrenia may arise from curtailed connectivity and involve secondary downregulation of dopaminer-
gic activity.

In contrast to these simulations of psychotic symptoms, Cohen and colleagues (Servan-
Schreiber et al. 1990; Cohen and Servan-Schreiber 1992; Braver et al. 1999) focused on modeling
behavioral deficits and cognitive impairment in schizophrenia. They argued that these manifesta-
tions of schizophrenia can be explained by a failure of cognitive control and processing of context
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due to faulty information gating in working memory. The gating failure in turn was thought to
be caused by abnormal neuromodulatory influence, especially through DA. The theory was im-
plemented in a series of connectionist models of cognitive control tasks like the Stroop test. The
influences of simulated abnormal DA activity were measured, and shown to account for cognitive
deficits in schizophrenia.

Based on the hypothesis that schizophrenic thought disorder is caused by dysfunctional
map-like semantic networks (Section 2.5.3), Spitzer (1997) proposed a neural network-based model
of disturbed lexical access in schizophrenia based on self-organizing maps (SOMs, Kohonen 1982).
In this model, access to semantic memory is impaired through excessive spreading activation, and
it is argued that activations in SOMs that spread faster and farther than normal can account for
increased indirect priming effects, decreased accuracy of lexical access, and other correlates of
thought disorder in schizophrenia.

In a related study,Silberman et al. (2007) used a SOM-based model of semantic memory
to simulate how semantic and episodic factors interact to form word associations. In this model,
activations that spread faster and farther than normal were simulated in order to gain insight into
the causes of schizophrenic thought disorder. The results of this study suggested that impaired
spreading activation may indeed be able to account for impaired associative thinking in thought-
disordered schizophrenia patients.

Carter and Neufeld (2007) investigated impairments of facial affect recognition in schizo-
phrenia using a partially recursive network trained with backpropagation through time. Several
competing impairment models, including connection pruning and altered network gain, were eval-
uated using human subject data. The hypothesis that additional network processing load interferes
with the judgment of facial affect provided the best match for the impairment seen in schizophrenia.

The computational studies discussed above span three decades, and simulate a wide range of
symptoms and underlying illness mechanisms using a variety of different approaches and network
architectures. They all represent progress towards a true “computational patient.” One problem
shared by most of them, however, is that manifestations of schizophrenia are represented by network
behavior that is either very abstract, as is the case of attractor networks, or does not correspond
directly to core symptoms, as in the simulations of cognitive defects or facial affect recognition. In
both cases, the link between network behavior and schizophrenia is subject to interpretation. The
model presented in this dissertation attempts to avoid this problem by simulating symptoms on the
level of narrative language, the same level used to define and diagnose schizophrenia.

2.7 Conclusion

The purpose of this chapter was to provide the background on three overarching themes of this dis-
sertation: stories, schizophrenia, and computational modeling. One important goal of this research
is to combine these three themes, and to demonstrate that a computational model of human narrative
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language can also simulate how language breaks down in schizophrenia. An accurate simulation of
impaired story processing could be expected to reveal deeper distortions of information processing
in the brain, and could then be used meaningfully to infer underlying illness mechanisms. The next
chapter introduces a set of computational tools that will be used for this purpose.
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Chapter 3

Computational Modeling Approach

The goal of this dissertation is similar to the goals of the computational studies discussed in the
previous chapter: To develop a computational understanding of schizophrenia, specifically of the
ways in which abnormal brain processes can cause symptoms to emerge. However, the approach
taken in this work is new and different in several respects.

Most importantly, this research attempts to simulate manifestations of schizophrenia at the
level of narrative language — the same level at which real patients are diagnosed. The symptoms of
schizophrenia span a wide range of altered behavior and perception, including bizarre behavior and
social dysfunction. However, since schizophrenia is diagnosed mainly through clinical interviews,
the most relevant human behavior is conversational language. For example, disorganized speech and
delusions, two hallmark symptoms of schizophrenia, are observed directly in the patient’s conversa-
tional language (rather than the patient reporting symptoms via language). Moreover, as I argued in
the previous chapter, narrative language is one of the richest human behaviors. It cannot be reduced
to the function of a specific part of the brain, and its dysfunction in schizophrenia has the potential
to reveal the disturbance of deeper functions of memory and thought on which human language is
built.

The purpose of clinical interviews, then, is to use narrative language as a window to the
schizophrenic mind. The motivation behind this dissertation is the idea that computational models
should be able to do so as well. Consequently, this research represents an attempt to simulate a
speaker with schizophrenia. A computational model of human narrative language is used to compare
and distinguish a range of simulated illness mechanisms with respect to their ability to recreate the
language-related symptoms of schizorphenia.

This chapter introduces the computational tools used to achieve this goal. First, DISCERN,
a neural network-based model of human narrative language, is described. Based on the research
literature, simulations of eight candidate illness mechanisms that could underlie schizophrenia are
then discussed, and their implementation using the DISCERN model is described in detail. In the
following chapters, the resulting candidate simulations of schizophrenia language are then evaluated
experimentally.
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3.1 The DISCERN Model

The original DISCERN model (Miikkulainen and Dyer 1991; Miikkulainen 1993) was the first in-
tegrated, neural network-based simulation of human story understanding and recall. It simulated
human language behavior at several levels, from lexical access to overall discourse planning. DIS-
CERN was able to understand, remember, and reproduce script-based stories and answer questions
about them.

The original DISCERN was shown to exhibit important characteristics of human story pro-
cessing, such as robustness to noise and realistic recall errors. However, it could only process stories
that consisted of single script instances. In order to be useful as a model of schizophrenic language,
it needed to understand and recall more realistic and complex stories. The model was therefore
extended to process stories consisting of multiple scripts, using a new architecture to encode and
retrieve episodic memories (Fidelman et al. 2005; Grasemann et al. 2007). Further extensions im-
plemented in this dissertation include the ability to process emotional content of stories, and a filter
for overly distorted language output. On the other hand, since the focus is on story recall, the
question-answering modules of the original DISCERN were not included.

This section provides an overview of the current extended version of DISCERN, with special
emphasis on the new memory architecture that enables the model to process multi-script stories.
For simplicity, the extended model will be referred to as “DISCERN” in the remainder of this
dissertation.

3.1.1 Architecture Overview

DISCERN reads and outputs natural language. Stories follow sequences of scripts, but are presented
to the model as plain text, one word at a time. The task of understanding, remembering, and repro-
ducing a story is achieved using a chain of neural network modules, each building on the results
of the previous module in the series and providing input for the next (Figure 3.1). The modules
communicate using patterns of neuron activations that encode word meanings. They are stored in
a central lexicon, and are learned from input stories such that words that are used in similar ways
have similar activation patterns. The other DISCERN modules are then trained in their tasks and
learn to understand, remember, and paraphrase the stories.

For each story (such as the one in Figure 3.2) the word representations are presented to the
sentence parser one at a time as a sequence of activation patterns. The sentence parser builds a
representation of each sentence by concatenating the word representations that correspond to agent,
predicate, indirect object, modifier, and direct object. At the end of each sentence, the sentence
representation is passed on to the story parser. The story parser transforms sequences of sentences
into script representations. A script representation consists of the name of the script and the words
and emotion filling its slots. The sequence of script representations that constitute the story is stored
in the episodic memory module in a compressed form, which is created by the memory encoding
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Figure 3.1: DISCERN is a neural network model of human story understanding and recall. The
task of understanding and reproducing a story is achieved by a chain of modules, each building on
the results of the previous module and providing input for the next. The figure shows the extended
version of DISCERN used in this dissertation. It is able to understand and recall stories consisting
of multiple scripts using the memory encoder module and a content-adressable episodic memory.

module using the Recursive Auto-Associative Memory (RAAM;Pollack 1990) architecture. To gen-
erate an output story, the story generator module translates the episodic memory representation into
a sequence of sentences. Based on evidence of an editor function during human speech production
(Fox Tree 2000), an output sentence filter evaluates and prunes this sequence. Finally the sentence
generator module, last in the chain, reproduces the original word sequence for each sentence.

In this way, while DISCERN understands, remembers, and recalls the story, the content is
tranformed from words to sentences, scripts, episodic memory traces, and eventually back to words.
The remainder of this section describes each part of this process in detail, starting with the way in
which the word representations in the lexicon are formed.

3.1.2 FGREP and the Lexicon

In the original DISCERN model (Miikkulainen 1993), the lexicon was an interconnected system
of two self-organizing maps that translated between semantic and orthographic representations of
the words used in the input stories. Since this part of the model is not a major focus of the present
work, a simplified version of the lexicon was used in order to reduce the overall complexity of the
model. Instead of developing both orthographic and semantic representations of words, the current
lexicon focuses on associating plain-text words with semantic word meanings, encoded as patterns
of neuron activation. These patterns, called word representations, are fixed-length vectors of real
numbers between 0 an 1. Similar words tend to have similar representations (in terms of Euclidian
distance).
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Emotion: Negative

[$job Vito Mafia head liked New-York famous gangster]
Vito was a gangster. [Vito was _ _ gangster]
Vito was the head of the Mafia. [Vito was Mafia _ head]
Vito worked in New-York. [Vito worked New-York _ _]
Vito liked his job. [Vito liked _ his job]
Vito was a famous gangster. [Vito was _ famous gangster]

[$driving Vito _ scared airport LA recklessly _]
Vito wanted to go to LA. [Vito wanted LA go _]
Vito entered his car. [Vito entered _ his car]
Vito drove to the airport. [Vito drove airport _ _]
Vito was scared. [Vito was _ _ scared]
Vito drove recklessly. [Vito drove _ _ recklessly]

[$pulled-over Vito cop arrest(ed) _ murder _ _]
Vito was pulled-over by a cop. [Vito was cop _ pulled-over]
The cop asked Vito for his license. [cop asked license his Vito]
Vito gave his license to The cop. [Vito gave cop his license]
The cop checked the license. [cop checked _ _ license]
The cop arrested Vito for murder. [cop arrested murder _ Vito]

[$trial Vito _ walked cleared free murder good]
Vito was accused of murder. [Vito was murder _ accused]
Vito was brought before the court. [Vito was court _ brought]
Vito had a good lawyer. [Vito had _ good lawyer]
The court cleared Vito of murder. [court cleared murder _ Vito]
Vito walked free. [Vito walked _ free _]

Figure 3.2: An example input story for DISCERN about a gangster getting arrested for a crime
committed in another story. The story consists of four scripts. The slot-filler representation of
each script is on top, followed by the sentences of the script. Each sentence (left) is paired with
its static case-role representation (right). During story understanding, DISCERN transforms such
input stories from individual words to sentences, scripts, and finally episodic memory traces. Story
recall later reverses this process to reproduce the individual words.
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Apart from the words that encode semantic concepts, the lexicon also contains a special
symbol “ . ” (period), which is used as an end-of-sentence marker, and is represented by a vector of
zeroes. Additionally, it contains one pattern of random values for each script DISCERN learns to
reproduce. The random patterns are used as script labels during story parsing and recall.

DISCERN’s lexicon is accessed at three points during story recall. First, when DISCERN
parses a story, the lexicon translates plain-text words into input activation patterns for the sentence
parser. This translation is done by simple look-up: for each word, the associated representation is
used as input to the sentence parser.

Second, when recalling a story, the ouput activation patterns produced by the sentence gen-
erator module are translated back into plain-text words by the lexicon. Since the sentence generator
will generally not produce activations that precisely match a word representation in the lexicon,
output word are selected by finding the nearest neighbor in Euclidean distance.

The third way in which DISCERN uses the lexicon occurs when the output filter is applied
to the sentence representation produced by the story generator. The output filter (described in detail
in Section 3.1.5) determines how well the words produced by the story generator match actual words
in the lexicon, and prunes out the sentence from the output story if if the average similarity is below
a threshold.

Note that in all cases, the way in which the lexicon is accessed is an abtraction of the
original DISCERN lexicon implemented with a self-organizing map with plain-text labels: When
translating a word into an activation pattern, the weight vector of a neuron would be output based
on its label. When looking up a plain-text word based on an activation pattern, the winner neuron
would be decided based on Euclidean distance, and the corresponding label would be produced.
The fundamental difference between the current lexicon and a self-organizing map lies in the way
both are trained.

Words with similar semantics are represented by similar activation patterns in the lexicon.
This property is achieved using the FGREP algorithm (Forming Global Representations with Ex-
tended backPropagation; Miikkulainen 1993), which develops word representations automatically
based on the way words are used in the input text.

FGREP is most easily defined as a simple extension of standard backpropagation, where
each input pattern is seen as an additional layer of weights that is adapted to the task at hand. Word
representations are kept in the lexicon, and are used as input and target patterns in a traditional
language processing network trained with backpropagation. The FGREP algorithm modifies the
input patterns, which are then returned to the lexicon.

The major difference between FGREP and regular backpropagation is that the error signal
is propagated one step further, from the hidden to the input layer:

δ1i =
∑
j

δ2jw1ij ,

where δli is the error signal of unit i in layer l; wlij is the connection weight of unit i in layer l to
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unit j in the following layer. Note that this is a simple case of the normal backpropagation rule for
error signal propagation where the activation function is the identity function. Using the error signal
for the input layer, the input representations can then be modified:

pci = pci + ηδ1i,

where pci is the ith component of a word representation pc, δ1i is the error signal for input unit i,
and η is the learning rate.

A convenient way to implement the FGREP algorithm is to add an additional input layer
(layer 0) to the network, with one binary unit for each word in the lexicon. The new layer is fully
connected to the original input layer. When a word is used as input, the corresponding binary
unit’s activation is set to 1, and all others to 0. The word representation pc is then encoded by the
connection weights: pci = w0ci for all i.

If the network is extended in this way, no modification of the backpropagation algorithm is
necessary; the error signal need not be propagated further back than usual, and the rule for modifying
the word representation becomes a special case of the normal rule

wlij = wlij + ηδ(l+1)joli,

where oli is the output of unit j in layer l, which in this case would be 1 for the unit corresponding
to the input word, and 0 for all others.

Intuitively, FGREP answers the question, “what input activation would have made the cor-
rect output more predictable?” The actual input of the network (the word representations) are then
changed slightly in order to make the same sequence of words easier to predict in the future. If
words are used in a consistent manner in the input sentences, changes to the word representations
add up over time to reflect the way in which they are used. The resulting word representations reflect
both grammatical role and semantic meaning of words, since co-occurrence of words is determined
by both – e.g. nouns are often preceded by articles and followed by verbs; at the same time, the
word “murder” is more likely to occur in a sentence that also contains the name of a gangster (as in
the example story above). Both kinds of correlation will influence the representations developed by
FGREP, since both enable the networks to predict their outputs more efficiently.

The only difference between word representations and connection weights in this algorithm
is that word representations need to be used as output neuron activation patterns, and must therefore
be constrained to the interval [0, 1]. This constraint is implemented in FRGEP by setting each
component of the pattern to zero if it is negative, and to one if it is larger than one, after every
FGREP iteration.

Importantly, in the resulting word representations, word meaning is distributed over the en-
tire length of the pattern, not localized in specific neurons, as in the case of feature-based represen-
tations. This property of global rather than local semantic representations makes DISCERN more
robust and allows it to generalize better: small activation errors lead to small (or non-existent) errors
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in word selection, and damage to part of an output pattern can be compensated by the remaining
undamaged part.

3.1.3 Story Parsing

The task of parsing a story in DISCERN transforms an input story from a sequence of word rep-
resentations to a (much more compact) sequence of script instances represented by their slot-filler
representations. This transformation is achieved using the sentence parser and story parser modules
(Figure 3.1), two simple recurrent networks (Elman 1990) that are trained to produce fixed-size
representations of variable-length input sequences.

During story parsing, the sentence parser module receives a separate input pattern for each
word in a story, plus the “period” pattern of all zeroes to mark the end of each sentence. While
receiving the input words one at a time, the sentence parser builds a static output representation of
the entire sentence. Sentences are represented by a list of five words, each corresponding to an input
word that fills a specific case role in the input sentence. The case role structure used is generally
[agent, predicate, indirect object, modifier, direct object]. For example, the sentence

Vince entered the LA airport

would be turned into the static case-role representation

[Vince entered _ LA airport],

where each plain-text word represents a pattern of neural activations, and the underscore ( ) repre-
sents the blank pattern consisting of all zeroes. In this example, “Vince” is the subject, “entered” is
the predicate, and “LA” modifies the direct object “aiport”. There is no indirect object, so that slot
is filled by the blank pattern.

In order to keep the representations compact while at the same time making a range of
interesting sentences and constructions available to DISCERN, the individual case-role slots are
overloaded slightly with related constructs. For example, the indirect object slot often contains
prepositional objects, in which case the preposition used is implicit:

Vito drove to the airport. --> [Vito drove airport _ _]

Note also how articles are never part of the case role structure. The role of the modifier slot in
particular is ambiguous and can contain adjectives or nouns that modify either the direct or the
indirect object. It can also contain a possessive pronoun, as in

The cop asked Vito for his license.

--> [cop asked license his Vito].

In some cases, the modifier slot is also abused to introduce an infinitival phrase:

Vito wanted to go to LA. --> [Vito wanted LA go _]
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As would be expected of a neural network architecture, DISCERN deals well with such underde-
fined sentence encodings. Prepositions and articles are inserted correctly, and creative and even
inconsistent uses of case-roles is tolerated well, as long as they are the exception rather than the
rule.

At the end of each sentence, the case-role representation produced by the sentence parser
is passed on to the story parser module. Similar to the sentence parser, the story parser is a simple
recurrent network that builds static representations of scripts from a variable-length sequence of
sentences, much in the way the sentence parser builds sentence representations from a sequence of
words. Scripts are represented as slot-filler representations: Each script is represented by a sequence
of 8 words that encode the script’s name and seven concepts filling its slots. For example, consider
the third script in Figure 3.2:

Vito was pulled-over by a cop. [Vito was cop _ pulled-over]

The cop asked Vito for his license. [cop asked license his Vito]

Vito gave his license to The cop. [Vito gave cop his license]

The cop checked the license. [cop checked _ _ license]

The cop arrested Vito for murder. [cop arrested murder _ Vito]

The sentence parser produces the sequence of case-role representations shown on the right; the story
parser then encodes this sequence as an instance of the $pulled-over script:

[$pulled-over Vito cop arrested _ murder _ _]

The $pulled-over script has only four slots, so the other three contain the blank symbol. Note
that in practice, slot-filler representations are concatenated activation patterns that each represent a
word or script name in the lexicon. In this way, DISCERN’s modules communicate using concepts
and symbols encoded in the lexicon, but still retain the advantages of subsymbolic information
processing.

In addition to the slot-filler representations, the story parser also builds a representation
of the script’s emotional valence. As mentioned earlier, each story in DISCERN has one of five
emotion codes associated with it, ranging from very negative to very positive (–, -, +-, +, ++). These
emotion codes are represented by word-sized activation patterns ranging from all zeroes for very
negative (–) to all ones for very positive (++). The story parser learns to reproduce these patterns,
which are then associated with each encoded script. The emotional valence always stays the same
for each script of a story, so emotional information is an opportunity for DISCERN to resolve
confusions between alternative ways to continue a story.

3.1.4 Memory Encoding

After DISCERN has read and decoded an entire story, the story’s constituent scripts are represented
by a sequence of slot-filler representations and their associated emotion codes. The task of the
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memory encoder module is to associate each script instance with a memory cue that allows stories
in memory to be addressed and retrieved by content.

The memory encoder is a Recursive Auto-Associative Memory (RAAM; Pollack 1990), a
neural network architecture that forms compact distributed representations of recursive data struc-
tures such as lists or trees. RAAM networks are feedforward networks trained to reproduce their
own input, forcing them to form compressed representations of inputs in their hidden layer, which
is smaller than the size of the input. These compressed representations can then be re-used as part
of the input to the RAAM, and compressed representations of recursive data structures are formed
as a result.

For example, consider a sequence of activation patterns [a, b, c], each of size n. Say we
would like to compress the entire list, and represent it as a single pattern of size h. This can be
achieved using a RAAM network with h hidden units and n + h input and output units. The first
input to the network is a concatenation of pattern c and a special end-of-list pattern (usually n

zeroes) denoted as �. After the network has propagated the input to the output layer, the hidden
layer contains a compressed representation of the list [c,�]. It is useful to write this compressed list,
LISP-like, as (c�). The next input to the network consists of b and the compressed list (c�) created
in the previous step. The resulting activation in the hidden layer is the compressed list (b(c �)).
The final input, a and the previous result (b(c �)) produce the compressed list (a(b(c �))) in the
RAAM’s hidden layer (see Figure 3.3). Note that the same network could be used to compress a
longer list, simply by continuing the process until all elements are included. Stepping backwards
through a list and recursively re-using previous results in this way, RAAM networks can produce
compressed representations of arbitrarily long lists. Also note that the final compressed list is not
necessarily the only result of this process: compressed versions of partial lists, like (b(c �)), are
produced as by-products along the way.

During the memory encoding process in DISCERN, the list of script representations pro-
duced by the story parser is compressed exactly in the way described above. More specifically,
imagine that the three patterns [a, b, c] in the previous example each represent one of the three
scripts that make up a story. The memory encoder compresses this story by stepping backwards
through the list of scripts. Each compressed partial list (and the final complete list) produced along
the way is then used as a memory cue for the script used to create it, i.e. the compressed list (c �)

is the memory cue for script c, (b(c �)) is the cue for script b, and (a(b(c �))) is the cue for script
a. Figure 3.4 illustrates the memory encoding process in detail.

Each of the script-cue pairs produced by the memory encoder is called an episodic memory
trace. In the original DISCERN, these traces were classified through a hierarchy of self-organizing
maps, and a trace was created in the lateral connections of maps at the lowest level. Because
episodic memory itself is not the main focus of the current work, its structure is abstracted in the
current implementation: It is simply a store of script-cue pairs. During story recall, episodic memory
is accessed using a memory cue; the memory trace that contains the most similar cue (in terms of
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(2(3 ☐)) Emo)on Script 1 

(1(2(3 ☐))) 

(2(3 ☐)) 

Output layer 

Input layer 

Hidden layer 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Script 1 

Figure 3.3: The memory encoder in DISCERN is a Recursive Auto-Associative Memory (RAAM;
Pollack, 1990), a neural network that is trained to replicate its input at its output nodes, forcing it
form a compressed representation of the input in its hidden layer. By reusing these hidden layer
representations as part of the next input, RAAM can form fixed-size representations of recursive
data structures like lists and trees. In DISCERN, compressed lists of scripts are created in this way
and used as episodic memory cues.

Euclidean distance) is then retrieved.
One important feature of this memory mechanism is that the memory cues associated with

each script are shaped by more than just the single script with which they are associated: Each
cue encodes the entire remainder of a story at that point. This property implies that producing the
correct sequence of memory cues needed to retrieve the scripts of a story in the right order would
require maintaining a “discourse plan” at every point during story recall.

In DISCERN, RAAM representations of lists of scripts are used as cues to address episodic
memory by content. Figure 3.3 shows a RAAM network that is being used to create a memory cue.
Note how the network uses a cue (a compressed partial story) as part of the input to form the next
cue in its hidden layer. In this way, the network steps backwards through a story, and produces a
compressed representation of the rest of the story at each step, associating each new cue with the
script used to create it. Figure 3.4 illustrates the encoding process.

3.1.5 Story Recall

Story recall is the process of transforming a story stored in episodic memory back into the original
sequence of plain-text words. The story generator module is the heart of this process: It successively
retrieves the memory traces that make up a story from episodic memory, and reproduces the story
as a sequence of sentence representations.

36



☐ 

(1(2(3 ☐))) 

(2(3 ☐)) 

(3 ☐) 

Parser output  Memory cues Memory encoder 

Emo7on Script 3 

Emo7on Script 2 

Emo7on Script 1 

(1(2(3 ☐)))  Emot Script 1 

(2(3 ☐))  Emot Script 2 

(3 ☐)  Emot Script 3 

(2(3 ☐))  Emot Script 2 

(3 ☐)  Emot Script 3 

Episodic memory 

step 1 

step 2 

step 3 

(3 ☐)  Emot Script 3 

Figure 3.4: During the memory encoding process, each script of a story is paired with a memory cue,
transforming the output of the story parser (left column) into content-addressable episodic memory
traces (right column). Each script’s memory cue is a compressed version of the remaining story,
and represents DISCERNs discourse plan at that point – e.g. the cue for script 2 is the compressed
version of scripts 2 and 3, denoteded (LISP-like) by (2(3�)). The memory encoder builds these
cues by stepping backwards (from bottom to top) through the scripts of a story, at each step creating
a memory cue by combining a script with the memory cue produced previously. In this manner,
stories of variable length can be compressed into a single distributed memory representation.
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Figure 3.5: The story gen-
erator module in DISCERN
is a simple recurrent neu-
ral network (Elman 1990).
During story recall, the list
of episodic memory traces
encoding the current story
are successively recalled from
episodic memory. Each it-
eration of the story genera-
tor produces both a sentence
representation and a memory
cue. The sentence representa-
tion is passed on to the sen-
tence generator; the memory
cue is used to retrieve the next
episodic memory, thereby de-
termining the network’s own
next input. In this manner,
the story generator can step
through an arbitrary number
of memory traces that encode
a story, enabling it to process
stories consisting of multiple
scripts.
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Figure 3.5 shows the structure of the story generator module. It is a simple recurrent net-
work that takes as its input a complete episodic memory trace (consisting of memory cue, slot-filler
representation, and emotion code), and produces as its output a memory cue and a case-role repre-
sentation of a sentence.

When recalling a story, the story generator is first cued with the first memory trace of that
story. The initial output consists of the case-role representation of the story’s first sentence, and a
memory cue to episodic memory. Successive iterations of the story generator network produce a
sentence and a memory cue each time. The memory cue is used to retrieve a memory trace from
episodic memory, which is then used as the next input for the story generator.
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Note that a memory trace encodes an entire script, which consists of multiple sentences.
The story generator can produce only one sentence at a time, so the input memory trace needs to
stay the same until all sentences of the current script are produced. During recall of a single script,
the story generator therefore produces the same memory cue repeatedly, while the output sentences
change every time.

When the last sentence of a script is produced, the output memory cue changes, and the next
memory trace (i.e. the next script) is retrieved from episodic memory. Figure 3.6 illustrates such a
switch from one script to the next in detail.

Three snapshots of the story generator’s input and output are shown during the switch from
the second to the third script of the example story shown in Figure 3.2. The final memory cue,
produced together with the last sentence of a story, is an end-of-story marker consisting of all zeroes.
When this cue is passed on to episodic memory, an end-of-story memory trace is retrieved, and story
recall ends.

Correct switching of memory cues during story recall is a complex task, since each script
has a variable number of sentences, and each story has a variable number of scripts. Producing
the correct sequence of cues therefore requires the story generator to maintain considerable internal
state. The context layer of SRNs like the story generator is the only place where such networks
can maintain such a state. The context layer therefore plays the role of working memory, and is
therefore the target of several simulations of possible illness mechanisms.

Note also that, as mentioned earlier, the memory cues at each point during story recall are
compressed versions of the entire remainder of the story. The ability to reproduce sequences of such
complex structures for a large number of stories requires generalization. In other words DISCERN
is forced to maintain a detailed discourse plan in the form of memory cues at all times during story
recall.

Emotion codes, unlike memory cues, are encoded by very simple activation patterns, and
are easy to reproduce. However, they are not unique to a story, so they cannot guide story recall
by themselves. The emotional valence does stay the same throughout each story, however, so the
emotion codes that form part of each memory trace hold valuable information that can be used to
resolve ambiguity between alternative continuations of a story. Previous research has shown that
DISCERN indeed makes use of the emotional information in this way (Fidelman et al. 2005).

Based on evidence of an editor function during human speech production (Fox Tree 2000),
DISCERN includes an output sentence filter that estimates the distortion of every case-role repre-
sentation produced by the story generator, and discards it if the distortion is
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Figure 3.6: During story recall, the story generator steps through each sentence of the story, and
accesses each memory trace encoding it. Three consecutive snapshots of the story generator’s input
and output are shown durng the switch from the second script ($driving) to the third ($pulled-
over) script of the story shown in Figure 3.2. Time flows from bottom to top. Bottom: DISCERN
reproduces the sentence “Vito is scared” in the second script of the story. The story generator
produces a representation of the sentence, which is then passed on to the sentence generator (to the
right). (continued on the next page)
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(Figure 3.6 continued.) Additionally, it produces a memory cue that is used to retrieve the next input memory
trace from episodic memory (on the left). In this case, the same memory trace as before is retrieved, since
the script is not yet finished. Middle: DISCERN produces the last sentence of the script, “Vito drives reck-
lessly.” The memory cue changes, and the memory trace for the third ($pulled-over) script is retrieved. Top:
Using the retrieved memory trace, DISCERN now starts to reproduce the third script. By switching mem-
ory cues successively, the story generator can step through each script in the correct order. In this manner,
scripts trigger subsequent scripts within a single story as is commonly done in symbolic script-processing
systems (Schank 1999). In DISCERN, this model of narrative structure is given a subsmbolic connectionist
implementation.

above a threshold. In this way, errors are reduced at the cost of reducing correct recall. The distor-
tion D(C) of a case-role representation C is estimated as the squared sum of the distortions of its
constituent word representations:

D(C) =

5∑
i=1

|ci − ĉi|2, (3.1)

where ci is the ith component word of the case-role representation C, ĉi is the closest match of ci
in the lexicon, and |·| denotes the Euclidean norm. This estimate relies on the fact that the lexicon
is sparsely populated, so a distorted word representation is less likely to have a close match in the
lexicon. Note that the only way to find the actual distortion of a word, rather than an estimate,
would be to compare it to the correct target word, which is not known to the story generator during
recall. In practice the estimate works well, especially in eliminating word errors that cross lexical
categories. To make adjusting the behavior of the output filter more intuitive, the threshold is not
set directly but is defined through a filter strength parameter s such that a sentence C is discarded
when D(C) > 1/s. In this way, a higher filter strength means more output will be filtered.

The final step of the recall process is straightforward: Sentences that are not discarded by
the output filter are passed on to the sentence generator, which is an SRN that takes a case-role
representation of a sentence as its input and produces a sequence of individual word representations
as its output. The input case-role representation stays the same over multiple calls, until the end-of-
sentence pattern corresponding to “ . ” is produced. At this point, the current sentence is finished
and processing of the next case-role representation can begin. The individual word representations
are passed to the lexicon and converted into plain-text words, which form the final output of the
DISCERN system.

3.2 Modeling Schizophrenia in DISCERN

DISCERN is a subsymbolic implementation of a symbolic theory. As such, it links two impor-
tant conceptual levels, grounding human memory and language behavior in abstract neurons and
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Figure 3.7: Overview of the
illness models, or lesions, im-
plemented in the DISCERN
model. The labelled cir-
cles indicate to which part
of DISCERN the lesion was
applied. WMD: Working
memory (WM) disconnec-
tion (pruning WM → hid-
den connections, and, in the
extended model, hidden →
output connections as well);
WMN: WM noise (added to
the activation of WM neu-
rons); WMG: WM gain re-
duction (less steep sigmoid in
WM neurons); EA: Excessive
arousal states (varying bias
weights of story generator
WM neurons); SN: Seman-
tic memory distortion (adding
noise to semantic word rep-
resentations); SO Semantic
overactivation (increasing ac-
tivation of semantic word rep-
resentations), SB: Semantic
blurring or overpriming (blur-
ring semantic word represen-
tations); HLM, HLG: Hyper-
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learning (amplified backpropagation learning, applied to the memory encoder (HLM) or the story
and sentence generators (HLG). In the three-parameter hyperlearning model (Chapter 5), both HLM
and HLG were used at the same time. The different illness models will later be evaluated as simu-
lations of schizophrenic language.
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synapses. As a basis for models of psychopathology, this is the core of DISCERN’s strength: Un-
derlying illness mechanisms can be simulated at the low level, and their manifestations observed in
terms of high-level behavior.

The simulated illness mechanisms discussed in this section take full advantage of this op-
portunity. Eight illness models (or lesions) were implemented and evaluated in DISCERN. Each
lesion simulates a low-level illness mechanism hypothesized to play an important role in causing
symptoms of schizophrenia. Figure 3.7 gives a brief summary of the lesions, and indicates where in
DISCERN they were applied.

The remainder of this section discusses the eight illness models in detail. The evidence sup-
porting each illness model is reviewed briefly, summarizing the earlier discussion of possible illness
mechanisms in Section 2.5. The implementation of each illness model in DISCERN is described,
including the way in which the severity (or lesions strength) is adjusted in each case. Models
of working memory impairment are introduced first, followed by semantic memory disturbances.
Hyperlearning, a simulation of impaired dopamine transmission and memory consolidation, is de-
scribed last.

1. Working memory disconnection (WMD)

As discussed earlier in Section 2.5.1, loss of brain connectivity has been hypothesized to
cause the symptoms of schizophrenia. Connections that have been found to be altered include
both local cortical connections and connectivity between brain regions, and involve networks
that are thought to be central to working memory function.

The primary working memory component that governs language production in DISCERN
is part of the story generator network. Recall that the story generator is a simple recurrent
network, i.e. each time the network is activated, it stores its hidden-layer activation in its
context layer. The context layer in turn has a full set of trainable forward connections to the
hidden layer, so the network has access to its own previous internal state. This hidden-context-
hidden layer loop effectively enables the network to learn, represent, and act on patterns in
time, such as scripts, which are patterns of propositions in time.

The WMD lesion therefore targeted this component of the story generator network. In order to
simulate altered connectivity, DISCERN’s working memory was partially disabled by pruning
the forward connections from the context layer to the hidden layer of the story generator
network. The parameter that determined the severity, or strength, of the lesion was the pruning
threshold: All connections whose absolute weight fell below the threshold were cut, i.e. set
to zero.

Note that, even though working memory circuits are implicated in the literature on functional
disconnection in schizophrenia, disconnection does not necessarily have to involve only work-
ing memory. The same pruning method can be used to partially disable other comonents of
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the network. For example, in experiment I (Chapter 5), both the working memory connections
and the hidden to output layer connections in the story generator were pruned independently.

2. Working memory noise (WMN)

Working memory dysfunction is strongly associated with schizophrenia (Aleman et al. 1999),
and may have other causes than altered brain connectivity. As discussed in section 2.5.2,
abnormal DA activity may cause noisy and otherwise impaired information processing in
WM networks. In DISCERN, noisy information processing of this type was modeled using
the working memory of the story generator network. Every time hidden activations were
copied to the context layer, Gaussian noise with zero mean was added to the activations. The
strength of the lesion was controlled by changing the variance of the noise; higher variance
meant higher levels of noise distortion.

3. Working memory gain reduction (WMG)

Changing the gain of the activation function of artificial neurons has been investigated pre-
viously as a simulation of changed dopaminergic neuromodulation in schizophrenia (Cohen
and Servan-Schreiber 1992; Sections 2.5.2 and 2.6). Since DISCERN’s working memory,
discourse planning, and context processing during story recall all happen in the story genera-
tor, this module was again the target of this lesion. Working memory gain reduction (WMG)
was implemented by changing the slope of the sigmoid activation function of the hidden-layer
neurons in the story generator. By default, all activation functions in DISCERN are sigmoids
with unit slope, and are not adapted during training. The WMG lesion reduced the slope; the
lesion strength parameter controlled the amount by which it was reduced.

4. Excessive Arousal (EA)

Historically, a popular view has been that symptoms of schizophrenia, and psychosis in par-
ticular, are caused by a state of constant cortical overarousal, or by susceptibility to such a
state (Kornetsky and Eliasson 1969; Schlör et al. 1985). A recent study on the genetics of
catecholamine function Arnsten (2007) suggests how such a susceptibility could occur: Both
schizophrenia and bipolar disorder are associated with genetic changes that “may render pa-
tients vulnerable to profound stress-induced PFC dysfunction including symptoms of thought
disorder.” Furthermore, one of the earliest neural network-based models of schizophrenia was
based on the theory of overarousal (Grossberg and Pepe 1970; see Section 2.6).

Elevated arousal at a neuronal level was simulated in DISCERN by increasing the bias of
all WM neurons in the story generator by a fixed amount. The strength of this lesion was
adjusted by changing the value added to the bias.
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5. Semantic blurring (SB)

The hyper-priming hypothesis (Section 2.5.3) suggests that excessive spreading activation in
semantic maps is a major contributor to the symptoms of thought disorder in schizophrenia,
and has been the subject of previous computational models (Spitzer 1997; Leeson et al. 2005;
see Section 2.6 for details).

In DISCERN, hyper-priming, i.e. excessive coactivation of related words in the lexicon was
simulated by semantic blurring, i.e. instead of a word representation w the lexicon produced
a mixture of w and its neighbors. These “blurred” word representations were calculated in
the following way: for each word w, the lexicon was sorted by Euclidean distance to w.
The blurred version of w is then defined in the following way (note the convex sum for
0 < β < 1):

blur(w) =

N−1∑
i=0

(1− β)βiwi

where wi is the ith closest word to w, and w0 = w. N is the size of the lexicon, and
0 < β < 1 is a “blur factor” – larger β means more blurring. The lesion strength for the SB
lesion is adjusted through β.

6. Semantic memory noise (SN)

Altered verbal fluency and object comparisons suggest that semantic memory itself, not just
access to it, may be disorganized in TD schizoprenic patients (Goldberg et al. 1998; Tallent
et al. 2001; Section 2.5.3). In order to simulate distortion or disorganization of semantic mem-
ory, Gaussian noise with zero mean was added to the word representations in DISCERN’s
lexicon. Note that this lesion is intended to model changes to the semantic memory itself, so
noise was added only once, not continuously during lexical access. The severity, or strength,
of the semantic distortion was controlled by adjusting the variance of the noise.

7. Semantic memory overcativation (SO)

Several recent functional imaging studies reported cortical overactivation in regions involved
in semantic memory and language processing during tasks that involved semantic association
and lexical access Kuperberg et al. 2007; Assaf et al. 2006. The SO lesion in DISCERN
consequently simulated overactivation of semantic memory networks by adding a constant
bias to word representations produced by the lexicon. The strength of the SO lesion was
regulated by adjusting this bias.

8. Hyperlearning (HLM, HLG)

Hyperlearning is a version of the DA hypothesis based on Kapur’s (2003) theory that in-
creased midbrain DA release leads to abnormally enhanced motivational salience, which in
turn causes psychotic symptoms (see Section 2.5.2 for details). Hyperlearning extends and
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formalizes this theory by proposing a concrete mechanism by which this could occur: Aber-
rant salience of experience leads to overly intense memory consolidation. This hypothetical
“hyperlearning state” was simulated in DISCERN by performing additional backpropaga-
tion learning at elevated learning rates. Hyperlearning was always applied for 500 additional
epochs (i.e. iterations of the entire story corpus) after DISCERN was fully trained.

Hyperlearning was applied to either the memory encoder network (HLM) or the generator
modules (story generator and sentence generator; HLG), or both. In the case of HLM, the
down-stream generator modules were also trained (using normal learning rates) in order to
enable them to compensate for changing memory cues.

Not all hypotheses about possible illness mechanisms could be simulated meaningfully in
DISCERN. For example, loss of attentional control and impaired theory of mind are currently not
accessible to the model (but see Chapter 7). Nevertheless, the illness models span a wide range of
current theories, and reflect the emphasis that is currently placed on the role of impaired semantic
memory and disturbances involving dopamine and/or working memory.

3.3 Conclusion

The purpose of this chapter was to introduce the computational modeling tools that will be used in
this dissertation to create and evaluate simulations of schizophrenic language. DISCERN, a connec-
tionist model of human story understanding and recall, was descibed in detail. Recent extensions of
the model were discussed, including the ability to process multi-script stories, emotions, and a filter
mechanism that reduces errors at the cost of lower overall language output.

Based on the DISCERN model, eight simulations of candidate illness mechanisms that
could underlie symptoms of schizophrenia were then introduced. Each of these illness models was
motivated by a specific hypothesis about illness mechanisms in schizophrenia. The implementation
in terms of the DISCERN model was described in each case.

DISCERN and the different illness models will ultimately be evaluated as simulations of
schizophrenic language. However, in order to do so, a simulation of normal human language based
on DISCERN must be created first as a starting point. The development of this “healthy” DISCERN
model is the topic of the next chapter.
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Chapter 4

Developing a Healthy Model

DISCERN is a complex model, where multiple functional layers combine, learn, and perform to-
gether to create the final language behavior. Much of its power as a model of schizophrenic language
derives from the complexity of the underlying healthy language: When story processing breaks
down due to simulated illness mechanisms, it may do so in equally complex and unexpected ways.
In order to create the most informative models of schizophrenic language possible, it was therefore
necessary to push the limits of the DISCERN system and develop concrete, running instances of the
model whose language behavior was as rich and varied as possible. The purpose of this chapter is
to describe the steps that were necessary to achieve this goal.

First, the model was implemented and integrated into the existing parallel computing in-
frastructure. Second, a corpus of input stories was created that was large and complex enough to
make it possible to observe and quantify subtle changes in recall and language performance. Based
on the vocabulary used in these stories, a lexicon of word representations was then developed us-
ing the FGREP algorithm described in section 3.1.2. Finally, training methods and schedules were
developed that allowed DISCERN to learn the entire story corpus almost perfectly. The result-
ing “healthy” instances of the DISCERN model form the basis of all computational experiments
discussed in this dissertation.

4.1 Implementation Details

The C implementation of the extended DISCERN model was based on the proc module that was
part of the original DISCERN implementation by Risto Miikkulainen (available on the web at
http://nn.cs.utexas.edu/?discern), and on previous code extensions by Hong Ming Yeh and Peggy
Fidelman (Fidelman et al. 2005). The original code was extensively redesigned and optimized for
modern computer architectures.

Comparisons between alternative lesions, especially for experiment I (Chapter 5), made it
necessary to explore the parameter space of different lesions extensively. In order to make this pos-
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sible, tools were developed to integrate the model into the existing parallel computing infrastructure.
All computational experiments were run using the condor job-scheduling system and the Mastodon
cluster (http://www.cs.utexas.edu/facilities/accommodations/condor/mastodon).

The findings reported in the following chapters are based on millions of different combina-
tions of lesion and filter parameters tested. For each of these combinations, detailed statistics on
the language performance of 30 DISCERN systems were collected. Specialized tools were created,
mostly using Python (www.python.org van Rossum and de Boer 1991)), to manage the large amount
of experimental data created in this way. Data visualization, including all plots in this dissertation,
was done using matplotlib (Hunter 2007,; http://www.matplotlib.sourceforge.net). Additionally, a
website that allows users to explore the data for experiment II (chapter 5) was developed using
Python and gnuplot, both as a demo and to help communication within the project.

4.2 Story Corpus

In the original DISCERN model, all stories consisted of a single script, which limited DISCERN
to learning stories describing a single, relatively uncomplicated event, like eating in a restaurant or
getting on a plane. The current extended model is able to store and recall stories that can in prin-
ciple be composed of an unlimited number of scripts. In practice, DISCERN’s capacity to process
multi-script stories (and mine to come up with them) is limited to about seven scripts. Nevertheless,
this ability makes a wide range of more complex stories accessible. Scripts can be combined and
recombined in new ways, or can be repeated within a story, expressing different content by using
different slot-fillers. Stories can also share multiple of scripts, establishing stereotypical, repeat-
ing sequences of scripts that can themselves be viewed as scripts that are implicitly learned by the
model. Overall, multi-script stories make DISCERN a more useful model by creating a more dif-
ficult task, demanding more complex behavior, and giving DISCERN more opportunities to fail in
interesting ways.

The story corpus designed for this dissertation is an attempt to make use of these opportu-
nities, and to stretch as far as possible the kind and number of stories that DISCERN can learn. It
was also designed with the goal of this dissertation in mind: The stories need to make it possible to
investigate the kinds of language disturbance observed in patients with schizophrenia. Specifically,
failures of context, of continuity, and of character slotting need to be observable during story recall.
Opportunities for content to intrude from one story into another had to be created. The remainder
of this section describes the corpus in detail, and addresses how these issues were addressed.

The corpus contains 28 stories. Each one is a sequence of three to seven scripts, and contains
between nine and 35 sentences. All stories taken together contain 550 single sentences in 120 script
instances. The size of the vocabulary is about 160 words, including 20 names or descriptions of
story characters (e.g. “Frank” or “lawyer”). The entire story corpus is reproduced in Appendix 8,
including script and sentence representations.
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Emotion: positive

[$drink I Stacy met Moe’s-Tavern table wine _]
I went to Moe’s-Tavern [I went Moe’s-Tavern _ _]
I sat at a table [I sat table _ _]
I ordered wine [I ordered _ _ wine]
I drank the wine [I drank _ _ wine]
I met Stacy at Moe’s-Tavern [I met Moe’s-Tavern _ Stacy]

[$relation I Stacy liked trusted _ my girlfriend]
Stacy was my girlfriend [Stacy was _ my girlfriend]
I liked Stacy [I liked _ _ Stacy]
I trusted Stacy [I trusted _ _ Stacy]

[$person Stacy 20s ponytail New-York movies books compact]
Stacy was in her 20s [Stacy was 20s her _]
Stacy had a ponytail [Stacy had _ _ ponytail]
Stacy was from New-York [Stacy was New-York _ _]
Stacy drove a compact car [Stacy drove _ compact car]
Stacy liked movies [Stacy liked _ _ movies]
Stacy liked books [Stacy liked _ _ books]

[$talking I Stacy liked liked kiss books long]
I talked to Stacy about books [I talked Stacy about books]
I liked books [I liked _ _ books]
I talked to Stacy a long time [I talked Stacy long time]
I liked talking to Stacy [I liked Stacy _ talking]
I gave a kiss good-bye to Stacy [I gave Stacy kiss good-bye]

Figure 4.1: An uneventful example story from the personal context: “ I ” meet my girlfriend Stacy
for a drink, and we have a conversation about books. Most stories in the personal context are, like
this one, told from the first-person point of view. The “ I ”, or self, is overrepresented in the story
corpus in order to simulate the concept of the person experiencing and telling the stories.

The stories in the corpus are divided into two groups, defining two distinct categories, or
contexts. The first (the “personal context”) consists of stories from the life of a character called “I”
(referred to as the self in the following). The stories in the personal context mostly described his
relationships and experiences, and attempted to create a somewhat coherent slice of his life. Most
of these stories are told from the first-person point of view of the self, who is overrepresented in this
way in order to simulate the central role of the self in autobiographical human memory. An example
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of such a story is shown in Figure 4.1. The stories in the personal context span the whole range of
emotional tone, from very negative to very positive.

The second group (the “gangster context”) contains stories with a very different theme, and
mostly negative emotional tone. They concern a group of Mafia-type gangsters who mostly engage
in stereotypical gangster activities, committing crimes, killing each other, and occasionally getting
caught by the police. The stories in this context are intended to simulate the impersonal stories to
which humans are exposed, e.g. through movies or the news. In contrast to most personal stories,
they are told from the third-person point of view of varying characters; the self character does not
appear. An example of a gangster story was previously shown in Figure 3.2.

Note that the two story contexts are entirely implicit: DISCERN is given no direct informa-
tion that would make it possible to distinguish one context from the other, or even to decide whether
or not stories can usefully be divided up in this way. At the same time, contextual cues are every-
where in the story content. For example, words that are unique to one context like gun or wedding
make it easy in principle to decide what the current context is. This contextual information can then
help story understanding and recall, e.g. by resolving ambiguity. The data reported below on the
errors that occur in heathy systems suggest that DISCERN indeed learns to use these contextual
cues.

Some of the most important and unambiguous contextual cues are names of story charac-
ters: All ten named characters are context-specific, i.e. each appears in the personal context or the
gangster context, but not both. Five characters (three gangsters and two policemen) are unique to
gangster stories, and five (including the self) appear only in personal stories. Unnamed characters
that appear in the stories, like cop or girlfriend, are not always unique to a context.

In order to encourage DISCERN to use contextual information, and also to make failures of
context easier to observe in the output language, there are several pairs of characters that are similar,
but belong to different contexts. For example, the self’s boss Joe is in many ways similar to the
Mafia boss Vito. At any point in a story, the easiest way to decide between the two would be to
consider the current context. On the other hand, if DISCERN learns to rely on such information, and
context processing is later impaired, this reliance on contextual cues should result in an observable
tendency to confuse characters across contexts.

All stories were assembled from 14 different scripts, briefly summarized in table 4.1. Ex-
amples of each script and its slots can be found in Appendix 8. Most scripts describe stereotypical
sequences of events such as meeting someone for a drink or being pulled over by the police. Ad-
ditionally, several scripts ($person, $job, and $relation) do not describe an event, but instead
describe a person or a relationship between two persons. The purpose of these scipts is to create
opportunities for DISCERN and the FGREP algorithm to develop detailed and complex representa-
tions of the agents in the story corpus.

Most scripts were designed to be used in both personal and gangster contexts, and in stories
with either positive or negative emotion. For example, there is no specific script describing a crime
— instead, there is a general $occasion script that can encode various very different events, de-
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Table 4.1: Overview of the 14 scripts used to build the story corpus. The length of each script is
given in sentences.

Script Name Context Content Length

$person Both Description of a story character 6
$job Both Desciption of a character’s job 5
$relation Both Relationship between two persons (e.g. boss, finacee) 3
$flight Both Getting on a plane and flying somewhere 7
$drink Both Having a drink and meeting someone 5
$driving Both Driving somewhere in a car 5
$drunk Both Getting drunk 3
$pulled-over Both Getting pulled over by the police 5
$trial Both Being accused of a crime in court 5
$talking Both A conversation between two characters 5
$plan Both Two characters plan an occasion 4
$occasion Both Generic occasion, including wedding and bombing 5
$being-after Gangster An organization, e.g. the police, is after someone 5
$investigation Gangster The police investigates a crime 4

pending on the concepts used to fill the slots. In story #26, for example, the $occasion script is
used to describe how Vince, a Mafia hitman, kills Tony, another gangster:

[$occasion Vince Vince phone-call killed Starbucks Tony murder]

Vince entered Starbucks for murder. [Vince entered ...]

Vince killed Tony. [Vince killed _ ...]

The murder was a success. [murder was _ _ ...]

Vince made a phone-call. [Vince made _ _ ...]

Vince smoked a cigarette. [Vince smoked _ ...]

In story #17, the same script is used to describe a harmless wedding:

[$occasion I Mary speech kissed Four-Seasons Joe wedding]

I entered the Four-Seasons for wedding. [I entered ...]

Mary kissed Joe. [Mary kissed ...]

The wedding was a success. [wedding was ...]

I gave a speech. [I gave _ _ ...]

I drank champagne. [I drank _ _ ...]

In this way, shared scripts between contexts create opportunities for DISCERN to cross
over between contexts, and again encourage the use of context. In the same way, coincidental
shared structure between real-life and imaginary stories in humans may create opportunities for
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derailments or for the formation of delusional ideas. In the instances of the $occasion script
above, note also that the script content is mostly, but not entirely, determined by inserting slot fillers
into otherwise fixed sentence structures. For example, the content of just one slot (speech vs.
phone-call) determines the structure of an entire sentence (I gave a speech. vs. Vince

made a phone-call.). DISCERN can make use of this kind of flexible script definition, as long
as most scripts follow a regular structure.

4.3 Developing a Lexicon

The story corpus described above containes approximately 160 unique words, including 78 nouns,
44 verbs, 18 adjectives or adverbs, and 10 prepositions. Apart from the prepositions, other closed-
class words are definite and indefinite articles, and the pronouns “his”, “her”, “my”, “me”, and
“that”. Of the nouns, 20 described story characters or groups of people like “police” or “Mafia”.
Ten of the words describing characters were names (“I” is considered a name here rather than a
pronoun); the rest were more abstract descriptions of characters like “cop” or “fiancee”.

Before DISCERN’s processing modules could be trained to process the story corpus, it was
necessary to develop meaningful word representations for these words based on the way in which
they were used in the input stories. This was achieved using the FGREP algorithm described in
Section 3.1.2.

Since both the story corpus and the vocabulary were many times larger than any that had
been used in DISCERN previously, some preliminary experiments were necessary to determine the
behavior of the algorithm. These experiments led to several observations that proved to be useful
in developing a large lexicon with FGREP. First, the success of FGREP depended to some degree
on the size of the word representations, but above a certain size, larger representations lead to no
additional benefit. In this case, representations of size 12 turned out to be close to optimal – the
default size that was also used in the original DISCERN model.

Second, FGREP worked well when word representations were trained while sentences were
processed by DISCERN’s sentence parser module. Using any other combination of modules re-
duced the quality of the word representations, i.e. the similarity of representations did not reflect
word similarity as well. One reason for this difference in FGREP performance between modules
could be that the input to the sentence parser network is a single word representation at a time.
The input layers of DISCERN’s other processing modules all consist of multiple words, which may
lead to a noisier, less word-specific error signal. It is also possible that the patterns of use and
co-ocurrence in sentences are clearer and more useful than, say, in slot-filler representations.

The quality of word representations also depended significantly on the duration of training,
on the learning rates for connection weights and for word representations, on network size, and on
a range of other parameters. The best word representations seemed to result when relatively small
sentence parser networks were trained for a relatively short period, and when the learning rate for
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word representations was significantly higher than the one used for network connections. Intuitively,
the opposite should be true for each of these parameters: longer training and larger networks should
make learning easier; learning rates should be higher for the network connections in order to avoid
moving-target effects (Miikkulainen 1993). The reason for this behavior remains to be investigated
in future work.

The FGREP algorithm did, however, produce a set of high-quality word representations.
The best results were trained using a sentence parser network with 12 input units, 150 hidden units,
and 60 output units. FGREP training lasted for 500 epochs, i.e. the network was exposed to each
sentence in the corpus 500 times. The learning rate was 0.01 for network connections and 0.1 for
word representations. The values of the word representations were clipped to the interval [0, 1].

By the end of training, the word representations reflected the similarities between the con-
cepts well: words whose representations were close tended to denote similar concepts, and usually
belonged to the same lexical category. Table 4.2 illustrates this tendency by listing the four closest
words (by Euclidean distance) for a representative subset of words in the lexicon. Note, for exam-
ple, how the names of story characters form a tight and well-defined cluster. With only a single
exception, the words closest to each name are other names. Note also that the closest name to Joe

is Vito, reflecting the similarity of the self’s boss and the Mafia boss mentioned in the previous
section. Other word categories form similar clusters, although they are generally not as tight as the
cluster of story characters.

Table 4.2 also illustrates another interesting feature of the FGREP representations: the lists
of similar words reflect a mixture of similarity in grammatical role and similarity in semantic mean-
ing. This effects is most clearly visible in the cluster of character names: their grammatical roles are
virtually identical, but the internal structure of the cluster nevertheless reflects more subtle similari-
ties, e.g. Mary is closest to Stacy, and Tony is closest to Vince. In the same way, the positive verbs
loved and trusted are closer to each other than to negative verbs like feared. This observation
shows one of the main strengths of the FGREP approach: When learning word representations from
actual language, lexical categories provide the strongest and most immediate organizing principle,
but once words are ordered according to that principle, more subtle differences in the way words are
used make it possible to capture semantic meaning as well. Figure 4.2 shows a principal component
analysis of the 102 words that were used as slot fillers in the story corpus. Words cluster relatively
well according to grammatical role and semantic categories. Again, several levels of more or less
fine-grained neighborhood relationships expressing different levels of similarity are visible. Note,
for example, the cluster containing “rusty”, “nice”, and “compact”, three words exclusively used in
the story corpus to describe cars. Also note how the internal structure of the tight cluster of character
names. The two components shown account for 43% of the data variance.

In summary, the FGREP algorithm was able to learn word representations that reflect sim-
ilarity of both lexical category and semantic meaning well. Both of these similarities were learned
exclusively from the way words were used in the input stories. Meaningful word representations
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Table 4.2: The four words with the most similar FGREP representations (by Euclidean distance)
are shown for a representative subset of the lexicon. Similarity of word representations corresponds
well with similarity of word meaning.

Word Closest Second Third Fourth Distance

I Vince Tony Joe Fred (0.23–0.43)

Stacy Kate Mary Fred Vito (0.08–0.31)

Mary Stacy Kate Vito Bob (0.15–0.28)

Joe Vito Mary Kate Fred (0.21–0.32)

Tony Vince I the Joe (0.22–0.48)

Vince Tony I Fred Joe (0.22–0.41)

Vito Joe Mary Stacy Bob (0.21–0.31)

man Joe Tony I Vito (0.47–0.60)

boss girlfriend fiancee pulled-over mother (0.41–0.83)

co-worker mother friend fiancee brought (0.67–0.90)

girlfriend boss mother pulled-over fiancee (0.41–0.78)

friend mother co-worker girlfriend brought (0.45–0.99)

mother friend girlfriend co-worker accused (0.45–0.80)

doctor gangster beer cigarette late (0.32–0.91)

Mafia police job bag St-vincent’s (0.53–0.83)

police Mafia job bad Moe’s-tavern (0.53–1.02)

New-york Starbucks LA city-hall St-vincent’s (0.50–0.72)

Chicago LA St-vincent’s New-york fine (0.22–0.79)

airport Four-seasons city-hall guns books (0.57–0.66)

Starbucks city-hall New-york Four-seasons St-vincent’s (0.47–0.63)

city-hall Starbucks airport Four-seasons to (0.47–0.65)

wedding murder meeting bombing Vince (0.39–0.60)

bombing murder meeting the wedding (0.39–0.54)

hated feared distrusted trusted $trial (0.72–0.80)

trusted loved feared distrusted kissed (0.11–0.52)

loved trusted distrusted feared kissed (0.11–0.60)

liked drank feared $plan Kate (0.90–1.00)
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Figure 4.2: Principal Component Analysis of word representations learned by the FGREP algo-
rithm. The set of 102 words that were used as slot fillers in the story corpus are shown. Clusters
form at different levels of detail, according to a mixture of grammatical role and semantic similarity.
Note e.g. the fine-grained structure in the central cluster of character names. The two principal com-
ponents shown account for 43% of the data variance. Some labels (but not markers) were moved
slightly to avoid overlap.
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such as these are essential because they ensure that small errors in network output translate into
equally small errors in word selection, making DISCERN more robust and enables it to degrade
gracefully with damage.

4.4 Network Training

With the corpus and the word representations in place, the next step was to develop effective meth-
ods to train the DISCERN model to understand and reproduce the stories. Network sizes and param-
eters were determined empirically. Sentence parsers and generators had 250 hidden neurons, story
parsers had 225, and story generators had 150. Memory encoder networks had 48 hidden neurons.

Modules were trained in a chain, with the output from one module used as the input for the
next. Starting with the sentence parser module, new modules were added to the chain successively
as meaningful input became available during the course of learning.

The learning rate for each module was set to 0.4 times the average output error of the module
(root mean squared error, averaged over all outputs of the network during the previous training
epoch). In this way, the learning rate for each module decreased automatically as the output error
decreased during training, which allowed for fast weight changes during early training as well as
fine-tuning of network response at low learning rates later on.

It should be noted that the usefulness of this kind of adaptive learning rates in backpropa-
gation training is controversial (Sarle 1997; Bertsekas and Tsitsiklis 1996). Nevertheless, it works
well in the case of DISCERN. One particular advantage is that learning rates adapt independently
for each module, which reduces the complexity of training schedules considerably.

A total of 70,000 backpropagation learning epochs were employed overall for each DIS-
CERN system, even though only a subset of all modules were trained during most epochs. The
following schedule was used to determine which modules to train at each point during training:
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1. Until epoch 30,000: Train only the sentence parser module.

2. Epoch 30,000 – 40,000: Train the story parser module. The sentence parser module is still
running to provide input, but is not being trained.

3. Epoch 40,000 – 50,000: Train the memory encoder and story generator modules. The sen-
tence and story parsers are running to provide input, but are not being trained.

4. Epoch 50,000 – 60,000: Train the memory encoder, story generator, and sentence generator
modules. The sentence and story parsers are running to provide input, but are not being
trained.

5. Epoch 60,000 – 70,000: Train all modules in a chain.

The training schedule was determined empirically, and is based on a considerable amount
of trial and error. Overall, 30 “healthy” DISCERN systems were trained. All of them learned to
reproduce the story corpus almost perfectly. On average, 95.6% (SD 0.8%) of sentences and 99.3%
of words were reproduced correctly.

The majority of errors that occurred were consistent with errors commonly seen in healthy
humans. Seven of the 30 systems jumped once from one to another story that was closely related.
All seven jumps occurred in personal stories and stayed within context. All systems sometimes con-
fused story characters that were closely related, most frequently Stacy and Mary. These confusions
showed a strong tendency to stay within context: 86% of the time, a character from the same context
was inserted. Lexical errors were rare, and almost always concerned words that were generally used
to denote generic conversation topics (as in I talked to Mary about *books(movies)).
Lexical errors stayed within context 90% of the time. Ungrammatical constructions appeared in
less than 0.1% of sentences.

4.5 Conclusion

This chapter described the steps that were completed in order to develop a set of undamaged DIS-
CERN systems as a basis for further experiments. An extensive corpus of input stories was de-
veloped and discussed in detail. Based on the words occuring in the stories, word representations
were trained to reflect word meanings using the FGREP algorithm. Training methods were de-
veloped and then used to train a set of 30 complete DISCERN systems. The recall errors of the
resulting systems were analyzed and found to be consistent with normal human performance. The
final “healthy” DISCERN systems formed the starting point for the simulations of schizophrenic
language described in the next chapters.
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Chapter 5

Experiment I: Matching Human Story
Recall Data

The foundation of the work reported in this chapter is an experimental study of story recall in pa-
tients with schizophrenia, designed and conducted by Ralph Hoffman and his colleagues at Yale
(Hoffman et al. 2010) as part of a joint project with this dissertation research. Participants in the
study listened to several short stories, and later attempted to recall them as precisely as possible. In-
sertions, omissions, and recall errors that occurred were recorded and analyzed, creating a detailed
characterization of language disturbance in schizophrenia. The scoring methodology of the human
study was designed with computational modeling (and the DISCERN model) in mind. Thus, these
data present a unique opportunity to tackle one of the main problems that this dissertation is trying
to solve, which is to evaluate and distinguish candidate illness mechanisms in a rigorous and quan-
titative way. Because DISCERN’s output is (a simplified version of) human language, equivalent
scoring methods can be easily designed for DISCEN. The different illness mechanisms can then be
characterized in DISCERN, and compared to human data. The quality of the match can be used to
judge which illness mechanism is more likely to cause the observed impairments in patients.

The remainder of this chapter first reviews the study of human story recall, including the
experimental design, methodology, and the resulting data. Building on the human study, the next
section then describes the methods used to match illness mechanisms to human data, and the com-
putational experiments that were conducted. The results of these experiments are presented next,
and are discussed in detail.
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5.1 Human Story Recall in Schizophrenia

The participants in the study were 20 healthy controls and 37 patients with schizophrenia. The pa-
tients were all relatively stable outpatients under medication, diagnosed psychiatrically with schizo-
phrenia or schizoaffective disorder. These diagnoses were based on DSM-IV criteria (American
Psychiatric Association 2000), established using the Comprehensive Assessment of Symptoms and
History (CASH; Andreasen 1987). The Yale University School of Medicine Human Investigation
Committee approved the human subjects study. Written, informed consent was obtained from all
subjects.

In order to examine language-related manifestations of delusions more closely, the patient
group was further divided into those who definitely demonstrated evidence of fixed delusions with a
plot-like or narrative scheme, and those who showed questionable or no evidence of such delusions.
This distinction was made based on the presence of paranoid, grandiose, or religious delusions, and
excluded scores for non-fixed delusions (thought broadcasting, thought control, thought insertion,
and somatic delusions). Typical examples of such story-like delusions included God choosing the
patient to eliminate racial oppression, and the patient being trailed by Homeland Security agents
due to allegations of terrorist activities.

Table 5.1: Comparison of patients and healthy controls in the human story recall study, including all
individuals completing the seven-day recall task. Patients and controls are generally well matched,
although patients had slightly lower WAIS vocabulary scores.

Age1 Gender (M/F)
Parental edu- WAIS scaled

cation (grades) vocabulary score

Healthy controls
36.6 (9.0) 11/9 13.7 (4.0) 12.2 (3.0)(N = 20)

Patients with
41.5 (9.6) 16/21 15.1 (7.6) 9.9 (4.6)schizophrenia

(N = 37)

Significance test t(55) = 1.51, χ2 = 0.72 t(55) = 0.77, t(55) = 2.04,
(two-tailed) p = 0.14 p = 0.40 p = 0.44 p = 0.046

1mean (stdev)
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The absence of psychiatric diagnosis in healthy controls was confirmed using the non-patient
version of the Structured Clinical Interview for the DSM-IV (First et al. 2002). Antipsychotic
drug levels of patients were quantified as chlorpromazine equivalents (Davis 1974; Woods 2003;
Centorrino F 2002). Verbal abilities of all participants were estimated using the Wechsler Adult
Intelligence Scale-III vocabulary test (WAIS Wechsler 1987). A comparison of patient and control
groups in terms of age, gender, parental education and vocabulary test performance is provided
in Table 5.1. Patients and healthy controls were generally well-matched, although patients had
somewhat lower vocabulary scores (p = 0.046).

In the study, participants were asked to recall three short, pre-recorded stories. The first
story was selected from the Chicken Soup for the Soul book series (Cerf 1993), and was chosen
because it tended to elicit a sad emotional reaction in a small pilot study with healthy controls. The
second story was the “Anna Thompson” story borrowed from the WAIS Logical Memory test, and
the third was custom-written to resemble the others. All three stories are reproduced below.

“Flower” Story

In one seat of the bus a wispy old man sat holding a bunch of fresh flowers. Across the
aisle was a young girl whose eyes came back again and again to the man’s flowers. The
time came for the man to get off. He thrust the flowers into the girls lap. “I can see you
love flowers,” he explained, “and I think my wife would like you to have them. Ill tell
her I gave them to you.” The girl accepted the flowers and watched the man get off the
bus and walk through the gate of an old cemetery.

“Anna Thompson” story

Anna Thompson of South Boston, employed as a cook in a school cafeteria, reported at
the police station that she had been held up on State Street the night before and robbed
of fifty-six dollars. She had four small children, the rent was due, and they had not
eaten for two days. The police, touched by the womans story, took up a collection for
her. Anna baked them a cake the following week. Her oldest son, from then on, wanted
to be a policeman. Anna never walked down State Street again.

“Hitchhiker” story

I hitched into town. A wispy old man driving a pick-up truck with his frail wife gave
me a ride. I sat in the back and watched the tires kick up dust. We stopped and waited
for a traffic light. I turned around and peered into the rear window. I hadn’t eaten all
day and my eyes came back again and again to a bag of Fritos on the dashboard. The
man got out of the truck and walked around to the back. “My wife noticed that you
kept looking at the Fritos,” he explained, “and she wanted you to have them.”
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Similar to the DISCERN story corpus described previously in Section 4.2, the stories were selected
(or, in the case of the Hitchhiker story, written) to have overlapping sctructure and content in order
to create the possibility of cross-over or transfer of content between stories. The Flower story and
the Hitchhiker story, for example, have similar narrative structure; they also both involve travel and
share a story character (the “wispy old man”). All three stories share the theme of a gift being given
to a story character.

All participants listened to all three stories in random order. Stories were presented binau-
rally on headphones. All participants were asked to recall the stories three times: once immediately,
once 45 minutes after exposure, and once after seven days. If a subject was unable to recall any
element of a particular story spontaneously, he or she was prompted by a the title of the story.
Seven-day recall was unannounced in order to prevent rehearsal of stories in the intervening period.
The recalled stories of all participants were tape-recorded, transcribed, and then analyzed: errors
and insertions were categorized and counted, and overall recall success was scored. A number of
outcome variables were calculated based on these results. Among them were ungrammatical con-
structions, failures of pronoun reference, within-story accretions (misplaced content within a story),
and between-story migrations (content from one story intruding into another). The following four
variables, however, turned out to be the most reliable and descriptive, with parallel errors of the
same type generated by DISCERN under illness conditions, and were therefore used as a basis of
comparison with the computational model:

1. Recall success

In order to measure human recall, the three target stories were broken down into sets of
kernel propositions. Consider the first sentence of the Flower story: “In one seat of the bus
a wispy old man sat holding a bunch of fresh flowers.” This sentence was translated into
three kernels: (i) a man rode on a bus, (ii) the man was old/aged and frail/weak, (iii) the man
was holding/possessed flowers. The Flower story contained 12 kernel propositions, the Anna
Thompson story contained 14, and the Gift story contained 10. Successful paraphrases for
each kernel was scored if the gist was captured in the rater’s judgment. The final recall score
was the total number of kernels paraphrased successfully (scored as 1) or partially (scored
as 0.5), divided by the number of kernels in all three target stories (36). The recall success
variable thus represented the fraction of content correctly reproduced.

2. Derailments

A derailment was scored when a clause (independent or dependent) was produced whose
meaning was extraneous to or inconsistent with the target story. An example from the Hitch-
hiker story, recalled by a patient with schizophrenia: “He got in the truck and then they
stopped for gas.” Stopping for gas was not part or the Hitchhiker story, and the clause was
therefore scored as a derailment. The outcome variable for derailments was expressed as a
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penetrance score, meaning the number of derailments divided by the number of correctly re-
called propositions. In this way, the variable measures the difficulty in following a consistent
story line, expressed as a score that is independent of the number and length of the recalled
stories.

3. Agency shifts

These errors comprised a special category of word substitution error that specifically involved
story characters. The following example was produced by a patient in the study:

“She gave the old man the flowers as a gift.”

In the original story, the old man gave the girl flowers. This segment therefore contained two
agency shifts, or agent-slotting errors: one for “She” and one for “the old man.” Pronouns
referring to people were scored as agency shifts if the implied noun reference was incorrect.
In patients, this variable turned out to be linked to fixed delusions. Again, the outcome was
expressed as a penetrance score.

4. Lexical misfires

These errors were scored if a word (or word phrase) was replaced by another that filled a simi-
lar sentence role, but where meaning was significantly changed from the target text. Examples
from human performance include:

“Her son was ecstatic” (the son felt good but not ecstatic).
“The old man got out of the *car (truck).”

Agency shifts as defined above were excluded from this category. The outcome variable was
lexical misfire penetrance, i.e. number of occurrences divided by recall score.

Table 5.2: Interrater reliability of all
outcome variables is in the accept-
able range (> 0.6). Numbers are av-
eraged across immediate, 45-minute,
and seven-day story recall data for ten
subjects.

Variable Mean alpha (range)

Propositions recalled 0.98 (0.98 - 0.99)

Agency shifts 0.75 (0.66 - 0.89)

Lexical misfires 0.63 (0.38 - 0.94)

Derailments 0.87 (0. 78 - 0.93)

For each subject, scoring was done by a rater who was not involved in data collection,
and who was blind to group, presence or absence of fixed delusions, and subject identification. The
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Table 5.3: Comparative data for healthy controls and patients with schizophrenia-spectrum disor-
der. Patients showed significant impairment in recall performance, and produced significantly more
derailments and agent-slotting errors. Lexical errors did not differentiate the two groups.

Recall Derailment Agent-slotting Lexical misfire
success1 penetrance1 penetrance1 penetrance1

Healthy controls 0.67 (0.12) 0.022 (0.072) 0.012 (0.016) 0.026 (0.032)

Patients with
0.41 (0.23) 0.153 (0.178) 0.043 (0.061) 0.033 (.043)schizophrenia

Significance test4
t(55) = 4.9, t(52.1) = 3.9, t(44.8) = 3.0, t(49.3) = 0.7,
p = 0.00001 p = 0.00032,3 p = 0.0043 p = 0.493

1 mean (stdev); 2 after sqrt transformation to normalize data;
3 equal variance not assumed; 4 two-tailed, uncorrected.

interrater reliability obtained for all relevant outcome variables was acceptable (>0.6, see Table 5.2).
Pooling data across both groups of human subjects, there was no significant correlation between
any of the performance variables, and age, education level, or WAIS-scaled vocabulary, assuming
an uncorrected cut-off of α = 0.05. Within just the patient group, number of hospitalizations and
antipsychotic dose (scored as chlorpromazine equivalents) were also not significantly correlated
with any of the performance variables using the same cut-off.

The primary findings of the human study were as follows (Hoffman et al. 2010). First,
patients with schizophrenia were significantly less successful (p = 0.00001) at reproducing story
content than healthy controls. On average, the recall score was 41% after seven days, or 61% of the
average recall score of healthy controls.

Second, derailment behavior was relatively frequent in the patient group, like in the follow-
ing example produced by a patient in the study: “He got flowers. He looks over at the girl who has
blue eyes.” Penetrance of such insertions differentiated patients from controls robustly (p = 0.0003,
after square root transform to normalize data).

Third, patients were more likely than healthy controls to produce agency shifts (p = 0.004).
More interestingly, the group of patients with fixed, story-like delusions made significantly more
agent-slotting errors than both healthy controls and patients without these delusions (p = 0.015,
corrected post-hoc comparison, α = 0.05), suggesting that agency shifts may provide a promising
model for delusion formation.
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One surprising negative finding was that neither lexical misfires nor ungrammatical lan-
guage differentiated patients and controls. The frequency of lexical misfires was equally low in
both patients and healthy controls (p = 0.49), and ungrammatical constructions were virtually ab-
sent in all study participants.

The human subject data collected in this study present a unique opportunity to evaluate and
distinguish the candidate illness models introduced in Section 3.2. The reminder of this chapter
describes the methods and the results of a computational study that was designed to do so in a
rigorous and quantitative way.

5.2 Methods

In order to evaluate DISCERN and the alternative illness models, a principled way to compare the
language produced by DISCERN to that of humans was needed.

While quantitative measures of verbal memory performance have been developed for word
list stimuli (Tremont et al. 2000), to our knowledge similar measures do not exist for recall of nar-
ratives. Moreover, in the context of altered story recall in schizophrenia, a meaningful comparison
should not just measure performance, but instead attempt to capture and compare important aspects
of the specific alterations that were found to be relevant.

Based on the findings of the human study summarized in the previous section, such a mea-
sure was developed for this experiment. It specifically focuses on the four outcome variables intro-
duced in the previous section: recall success, derailment penetrance, agency shift penetrance, and
lexical misfire penetrance.

The primary reason for choosing this set of variables as a basis for comparing human lan-
guage to DISCERN was that they all indicated some interesting or distictive language behavior
in the human study. For example, recall that patients were more impaired than controls in recall
success, derailment penetrance, and agent-slotting error penetrance. The lexical misfire penetrance
did not differentiate patients from healthy controls, but was used anyway because (1) this was a
surprising finding, and (2) different lesions in DISCERN tended to produce different rates of word
selection errors (see e.g. Figure 6.3 in the next chapter).

A fifth variable, measuring ungrammatical constructions, was initially used, but was dis-
carded from the analysis because both human study subjects and DISCERN produced virtually no
ungrammatical language. The variable was therefore not useful in comparing alternative simulations
to the human data.

Other variables were discarded because no equivalent scoring method was available for
DISCERN. For example, pronoun reference failures could not be used because DISCERN used
only very few pronouns (at least in the current story corpus). Between-story migrations (content
from one story intruding into another) could also not be used, because all stories in DISCERN’s
memory were known, so most errors fell into this category. In humans, on the other hand, intrusions
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could presumably come from an extremely large number of narrative memories in addition to the
target stories used in the experiment. In contrast, the four variables used for comparison could be
scored in DISCERN in a straightforward way that was very close or identical to the scoring for
human data:

1. Recall success

Sentences in DISCERN were short and contained no dependent clauses, so each sentence
was counted as one kernel proposition. Recall success was calculated as the total number
of sentences accurately reproduced, divided by the total number of sentences in the corpus
of target stories. Stories in DISCERN were much more numerous and often more extended,
yielding a total number of 549 kernels.

2. Derailments

In DISCERN, derailments were scored when recall switched from one story to another dur-
ing recall. The number of derailed sentences was counted and divided by the number of
correctly recalled sentences. The resulting penetrance score measured DISCERN’s difficulty
in maintaining a consistent story line.

3. Agency shifts

Identical to the study of human story recall, agency shifts were scored when DISCERN sub-
stituted on story character for another. An example from a DISCERN simulation:

I talked to *Stacy(Kate) about *Kate(Stacy).

where Kate is the mother of the first-person character and Stacy is his girlfriend. Like in the
example of human agent-slotting errors shown earlier, two story characters are switched, and
two agency shifts are scored. The human story recall data suggests that such agent-slotting
errors can indicate narrative-type fixed delusions.

4. Lexical misfires

Like in the human subject study, these errors were scored when DISCERN substituted one
word for another word that belonged to the same lexical category, unless the substitution was
already scored as an agency shift. Examples from DISCERN’s output include

Vince drove *recklessly(carefully).

Vito was from *LA(Chicago).

Kate liked *guns(books).
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The following word substitutions, on the other hand, were not scored as lexical misfires be-
cause they crossed lexical categories:

Vince killed *the(Tony).

I was *wedding(late).

Such ungrammatical constructions were rare in this experiment: Most word substitutions in
DISCERN involved semantically related words.

Based on these four variables, a measure was developed for how well an illness model
matched the human data. It calculated the goodness of fit (GOF) for a specific lesioned DISCERN
system using a mean square deviation metric (Schobel et al. 2009):

GOFC|P (D,L, s, f) =
4∑

i=1

(
V̄

C|P
i − Vi(D,L, s, f)

SE(V
C|P
i )

)2

(5.1)

where GOFC|P (D,m, f) is the goodness-of-fit of a given DISCERN exemplar D with
illness model (lesion) L applied at lesion stregth s, and output filter threshold f . GOF is calculated
relative to either the group of human healthy controls C or human patients with schizophrenia P .
V̄

C|P
i is the mean value of the story-recall variable i (either recall success, derailments, agency

shifts, or lexical misfires) calculated for the subject group C or P . Vi(D,L, s, f) is the score for
that same variable for the DISCERN exemplar D with lesion L at stregth s and filter parameter f .
SE(V

C|P
i ) is the standard error of the mean for variable i. Note that a lower GOF score implies a

better fit.
The goodness-of-fit measure was then used to compare alternative illness models to human

data. The 30 “healthy” DISCERN models developed in Chapter 4 formed the starting point for this
experiment. The initial unlesioned models recalled the entire story corpus reliably, with average
sentence-level recall at 95.6% (SD 0.8%).

Each of the eight illness models introduced in Section 3.2 was then tested to determine
which one could create the best fit to human data. This comparison was done by the following
method, once for the patient group P and once for the healthy control group C.

First, for each illness model L and each of the 30 initial DISCERN systems D, the best-fit
combination of lesion strength s and output filter setting f was determined. GOFC|P (D,L, s, f)

was calculated for each combination (s, f) on a 100×1000 grid of lesion strengths and filter settings.
The 100 lesion strengths were spaced equally between zero and a strength where recall per-

formance was close to 30%. Filter settings were varied between zero and a setting that filtered over
90% of the output of unlesioned systems. Preliminary experiments were undertaken to ensure that
increasing the resolution of the parameter search further would not alter the outcome significantly.

The result of this parameter search was the best GOF for system D and lesion L, indicating
how well lesion L was able to match the human subject group using DISCERN system D. The
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best-fit GOF data for all 30 systems and all eight lesions were then analyzed to determine which
illness model fit the human data best. For the comparison, mixed models were used with best-fit
GOF as the response variable, DISCERN systems as the clustering factor, and type of lesion (eight
levels) and group (healthy control versus patient) as within-subject factors.

The two illness models that matched patient data best, i.e. working memory disconnection
and hyperlearning, were then studied in more detail. The parameter space of both models was
expanded by applying the same lesion in a second location. This expansion meant that these models
now had three parameters: the lesion strengths s1 and s2 for lesions in two separate locations and,
as before, the filter setting f .

Hyperlearning was expanded by applying it to the generator modules of DISCERN in addi-
tion to the memory encoder module. Network training was adjusted such that s1 was the learning
rate for the memory encoder network, and s2 was now the learning rate for story and sentence
generator modules.

Working memory disconnection was expanded by pruning the story generator’s output con-
nections in addition to the connections between context and hidden layer. The lesion parameters s1
and s2 were used as pruning thresholds for, respectively, the context-to-hidden layer connections
and the hidden-to-output layer connections.

The two expanded illness models were then compared to each other in fundamentally the
same way as the two-parameter models. The available computing resources made it possible to
expand the parameter space to three dimensions, but the resolution for the lesion strength variables
had to be reduced to 40, so that the parameter space was a 40 × 40 × 1000 grid. The statistical
approach was the same as previously, using mixed models with the second lesion parameter as an
additional fixed effect.

In order to model fixed delusions, the systematicity of DISCERN’s agent-slotting errors
needed to be investigated, i.e. whether or not the same confusion of a personal-story and a gangster-
story character tended to recur in the output stories. This systematicity was measured by generating
cross-context errors randomly (using the same base rate for each agent as in the story corpus), and
counting how many of the errors were repeats of earlier ones (in the same or opposite direction).
The same total number of errors as in the 30 DISCERN exemplars together was generated 10,000
times, and the rate of systematic errors compared to that of DISCERN simulations.

5.3 Results

In the first set of experiments, the eight two-parameter models were compared first to the healthy
control group and then to the patient group. A mixed model revealed a significant subject-group ×
lesion interaction (F (7, 203) = 36.7, p < 0.0001).

No illness model had a significant advantage matching the story-recall performance of con-
trols (F (7, 203) = 1.91, p = 0.07). Figure 5.1A compares the best-fit GOF values obtained by
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Table 5.4: Pairwise comparisons of optimized GOF for two-parameter hyperlearning and two-
parameter disconnection relative to the other six two-parameter models. Comparisons are based
on mixed model analysis1,2.

Hyperlearning WM Disconnection
t-test p-value t-test p-value

WM noise 3.9 < 0.0001 3.6 < 0.0004

WM gain reduction 7.8 < 0.0001 7.2 < 0.0001

Lowered WM bias 14.7 < 0.0001 13.3 < 0.0001

Semantic noise 9.9 < 0.0001 9.2 < 0.0001

Semantic overactivation 8.2 < 0.0001 7.7 < 0.0001

Semantic blurring 9.5 < 0.0001 8.8 < 0.0001

1df = 203, all pairwise comparisons favored 2D hyperlearning and disconnection over other models;
numbers in parentheses correspond to mechanism code illustrated in Figure 3.7;
2comparison of 2D hyperlearning vs 2D WM disconnection in terms of optimized GOF with patient
data was nonsignificant (t=0.09).

matching each lesion to the healthy control group. In contrast, the eight illness models differed
significantly in how well they matched the patients’ story-recall performance (F (7, 203) = 50.5,
p < 0.0001). Working memory disconnection and hyperlearning were robustly superior to the other
six models in terms of GOF to patient performance ((p < 0.0005 on paired t-tests) but were not
significantly different from each other (Figure 5.1B, Table 5.4).

That the different illness models differ in matching patients but not healthy controls sug-
gests that some models are indeed better able to capture specific aspects of the pathophysiology
underlying schizophrenia, rather than the error patterns that humans overall are likely to produce.

In the second experiment, these two illness models were further studied by adding a second
lesion parameter to each, resulting in a three-parameter model. The third parameter improved the
overall GOF to patient data significantly (F (1, 29) = 37.3, p < 0.0001). A significant lesion ×
parameter interaction was detected (F (1, 29) = 10.3, p = 0.003), with three-parameter hyperlearn-
ing producing a significantly better fit to the patient profile than the three-parameter disconnection
model (t(29) = 4.2, p = 0.0002).
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Figure 5.1: Goodness of fit of the 30 DISCERN exemplars to human story-recall data. The plots
show each of the eight illness models mapped using a mean square deviation metric to the language
profile of controls (A) and patients (B,C). GOF was log converted to normalize distributions; smaller
values represent a better fit. All mechanisms were equivalent in matching the controls. However,
hyperlearning and WM disconnection fit the patients better than the other mechanisms (Table 5.4).
(C) Adding a third parameter to disconnection and hyperlearning models improved GOF to the
patient language profile, with hyperlearning fitting significantly better than WM disconnection.
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In order to evaluate how well the best-fit illness model was able to reproduce the actual
language behavior of patients, the content of the language produced by the three-parameter hyper-
learning model was analyzed in detail. First, with regard to derailments, midstream jumps from
one story to another occurred in a highly systematic fashion in both the model and the patients
(who were in relatively stable condition during the study). Most striking was that emotional valence
was retained from the pre- to the post-derailment story in 90.1% of the 30 simulations. Moreover,
personal stories tended to derail to other personal stories, and gangster stories tended to derail to
other gangster stories. Overall, only 15.1% of derailments violated context. A typical example of
an autobiographical derailment was initiated when DISCERN recalled story about the self meeting
his mother, Kate, for a drink, and recounting some of her attributes:

Kate had a ponytail.

Kate drove a nice car.

Kate liked books.

DISCERN then switched into another personal story with similar content and structure, in
which the self meets his girlfriend Stacy for a drink:

I talked to *Kate(Stacy) about *guns(books).

I like *baseball(books).

I liked talking with Stacy.

Note that the derailment includes an agent slotting error that is consistent with the original
story. In patients with schizophrenia, derailments are often accompanied by such errors. The two
lexical misfires both substitute closely related words – guns, book, and baseball all appear in the
corpus mainly as topics of conversation, only distinguishable by the people who talk about them.
This, also, is consistent with the kind of errors seen in patients. Interestingly, the original story
continues with

I talked to Kate about Stacy

I liked Stacy

[...]

It seems that the imminent appearence of Stacy in the target story may have caused the
confusion between the two stories, suggesting that, at least in this case, the discourse was derailed
by a confusion between two alternative discourse plans with similar content, rather than more low-
level fluctuations in network error. Also of note is that both the “meeting Kate for a drink” and
the “meeting Stacy for a drink” stories (#18 and #16 in the story corpus) were assigned the same
emotional valence, “+,”, so DISCERN could not rely on this information to guide story recall.

Second, in regard to delusions, recall that the human data demonstrated that patients with
fixed, story-like delusions are more likely than others to produce agent-slotting errors. This suggests
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a possible theory of delusion formation: delusional ideas and stories could emerge when agents
(specifically the self) cross over into impersonal stories, creating spurious and possibly frightening
narratives that are then remembered as lived experience. In order for this agent-slotting model of
delusions to work, agency shifts need to cross contexts in a systematic fashion.

The hyperlearning systems produced cross-context agent-slotting errors in a highly system-
atic fashion: the same two characters, one from an autobiographical story and the other from a
crime story, were interchanged on average 2.5 occasions (range 0-10) per exemplar. For example,
the following output was generated by one hyperlearning exemplar when recalling Story #2:

*Vito(Joe) was in his 30s.

Joe was a doctor.

Joe worked in New York.

Joe was my boss.

In the story corpus, Vito is the boss of the Mafia gang in the gangster context, while Joe is
the boss of the self in autobiographical stories. Later, for Story #10, the same DISCERN system
produced

Vito was a famous gangster.

Vito was the boss of Tony.

Tony hated Vito.

Tony feared *Joe(Vito).

The same confusion occurred again while recalling Story #27:

Vince went to Starbucks.

Vince sat at a table.

Vince liked Vito.

Vince feared *Joe(Vito).

Vince accepted the order.

Vince drove to City Hall.

Vince was scared.

Vince drove carefully.

Vince entered City Hall for murder.

In the original version of this story, Vince, a Mafia hitman, received an order from Vito to
kill Tony, another gangster. Again, the Joe reference is substituted for Vito. In human terms, it
seems plausible that a tendency to systematically confuse Joe and Vito could lead to a delusional
belief that one’s boss is really a Mafia boss. The frequency with which the same pair of agents was
confused across contexts by best-fit three-parameter hyperlearning models was robustly greater than
expected by chance (p < 0.00001 in the randomization test). This finding demonstrates that these
models confuse story characters in a systematic fashion, suggesting that the hyperlearning model
may indeed capture a central aspect of the emergence of delusinoal narratives in humans.
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5.4 Conclusion

Eight alternative illness models based on DISCERN were compared to human language and memory
performance based on a combination of four measures: recall success, derailment errors, agent-
slotting errors, and lexical misfire errors. A mean square deviation metric was used to estimate
how well the different illness models were able to match both healthy humans and patients with
schizophrenia.

The main result of this experiment is that whereas all eight illness mechanisms were equiv-
alent in matching the story-recall profile of healthy controls, hyperlearning was significantly better
than the others in matching the story-recall profile of patients. Taken together, these findings sug-
gest that the hyperlearning model captures specific aspects of altered brain processes underlying
schizophrenia, rather than nonspecific sources of error-proneness demonstrated by human subjects
overall.

The language resulting from hyperlearning resembles that produced by patients also qual-
itatively. Derailments are highly non-random and appear to be caused by distortions of discourse
planning rather than lower-level network damage, similar to derailment behavior seen in patients.
Delusions are modeled by systematic agent-slotting errors that cross over between contexts, which
accounts for human data and suggests that delusions could form when characters (specifically the
self) cross over into impersonal stories, creating spurious narratives that are then remembered as
lived experience.

In summary, these findings demonstrate that using the DISCERN model, it is possible to
evaluate and compare alternative illness models to human performance in a rigorous and quantita-
tive way. Hyperlearning emerged as the best illness model, and was able to capture the language
impairment observed in patients both quantitatively and qualitatively.

However, recall that the patients who participated in the study were in relatively stable con-
dition, so the best-fit simulations produced more or less intact stories rather than the more severely
impaired language often seen in acute psychosis. An attempt to simulate these more severe language
abnormalities was the logical next step.
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Chapter 6

Experiment II: Psychotic Language

Psychosis is the hallmark of schizophrenia (Kapur 2003), and the positive symptoms of schizophre-
nia are of special interest to this work. First, they are among the most distinctive, and therefore
among the easiest to identify in the language of patients (or DISCERN). They are central to the
definition and diagnosis of schizophrenia, and they tend to dominate in the early stages of the disor-
der, where models of intervention could be most useful. Consequently, this chapter aims to recreate
the language disturbance characteristic of acute psychosis, and evaluates the ability of the illness
models to do so.

6.1 Characterizing Schizophrenic Language

There is not much quantitative data available about the precise language disturbance profile of ac-
tively psychotic patients with schizophrenia. However, diagnostic criteria (American Psychiatric
Association 2000; Andreasen 1984, 1987) and the literature that exists (e.g. Andreasen 1979; Hoff-
man et al. 1986; Appelbaum et al. 1999; Covington et al. 2005; Kuperberg 2010) provide a relatively
clear qualitative picture of the kind of language disturbance that would produce a compelling model
of psychosis in schizophrenia.

Since delusions and disorganized speech are the major psychotic symptoms of schizophrenia
that are expressed directly via language, the experiments in this chapter will focus on these two
symptoms. Disorganized language is often characterized by derailments, where patients tend to
jump from one story to the next, creating a confusing, fragmented narrative composed of vaguely
related “discourse shards” (Hoffman et al. 1986). Andreasen (1979) also reported several other
signs of language disorganization that are at least “moderately common” in schizophrenia, including
poverty of speech, tangentiality, and perseveration.

Delusions in schizophrenia tend to stay fixed over time, and often have paranoid or grandiose
content (Harrow et al. 2004). A majority of these delusions insert the patient or persons known to
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the patient into a rigid, implausible or bizarre narrative schema (Appelbaum et al. 1999; Vinogradov
et al. 1992). The human subject study described earlier confirmed that such agency shifts can
be a sign of story-like delusions in patients, and the computational study in the previous chapter
suggested that agency shifts may be a mechanism by which delusional narratives emerge.

At the sentence or word level, schizophrenic language tends to be mostly intact: Word
pronounciation, morphology, and syntax are all normal or nearly so (Covington et al. 2005; Hoff-
man and Sledge 1988), even though some syntactic impairments have been reported (Hoffman and
Sledge 1988).

Another reported characteristic of schizophrenia is insensitivity to context. In terms of lan-
guage abnormality, this means that words may often appear incongruous or inappropriate given the
surrounding language. Such “context impairments” have also been proposed as the underlying rea-
son for language disorganization in general (Cohen and Servan-Schreiber 1992; Kuperberg 2010).
One way to distinguish alternative hypotheses, then, would be to look for errors that could have been
easily avoided by using contextual cues, but not otherwise. The two separate contexts (personal and
gangster stories) in the story corpus (Section 4.2) were designed to provide opportunities to observe
such errors. For example the self’s boss Joe and the gangster boss Vito are similar in many ways,
but are easily distinguished by the story context in which they appear.

Taken together, these features of schizophrenic language suggest that the processing of over-
all discourse structure is more impaired than sentence-level language processing: Derailments and
delusions can be seen as failures of global story structure and content, while locally, structure and
meaning remain relatively intact. A successful model should be able to capture these characteristics,
i.e. errors should be failures of context and discourse rather than break-down of syntax and lexical
access. The experiment described in this chapter evaluates and compares the ability of different
illness models to recreate these features of schizophrenic language.

6.2 Methods

The experiments in this chapter were conducted using ten heathy DISCERN systems that were all
trained in the same way but using different random initial connection weights. As before, the story
corpus, lexicon, and training schedule developed in Chapter 4 were used. The average sentence-
level recall rate of the intial undamaged systems was 96%.

The ten DISCERN systems were subjected to varying degrees of lesion damage using the
same eight simulated illness mechanisms investigated in the previous experiment. Additionally, hy-
perlearning was applied to DISCERN’s generator modules, for a total of nine lesions. The strength
of each lesion was increased gradually, starting at zero and adding small increments until the result-
ing recall performance was approximately 30%. Since the present experiment focuses on psychotic
language behavior rather than negative symptoms, DISCERN’s output filter was not used. Table 6.1
provides an updated summary of all lesions. For brevity, abbreviations from this table are used to
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Table 6.1: Candidate illness models used in experiment II.

Abbreviation Simulated illness mechanism Lesion parameter

SB Semantic Blurring Radius
WMD Working Memory Disconnection Pruning threshold
SN Semantic Noise Noise variance
WMG Working Memory Gain Reduction Gain change
EA Excessive Arousal States Added bias
SO Semantic Overactivation Added bias
WMN Working Memory Noise Noise variance
HLM Hyperlearning (Memory Encoder) Learning rate
HLG Hyperlearning (Generator Modules) Learning rate

refer to each lesion in this chapter (e.g. “HLM” for “hyperlearning applied to the memory encoder
module”).

Errors were counted and classified automatically, using the same error categories as in the
previous experiment, i.e. ungrammatical sentences, derailed language, lexical errors, and agency
shifts. In addition to the basic categories of errors, a more detailed analysis of the patterns and
structure of agency shifts produced by different lesions was conducted for this experiment. First,
agency shifts were further divided into those that crossed contexts (i.e. a gangster being inserted
into a personal story or vice versa) and those that did not. Second, a separate subcategory of agency
shifts was created for self insertions. If a story character was replaced by the self character, this was
counted as a regular agency shift, but also separately as a self insertion.

Third, agency shifts were divided into unique vs. repeated agency shifts. To be counted as
a repeat, the same substitution (i.e. the same combination of intruding and replaced character) had
to have occurred previously within the same story. How many of the observed agency shifts were
repeated was used as a measure for the stability of patterns of agency shifts.

Fourth, a weighted entropy metric was developed, intended as an alternative measure of the
consistency and predictability of agency shifts. Intuitively, the entropy measure computes how hard
it is on average to predict agents in the output text, given previous knowledge of the “correct” agents
in the story corpus: ∑

i∈A
− ni
|A|

∑
j∈A

P (i, j)log2(P (i, j)),

where A is the set of all agents in the story corpus, ni is the number of occurrences of agent i
in the story corpus, and P (i, j) is the relative frequency with which agent j (as opposed to other
characters) is substituted for agent i. The resulting measure of entropy is expressed in bits. For
example, if no agency shifts occur, the weighted entropy would be zero, and if exactly half of the
instances of every agent were replaced by one particular agent, the weighted entropy would be 1 bit.
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6.3 Overview of Results

All illness models reduced the recall performance and led to significant distortion of DISCERN’s
output language. This section analyzes the differences in the types and patterns of recall errors
across the alternative lesions. The goal is to determine which lesions are able to produce language
distortions that are both plausible models of psychotic symptoms and consistent with the language
observed in patients with schizophrenia.

Figure 6.1 gives an overview of the type of language distortion that was observed following
the different lesions. For each lesion, recall errors over a range of increasing damage are broken
down into the four error categories. Error percentages are averaged over the ten individual DIS-
CERN systems.

A few interesting differences are immediately obvious from these plots. First, the two kinds
of hyperlearning lesions seem to produce patterns of recall errors that are strikingly different from
each other. When hyperlearning is applied to the generator modules (HLG), agency shifts domi-
nate other errors; when it is applied to the memory encoder module (HLM), most recall errors are
derailments. No other lesions produces output that is dominated by one kind of error in this way.

Second, both forms of hyperlearning produce virtually no ungrammatical language. In con-
trast, all other lesion produce a substantial percentage of ungrammatical propositions. To a lesser
degree, the same is true for lexical insertion errors.

Finally, the patterns of all lesions that do not involve hyperlearning (called “non-HL le-
sions”) are relatively uniform, although some produce more ungrammatical language or derailments
than others. Differences may still emerge from a more detailed analysis, but it appears that the most
promising qualitative differences exist between HLG, HLM, and the non-HL lesions.

Note that DISCERN’s recall performance degrades differently and generally non-linearly
depending on the lesion. It would therefore be difficult to find “eqivalent” lesion stregths at which
to compare the alternative lesions fairly. In order to avoid this problem, reduced recall performance
is used as a measure of impairment, and comparisons are generally made at equal levels of recall.
Where it is necessary to pick a single level of impairment, comparisons are made at 40% recall,
which is typical for patients with schizophrenia (see the human study described in Chapter 5). When
measures of impairment other than recall are used, they are motivated separately in each case.

The remainder of this chapter takes a closer look at the differences apparent in Figure 6.1,
and examines the impact of different error patterns on the actual language produced by DISCERN.
The main goal is to determine if any lesions are able to produce language abnormalities suggestive
of (and consistent with) the psychotic symptoms of schizophrenia.

All data used in this experiment, including the output stories generated by all illness models,
can be found at http://nn.cs.utexas.edu/?schizo.
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Figure 6.1: Overview of the type of language distortion ob-
served following the different illness models. For each le-
sion, recall errors were classified over a range of increasing
damage. Averages over ten individual DISCERN systems
are shown. The error patterns produced by the hyperlearn-
ing lesions (HLM and HLG) are qualitatively different from
each other and from the other lesions: HLM produces mostly derailed language, and HLG
produces mostly agency shifts. In contrast, error patterns produced by the other lesions are
relatively uniform, are not dominated by one kind of error, and contain many grammatical
errors.
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Right: The percentage of ungrammatical language for all lesions. For a fair compari-
son, the intensity of each lesion was adjusted so that recall performance was as close
as possible to 40% in each case. All lesions except HLM and HLG produce high levels
of ungrammatical language, which is not usually seen in schizophrenia.

6.4 Grammatical and Lexical Errors

Patients with schizophrenia generally produce language with relatively intact syntax and morphol-
ogy, although exceptions have been reported. High levels of grammatical errors would therefore
be problematic in the output language generated after a lesion. Figure 6.2 shows the differences in
ungrammatical language that were already visible in Figure 6.1 more clearly. On the left, the effects
of four representative example lesions on the level of grammatical errors are shown as recall perfor-
mance drops. Clockwise, starting on the top left, these lesions are HLM, HLG, working memory
noise (WMN), and semantic overactivation (SO). For the larger plot on the right, the intensity of
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each lesion was adjusted for each DISCERN system such that recall performance was as close as
possible to 40%.

The levels of ungrammatical language observed in non-HL lesions are inconsistent with
the language observed in patients with schizophrenia, suggesting that these lesions are not plau-
sible illness models. However, using the output filter described in Section 3.1.5, ungrammatical
language can be effectively eliminated at the cost of reduced language output. This result is nev-
ertheless problematic, because patients with schizophrenia do not universally talk less. Non-HL
lesions would therefore have trouble accounting for these patients.

Similarly, Figure 6.3 illustrates that both hyperlearning lesions produce fewer lexical er-
rors, i.e. recall errors where one word is substituted for another. This category excludes errors that
exchange story characters (agency shifts), which will be discussed in more detail below.

The following snippet of DISCERN’s output language illustrates the impact that grammat-
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ical and lexical errors can have on stories recalled by DISCERN. It was produced by a DISCERN
system after WM disconnection (threshold 0.2). The overall sentence-level recall of the system was
51%. Word substitutions are marked with an asterisk (*), and are followed by the correct word in
parentheses.

The Police investigated the bombing at City-Hall.

The Police looked for evidence.

The Police found that Tony bombed City-Hall.

The Police was after *to(Tony).

The Police was after Tony.

The Police thought that *the(Tony) bombed *airport(City-Hall).

The Police wanted to arrest *the(Tony).

The Police found that *to(Tony) *LA(was) *St-Mary’s(in).

The Police planned to arrest *I(Tony) in New-York.

[...]

In this example, distorted sentence constructions like “The Police found that to LA St-
Mary’s” make the text appear non-sensical (St. Mary’s is the hospital where the self works). In
contrast, the following was produced by the same DISCERN system reproducing the same story
after hyperlearning was applied to the generator modules (strength=0.3). Even though the overall
recall is about the same (5̃0%), the resulting language is much more coherent and grammatical:

The Police investigated the bombing at City-Hall.

The Police looked for evidence.

The Police found that Tony bombed City-Hall.

The Police was after *I(Tony).

The Police was after *I(Tony).

The Police thought that *I(Tony) bombed City-Hall.

The Police wanted to arrest *Joe(Tony).

The Police found that *I(Tony) was in New-York.

The Police planned to arrest Tony in New-York.

[...]

These short examples also illustrate a more general difference between hyperlearning and
all other lesions: in the first example, syntax and meaning break down in a local way, leaving the
overall story random and meaningless. In the second example, the content is changed in a way
that changes the overall meaning of the story, but leaves it locally coherent. Errors of this kind,
suggesting global errors of context and organization rather than local, sentence-level breakdown are
pervasive in schizophrenia. In the following two examples, these differences stand out even more
clearly. Again, they are taken from the same DISCERN system recalling the same story (story #12,
script 1). The first was produced following WMD (strength=0.27):

I went to Moe’s-Tavern.

I sat at the counter.

I ordered *coffee(beer).
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I drank the *bombed(beer).

I met *airport(Joe) at Moe’s-Tavern.

The second example was produced using HLG (strength=0.36):

*Tony(I) went to Moe’s-Tavern.

*Tony(I) sat at the counter.

*Tony(I) ordered beer.

*Tony(I) drank the beer.

*Tony(I) met Joe at Moe’s-Tavern.

Again, WMD produces ungrammatical and apparently meningless language, while the language
generated by HLG remains locally consistent and coherent, while the overall meaning is distorted.

6.5 Agency Shifts and Delusional Language

A plausible model of delusional language needs to demonstrate how delusional ideas and narra-
tives could emerge from normal experience and shared cultural stories. As mentioned earlier, one
possible mechanism that has been proposed for delusion formation is that patients with schizophre-
nia insert themselves or persons in their life into complex imaginary narratives, creating spurious
memories that can acquire the same force as lived and remembered reality. The concept of delusion
formation based on such agency-shifts is supported by the fact that patients with fixed, story-like
delusions are more likely to confuse agents when recalling stories (Section 5.1).

Of all lesions investigated, only hyperlearning produced a compelling model of delusional
language. Applied to the generator networks, hyperlearning robustly produced stable patterns of
agency shifts where characters migrated between stories in a highly consistent way. Like in the
examples shown in the previous section, grammar and local structure stayed largely intact, while
emerging patterns of agency shifts produced meaningful (but distorted) new narratives. For exam-
ple, in the following output text the gangster boss Vito is replaced by the self’s own boss Joe:

*Joe(Vito) drove recklessly .

*Joe(Vito) was pulled-over by a cop.

The cop asked *Fred(Vito) for his license.

*Joe(Vito) gave his license to the cop.

The cop checked the license.

The cop arrest(ed) *Joe(Vito) for bombing.

*Joe(Vito) was accused of *murder(bombing).

*Joe(Vito) was brought before the court.

*Joe(Vito) had a good lawyer.

The court cleared *Joe(Vito) of bombing.

*Joe(Vito) walked free.
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(WMD). Hyperlearning applied to the memory encoder (HLM) produces few agency
shifts. Right: Average number of repeats per unique agency shift for all nine lesions.
Again, character substitutions following HLG are repeated much more frequently,
causing stable patterns of agency shifts suggestive of delusional content.

In this way, characters from the self’s personal context often intrude into gangster stories. Combined
with the substitution of “murder” for “bombing” this pattern of errors creates a new story whose
content has little to do with any input story DISCERN has ever seen. It is easy to imagine how
such stories, if they are remembered as real, could lead to the formation of complex and frightening
delusional ideas.

Consistent, “delusion-like” patterns of agency shifts such as these are pervasive in the output
of HLG, and very rare or absent in other lesions. Figure 6.4 shows that agency shifts following HLG
are more consistent than those generated by other lesions: they are repeated several times on average
within the same story. Agency shifts following other lesions, including semantic noise (SN) and
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that each lesion produced close to 200 agency shifts. Again, HLG producesagency
shifts with lower entropy, suggesting more consistent and predictable error patterns.
HLM was omitted from this plot because it never produces 200 agency shifts, even
with very high lesion damage.

working memory disconnection (WMD), tend to be repeated much less frequently. Interestingly,
HLM produces very few agency shifts, but also does not produce many repetitions.

This finding is confirmed when the entropy of agency shifts is used as an alternative measure
of consistency. Figure 6.5 shows that HLG produces agency shifts that have lower entropy than
those produced by other lesions, suggesting that they follow a more predictable pattern. To make
a fair comparison possible in this case, the lesion strength was set separately for each system and
each lesion so that close to 200 agency shifts were produced. Comparisons were not done at equal
recall performance in this case because HLG produces more agency shifts than other lesions at equal
recall, and the entropy depends in large part on the number of agency shifts.

Patients with story-like delusions often insert themselves into the delusional narrative. For
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a pronounced tendency to insert the self into gangster stories. Note that in some sys-
tems HLG does not cause any self-insertions, while in others, most (up to 80%) of all
agency shifts in gangster stories are self insertions.

example, a delusional patient is more likely to believe that he himself, rather than someone else,
is being followed by the CIA. The agency shifts produced by HLG show the same pattern. Often,
when the self takes over for a gangster character the shift remains stable throughout the remainder
of the story:

The Police investigated the murder at City-Hall.

The Police looked for evidence.

The Police found that Vince killed Bob.

The Police was after Vince.

The Police was after Vince.

The Police thought that Vince *met(killed) Bob.

The Police wanted to arrest Vince.
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The Police found that Vince was in New-York.

The Police planned to arrest Vince in New-York.

Vince wanted to go to *Chicago(LA).

*I(Vince) entered his car.

*I(Vince) drove to the airport.

*I(Vince) was *on-time(scared).

*I(Vince) drove recklessly.

*I(Vince) was pulled-over by a cop.

The cop asked *me(Vince) for his license.

*I(Vince) gave his license to the cop.

The cop checked the license.

The cop arrested *me(Vince) for *wedding(murder).

*I(Vince) was accused of murder.

*I(Vince) was brought before the court.

*I(Vince) had a good lawyer.

The court convicted *me(Vince) of *wedding(murder).

*I(Vince) went to jail.

In this version of story #28, the self replaces the gangster Vince. Interestingly, the word
“murder” is replaced with “wedding”, a word that is otherwise exclusively used in personal stories.
This lexical error is repeated across two separate scripts. Note also that the self is inserted not only
through the word “I”, but also through “me” where appropriate. That pronouns like “me”, “my”, and
“his” are mostly (not always) correctly adapted is further evidence that HLG distorts and impairs
story processing in DISCERN at the level of actual content rather than that of superficial language
production.

Another interesting aspect of the patterns of self insertions produced by HLG is that they
tend to recur multiple times within the output of the same DISCERN system. Many systems never
insert the self character at all; however, those who do tend to do so repeatedly over multiple stories.
Figure 6.6 illustrates this tendency: not only are self insertions much more frequent for HLG on
average than for any other lesion – the distribution within the HLG lesion is very broad, i.e. some
systems produce very few self insertions, while in some systems, up to 80% of agency shifts in
gangster stories insert the self. The DISCERN system that produced the example above was solidly
in the latter category: It also produced the following version of story #21, where the self takes over
for the gangster Tony:

[...]

*I(Tony) was a *doctor(gangster) .

Tony worked for the Mafia.

*I(Tony) worked in New-York.

*I(Tony) hated *my(his) job.

*I(Tony) was a bad gangster.

*I(Tony) wanted to go to City-Hall.

*I(Tony) entered his car.

*I(Tony) drove to City-Hall.
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*I(Tony) was *on-time(scared).

*I(Tony) drove *recklessly(carefully).

*I(Tony) entered City-Hall for *wedding(bombing).

Tony bombed City-Hall.

The *meeting(bombing) was a success.

*Vince(Tony) made a phone-call.

*I(Tony) smoked a cigarette.

*I(Tony) went to Moe’s-Tavern.

*I(Tony) sat at the counter.

*I(Tony) ordered beer.

*I(Tony) drank the beer.

*I(Tony) met no-one at Moe’s-Tavern.

*I(Tony) ordered more beer.

*I(Tony) got very drunk.

*I(Tony) had a bad time.

In addition to the self insertions, the confusion between different types of events recurs, this
time including wedding, bombing, and meeting. This type of error is especially interesting because
wedding, bombing, and murder (not meeting) are highly context-specific. The fact that DISCERN
confuses these concepts in a consistent manner suggests that it specifically misreads cues concerning
story context. In story #27 (recalled by the same system) the self takes over for Vince once again,
and the same confusion between wedding, meeting, and murder re-emerges:

[...]

*I(Vince) wanted to go to City-Hall.

*I(Vince) entered his car.

Vince drove to City-Hall.

*I(Vince) was *on-time(scared).

*I(Vince) drove *recklessly(carefully).

*I(Vince) entered City-Hall for murder.

*I(Vince) killed Bob.

The *meeting(murder) was a success.

Vince made a phone-call.

*I(Vince) smoked a cigarette.

*I(Vince) wanted to go to City-Hall.

*I(Vince) entered his car.

*I(Vince) drove to *to(City-Hall) *Four-Seasons(_).

*I(Vince) was scared.

*I(Vince) drove carefully.

*I(Vince) entered City-Hall for murder.

*I(Vince) killed Bob.

The *wedding(murder) was a success.

*I(Vince) made a phone-call.

*I(Vince) smoked a cigarette.
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The three examples of self-insertions above were all taken from the output of the same
DISCERN system (#4) after the same lesion at the same strength was applied to it (HLG at 0.35).
The examples were selected in this way to demostrate that delusion-like error patterns are often
shared across stories within the same system. However, error patterns like these are not specific to
any DISCERN system or lesion strength. The following output, for example, was produced by a
different DISCERN system with a weaker lesion:

[...]

*I(Tony) was scared.

*I(Tony) drove carefully.

*I(Tony) entered City-Hall for bombing.

*I(Tony) bombed City-Hall.

The *wedding(bombing) was a success.

*I(Tony) made a phone-call.

*I(Tony) smoked a cigarette.

[...]

Repeated patterns such as these are frequent, and occur in every single DISCERN system following
HLG. However, other agency shifts also occur that are not always as stable and do not always pro-
duce new narratives that appear as meaningful. Agency shifts can also involve character from the
same story context, which is not common in schizophrenia patients. One possible reason for this
mismatch is that personal and gangster contexts in DISCERN are separated only implicitly by the
presence of the self and other context-specific characters and content. In humans, real lived mem-
ories are qualitatively different from stories that are only experienced second-hand. Nevertheless,
the data suggest that DISCERN picks up on contextual cues, and that HLG impairs processing of
context more (and other aspects of story processing less) than other lesions. Figure 6.7, for example,
shows that HLG, more than other lesions, tends to insert personal characters into gangster stories,
suggesting the insensitivity to context that is typical of schizophrenia.

6.6 Disorganized Speech

The HLG lesion (hyperlearning applied to the generator modules) was the focus of the findings
presented so far. While it produces an interesting and plausible mechanism by which delusional
stories and ideas may emerge, it does not produce many derailments, i.e. it does not tend to switch
from one story to another in the middle of recall. This finding in itself is interesting, because
derailments, just like delusions, are not shared by all patients with schizophrenia. However, a model
of psychotic language in schizophrenia would not be complete if it did not account for mechanisms
underlying derailed discourse.

Figure 6.8 illustrates the frequency of derailments for different lesions. The panel on the
right shows the percentage of derailed language produced by all lesions at 40% recall. The two
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hyperlearning of the memory encoder (HLM),
hyperlearning of the generator modules (HLG),
excessive arousal states (EA), and semantic
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noise (SN). HLG inserts personal characters into gangster stories more frequently than
other lesions, suggesting that it impairs processing of context more.

hyperlearning lesions differ dramatically in the amount of derailed language they produce: HLG
causes very few derailments, while the language produced by HLM is derailed over 50% of the time
on average, by far the most of all lesions. Several non-HL lesions, including SN and WMG, produce
little derailed language, while others, including WMD and WMN, derail more frequently.

In the absence of patient data, the frequency of derailments alone cannot be used to decide
that one lesion is a better model of language disorganization than another. A plausible model would
be expected to produce a reasonable amount of derailed language, but more importantly, the lan-
guage should not contain too many other errors that disrupt syntax and local story structure. Figure
6.9 shows that derailment-type errors dominate other errors for HLM but not for other lesions. The
following example illustrates the way in which such word-level errors can make a story appear ran-
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dom and non-sensical rather than disorganized. It was produced by the WMN lesion (system #3,
strength=0.2):

*Joe(I) went *St-Mary’s(to).

I sat at a table.

I *drove(ordered) coffee.

*Tony(I) drank the coffee.

*Tony(I) met *Kate(Mary) at Starbucks.

[jumping to Story #12]

Joe was the fiancee of *Joe(Mary).

I hated *Bob(Joe).

I *feared(distrusted) *man(Joe).

I talked to Mary about wedding.

I *liked(hated) *the(wedding) *City-Hall(_).

*Kate(I) talked to *to(Mary) *the(a) *Four-Seasons(short).

I liked talking to *Joe(Mary).

I gave a *hand-shake(kiss) good-bye to *Vince(Mary).

DISCERN does derail to another story, but language like “I drove coffee” and “Kate talked to the
Four Seasons” are too intrusive to create a credible simulation of derailed discourse. The output
language of HLM, on the other hand, contains fewer grammatical and lexical errors, and when they
do appear, they are much less disruptive:

[...]

I went to Four-Seasons.

I sat at a table.

I ordered wine.

I drank the wine.

I met *Stacy(Kate) at Four-Seasons.

[jumping to story #16]

Stacy was in her 20s.

Stacy had a ponytail.

Stacy was from New-York.

Stacy drove a compact car.

Stacy liked movies.

Stacy liked *baseball(books).

[jumping back to story #18]

I talked to Kate about *Kate(Stacy).

I liked *Mary(Stacy).

I talked to Kate a long time.

I liked talking to Kate.

I gave a kiss good-bye to *Mary(Kate).
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Figure 6.8: The frequency of derailments for
different lesions. Left: The number of derailed
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call. The two hyperlearning lesions differ dra-
matically in the amount of derailments they
produce: HLG derails only rarely, while

S
e
m

a
n
ti

c 
B

lu
rr

in
g

W
M

 D
is

co
n
n
e
ct

io
n

S
e
m

a
n
ti

c 
N

o
is

e

W
M

 G
a
in

 R
u
ct

io
n

E
x
ce

ss
iv

e
 A

ro
u
sa

l 
S
ta

te
s

S
e
m

a
n
ti

c 
O

v
e
ra

ct
iv

a
ti

o
n

W
o
rk

in
g
 M

e
m

o
ry

 N
o
is

e

H
y
p
e
rl

e
a
rn

in
g
 (

M
e
m

E
n
c)

H
y
p
e
rl

e
a
rn

in
g
 (

G
e
n
e
ra

to
rs

)

0

20

40

60

80

%
 D

e
ra

ile
d
 L

a
n
g
u
a
g
e

HLM causes more derailments than any other lesion. Several non-HL lesions, includ-
ing SN and WMG, produce little derailed language, while others, including WMD and
WMN, derail more frequently.

This version of story #18 (system #2; HLM at strength = 1.5) is interesting for several
other reasons as well. First, the jump to story 18 (which is about Stacy) is “foreshadowed” by the
insertion of Stacy for Kate, which suggests that the jump is not merely an error in producing the
correct memory cue, but that content from another story intrudes and interferes with DISCERN’s
discourse plan. Second, when DISCERN then jumps back to story #18, some confusion remains
about who is talking to whom. Throughout the story, it appears as if DISCERN is trying to tell
several similar stories at once. This impression is even stronger in the similar example below, which
was produced by a different DISCERN system (#4; HLM at 1.3) while recalling story #11:

[...]

Mary was my friend.

I loved Mary.

I trusted Mary.
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[jumping to story #16]

I talked to *Mary(Stacy) about *guns(books).

I liked *baseball(books).

I talked to *Kate(Stacy) a long time.

I liked talking to *Mary(Stacy).

[jumping to story #18]

I talked to Kate about *Mary(Stacy).

I liked *Kate(Stacy).

I talked to Kate a long time.

I liked talking to *Mary(Kate).

I gave a kiss good-bye to *Mary(Kate).

Stories #11, #16, and #18 mix and interfere with each other, creating the impression of a
fragmented narrative typical of language disorganization in schizophrenia. The same DISCERN
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system also produced interesting examples of the foreshadowing effect mentioned above. First,
consider the following version of story # 19:

[...]

I wanted to go to the meeting.

I entered my car.

I drove to the Four-Seasons.

I was late.

I drove *carefully(recklessly). [!]

[jumping to story #24]

Fred entered City-Hall for meeting.

Bob praised Fred.

The meeting was a success.

Fred gave a speech.

Fred drank champagne.

Fred ordered more champagne.

Fred got a-little drunk.

Fred had a good time.

Before derailing to story #24, “carefully” intrudes from that story to replace “recklessly”.
Stories #24 and #19 are similar, but when Fred drives to his meeting, he is on time and drives
carefully, whereas I am late for my meeting, and drive recklessly. Later, when recalling story #24,
the same system produced the following:

[...]

Fred wanted to go to City-Hall.

Fred entered his car.

Fred drove to City-Hall.

Fred was on-time.

Fred drove *recklessly(carefully). [!]

Fred entered City-Hall for meeting.

[jumping to story #19]

I entered the Four-Seasons for meeting.

Joe praised me.

The meeting was a success.

I gave a speech.

I drank champagne.

[jumping back to story #24]

Fred ordered more champagne.

Fred got a-little drunk.

Fred had a good time.

This time, “recklessly” intrudes from story #19, foreshadowing an equivalent derailment
in the other direction! Also note that the intrusion of “recklessly” is separated from the actual
derailment by a sentence, so both were produced by separate cycles of the story generator.
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Not all instances of derailed language produced by HLM were equally consistent with dis-
organized language in schizophrenia. In particular, at high lesion stregths, DISCERN tended to
oscillate between two stories, as in the following example:

The Police investigated the bombing at City-Hall.

The Police looked for evidence.

The Police found that Tony bombed City-Hall.

The Police was after Tony.

[jumping to story #28]

The Police was after Vince.

The Police thought that Vince killed Bob.

The Police wanted to arrest(ed) Vince.

The Police found that Vince was in New-York.

The Police planned to arrest(ed) Vince in New-York.

[jumping to story #14]

I wanted to go to home.

I entered my car.

I drove to home.

I was drunk.

I drove recklessly.

[jumping to story #28]

Vince was pulled-over by a cop.

The cop asked Vince for his license.

[jumping to story #14]

I was pulled-over by a cop.

[jumping to story #28]

Vince was pulled-over by a cop.

The cop asked Vince for his license.

[jumping to story #14]

I was pulled-over by a cop.

[jumping to story #28]

Vince was pulled-over by a cop.

The cop asked Vince for his license.

[jumping to story #14]

I was pulled-over by a cop.

[...]

In this example, stories #28 and #14 intrude into the paraphrase of story #23. All three
stories have similar content: A different character is pulled over by the police each time, and ends
up getting arrested for a different reason. After the first jump to story #28, DISCERN begins to
jump back and forth between #28 and #14 until recall is cut off for that story. Like before, the reason
seems to be a conflict between two stories, resulting in a fragmented story. However, oscillations
between stories are not common in schizophrenia, and were relatively frequent following HLM at
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high strength. Alternatively, the oscillations could be interpreted as perseveration, which is a fairly
common sign of schizophrenic thought disorder (Andreasen 1979), and Maher et al. (1987) report
that counted repetitions of words and phrases significantly correlate with rated levels of derailments
in schizophrenia.

6.7 Conclusion

The experiments reported in this chapter attempted to reproduce the more intense symptoms that
occur during active psychotic episodes in schizophrenia, focusing again on derailments and delu-
sions. The main results were as follows. First, only the hyperlearning models were able to produce
compelling simulations of psychosis in schizophrenia. When hyperlearning was applied to the gen-
erator modules of DISCERN, stable patterns of agency shifts ermerged that suggest a mechanism by
which delusional narratives could be formed. This finding was unique to the HLG lesion – no other
lesion produced similar patterns of agency shifts, and no other lesion showed the same tendency to
insert the self across story contexts.

Applied to the memory encoder, hyperlearning led to frequent derailments but not to delusion-
like language. Jumps to another story were often preceded by word insertions from that story, sug-
gesting that they were caused by disturbances on a deeper level than that of faulty memory cues.
Derailments often seemed to be caused by competition between stories, resulting in signs of frag-
mented discourse similar to that in schizophrenia.

One of the most intriguing findings of this experiment is that each version of hyperlearning
produced a model for one psychotic symptom but not the other, depending on the part of the model to
which it was applied. Since delusions and derailments are two hallmark symptoms of (respectively)
paranoid-type and disorganized-type schizophrenia, this suggests that hyperlearing could model the
emergence of clinical subtypes of schizophrenia from a shared underlying brain mechanism. This
possibility is discussed further in the next chapter.
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Chapter 7

Discussion and Future Work

The experiments reported above demonstrate that the DISCERN model can indeed be used to sim-
ulate and compare alternative illness mechanisms that could underlie schizophrenia. Candidate
illness models can be characterized by the ways in which they distort storytelling in the model, and
their viability and plausibility as models of schizophrenia can be judged by comparing the errors
they cause to those made by schizophrenic patients. Creating a computational and experimental
framework where hypotheses can be modeled and compared in this way was one of the main goals
of this dissertation.

Beyond the proof of concept, a more ambitious goal was to create an illness model that actu-
ally captures important aspects of impaired story processing in schizophrenia, and that represents a
plausible hypothesis about its causes. The hyperlearning mechanism located in different DISCERN
modules produces such a hypothesis.

7.1 Summary of Results
The first set of experiments (Chapter 5) showed that hyperlearning can match the story-recall pro-
file of human patients with schizophrenia (but not healthy controls) significantly better than other
models. The resulting language of the best-fit hyperlearning models is also qualitatively similar to
that produced by patients, including both derailments and delusion-like fixations. These findings
suggest that hyperlearning captures specific aspects of pathophysiology underlying schizophrenia,
rather than nonspecific sources of error-proneness demonstrated by human subjects overall.

In the second experimental study (Chapter 6), where the ability of the illness models to
recreate more intense psychotic symptoms was tested, only the hyperlearning models were able
to produce compelling simulations of psychotic language. Hyperlearning applied to DISCERN’s
generator modules caused stable patterns of agency shifts to ermerge in the output stories. Agents
tended to cross over from autobiographical stories into gangster stories more than would be expected
by chance, and more than was the case for other illness models. Hyperlearning also inserted the self
into gangster stories very frequently, sometimes replacing every instance of a gangster in an entire
story.
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This tendency to confuse the self systematically with agents in gangster stories is one of
the most interesting findings, because it creates a compelling model of a hallmark type of delusion
in schizophrenia, i.e. the self-referential type. In these delusions, agents personally known to the
patient (often the self) are confused with those in culturally endorsed narratives. Examples include
a patient claiming that she is the Virgin Mary, and another that his upstairs neighbor is a CIA agent
spying on him because he (the patient) has classified government information. The hyperlearning
model suggests a mechanism by which such delusions could be formed: When the self crosses over
into impersonal stories, spurious new narratives are created. It is easy to imagine that such stories,
if they are remembered as real, could lead to complex and frightening delusional ideas. This model
of fixed delusions was supported by data showing that patients with fixed narrative delusions made
more agent-slotting errors than healthy controls and patients without these delusions. The model is
unique to hyperlearning – no other illness model produced similar patterns of agency shifts, or had
the same tendency to insert the self across story contexts.

When hyperlearning was applied to the memory encoder network, it caused frequent derail-
ments but no delusion-like language. Jumps to another story were often preceded by word insertions
from that story, suggesting that they were caused by disturbances of content rather than non-specific
network error. Derailments often seemed to be caused by competition between stories, resulting in
signs of fragmented discourse typical of schizophrenia. Furthermore, though several other illness
models also caused derailments, only hyperlearning produced derailment behavior that was not ac-
companied by frequent lexical errors and break-down of syntax, which is not usually the case with
real schizophrenic language.

One of the most intriguing findings of this research is that hyperlearning produced a model
of delusions when applied to the generator modules, and of derailed speech when applied to the
memory encoder. Since delusions and derailments are hallmark symptoms of (respectively) paranoid-
type and disorganized-type schizophrenia, this suggests that hyperlearing could model how clinical
subtypes of schizophrenia could share an underlying brain mechanism, but could emerge inde-
pendently from each other. This explanation could also account for shared genetic vulnerabilities
between subtypes, and for the fact that these subtypes are not necessarily stable over time. An
encouraging preliminary results is that hyperlearning, applied to generators and memory encoder
networks at the same time, can produce both delusional and derailed language in the same DIS-
CERN system.

7.2 The Hyperlearning Hypothesis
The initial success of the hyperlearning model in simulating speakers with schizophrenia at different
stages of the disorder suggests a promising direction for future research: Since hyperlearning was
able to model both the behavior of patients in acute psychotic states (Chapter 6) and that of stable,
medicated outpatients (Chapter 5), it seems likely that the transition from the former state to the lat-
ter could be modeled as well. If successful, the result would be the first simulation of antipsychotic
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drug action, potentially contributing to a better understanding of their effects, and possibly to the
development of more effective treatments in the future. Modeling antipsychotic drug action as a
learning process also explains why dopamine blockade does not relieve symptoms immediately.

The hyperlearning illness mechanism in the model arises from exaggerated backpropagation
error signaling. Normal backpropagation in DISCERN and other connectionist models assumes a
gradual consolidation process: Memories are replayed many times, and connection weights are
adjusted in small, incremental steps (McClelland et al. 1995). Interestingly, normal memory con-
solidation in humans appears to involve repeated replay of memories as well (Euston et al. 2007),
resulting in a gradual and incremental process that occurs over weeks or months (McGaugh 2000).
Consequently, exaggerated backpropagation can plausibly simulate aberrant human memory con-
solidation due to overexuberant neuroplastic responses to prediction error (Kraus et al. 2009).

The hyperlearning hypothesis was inspired by Kapur’s (2003) theory concerning motiva-
tional salience and psychosis, but it also converges with several recent behavioral and neurobio-
logical studies. For instance, shared emotional valence in DISCERN plays an important role in
triggering derailments, i.e. jumps from one story to another are very likely to involve two stories
with the same or similar emotional valence. Similarly, emotionality has been found to prompt de-
railments in patients with schizophrenia (Docherty et al. 1998). Second, the narrative templates
in DISCERN can be seen as components of social intelligence that predict goals and intentions of
others (Bower and Morrow 1990); thus corrupted narrative memories modeled in DISCERN could
account for impaired theory of mind in schizophrenia. Indeed delusions have been shown to be
associated with an impaired capacity to understand the mental states of others (Bentall et al. 2009).

On the neurobiological side, in a recent imaging study healthy subjects were given a psy-
chotomimetic drug (ketamine), and were then asked to perform an associative learning task. Greater
cortical response to prediction error was associated with delusion formation when ketamine was ad-
ministered (Corlett 2006). Furthermore, higher basal hippocampal/parahippocampal activity has
been linked with schizophrenia, speech disorganization, and delusion formation (Moritz et al. 2003;
Heckers et al. 1998; McGuire 1998; Schobel et al. 2009). These structures are central to memory
consolidation (McGaugh 2000), and their increased activation may therefore indicate a hyperlearn-
ing mechanism. Memory consolidation can also be enhanced by elevated dopamine neurotransmis-
sion (Schott et al. 2006; Wittmann et al. 2005). Since schizophrenic psychosis has been linked to
a hyperdopaminergic state (van Os and Kapur 2009), enhanced memory consolidation may well be
the link between dopamine and psychosis.

The postulated hyperlearning mechanism should be studied experimentally in order to deter-
mine if it actually happens in psychotic patients. Specifically, the neural correlates of the predicted
accelerated memory consolidation should be investigated. For instance, hyperlearning in humans
could be observed via functional magnetic resonance imaging (fMRI; Takashima et al. 2009). This
could be especially interesting during sleep, and in combination with behavioral measures of how
fast and how well new memories are consolidated.
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Another prediction of the hyperlearning model is that even brief periods of aberrant memory
consolidation, perhaps lasting only days or weeks, could produce enduring psychosis. In DISCERN,
a relatively small number of hyperlearning epochs (500) produced enduring memory reorganization.
Preliminary results suggest that once this has happens, the “psychotic” network state is relatively
stable, and can be reversed only with difficulty. This result could explain why delusions in patients
often stay fixed over many years, and also why patients generally do not unlearn delusions but rather
learn to limit their impact (Kapur 2003). This finding also suggests that hyperlearning in humans
might be detectable as specific types of narrative learning impairments before the full syndrome of
schizophrenia emerges (see for instance Brewer 2005), and novel interventions could be developed
to mitigate its effects.

In addition to the predictions on the level of neurobiology, hyperlearning, as an explicit
computational process, predicts specific changes of information processing in schizophrenia. The
effects of hyperlearning in DISCERN should therefore be analyzed in detail, especially the way in
which it affects the dynamics of story learning, and the way in which internal network representa-
tions and the flow of information in the model change. Understanding hyperlearning on this level
promises further ways to test and validate the model, as well as a chance to gain new insights into
the abnormal information processing that underlies psychosis in humans.

The hyperlearning mechanism is not only a plausible and predictive illness model, it also
serves to demonstrate the strengths of the general modeling approach. First, hyperlearning was not
part of the initial set of planned illness models. Instead, it emerged from preliminary experiments
meant to explore the effects of compensatory network learning while other lesions were applied.
In this way, computational models can suggest novel, alternative hypotheses through unexpected
behavior. Second, several predictions of the model were similarly unexpected, and demonstrate
how emergent behavior can suggest new explanations and tie together explanations of seemingly
disparate symptoms. These predictions include delusion formation through agency shifts and the
existence of a shared illness mechanism for different clinical subtypes. Third, hyperlearning demon-
strates the conceptual reach of neural network modeling: The simulation is based on a relatively
abstract theory, but offers a concrete, running interpretation of that theory, and is able to tie together
research findings on different levels of analysis.

7.3 Extending the DISCERN Model Further

If hyperlearning occurs in humans, then the model is clearly a simplified version of the real process,
just like DISCERN is a simplified version of human story processing. However, another advantage
of computational models is that refinement and extensions are a natural part of their development.
DISCERN was already extended significantly for this research, and can be extended further in future
work. For example, one limitation of the current model is the absence of an explicit executive control
mechanism, which could be added as a separate high-level control module (Miikkulainen 1993,
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1996). Such a mechanism would make it possible to simulate executive dysfunction, which has
been linked to both speech disorganization and delusions (Bentall et al. 2009; Kerns and Berenbaum
2003). The executive control model could include a model of attention and dopamine function, as
suggested by (Braver et al. 1999). Motivational salience could be modeled within this framework as
well, as a combination of emotional valence and unpredictability. DISCERN would then remember
and generate only the salient parts of a story, which could make simulations of additional symptoms
possible. For example a sign of thought disorder called pressure of speech, where patients talk
rapidly and incessantly, could be simulated. Executive control could also provide an alternative
model for alogia, simulating reduced output as a result of inattention and blunted emotions, and a
refined version of hyperlearning, e.g. one where hyperlearning follows from network damage that
increases prediction error.

Other possible extensions would put additional symptoms and illness mechanisms within
reach. One straightforward example is the inclusion of pronouns and pronoun resolution. It is pos-
sible that this addition would only involve changes to the input stories, since DISCERN already
uses possessive pronouns correctly, and there is no obvious reason why this ability would not scale
up. Pronouns would make DISCERN’s language significantly more realistic, and would also cre-
ate an opportunity to model pronoun reference errors, a common kind of error in schizophrenia.
Hallucinations are another important symptom that has so far not been modeled in DISCERN. Hal-
lucinations cannot be observed directly through DISCERN’s output language like derailments and
delusional language. However, spurious speech perceptions in the parser modules could arise in
response to network damage, which could be seen as a model of hallucinated speech. A previous
similar approach using a speech perception SRN (Hoffman and McGlashan 1997, 2006) observed
such spontaneous perceptions in the absence of external input.

As DISCERN and the illness models are refined further over time, a more complete picture
of the mechanisms that are involved in the pathophysiology of schizophrenia may emerge. New
experimental findings can be integrated into the model, possibly helping us integrate them into the
overall understanding of schizophrenia. In the short term, the most important goal is to investi-
gate experimentally whether the hypelearning mechanism happens in real psychotic patients. If
validated, the hyperlearning hypothesis could contribute to a better understanding of schizophre-
nia, and provide a platform for characterizing and understanding the effects of current and future
treatment interventions.
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Chapter 8

Conclusion

Hallmark symptoms of schizophrenia are expressed as language behavior, specifically as defects of
storytelling. These symptoms are diagnosed through clinical interviews, where narrative language
is used as a window to the schizophrenic mind. This dissertation was motivated by the idea that
computational models of schizophrenia should be able to do the same. Consequently, the research
reported here was an attempt to understand the nature and pathophysiology of schizophrenia as
disturbances in a computational model of story processing.

The main contribution of this dissertation is the first simulation of a speaker with schizo-
phrenia. DISCERN, a neural network-based model of human story understanding and recall, was
used to simulate how hypothetical neurobiological illness mechanisms could lead to abnormal sto-
rytelling observed in schizophrenia. The use of narrative language was the main feature that set
this work apart from previous computational models of schizophrenia: In DISCERN, symptoms
like delusions and derailments were observed directly at the level of narrative language — the same
level at which real patients are diagnosed.

Based on the research literature, a range of candidate illness mechanisms were simulated in
the model, and the resulting abnormal storytelling was evaluated and compared to that of patients
with schizophrenia in two sets of computational experiments. First, data from a human subject
study of story recall in schizophrenia was used to determine wich illness model was able to fit the
story-recall profile of patients best. Second, the ability of the models to recreate the language of
patients in acute psychotic phases of schizophrenia was evaluated, focusing on derailment behavior
and signs of delusions.

Of all illness models, hyperlearning, a model of overly intense memory consolidation, pro-
duced the best fit to patient data, as well as compelling models of delusions and derailments. The
hyperlearning/DISCERN model of language disturbance in schizophrenia is the second main con-
tribution of this work. It represents a viable computational hypothesis about the way in which
dopamine imbalance could lead to psychosis, and it ties together, and converges with, a range of
previous research findings on dopamine imbalance, memory consolidation, and psychosis in schizo-
phrenia.
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Predictions of the hyperlearning model include the formation of fixed delusions through
systematic confusion of agents and the existence of a shared underlying illness mechanism for
different clinical subtypes of schizophrenia. Additionally, the hyperlearning hypothesis could be
tested by studying the neural correlates of intensified memory consolidation in psychotic patients. If
validated, the hyperlearning hypothesis could contribute to a better understanding of schizophrenia,
and provide a platform for simulating the effects of medication and other future treatments.

“I have transformed the problem from an intractably difficult and possibly quite insolu-
ble conundrum into a mere linguistic puzzle. Albeit,” he muttered, after a long moment
of silent pondering, “an intractably difficult and possibly insoluble one.”

— DOUGLAS ADAMS, Dirk Gently’s Holistic Detective Agency
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Appendix
Story Corpus

Story #1

Emotion: neutral Context: Personal

[$person I 30s beard LA baseball beer rusty]

I was in my 30s. [I was 30s my _]

I had a beard. [I had _ _ beard]

I was from LA. [I was LA _ _]

I drove a rusty car. [I drove _ rusty car]

I liked baseball. [I liked _ _ baseball]

I liked beer. [I liked _ _ beer]

[$job I St-Vincent’s worked liked New-York good doctor]

I was a doctor. [I was _ _ doctor]

I worked for St-Vincent’s. [I worked St-Vincent’s _ _]

I worked in New-York. [I worked New-York _ _]

I liked my job. [I liked _ my job]

I was a good doctor. [I was _ good doctor]

story-end

Story #2

Emotion: very negative Context: Personal

[$person Joe 30s beard Chicago baseball wine nice]

Joe was in his 30s. [Joe 2was 30s his _]

Joe had a beard. [Joe had _ _ beard]

Joe was from Chicago. [Joe was Chicago _ _]

Joe drove a nice car. [Joe drove _ nice car]

Joe liked baseball. [Joe liked _ _ baseball]

Joe liked wine. [Joe liked _ _ wine]

[$job Joe St-Vincent’s head liked New-York famous doctor]

Joe was a doctor. [Joe was _ _ doctor]

Joe was the head of St-Vincent’s. [Joe was St-Vincent’s _ head]
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Joe worked in New-York. [Joe worked New-York _ _]

Joe liked his job. [Joe liked _ his job]

Joe was a famous doctor. [Joe was _ famous doctor]

[$relation I Joe hated distrusted _ my boss]

Joe was my boss. [Joe was _ my boss]

I hated Joe. [I hated _ _ Joe]

I distrusted Joe. [I distrusted _ _ Joe]

story-end

Story #3

Emotion: very positive Context: Personal

[$person Mary 30s ponytail LA movies books compact]

Mary was in her 30s. [Mary was 30s her _]

Mary had a ponytail. [Mary had _ _ ponytail]

Mary was from LA. [Mary was LA _ _]

Mary drove a compact car. [Mary drove _ compact car]

Mary liked movies. [Mary liked _ _ movies]

Mary liked books. [Mary liked _ _ books]

[$relation I Mary loved trusted _ my friend]

Mary was my friend. [Mary was _ my friend]

I loved Mary. [I loved _ _ Mary]

I trusted Mary. [I trusted _ _ Mary]

story-end

Story #4

Emotion: very positive Context: Personal

[$relation I Stacy liked trusted _ my girlfriend]

Stacy was my girlfriend. [Stacy was _ my girlfriend]

I liked Stacy. [I liked _ _ Stacy]

I trusted Stacy. [I trusted _ _ Stacy]

[$person Stacy 20s ponytail New-York baseball New-York compact]

Stacy was in her 20s. [Stacy was 20s her _]

Stacy had a ponytail. [Stacy had _ _ ponytail]

Stacy was from New-York. [Stacy was New-York _ _]

Stacy drove a compact car. [Stacy drove _ compact car]

Stacy liked baseball. [Stacy liked _ _ baseball]

Stacy liked New-York. [Stacy liked _ _ New-York]

story-end

Story #5
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Emotion: positive Context: Personal

[$person Kate 50s ponytail LA books wine nice]

Kate was in her 50s. [Kate was 50s her _]

Kate had a ponytail. [Kate had _ _ ponytail]

Kate was from LA. [Kate was LA _ _]

Kate drove a nice car. [Kate drove _ nice car]

Kate liked books. [Kate liked _ _ books]

Kate liked wine. [Kate liked _ _ wine]

[$relation I Kate loved trusted _ my mother]

Kate was my mother. [Kate was _ my mother]

I loved Kate. [I loved _ _ Kate]

I trusted Kate. [I trusted _ _ Kate]

story-end

Story #6

Emotion: neutral Context: Gangster

[$person Fred 30s mustache New-York baseball guns rusty]

Fred was in his 30s. [Fred was 30s his _]

Fred had a mustache. [Fred had _ _ mustache]

Fred was from New-York. [Fred was New-York _ _]

Fred drove a rusty car. [Fred drove _ rusty car]

Fred liked baseball. [Fred liked _ _ baseball]

Fred liked guns. [Fred liked _ _ guns]

[$job Fred Police worked liked New-York good cop]

Fred was a cop. [Fred was _ _ cop]

Fred worked for the Police. [Fred worked Police _ _]

Fred worked in New-York. [Fred worked New-York _ _]

Fred liked his job. [Fred liked _ his job]

Fred was a good cop. [Fred was _ good cop]

story-end

Story #7

Emotion: neutral Context: Gangster

[$person Bob 50s mustache Chicago guns baseball nice]

Bob was in his 50s. [Bob was 50s his _]

Bob had a mustache. [Bob had _ _ mustache]

Bob was from Chicago. [Bob was Chicago _ _]

Bob drove a nice car. [Bob drove _ nice car]

Bob liked guns. [Bob liked _ _ guns]
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Bob liked baseball. [Bob liked _ _ baseball]

[$job Bob Police head liked City-Hall good cop]

Bob was a cop. [Bob was _ _ cop]

Bob was the head of the Police. [Bob was Police _ head]

Bob worked at City-Hall. [Bob worked City-Hall _ _]

Bob liked his job. [Bob liked _ his job]

Bob was a good cop. [Bob was _ good cop]

[$relation Fred Bob liked trusted _ Fred boss]

Bob was the boss of Fred. [Bob was Fred _ boss]

Fred liked Bob. [Fred liked _ _ Bob]

Fred trusted Bob. [Fred trusted _ _ Bob]

story-end

Story #8

Emotion: neutral Context: Gangster

[$person Tony 20s mustache Chicago baseball guns rusty]

Tony was in his 20s. [Tony was 20s his _]

Tony had a mustache. [Tony had _ _ mustache]

Tony was from Chicago. [Tony was Chicago _ _]

Tony drove a rusty car. [Tony drove _ rusty car]

Tony liked baseball. [Tony liked _ _ baseball]

Tony liked guns. [Tony liked _ _ guns]

[$job Tony Mafia worked hated Chicago bad gangster]

Tony was a gangster. [Tony was _ _ gangster]

Tony worked for the Mafia. [Tony worked Mafia _ _]

Tony worked in Chicago. [Tony worked Chicago _ _]

Tony hated his job. [Tony hated _ his job]

Tony was a bad gangster. [Tony was _ bad gangster]

[$relation Vince Tony hated distrusted _ Vince co-worker]

Tony was a co-worker of Vince. [Tony was Vince _ co-worker]

Vince hated Tony. [Vince hated _ _ Tony]

Vince distrusted Tony. [Vince distrusted _ _ Tony]

story-end

Story #9

Emotion: neutral Context: Gangster

[$person Vince 30s beard LA guns movies nice]

Vince was in his 30s. [Vince was 30s his _]

Vince had a beard. [Vince had _ _ beard]

Vince was from LA. [Vince was LA _ _]

Vince drove a nice car. [Vince drove _ nice car]
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Vince liked guns. [Vince liked _ _ guns]

Vince liked movies. [Vince liked _ _ movies]

[$job Vince Mafia worked liked LA good gangster]

Vince was a gangster. [Vince was _ _ gangster]

Vince worked for the Mafia. [Vince worked Mafia _ _]

Vince worked in LA. [Vince worked LA _ _]

Vince liked his job. [Vince liked _ his job]

Vince was a good gangster. [Vince was _ good gangster]

[$relation Tony Vince hated feared _ Tony co-worker]

Vince was a co-worker of Tony. [Vince was Tony _ co-worker]

Tony hated Vince. [Tony hated _ _ Vince]

Tony feared Vince. [Tony feared _ _ Vince]

story-end

Story #10

Emotion: neutral Context: Gangster

[$person Vito 50s beard New-York guns baseball nice]

Vito was in his 50s. [Vito was 50s his _]

Vito had a beard. [Vito had _ _ beard]

Vito was from New-York. [Vito was New-York _ _]

Vito drove a nice car. [Vito drove _ nice car]

Vito liked guns. [Vito liked _ _ guns]

Vito liked baseball. [Vito liked _ _ baseball]

[$job Vito Mafia head liked New-York famous gangster]

Vito was a gangster. [Vito was _ _ gangster]

Vito was the head of the Mafia. [Vito was Mafia _ head]

Vito worked in New-York. [Vito worked New-York _ _]

Vito liked his job. [Vito liked _ his job]

Vito was a famous gangster. [Vito was _ famous gangster]

[$relation Vince Vito liked feared _ Vince boss]

Vito was the boss of Vince. [Vito was Vince _ boss]

Vince liked Vito. [Vince liked _ _ Vito]

Vince feared Vito. [Vince feared _ _ Vito]

[$relation Tony Vito hated feared _ Tony boss]

Vito was the boss of Tony. [Vito was Tony _ boss]

Tony hated Vito. [Tony hated _ _ Vito]

Tony feared Vito. [Tony feared _ _ Vito]

story-end

Story #11

Emotion: very positive Context: Personal
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[$drink I Mary met Moe’s-Tavern table wine _]

I went to Moe’s-Tavern. [I went Moe’s-Tavern _ _]

I sat at a table. [I sat table _ _]

I ordered wine. [I ordered _ _ wine]

I drank the wine. [I drank _ _ wine]

I met Mary at Moe’s-Tavern. [I met Moe’s-Tavern _ Mary]

[$person Mary 20s ponytail LA movies books compact]

Mary was in her 20s. [Mary was 20s her _]

Mary had a ponytail. [Mary had _ _ ponytail]

Mary was from LA. [Mary was LA _ _]

Mary drove a compact car. [Mary drove _ compact car]

Mary liked movies. [Mary liked _ _ movies]

Mary liked books. [Mary liked _ _ books]

[$relation I Mary loved trusted _ my friend]

Mary was my friend. [Mary was _ my friend]

I loved Mary. [I loved _ _ Mary]

I trusted Mary. [I trusted _ _ Mary]

[$talking I Mary liked liked kiss movies long]

I talked to Mary about movies. [I talked Mary about movies]

I liked movies. [I liked _ _ movies]

I talked to Mary a long time. [I talked Mary long time]

I liked talking to Mary. [I liked Mary _ talking]

I gave a kiss good-bye to Mary. [I gave Mary kiss good-bye]

story-end

Story #12

Emotion: negative Context: Personal

[$drink I Joe met Moe’s-Tavern counter beer _]

I went to Moe’s-Tavern. [I went Moe’s-Tavern _ _]

I sat at the counter. [I sat counter _ _]

I ordered beer. [I ordered _ _ beer]

I drank the beer. [I drank _ _ beer]

I met Joe at Moe’s-Tavern. [I met Moe’s-Tavern _ Joe]

[$relation I Joe hated distrusted _ my boss]

Joe was my boss. [Joe was _ my boss]

I hated Joe. [I hated _ _ Joe]

I distrusted Joe. [I distrusted _ _ Joe]

[$person Joe 30s beard Chicago baseball wine nice]

Joe was in his 30s. [Joe was 30s his _]

Joe had a beard. [Joe had _ _ beard]

Joe was from Chicago. [Joe was Chicago _ _]

Joe drove a nice car. [Joe drove _ nice car]
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Joe liked baseball. [Joe liked _ _ baseball]

Joe liked wine. [Joe liked _ _ wine]

[$relation Mary Joe hated distrusted _ I fiancee]

Joe was the fiancee of Mary. [Joe was Mary _ fiancee]

I hated Joe. [I hated _ _ Joe]

I distrusted Joe. [I distrusted _ _ Joe]

[$talking I Joe loved hated hand-shake Mary short]

I talked to Joe about Mary. [I talked Joe about Mary]

I loved Mary. [I loved _ _ Mary]

I talked to Joe a short time. [I talked Joe short time]

I hated talking to Joe. [I hated Joe _ talking]

I gave a hand-shake good-bye to Joe.

[I gave Joe hand-shake good-bye]

story-end

Story #13

Emotion: negative Context: Personal

[$drink I Mary met Starbucks table coffee _]

I went to Starbucks. [I went Starbucks _ _]

I sat at a table. [I sat table _ _]

I ordered coffee. [I ordered _ _ coffee]

I drank the coffee. [I drank _ _ coffee]

I met Mary at Starbucks. [I met Starbucks _ Mary]

[$relation Joe Mary loved trusted _ I fiancee]

Mary was the fiancee of Joe. [Mary was Joe _ fiancee]

I loved Mary. [I loved _ _ Mary]

I trusted Mary. [I trusted _ _ Mary]

[$talking I Mary hated liked kiss wedding short]

I talked to Mary about wedding. [I talked Mary about wedding]

I hated wedding. [I hated _ _ wedding]

I talked to Mary a short time. [I talked Mary short time]

I liked talking to Mary. [I liked Mary _ talking]

I gave a kiss good-bye to Mary. [I gave Mary kiss good-bye]

story-end

Story #14

Emotion: very negative Context: Personal

[$drink I man met Moe’s-Tavern counter beer _]

I went to Moe’s-Tavern. [I went Moe’s-Tavern _ _]

I sat at the counter. [I sat counter _ _]

I ordered beer. [I ordered _ _ beer]
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I drank the beer. [I drank _ _ beer]

I met man at Moe’s-Tavern. [I met Moe’s-Tavern _ man]

[$talking I man loved hated hand-shake Mary long]

I talked to man about Mary. [I talked man about Mary]

I loved Mary. [I loved _ _ Mary]

I talked to man a long time. [I talked man long time]

I hated talking to man. [I hated man _ talking]

I gave a hand-shake good-bye to man.

[I gave man hand-shake good-bye]

[$drunk I _ _ _ beer bad very]

I ordered more beer. [I ordered _ more beer]

I got very drunk. [I got _ very drunk]

I had a bad time. [I had _ bad time]

[$driving I _ drunk home home recklessly _]

I wanted to go to home. [I wanted home go _]

I entered my car. [I entered _ my car]

I drove to home. [I drove home _ _]

I was drunk. [I was _ _ drunk]

I drove recklessly. [I drove _ _ recklessly]

[$pulled-over I cop arrest(ed) _ DUI _ _]

I was pulled-over by a cop. [I was cop _ pulled-over]

The cop asked me for my license. [cop asked license my I]

I gave my license to The cop. [I gave cop my license]

The cop checked the license. [cop checked _ _ license]

The cop arrest(ed) me for DUI. [cop arrest(ed) DUI _ I]

[$trial I _ got convicted fine DUI bad]

I was accused of DUI. [I was DUI _ accused]

I was brought before the court. [I was court _ brought]

I had a bad lawyer. [I had _ bad lawyer]

The court convicted me of DUI. [court convicted DUI _ I]

I got a fine. [I got _ fine _]

story-end

Story #15

Emotion: negative Context: Personal

[$drink Joe Mary met Four-Seasons table champagne _]

Joe went to Four-Seasons. [Joe went Four-Seasons _ _]

Joe sat at a table. [Joe sat table _ _]

Joe ordered champagne. [Joe ordered _ _ champagne]

Joe drank the champagne. [Joe drank _ _ champagne]

Joe met Mary at Four-Seasons. [Joe met Four-Seasons _ Mary]

[$relation Joe Mary loved trusted _ Joe girlfriend]

Mary was the girlfriend of Joe. [Mary was Joe _ girlfriend]
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Joe loved Mary. [Joe loved _ _ Mary]

Joe trusted Mary. [Joe trusted _ _ Mary]

[$talking Joe Mary liked liked kiss wedding long]

Joe talked to Mary about wedding. [Joe talked Mary about wedding]

Joe liked the wedding. [Joe liked _ _ wedding]

Joe talked to Mary a long time. [Joe talked Mary long time]

Joe liked talking to Mary. [Joe liked Mary _ talking]

Joe gave a kiss good-bye to Mary. [Joe gave Mary kiss good-bye]

[$plan Mary people invite LA wedding I invitation]

Mary planned a wedding in LA. [Mary planned LA _ wedding]

Mary wanted to invite a-lot-of people.[Mary wanted _ invite people]

Mary sent invitation to me. [Mary sent I _ invitation]

I accepted the invitation. [I accepted _ _ invitation]

[$drunk Joe _ _ _ champagne good a-little]

Joe ordered more champagne. [Joe ordered _ more champagne]

Joe got a-little drunk. [Joe got _ a-little drunk]

Joe had a good time. [Joe had _ good time]

story-end

Story #16

Emotion: positive Context: Personal

[$drink I Stacy met Moe’s-Tavern table wine _]

I went to Moe’s-Tavern. [I went Moe’s-Tavern _ _]

I sat at a table. [I sat table _ _]

I ordered wine. [I ordered _ _ wine]

I drank the wine. [I drank _ _ wine]

I met Stacy at Moe’s-Tavern. [I met Moe’s-Tavern _ Stacy]

[$relation I Stacy liked trusted _ my girlfriend]

Stacy was my girlfriend. [Stacy was _ my girlfriend]

I liked Stacy. [I liked _ _ Stacy]

I trusted Stacy. [I trusted _ _ Stacy]

[$person Stacy 20s ponytail New-York movies books compact]

Stacy was in her 20s. [Stacy was 20s her _]

Stacy had a ponytail. [Stacy had _ _ ponytail]

Stacy was from New-York. [Stacy was New-York _ _]

Stacy drove a compact car. [Stacy drove _ compact car]

Stacy liked movies. [Stacy liked _ _ movies]

Stacy liked books. [Stacy liked _ _ books]

[$talking I Stacy liked liked kiss books long]

I talked to Stacy about books. [I talked Stacy about books]

I liked books. [I liked _ _ books]

I talked to Stacy a long time. [I talked Stacy long time]
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I liked talking to Stacy. [I liked Stacy _ talking]

I gave a kiss good-bye to Stacy. [I gave Stacy kiss good-bye]

story-end

Story #17

Emotion: very negative Context: Personal

[$driving I _ late Four-Seasons wedding carefully _]

I wanted to go to wedding. [I wanted wedding go _]

I entered my car. [I entered _ my car]

I drove to the Four-Seasons. [I drove Four-Seasons _ _]

I was late. [I was _ _ late]

I drove carefully. [I drove _ _ carefully]

[$occasion I Mary speech kissed Four-Seasons Joe wedding]

I entered the Four-Seasons for wedding.

[I entered wedding _ Four-Seasons]

Mary kissed Joe. [Mary kissed _ _ Joe]

The wedding was a success. [wedding was _ _ success]

I gave a speech. [I gave _ _ speech]

I drank champagne. [I drank _ _ champagne]

[$talking I Mary hated hated kiss wedding short]

I talked to Mary about wedding. [I talked Mary about wedding]

I hated wedding. [I hated _ _ wedding]

I talked to Mary a short time. [I talked Mary short time]

I hated talking to Mary. [I hated Mary _ talking]

I gave a kiss good-bye to Mary. [I gave Mary kiss good-bye]

[$drunk I _ _ _ champagne bad very]

I ordered more champagne. [I ordered _ more champagne]

I got very drunk. [I got _ very drunk]

I had a bad time. [I had _ bad time]

story-end

Story #18

Emotion: positive Context: Personal

[$plan I Kate met LA meeting Kate invitation]

I planned a meeting in LA. [I planned LA _ meeting]

I wanted to met Kate. [I wanted _ met Kate]

I sent invitation to Kate. [I sent Kate _ invitation]

Kate accepted the invitation. [Kate accepted _ _ invitation]

[$relation I Kate loved trusted _ my mother]

Kate was my mother. [Kate was _ my mother]
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I loved Kate. [I loved _ _ Kate]

I trusted Kate. [I trusted _ _ Kate]

[$flight I no-one _ New-York LA long late]

I entered the New-York airport. [I entered _ New-York airport]

I walked to the counter. [I walked counter _ _]

I checked my bag. [I checked _ my bag]

I walked to my gate. [I walked gate my _]

I entered the plane to LA. [I entered LA _ plane]

The plane was late. [plane was _ _ late]

I met no-one in the plane. [I met plane _ no-one]

[$drink I Kate met Four-Seasons table wine _]

I went to Four-Seasons. [I went Four-Seasons _ _]

I sat at a table. [I sat table _ _]

I ordered wine. [I ordered _ _ wine]

I drank the wine. [I drank _ _ wine]

I met Kate at Four-Seasons. [I met Four-Seasons _ Kate]

[$person Kate 50s ponytail LA books wine nice]

Kate was in her 50s. [Kate was 50s her _]

Kate had a ponytail. [Kate had _ _ ponytail]

Kate was from LA. [Kate was LA _ _]

Kate drove a nice car. [Kate drove _ nice car]

Kate liked books. [Kate liked _ _ books]

Kate liked wine. [Kate liked _ _ wine]

[$talking I Kate liked liked kiss Stacy long]

I talked to Kate about Stacy. [I talked Kate about Stacy]

I liked Stacy. [I liked _ _ Stacy]

I talked to Kate a long time. [I talked Kate long time]

I liked talking to Kate. [I liked Kate _ talking]

I gave a kiss good-bye to Kate. [I gave Kate kiss good-bye]

story-end

Story #19

Emotion: positive Context: Personal

[$job Joe St-Vincent’s head liked New-York famous doctor]

Joe was a doctor. [Joe was _ _ doctor]

Joe was the head of St-Vincent’s. [Joe was St-Vincent’s _ head]

Joe worked in New-York. [Joe worked New-York _ _]

Joe liked his job. [Joe liked _ his job]

Joe was a famous doctor. [Joe was _ famous doctor]

[$relation I Joe hated distrusted _ my boss]

Joe was my boss. [Joe was _ my boss]

I hated Joe. [I hated _ _ Joe]

112



I distrusted Joe. [I distrusted _ _ Joe]

[$plan Joe people praise(d) New-York Meeting I invitation]

Joe planned a Meeting in New-York. [Joe planned New-York _ Meeting]

Joe wanted to praise(d) a-lot-of people.

[Joe wanted _ praise(d) people]

Joe sent invitation to me. [Joe sent I _ invitation]

I accepted the invitation. [I accepted _ _ invitation]

[$driving I _ late Four-Seasons meeting recklessly _]

I wanted to go to the meeting. [I wanted meeting go _]

I entered my car. [I entered _ my car]

I drove to the Four-Seasons. [I drove Four-Seasons _ _]

I was late. [I was _ _ late]

I drove recklessly. [I drove _ _ recklessly]

[$occasion I Joe speech praise(d) Four-Seasons me meeting]

I entered the Four-Seasons for meeting.

[I entered meeting _ Four-Seasons]

Joe praise(d) me. [Joe praise(d) _ _ me]

The meeting was a success. [meeting was _ _ success]

I gave a speech. [I gave _ _ speech]

I drank champagne. [I drank _ _ champagne]

[$drunk I _ _ _ champagne good a-little]

I ordered more champagne. [I ordered _ more champagne]

I got a-little drunk. [I got _ a-little drunk]

I had a good time. [I had _ good time]

story-end

Story #20

Emotion: very negative Context: Gangster

[$job Vito Mafia head liked New-York famous gangster]

Vito was a gangster. [Vito was _ _ gangster]

Vito was the head of the Mafia. [Vito was Mafia _ head]

Vito worked in New-York. [Vito worked New-York _ _]

Vito liked his job. [Vito liked _ his job]

Vito was a famous gangster. [Vito was _ famous gangster]

[$plan Vito Tony met New-York meeting Tony invitation]

Vito planned a meeting in New-York. [Vito planned New-York _ mtg.]

Vito wanted to met Tony. [Vito wanted _ met Tony]

Vito sent invitation to Tony. [Vito sent Tony _ invitation]

Tony accepted the invitation. [Tony accepted _ _ invitation]

[$relation Tony Vito hated feared _ Tony boss]

Vito was the boss of Tony. [Vito was Tony _ boss]

Tony hated Vito. [Tony hated _ _ Vito]
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Tony feared Vito. [Tony feared _ _ Vito]

[$flight Tony no-one _ Chicago New-York long late]

Tony entered the Chicago airport. [Tony entered _ Chicago airport]

Tony walked to the counter. [Tony walked counter _ _]

Tony checked his bag. [Tony checked _ his bag]

Tony walked to his gate. [Tony walked gate his _]

Tony entered the plane to New-York. [Tony entered New-York _ plane]

The plane was late. [plane was _ _ late]

Tony met no-one in the plane. [Tony met plane _ no-one]

[$drink Tony Vito met Four-Seasons table wine _]

Tony went to Four-Seasons. [Tony went Four-Seasons _ _]

Tony sat at a table. [Tony sat table _ _]

Tony ordered wine. [Tony ordered _ _ wine]

Tony drank the wine. [Tony drank _ _ wine]

Tony met Vito at Four-Seasons. [Tony met Four-Seasons _ Vito]

[$plan Vito City-Hall bomb(ed) New-York bombing Tony order]

Vito planned a bombing in New-York.

[Vito planned New-York _ bombing]

Vito wanted to bomb(ed) City-Hall.

[Vito wanted _ bomb(ed) City-Hall]

Vito gave order to Tony. [Vito gave Tony _ order]

Tony accepted the order. [Tony accepted _ _ order]

story-end

Story #21

Emotion: very negative Context: Gangster

[$job Tony Mafia worked hated New-York bad gangster]

Tony was a gangster. [Tony was _ _ gangster]

Tony worked for the Mafia. [Tony worked Mafia _ _]

Tony worked in New-York. [Tony worked New-York _ _]

Tony hated his job. [Tony hated _ his job]

Tony was a bad gangster. [Tony was _ bad gangster]

[$driving Tony _ scared City-Hall City-Hall carefully _]

Tony wanted to go to City-Hall. [Tony wanted City-Hall go _]

Tony entered his car. [Tony entered _ his car]

Tony drove to City-Hall. [Tony drove City-Hall _ _]

Tony was scared. [Tony was _ _ scared]

Tony drove carefully. [Tony drove _ _ carefully]

[$occasion Tony Tony phone-call bomb(ed) City-Hall City-Hall bombing]

Tony entered City-Hall for bombing.

[Tony entered bombing _ City-Hall]

Tony bomb(ed) City-Hall. [Tony bomb(ed) _ _ City-Hall]
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The bombing was a success. [bombing was _ _ success]

Tony made a phone-call. [Tony made _ _ phone-call]

Tony smoked a cigarette. [Tony smoked _ _ cigarette]

[$drink Tony no-one met Moe’s-Tavern counter beer _]

Tony went to Moe’s-Tavern. [Tony went Moe’s-Tavern _ _]

Tony sat at the counter. [Tony sat counter _ _]

Tony ordered beer. [Tony ordered _ _ beer]

Tony drank the beer. [Tony drank _ _ beer]

Tony met no-one at Moe’s-Tavern. [Tony met Moe’s-Tavern _ no-one]

[$drunk Tony _ _ _ beer bad very]

Tony ordered more beer. [Tony ordered _ more beer]

Tony got very drunk. [Tony got _ very drunk]

Tony had a bad time. [Tony had _ bad time]

story-end

Story #22

Emotion: neutral Context: Gangster

[$drink Vince Vito met Moe’s-Tavern counter beer _]

Vince went to Moe’s-Tavern. [Vince went Moe’s-Tavern _ _]

Vince sat at the counter. [Vince sat counter _ _]

Vince ordered beer. [Vince ordered _ _ beer]

Vince drank the beer. [Vince drank _ _ beer]

Vince met Vito at Moe’s-Tavern. [Vince met Moe’s-Tavern _ Vito]

[$relation Vince Vito liked feared _ Vince boss]

Vito was the boss of Vince. [Vito was Vince _ boss]

Vince liked Vito. [Vince liked _ _ Vito]

Vince feared Vito. [Vince feared _ _ Vito]

[$person Vito 30s beard Chicago guns movies nice]

Vito was in his 30s. [Vito was 30s his _]

Vito had a beard. [Vito had _ _ beard]

Vito was from Chicago. [Vito was Chicago _ _]

Vito drove a nice car. [Vito drove _ nice car]

Vito liked guns. [Vito liked _ _ guns]

Vito liked movies. [Vito liked _ _ movies]

[$talking Vince Vito liked liked kiss guns long]

Vince talked to Vito about guns. [Vince talked Vito about guns]

Vince liked guns. [Vince liked _ _ guns]

Vince talked to Vito a long time. [Vince talked Vito long time]

Vince liked talking to Vito. [Vince liked Vito _ talking]

Vince gave a kiss good-bye to Vito. [Vince gave Vito kiss good-bye]

[$drunk Vince _ _ _ beer good a-little]

Vince ordered more beer. [Vince ordered _ more beer]
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Vince got a-little drunk. [Vince got _ a-little drunk]

Vince had a good time. [Vince had _ good time]

story-end

Story #23

Emotion: negative Context: Gangster

[$investigation Tony Police bomb(ed) City-Hall City-Hall bombing _]

The Police investigated the bombing at City-Hall.

[Police investigated City-Hall _ bombing]

The Police looked for evidence. [Police looked evidence _ _]

The Police found that Tony bomb(ed) City-Hall.

[Police found City-Hall bomb(ed) Tony]

The Police was after Tony. [Police was _ after Tony]

[$being-after Police Tony bomb(ed) arrest(ed) New-York City-Hall _]

The Police was after Tony. [Police was _ after Tony]

The Police thought that Tony bomb(ed) City-Hall.

[Police thought City-Hall bomb(ed) Tony]

The Police wanted to arrest(ed) Tony.

[Police wanted _ arrest(ed) Tony]

The Police found that Tony was in New-York.

[Police found New-York was Tony]

The Police planned to arrest(ed) Tony in New-York.

[Police planned New-York arrest(ed) Tony]

[$driving Tony _ scared Chicago Chicago recklessly _]

Tony wanted to go to Chicago. [Tony wanted Chicago go _]

Tony entered his car. [Tony entered _ his car]

Tony drove to Chicago. [Tony drove Chicago _ _]

Tony was scared. [Tony was _ _ scared]

Tony drove recklessly. [Tony drove _ _ recklessly]

[$job Fred Police worked liked New-York good cop]

Fred was a cop. [Fred was _ _ cop]

Fred worked for the Police. [Fred worked Police _ _]

Fred worked in New-York. [Fred worked New-York _ _]

Fred liked his job. [Fred liked _ his job]

Fred was a good cop. [Fred was _ good cop]

[$pulled-over Tony Fred arrest(ed) _ bombing _ _]

Tony was pulled-over by Fred. [Tony was Fred _ pulled-over]

Fred asked Tony for his license. [Fred asked license his Tony]

Tony gave his license to Fred. [Tony gave Fred his license]

Fred checked the license. [Fred checked _ _ license]

Fred arrest(ed) Tony for bombing. [Fred arrest(ed) bombing _ Tony]

[$talking Tony Fred hated liked hand-shake Vito long]

116



Tony talked to Fred about Vito. [Tony talked Fred about Vito]

Tony hated Vito. [Tony hated _ _ Vito]

Tony talked to Fred a long time. [Tony talked Fred long time]

Tony liked talking to Fred. [Tony liked Fred _ talking]

Tony gave a hand-shake good-bye to Fred.

[Tony gave Fred hand-shake good-bye]

[$being-after Police Vito bomb(ed) arrest(ed) New-York City-Hall _]

The Police was after Vito. [Police was _ after Vito]

The Police thought that Vito bomb(ed) City-Hall.

[Police thought City-Hall bomb(ed) Vito]

The Police wanted to arrest(ed) Vito.

[Police wanted _ arrest(ed) Vito]

The Police found that Vito was in New-York.

[Police found New-York was Vito]

The Police planned to arrest(ed) Vito in New-York.

[Police planned New-York arrest(ed) Vito]

story-end

Story #24

Emotion: neutral Context: Gangster

[$relation Fred Bob liked trusted _ Fred boss]

Bob was the boss of Fred. [Bob was Fred _ boss]

Fred liked Bob. [Fred liked _ _ Bob]

Fred trusted Bob. [Fred trusted _ _ Bob]

[$plan Bob Fred praise(d) City-Hall Meeting Fred invitation]

Bob planned a Meeting at City-Hall.

[Bob planned City-Hall _ meeting]

Bob wanted to praise(d) Fred. [Bob wanted _ praise(d) Fred]

Bob sent invitation to Fred. [Bob sent Fred _ invitation]

Fred accepted the invitation. [Fred accepted _ _ invitation]

[$driving Fred _ on-time City-Hall City-Hall carefully _]

Fred wanted to go to City-Hall. [Fred wanted City-Hall go _]

Fred entered his car. [Fred entered _ his car]

Fred drove to City-Hall. [Fred drove City-Hall _ _]

Fred was on-time. [Fred was _ _ on-time]

Fred drove carefully. [Fred drove _ _ carefully]

[$occasion Fred Bob speech praise(d) City-Hall Fred meeting]

Fred entered City-Hall for meeting.[Fred entered meeting _ City-H.]

Bob praise(d) Fred. [Bob praise(d) _ _ Fred]

The meeting was a success. [meeting was _ _ success]

Fred gave a speech. [Fred gave _ _ speech]

Fred drank champagne. [Fred drank _ _ champagne]
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[$drunk Fred _ _ _ champagne good a-little]

Fred ordered more champagne. [Fred ordered _ more champagne]

Fred got a-little drunk. [Fred got _ a-little drunk]

Fred had a good time. [Fred had _ good time]

story-end

Story #25

Emotion: very negative Context: Gangster

[$job Vito Mafia head liked New-York famous gangster]

Vito was a gangster. [Vito was _ _ gangster]

Vito was the head of the Mafia. [Vito was Mafia _ head]

Vito worked in New-York. [Vito worked New-York _ _]

Vito liked his job. [Vito liked _ his job]

Vito was a famous gangster. [Vito was _ famous gangster]

[$driving Vito _ scared airport LA recklessly _]

Vito wanted to go to LA. [Vito wanted LA go _]

Vito entered his car. [Vito entered _ his car]

Vito drove to the airport. [Vito drove airport _ _]

Vito was scared. [Vito was _ _ scared]

Vito drove recklessly. [Vito drove _ _ recklessly]

[$pulled-over Vito cop arrest(ed) _ bombing _ _]

Vito was pulled-over by a cop. [Vito was cop _ pulled-over]

The cop asked Vito for his license. [cop asked license his Vito]

Vito gave his license to The cop. [Vito gave cop his license]

The cop checked the license. [cop checked _ _ license]

The cop arrest(ed) Vito for bombing.[cop arrest(ed) bombing _ Vito]

[$trial Vito _ walked cleared free bombing good]

Vito was accused of bombing. [Vito was bombing _ accused]

Vito was brought before the court. [Vito was court _ brought]

Vito had a good lawyer. [Vito had _ good lawyer]

The court cleared Vito of bombing. [court cleared bombing _ Vito]

Vito walked free. [Vito walked _ free _]

story-end

Story #26

Emotion: very negative Context: Gangster

[$being-after Mafia Tony talked kill(ed) New-York Police _]

The Mafia was after Tony. [Mafia was _ after Tony]

The Mafia thought that Tony talked to Police.

[Mafia thought Police talked Tony]

The Mafia wanted to kill(ed) Tony. [Mafia wanted _ kill(ed) Tony]
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The Mafia found that Tony was in New-York.

[Mafia found New-York was Tony]

The Mafia planned to kill(ed) Tony in New-York.

[Mafia planned New-York kill(ed) Tony]

[$driving Vince _ on-time airport New-York carefully _]

Vince wanted to go to New-York. [Vince wanted New-York go _]

Vince entered his car. [Vince entered _ his car]

Vince drove to the airport. [Vince drove airport _ _]

Vince was on-time. [Vince was _ _ on-time]

Vince drove carefully. [Vince drove _ _ carefully]

[$flight Vince no-one _ LA New-York short late]

Vince entered the LA airport. [Vince entered _ LA airport]

Vince walked to the counter. [Vince walked counter _ _]

Vince checked his bag. [Vince checked _ his bag]

Vince walked to his gate. [Vince walked gate his _]

Vince entered the plane to New-York.

[Vince entered New-York _ plane]

The plane was late. [plane was _ _ late]

Vince met no-one in the plane. [Vince met plane _ no-one]

[$plan Vito Tony kill(ed) New-York murder Vince order]

Vito planned a murder in New-York. [Vito planned New-York _ murder]

Vito wanted to kill(ed) Tony. [Vito wanted _ kill(ed) Tony]

Vito gave order to Vince. [Vito gave Vince _ order]

Vince accepted the order. [Vince accepted _ _ order]

[$driving Vince _ on-time Tony Tony carefully _]

Vince wanted to go to Tony. [Vince wanted Tony go _]

Vince entered his car. [Vince entered _ his car]

Vince drove to Tony. [Vince drove Tony _ _]

Vince was on-time. [Vince was _ _ on-time]

Vince drove carefully. [Vince drove _ _ carefully]

[$occasion Vince Vince phone-call kill(ed) Starbucks Tony murder]

Vince entered Starbucks for murder.

[Vince entered murder _ Starbucks]

Vince kill(ed) Tony. [Vince kill(ed) _ _ Tony]

The murder was a success. [murder was _ _ success]

Vince made a phone-call. [Vince made _ _ phone-call]

Vince smoked a cigarette. [Vince smoked _ _ cigarette]

[$investigation nothing Police _ Starbucks _ murder _]

The Police investigated the murder at Starbucks.

[Police investigated Starbucks _ murder]

The Police looked for evidence. [Police looked evidence _ _]

The Police found nothing. [Police found _ _ nothing]

The Police was after no-one. [Police was _ after no-one]
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story-end

Story #27

Emotion: very negative Context: Gangster

[$drink Vince Vito met Starbucks table coffee _]

Vince went to Starbucks. [Vince went Starbucks _ _]

Vince sat at a table. [Vince sat table _ _]

Vince ordered coffee. [Vince ordered _ _ coffee]

Vince drank the coffee. [Vince drank _ _ coffee]

Vince met Vito at Starbucks. [Vince met Starbucks _ Vito]

[$relation Vince Vito liked feared _ Vince Boss]

Vito was the Boss of Vince. [Vito was Vince _ Boss]

Vince liked Vito. [Vince liked _ _ Vito]

Vince feared Vito. [Vince feared _ _ Vito]

[$plan Vito Bob kill(ed) New-York murder Vince order]

Vito planned a murder in New-York. [Vito planned New-York _ murder]

Vito wanted to kill(ed) Bob. [Vito wanted _ kill(ed) Bob]

Vito gave order to Vince. [Vito gave Vince _ order]

Vince accepted the order. [Vince accepted _ _ order]

[$talking Vito Vince liked liked hand-shake murder short]

Vito talked to Vince about murder. [Vito talked Vince about murder]

Vito liked murder. [Vito liked _ _ murder]

Vito talked to Vince a short time. [Vito talked Vince short time]

Vito liked talking to Vince. [Vito liked Vince _ talking]

Vito gave a hand-shake good-bye to Vince.

[Vito gave Vince hand-shake good-bye]

[$driving Vince _ scared City-Hall City-Hall carefully _]

Vince wanted to go to City-Hall. [Vince wanted City-Hall go _]

Vince entered his car. [Vince entered _ his car]

Vince drove to City-Hall. [Vince drove City-Hall _ _]

Vince was scared. [Vince was _ _ scared]

Vince drove carefully. [Vince drove _ _ carefully]

[$occasion Vince Vince phone-call kill(ed) City-Hall Bob murder]

Vince entered City-Hall for murder.

[Vince entered murder _ City-Hall]

Vince kill(ed) Bob. [Vince kill(ed) _ _ Bob]

The murder was a success. [murder was _ _ success]

Vince made a phone-call. [Vince made _ _ phone-call]

Vince smoked a cigarette. [Vince smoked _ _ cigarette]

story-end
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Story #28

Emotion: negative Context: Gangster

[$investigation Vince Police kill(ed) City-Hall Bob murder _]

The Police investigated the murder at City-Hall.

[Police investigated City-Hall _ murder]

The Police looked for evidence. [Police looked evidence _ _]

The Police found that Vince kill(ed) Bob.

[Police found Bob kill(ed) Vince]

The Police was after Vince. [Police was _ after Vince]

[$being-after Police Vince kill(ed) arrest(ed) New-York Bob _]

The Police was after Vince. [Police was _ after Vince]

The Police thought that Vince kill(ed) Bob.

[Police thought Bob kill(ed) Vince]

The Police wanted to arrest(ed) Vince.

[Police wanted _ arrest(ed) Vince]

The Police found that Vince was in New-York.

[Police found New-York was Vince]

The Police planned to arrest(ed) Vince in New-York.

[Police planned New-York arrest(ed) Vince]

[$driving Vince _ scared airport LA recklessly _]

Vince wanted to go to LA. [Vince wanted LA go _]

Vince entered his car. [Vince entered _ his car]

Vince drove to the airport. [Vince drove airport _ _]

Vince was scared. [Vince was _ _ scared]

Vince drove recklessly. [Vince drove _ _ recklessly]

[$pulled-over Vince cop arrest(ed) _ murder _ _]

Vince was pulled-over by a cop. [Vince was cop _ pulled-over]

The cop asked Vince for his license. [cop asked license his Vince]

Vince gave his license to the cop. [Vince gave cop his license]

The cop checked the license. [cop checked _ _ license]

The cop arrest(ed) Vince for murder.[cop arrest(ed) murder _ Vince]

[$trial Vince _ went convicted jail murder good]

Vince was accused of murder. [Vince was murder _ accused]

Vince was brought before the court. [Vince was court _ brought]

Vince had a good lawyer. [Vince had _ good lawyer]

The court convicted Vince of murder.

[court convicted murder _ Vince]

Vince went to jail. [Vince went jail _ _]

story-end
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