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Abstract

This paper reports first results of a simulation of language
pathology in schizophrenia. Using DISCERN, a subsymbolic
model of story understanding and recall, the impact of differ-
ent simulated lesions hypothesized to underlie schizophrenia
is investigated. In response to excessive connection pruning,
the model reproduces symptoms of delusions and disorganized
language seen in schizophrenia, as well as the reduced out-
put seen in compensated later states of the disorder. The ef-
fects of other lesions are less consistent with the symptoms
of schizophrenia. The model therefore forms a promising ba-
sis for future computational investigations into the underlying
causes of schizophrenia.
Keywords: Cognitive Modeling; Schizophrenia; Neural Net-
works; Natural Language Processing.

Introduction
Schizophrenia is a disabling psychiatric disorder character-
ized by complex alterations of language and thought. Estab-
lishing the physiological basis of its symptoms would greatly
enhance our understanding of this disorder, possibly leading
to more effective treatments. Yet after decades of intensive
research, underlying brain processes remain uncertain (Ka-
pur, 2003; Pantelis et al., 2005). Competing theories include
reduced connectivity within and between cortical networks,
drop-out of certain types of neurons, and disturbances in-
volving subcortical dopamine (DA) neurons that affect corti-
cal systems. Unfortunately currently available neuroimaging,
pharmacological, and postmortem methods remain limited in
characterizing neural substrates of schizophrenia. Thus,the
schizophrenic brain remains a vexing “black-box” where out-
put deviations challenge researchers to infer underlying pro-
cesses. It is not surprising therefore that schizophrenia has
become an important focus in the emerging field of computa-
tional models of psychopathology.

During the last two decades, researchers have tried to cap-
ture aspects of schizophrenia and many other disorders us-
ing connectionist models, with the goal of informing clinical
research and resolving competing hypotheses about underly-
ing brain mechanisms. In one of the earliest models of psy-
chopathology, Hoffman (1987) investigated the emergence of
“parasitic” stable states in attractor networks (Hopfield,1982)
to model delusions and hallucinations seen in schizophrenia.
More recently, Ruppin, Reggia, and Horn (1996) used attrac-
tor networks in a computational model of Stevens’s (1992)
theory of the pathogenesis of schizophrenia. Spitzer (1997)
and Silberman, Bentin, and Miikkulainen (2007) used self-
organizing feature maps to model impaired lexical access in

schizophrenia based on dysfunctional inhibition and prim-
ing mechanisms. Cohen and colleagues (Cohen & Servan-
Schreiber, 1992; Braver, Barch, & Cohen, 1999) modeled the
interactions between prefrontal cortex and the DA system to
explain impaired processing of context in schizophrenia.

In a study more closely related to the present paper, Hoff-
man & McGlashan (1997, 2006) used simple recurrent net-
works (Harris & Elman, 1989) to simulate speech percep-
tion in order to understand the mechanisms underlying hal-
lucinated speech, which is one characteristic symptom of
schizophrenia. Excessive pruning of recurrent connections
caused spontaneous speech percepts to be generated, thus em-
ulating hallucinated speech. This result is particularly inter-
esting because significant reductions in cortical connectivity
occur ordinarily during adolescence. That schizophrenia usu-
ally first emerges during or shortly after this developmental
period suggests that abnormal neurodevelopmental pruning
may indeed be involved in the genesis of this disorder.

The study reported in this paper extends this hypothesis to
three other critical manifestations of schizophrenia, specifi-
cally those that disrupt understanding and recall of stories.
First, patients with delusions often discover spurious plots
around them due to a tendency to confuse the actors in their
personal stories with those of the shared stories of their cul-
ture. Secondly, patients with language disorganization tend
to insert extraneous language material that derails story re-
call (Hoffman RE, Watts A, Varanko M, Lane D, Quinlan D,
unpublished data). Finally, after an initial active stage of the
disorder, patients tend to compensate for these positive symp-
toms, showing reduced symptoms at the cost of curtailed lan-
guage output (Ventura et al., 2004).

The goal of this paper is to demonstrate that pathologies
hypothesized to underlie schizophrenia can produce the ab-
normalities described above in a computational model of hu-
man story processing. The model used is an expanded ver-
sion of DISCERN (Miikkulainen, 1993), a system that sim-
ulates human story understanding and recall using a multi-
modular neural network. DISCERN has been previously ex-
tended to include a memory architecture that permits the sys-
tem to store and recall complex stories composed of multiple
story segments, or scripts (Fidelman, Miikkulainen, & Hoff-
man, 2005). Further extensions of of the model include the
capacity to process emotional content and an output filtering
mechanism that allows the system to discard distorted lan-
guage.
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Simulations of several pathologies hypothesized to un-
derlie schizophrenia were applied to DISCERN, including
excessive connection pruning, distortion of episodic mem-
ory traces, and noise contamination of the system’s working
memory. The effects of these simulated lesions were then as-
sessed to evaluate signs of (1) delusions, evidenced by a ten-
dency to substitute one actor for another, (2) derailment-type
disorganized speech, and (3) recovery from the active psy-
chotic stage of the disorder at the cost of curtailed language
output.

The main difference between the current work and previ-
ous approaches lies in the complexity of the model and the
resulting richness of its observable behavior: using a con-
nectionist model of story processing makes it possible to ob-
serve the behavioral effects of simulated lesions at the level of
conversational discourse, creating a chance to further “bridge
the gap between mind and brain, between clinical phenomena
and underlying brain pathology” (Spitzer, 1997).

Script Theory
Script theory (Schank & Abelson, 1977) is one of the funda-
mental ideas underlying the model of human story processing
used in the present study. It models the way humans process
stereotypical sequences of events. For example, every time
we walk into a restaurant, approximately the same thing hap-
pens: we wait to be seated, we order a meal and eat it, pay,
then leave. The specific restaurant and the people with us may
not be the same; certainly the price and quality of the food
may change. The basic sequence of events, however, rarely
does, and can therefore be learned and reused as ascript.

Scripts are best understood as templates for certain types
of situations, including open slots to be filled in (such as the
kind of food), and constraints on what kinds of things can
fill the slots (you cannot order the decor). An instance of a
script, then, is a script whose slots have been filled to matcha
specific situation. In order to store and recall a specific event,
all we need to do is remember the kind of script it followed
and the concepts filling the slots.

Humans use scripts to interact efficiently with each other,
grasp complex situations, and form expectations about a sit-
uation when faced with incomplete information. Scripts are
central to the current understanding of human cognition, lan-
guage, and memory. The hypothesis that humans use scripts
is well supported by experimental evidence. For example,
the degree to which events in a story will be remembered
can be predicted by whether those events are part of a script
(Graesser, Woll, Kowalski, & Smith, 1980). Similarly, the
amount of time it takes humans to understand a sentence can
be predicted by whether it fits into a script (Den Uyl & van
Oostendorp, 1980). Script theory therefore forms a promising
framework for computational models of story processing.

The Extended DISCERN Model
The original DISCERN system (Miikkulainen, 1993) was the
first integrated subsymbolic model of human story process-

ing. It consisted of several modules, each of which was re-
sponsible for one subtask of story processing. The model
could understand and recall script-based stories and answer
questions about them. The model was shown to exhibit im-
portant characteristics of human story processing, such asro-
bustness to input errors and noise. However, it could only
process stories that consisted of single script instances.Since
realistic human stories usually consist of concatenationsof
several scripts, the model needed to be extended to multi-
script stories.

This section provides an overview of the current extended
version of DISCERN. In contrast to the original model, it is
able to process multi-script stories of arbitrary length, process
emotional context of stories, and filter overly distorted lan-
guage output. A detailed account of an earlier version of the
extended DISCERN was given by Fidelman et al. (2005). For
simplicity, the extended model will be referred to as “DIS-
CERN” in the rest of the paper.

Architecture Overview
Apart from the use of scripts as the basic unit of story un-
derstanding, the central concept of DISCERN is modularity.
The task of understanding, recalling, and then paraphrasing
a story is achieved by a chain of modules, each building on
the results of the last module in the chain, and providing in-
put for the next. The modules consist of simple recurrent or
feedforward neural networks that are trained separately with
backpropagation, then linked together to form the final sys-
tem, as shown in Figure 1.

DISCERN reads and produces natural language. Each
story consists of a sequence of scripts, but is presented to the
system as plain text, one word at a time. While DISCERN
understands and recalls the story, it is at different times repre-
sented at the level of words, sentences, scripts, and episodic
memory traces. Figure 2 shows an example story and the
representations used by DISCERN to encode the individual
scripts. Each story in DISCERN is associated with an emo-
tional context, represented as a pattern of neuron activations
that encodes either positive, negative or neutral emotional
tone. The emotion of a story plays an important role in story
memory and recall, affecting the system’s choice between al-
ternative continuations of a story.

Input text

Lexicon

Parser

Parser
Sentence 
Generator

Generator
Story

Encoder
MemoryStory Episodic

Memory

Sentence

Output text

Figure 1:DISCERN is a neural network model of human story un-
derstanding and recall. The task of understanding and reproducing a
story is achieved by a chain of modules, each building on the results
of the previous module and providing input for the next.
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The modules in DISCERN communicate using distributed
representations of word meanings, i.e. fixed-size patternsof
neuron activations, stored in a central lexicon. These repre-
sentations are learned based on how the words are used in the
example stories, using the FGREP algorithm (Miikkulainen,
1993), a modified version of backpropagation that treats input
representations as an additional layer of weights.

A plain-text input story is first translated into input acti-
vations by the lexicon, then presented to the sentence parser
one word at a time. The sentence parser builds a static repre-
sentation of each sentence as it comes in. At the end of each
sentence, that representation, which consists of a concatena-
tion of word representations, is passed on to the story parser.
The story parser in turn transforms a sequence of sentences
into a static representation of a script, simultaneously build-
ing a representation of the story’s emotional context. Script
representations are calledslot-filler representations, because
they consist of a representation for the name for the script (the
words starting with $ in Figure 2) and a sequence of concepts
filling its slots.

At this point, the internal representation of a story consists
of its emotional context and a list of slot-filler representations,
one for each script in the story. The memory encoder turns
this representation into episodic memory traces that can be
successively recalled and reproduced by the story generator.
This behavior is achieved using Recursive Auto-Associative
Memory, or RAAM (Pollack, 1990), a neural network archi-
tecture that forms fixed-size distributed representationsof re-
cursive data structures like lists or trees.

Figure 3 shows the structure of the memory encoder. The
network is trained to reproduce its own input, forcing it to
form a compressed distributed representation of the input in
its hidden layer. These representations are later used by the
story generator as memory cues to access the episodic mem-
ory trace. Additionally, they are used as an encoding of the

Emotion: Negative
[$job Vito Mafia head likes New-York famous gangster]
Vito is a gangster . [Vito is _ _ gangster]
Vito is the head of the Mafia . [Vito is Mafia _ head]
Vito works in New-York . [Vito works New-York _ _]
Vito likes his job . [Vito likes _ his job]
Vito is a famous gangster . [Vito is _ famous gangster]

[$driving Vito _ scared airport LA recklessly _]
Vito wants to go to LA . [Vito wants LA goes _]
Vito enters his car . [Vito enters _ his car]
Vito drives to the airport . [Vito drives airport _ _]
Vito is scared . [Vito is _ _ scared]
Vito drives recklessly . [Vito drives _ _ recklessly]

[$pulled-over Vito cop arrests _ murder _ _]
Vito is pulled-over by a cop . [Vito is cop _ pulled-over]
The cop asks Vito for his license . [Cop asks license his Vito]
Vito gives his license to The cop . [Vito gives cop his license]
The cop checks the license . [Cop checks _ _ license]
The cop arrests Vito for murder . [Cop arrests murder _ Vito]

[$trial Vito _ walks clears free murder good]
Vito is accused of murder . [Vito is murder _ accused]
Vito is brought before the court . [Vito is court _ brought]
Vito has a good lawyer . [Vito has _ good lawyer]
The court clears Vito of murder . [Court clears murder _ Vito]
Vito walks free . [Vito walks _ free _]

Figure 2:An example input story about a gangster getting arrested
for a crime committed in another story. Each sentence is paired with
the static representation used by DISCERN to represent it. Slot-filler
representations of each script are also shown.
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Figure 3: The memory encoder is a Recursive Auto-Associative
Memory (RAAM) neural network (Pollack, 1990) that transforms a
parsed story into episodic memory traces that can later be recalled
by the story generator.

rest of the story by the memory encoder itself, while it steps
backwards through each story, populating the episodic mem-
ory with script/memory-cue pairs.

With the memory traces in place, the system is now ready
to recall the stories that were presented to it earlier. The story
generator module, shown in Figure 4, is cued with the first
memory in a story, then called repeatedly, producing a repre-
sentation for a sentence each time, until it outputs a special
“end of story” pattern. In addition to the next sentence, ev-
ery cycle of the story generator produces a cue to the episodic
memory that determines the next input. A memory cue con-
sists of the compressed version of the rest of the current story,
and can be thought of as a representation of the system’s “dis-
course plan”.

As long as the story generator produces sentences belong-
ing to the same script, the memory cue does not change.
Then, at the same time the last sentence of the script is pro-
duced, the cue changes, and the input is replaced by a mem-
ory of the next script. In this way, the story generator steps
through each sentence of a story, and accesses each memory
trace encoding it.

A recent extension to the original DISCERN is that the
model may discard overly distorted language output. This is
done by applying a filter every time information is retrieved
from memory (either lexical or episodic). For example, if a
memory cue output by the story generator is sufficiently dif-
ferent from all cues in episodic memory (measured by Eu-
clidean distance), DISCERN discards the memory, instead
ending the story. Similarly, if a word representation produced
by the system does not have a close enough match in the lex-
icon, the word is discarded.

Finally the sentence generator, last in the chain, takes the
sentence representations produced by the story generator and
turns them back into a sequence of individual words. The
system then outputs plain text translations of these words as
provided by the lexicon.

For the present study, only the behavior of the memory en-
coder and the story generator are of immediate interest. Fur-
thermore, when examining the effects of lesions on the story
generator, it is desirable to separate the effects of errorsthat
are due to the lesioning from those that are not. Therefore,
the parsing modules and the sentence generator were omitted
from the simulations, focusing the analysis on the lexicon,the
memory encoder, and the story generator.
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Figure 4: The story generator in DISCERN is a simple recur-
rent neural network that reproduces a story by successively recalling
each episodic memory trace encoding it. While recalling a story, it
produces both the next sentence and a memory cue that determines
its own next input. In this manner, it can reproduce stories consisting
of an arbitrary number of scripts.

Experiments
In the experiments reported below, different levels of sim-
ulated lesions hypothesized to underlie schizophrenia were
applied to DISCERN, with the goal of reproducing the doc-
umented symptoms of the disorder. This section describes
the input data used, the lesions applied to the model, and the
experimental methods and results.

Input data
In order to give the system an opportunity to fail in inter-
esting ways, a corpus of 28 input stories was developed that
was much more extensive and complex than others previously
used with DISCERN. Stories ranged between three and seven
scripts long and were divided roughly into two groups: the
first group described normal occurrences, mostly concerning
the life of a “Self” character – a person that was overrep-
resented in the corpus to simulate the concept of the person
telling the stories. This part of the corpus included stories
with a negative emotional tone, such as the “Self” charac-
ter driving drunk and getting caught by the police, as well
as stories about positive events, like visiting relatives,or the
self character being praised by his boss. The second group of
stories consisted of mostly negative stories about a group of
gangsters going about their gangster business – committing
crimes, killing each other, and occasionally getting caught.
Figure 2 shows an example.

All stories were assembled from 14 different scripts de-
scribing stereotypical sequences of events such as meeting
someone for a drink or being pulled over by the police.
Overall, the corpus contained 550 single sentences in 120
script instances. The lexicon contained 170 words, includ-
ing 20 names or descriptions of characters in the stories (e.g.
“Frank” or “lawyer”).

Methods
The first step in the experiments was to develop the word rep-
resentations used in the lexicon. Since sentence processing
networks are generally best suited for the task of produc-
ing word representations, the sentence parser and the sen-
tence generator were trained using FGREP for 5000 iterations
of the entire corpus. Each word representation consisted of
a fixed-size pattern of 12 neuron activations. The network

learning rate was initially set to 0.1, then reduced exponen-
tially with a half-life of 3000 iterations. The training rate for
the word representations was always 5% of the network train-
ing rate.

By the end of training, the word representations had con-
verged to good semantic representations of the concepts.
Words whose representations were similar tended to denote
similar concepts, and usually belonged to the same word cat-
egory. Names of story characters, for instance, formed a tight
and well-defined cluster: with only a single exception, the
five words closest to each of the ten names were either another
name, or the word “man”. The trained sentence processing
networks themselves achieved close to perfect performance
on the sentences in the corpus.

With the word representations in place, 10 DISCERN sys-
tems consisting of a memory encoder and a story generator
were then trained for 10,000 iterations. The initial training
rate was again set to 0.1, and was reduced with a half-life
of 3000 epochs. The training algorithm was standard back-
propagation, so the word representations were not changed
any further. The hidden layer of each memory encoder con-
sisted of 48 neurons, and the story generators had 150 hidden
neurons. All parameters were set empirically.

Using the lexicon and the trained networks, the im-
pact of several simulated lesions hypothesized to underlie
schizophrenia was then evaluated in detail. The lesions in-
cluded connection pruning, noise contamination of working
memory, and distortion of episodic memory traces.

Connection pruning was modeled in DISCERN by remov-
ing any connections between the recurrent and hidden layers
of the story generator whose absolute weights were below a
threshold. By increasing the threshold, increasing percent-
ages of connections were cut.

Noise contamination of working memory, intended to
model impaired processing of context possibly due to
dopamine imbalance, was done by adding increasing levels
of noise to the recursive layer of the story generator during
each cycle. Similarly, episodic memory traces were distorted
by adding increasing levels of noise to the cues produced by
the memory encoder network.

As the level of each lesion increased, the performance of
the system was recorded, including the amount of language
output, the number of stories in which derailments occurred,
and the number and type of word substitutions. All reported
results are averages over all 10 systems.

Results
The effects of connection pruning were found to model the
behavioral changes seen in schizophrenia more closely than
the other lesions investigated. The results reported in this sec-
tion therefore focus on pruning as the central pathology. Fig-
ure 5 summarizes the behavioral changes as a function of the
number of connections cut. Figure 5a shows the percentage
of derailed stories, i.e. stories in which the system retrieves
a faulty episodic memory and jumps to another story. Fig-
ure 5b shows the number of times the system substituted one
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word for another. It also shows the number of errors within
the same word class (e.g. noun→ noun), and the number of
times one actor was substituted for another (e.g. “Frank”→
“Joe”). Finally, Figure 5c plots the reduction in language out-
put due to the output filtering mechanism described earlier.

In the initial unpruned state (left edge of the plots), the
story recall performance of all systems is close to perfect:
DISCERN never derails from one story into another, and only
rarely produces word substitutions. The output filtering leads
to no reduction in language production.

At moderate levels of pruning, both derailments and ac-
tor substitutions increase sharply as a function of pruning
strength, suggesting positive psychotic symptoms consistent
with the initial active phase of schizophrenia. At the peak of
positive symptoms, language production is only moderately
reduced by the output filter.

At high levels of pruning, filtering reduces both derail-
ments and actor substitutions dramatically, at the cost of
highly curtailed language output. This is consistent with a
possible compensatory function of negative symptoms com-
mon in later stages of schizophrenia, suggesting that in com-
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Figure 5: The impact of a simulated lesion (connection pruning)
on (a) the percentage of derailed stories, (b) the number and type
of word substitutions, and (c) the amount of language produced.
Both derailment and actor substitutions increase sharply in response
to pruning, consistent with the positive symptoms during the initial
psychotic phase of schizophrenia. At higher levels of pruning, out-
put filtering of the story generator reduces these symptoms at the
cost of curtailed language output, modeling a compensatory role of
negative symptoms as the condition progresses.
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Figure 6: The types of word substitutions produced in response
to connection pruning. In the unlesioned system, only a small per-
centage of word substitutions exchange one actor for another. In the
pruned system, most word substitutions involve actors, supporting
the interpretation of actor substitutions as signs of delusions.

pensated states of the disorder, the underlying disorganization
of language processing remains but is rarely expressed.

Figure 6 illustrates the relative frequencies of different
types of word substitutions observed. In the unpruned sys-
tem, word substitutions are not only rare – they also do not
tend to involve actors, which supports the interpretation of ac-
tor substitutions as signs of delusions. As the level of pruning
increases, actor substitutions are responsible for an increas-
ing percentage of overall errors. Furthermore, substitutions
rarely cross word categories (e.g. noun→ verb), which is
consistent with clinical observations.

A further interesting finding concerns the structure of the
actor substitutions. A delusional patient would be expected to
not just randomly exchange one actor for another, but would
instead tend to consistently insert specific actors from other
stories. Furthermore, patients with delusions tend to insert
themselves into shared stories of their culture. The actor sub-
stitutions observed in the pruned system show both of these
characteristics: at the peak level of positive symptoms, a
group of three actors accounts for 50–70% of the actor substi-
tutions in all ten systems. In six of the ten systems, the “Self”
character is part of that group.

The effects of both noise contamination of working mem-
ory and distortion of memory traces (not shown) are less con-
sistent with the symptoms seen in schizophrenia. For exam-
ple, both lesions produce unrealistically high levels of derail-
ment (≈ 50%), and do not tend to insert the “Self” character.

Discussion and Future Work
The results demonstrate that DISCERN provides a good
model of delusions and the type of language disorganization
exhibited by patients with schizophrenia. In addition to these
positive psychotic symptoms suggestive of the active phaseof
schizophrenia, the model develops curtailed language output
at increased levels of lesioning, modeling the negative symp-
toms that commonly follow episodic positive symptom exac-
erbations.

In patients, these negative symptoms appear to be more en-
during and progress over the lifetime of the individual (Ven-
tura et al., 2004). The DISCERN model provides a ready ex-
planation for this pattern – output filtering dramatically cur-
tails errors, at the cost of reducing overall language output.
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Our results suggests that underlying disorganization remains
in individuals in the compensated phase – it is just not ex-
pressed.

Future work will focus on using the model to gain insight
into the physiological causes of schizophrenia. Further exten-
sion of the model will make it possible to include additional
candidate pathologies and refine the models of the lesions al-
ready investigated. Neurodevelopmental pruning, for exam-
ple, could be more closely modeled by eliminating connec-
tions continuously throughout the training process. More so-
phisticated models of output filtering based on altered neural
response characteristics may provide a better characterization
of compensatory reactions as well as model effects of antipsy-
chotic medication. Further possible lesions include cell death,
intermodular disconnection, noise contamination of semantic
representations, and altering response characteristics of neu-
rons to mimic neuromodulator effects of dopamine.

Another intriguing possibility is to use the model to sim-
ulate disorders other than schizophrenia. For example, le-
sions that tend to cause the system to jump from one coherent
story to another may be indentified, thus providing a model
for manic speech behavior. Such behavior is distinct from the
language disorganization in schizophrenia, where fragments
from multiple stories are thrown together. In this manner the
model can be used not only to investigate possible causes of
schizophrenia, but also to distinguish it from other disorders.

Conclusions
This paper reported first results of a simulation of language
pathology in schizophrenia. Using an extended version of
the DISCERN neural network model of story understanding
and recall, the impact of different levels of simulated patholo-
gies hypothesized to underlie schizophrenia was investigated.
In response to excessive connection pruning, the model re-
produced symptoms of delusions and disorganized language
seen in schizophrenia, as well as the reduced output seen in
compensated later stages of the disorder. The effects of other
lesions were less consistent with the symptoms of schizophre-
nia. The model therefore forms a promising basis for fu-
ture computational investigations into the underlying causes
of schizophrenia.
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