Copyright
by
Aravind Gowrisankar

2008

EVOLVING CONTROLLERS FOR SIMULATED CAR RACING
USING NEUROEVOLUTION

by

Aravind Gowrisankar, B.E.

THESIS
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF ARTS

THE UNIVERSITY OF TEXAS AT AUSTIN
December 2008

EVOLVING CONTROLLERS FOR SIMULATED CAR RACING
USING NEUROEVOLUTION

APPROVED BY

SUPERVISING COMMITTEE:

Risto Miikkulainen, Supervisor

Peter Stone

To Amma and Appa for putting my education before everything else

Acknowledgments

I would like to thank Risto Miikkulainen for his patient support during all
stages of this thesis. Risto’s Neural Network class inspired me to start doing research

in neuroevolution.

Thanks to Ugo Vieruchi for coding JNeat and Julian Togelius for creating
the simplerace domain which I used as the base to write the simulations. I also
want to thank the Neural Networks group for their valuable suggestions towards

this project.

The masters program at UT has exposed me to education and research of
the highest quality. I am grateful to the CS instructors who led me through the
masters program. I found Glenn Downing, Greg Plaxton, Peter Stone, Ray Mooney
and Risto Miikkulainen to be inspirational instructors and I cherish my experiences

from their classes and lectures.

Being a graduate student in CS has slso given me a chance to work on
class projects in inter-disciplinary fields like Bioinformatics. I consider myself lucky
to have worked with Andrew Ellington and Edward Marcotte at the Institute of
Cellular and Molecular Biology. I thank them for giving me an opportunity to work

on exciting projects.

I am grateful to John McDevitt and Pierre Floriano for providing me with
an opportunity to be a graduate research assistant during my masters program. The
McDevitt group helped me acclimatize to the new environment I faced when I came
to the US. They also gave me a chance to apply my CS skills to projects with a

positive social impact. I must also thank Margaret Myers and Robert Van de Geijn

for their kindness and hospitality.

I am also thankful to Maytal Saar Tsechansky for providing me with an
opportunity to be a Teaching Assistant for the Data Mining course. I am extremely
happy to have taken a class with Jeffrey Martin which opened my eyes to the world

of entrepreneurship.

The Technology Entrepreneurship Society has proved to be a wonderful av-
enue for interacting with peers from other fields and programs, notably engineering
and business students. My experiences working with fellow TES officers and orga-

nizing various events have been fun.

I consider myself lucky to have worked with graduate students like Sindhu
Vijayaraghavan, Sudheendra Vijayanarasimhan and Venkat Balachandran on inter-
esting projects. I also thank my friends for their encouragement and the help that
they gave me at different moments during these two years: Ashwin Parthasarathy,
Ashwin Radhakrishnan, Bakhtiyar Uddin, Easwar Swaminathan, Mario Guajardo,
and Sudheendra Vijayanarasimhan. I treasure the memories from the wonderful

experiences I have had with them.

I am forever grateful to my parents for their love, support, and the sacrifices
they have made over the years. I also owe special thanks to my family(aunts and
uncles) for their love and support. I thank my cousins in the US for their kindness
and hospitality; I have enjoyed the time spent with their families. Last, but definitely

not the least, I am thankful to the love and encouragement from my wife Dhivya.

vi

EVOLVING CONTROLLERS FOR SIMULATED CAR RACING
USING NEUROEVOLUTION

Aravind Gowrisankar, M.A.
The University of Texas at Austin, 2008

Supervisor: Risto Miikkulainen

Neuroevolution has been successfully used in developing controllers for phys-
ical simulation domains. However, the ability to strategize in such domains has not

been studied from an evolutionary perspective.

This thesis makes the following three contributions. First, it implements
Neuroevolution using NEAT with a goal of evolving strategic controllers for the
challenging physical simulation domain of car-racing. Second, three different evolu-
tionary approaches are studied and analyzed on their ability to evolve advanced skills
and strategy. Though these approaches are found to be good at evolving controllers
with advanced skills, discovering high-level strategy proves to be hard. Third, a
modular approach is proposed to evolve high-level strategy using Neuroevolution.
Given such a suitable task decomposition, Neuroevolution succeeds in evolving con-
trollers capable of strategy by using a modular approach. The simplerace car-racing
simulation[29] is used as a testbed for this study. The results obtained in the car-
racing domain suggest that the modular approach can be applied to evolve strategic

behavior in other physical simulation domains and tasks.

vii

Table of Contents

Acknowledgments
Abstract

List of Tables
List of Figures

Chapter 1. Introduction
1.1 Physical Simulations and Computer Games
1.2 The Car Racing Domain
1.3 AI Methods for Games

Chapter 2. Background
2.1 Neuroevolution
2.2 Controllers for Physical Simulations and Car-Racing
2.3 Simulated Car Racing in the Simplerace domain
2.3.1 Dynamics of the Simplerace domain
2.3.2 Features of the Simplerace domain

2.3.3 Challenges of Simplerace Domain

Chapter 3. Direct Evolution
3.1 Direct Evolution
3.2 Experiment Setup
3.3 Results. e

3.4 DiIScuSsion

viii

vii

xi

AW

12
16
16
18
19

Chapter 4. Incremental Evolution

4.1
4.2
4.3
4.4

Need for Incremental Approaches
Experiment Setup L.
Results

Discussion e

Chapter 5. Competitive Coevolution

5.1
5.2
5.3
5.4

Coevolution and Competitive Coevolution

Chapter 6. Modular Evolution

6.1
6.2
6.3
6.4

Modularity
Experimental Setup oL
Results

Discussion

Chapter 7. Discussion and Future Work

7.1
7.2
7.3

Lessons Learned
Comparative Study
Future Work

Chapter 8. Conclusion

Appendix

Appendix 1. Simplerace Domain and Parameters

1.1
1.2

NEAT Parameters
Simplerace Domain oL
1.2.1 Sensor Model
1.2.2 Dynamicso

Bibliography

Vita

ix

29
29
30
32
35

37
37
40
42
45

46
46
48
49
92

53
93
o6
60

63

65

66
66
66
67
68

69

74

3.1
3.2

4.1
4.2

5.1

5.2

7.1
7.2

1.1
1.2

List of Tables

Comparison of Solo Scores, .

Direct Evolution controllers lose with opponents

Waypoints Captured By Incremental Approach and Direct Evolution

Victory Margins for Incremental and Direct Evolution

Comparison of Margin of Victory for Direct, Incremental and Coevo-
lutionary Approaches

Forward and Backward Driving,

Comparison of Solo Scores with Competition Winners

Comparison of Competition Scores

NEAT Parameters
Sensor Model of the Simplerace Package

24
28

34
34

21

3.1
3.2

4.1

6.1
6.2

List of Figures

Simplerace domain 17
Fitness Plot for Direct Evolution 24
Advanced Skill Discovered by Direct Evolution 26
Fitness Plot for Incremental Evolution 33
Modular Design 47
Intelligent Waypoint Selection 50

xi

Chapter 1

Introduction

Physical simulation domains serve as challenging testbeds for modern Al
methods. Creating intelligent controllers for that are capable of strategy in these
domains is hard. The goal of this thesis is to present and analyze ways to evolve
controllers that possess advanced skill and strategy in physical simulation domains

using Neuroevolution.

1.1 Physical Simulations and Computer Games

Physical simulations are very important for studying complex real world
problems. They help researchers focus on their ideas and provide an accessible
platform for conducting experiments. Simulations are useful because they provide
a simple and tractable domain. On the other hand, real world application domains
are often so complex that one can spend huge amounts of time on details that have
little to do with research. Simulations make it easier for researchers to focus on
the ideas rather than the intrinsic complexities and implementation issues present
in the real world. Once the simulation is successful, a prototype can be built and

tested in the real world.

Today, Computer and Video games are easily the most widespread simula-
tions available and are used widely for Al research. Games capture people’s imag-
ination and offer inspiration for research. IBM’s Deep Blue, Blondie24 (checkers)

and Blondie25 (chess) are examples which have caught the attention of the pub-

lic. Computer games of today encompass a wide variety of games including board
games, action games, strategy games, role playing games, vehicle simulation games,
etc. Each type of game offers a different challenge from an Al perspective. For
example, in single player games, the player strives to reach a selfish goal. On the
other hand, players in multi-player games, may have to work against other players
(opponents) and/or work in cohesion with some players (team members). Team
games require coordination between the team members to ensure that all members

work towards the common goal.

Traditional computer games like board games are different from physical sim-
ulation domains because of the nature of the game environment. In board games,
the environment is discrete and the number of possible actions and percepts are
finite. Board games like Checkers, Othello and Chess have been used for Al re-
search and applications like these led to the rise of Good Old Fashioned Artificial
Intelligence (GOFAI). On the other hand, physical simulations model the real world
and are continuous, i.e. the number of possible actions and percepts are infinite.
Modern computer games and video games have continuous environments and hence
can be used for physical simulations. Video games present an opportunity and chal-
lenge for computational intelligence methods just like symbolic board games did
for GOFAI[13]. The eventual goal of such research is to transfer the knowledge
learned from the physical simulation domain to the real-world e.g. using robots.
Robocup soccer[19] is an example of a physical simulation domain where lessons
learned in simulation have been transferred to real robot soccer competitions. Of-
ten, ideas based on research in a particular game have inspired work in completely
different domains[18]. Previous research in physical simulation domains is discussed

in Section 2.2.

1.2 The Car Racing Domain

Car racing is a good example of a physical simulation domain. It presents a

lot of challenges for controller development. Some of them include:

1. Learning the Skills : The skills needed for car racing can be split into two

categories : basic and advanced.

e Basic : The controller needs to know how to accelerate/brake, steer and
change gear. Without these skills it is not possible to be competent.
These skills can either be programmed by hand or learned. Sometimes

learning basic skills through Al methods can give rise to fine tuned skills.

e Advanced : Advanced skills leverage the basic skills. They can be used
to gain an edge over the opponents. Examples include overtaking, late-
braking, learning to use the traction of the track, etc. It may take a

significant effort to program advanced skills by hand.

2. Opponents : Adapting to an opponent is key for success in this domain. Some
opponents may be conservative, some may be aggressive. Knowing such infor-
mation (beforehand or recognizing it during the game) can help make better
decisions, for example, while overtaking. Also, the controller should know to

to defend its position if its under threat from an opponent.

3. Recovery : The controller should have a recovery mechanism. If the car goes
off track or if there is a collision, the controller needs the ability to get back
on track. In case of collisions, the car may be knocked out of the race or may

need some repair (pit stop).

4. Strategy : Strategy is different from skill. A skill is an ability to do something

competently by executing a sequence of actions. Strategy refers to a higher

level behavior like making a plan towards a goal. To implement a particular
strategy, one or more skills may be needed. Car-Racing provides plenty of
opportunities for strategy. One of the essential decisions to make is to esti-
mating the chance of an overtake maneuver. Turns present good opportunities
for overtaking. But the feasibility of such maneuvers should be decided on how
the opponent is driving. Sometimes decisions need to be taken depending on
the context. If the controller is at the last position it can afford to be aggres-
sive; but if its in second position, it cannot afford to take unnecessary risks
and give away its advantage. Real world racing (and even computer games)
features pit stops, multiple laps and even multiple races (championship) all of
which add to the strategy element. Timing the pit stops is often crucial in

races.

5. Real Time Issues : Controllers have to make quick decisions in the car rac-
ing domain. It is not enough if the controller makes the right decision, the
decision must be timely. Otherwise, an advantageous position maybe lost to
an opponent. In real world car-racing, drivers must also be able to adapt to

changing environment like rain.

Many of these issues arise in other physical simulations domains as well, but
the impact of these issues are easy to observe and study in car-racing. This makes
car-racing an ideal Al platform to studying development of skill and strategy. This
thesis uses car-racing as a test-bed for developing controllers capable of intelligent

behavior.

1.3 AI Methods for Games

For game playing domains, the Reinforcement Learning (RL) paradigm proves

to be a good fit. They do not require training examples like traditional learning

methods. This is important in game playing domains, as it is impossible for a hu-
man to provide accurate and consistent evaluations of a large numbers of positions,
which would be needed to train an evaluation function from examples[24]. The main
feature of RL algorithms is that they provide a mechanism to develop game con-
trollers by experimentation. Successful moves, the corresponding skills and strate-
gies are stored and continually refined by playing games repeatedly. These methods
require some sort of feedback for their actions. Games typically come with a numeric
score and a win/loss/draw result which can be used as the feedback. RL algorithms
typically learn a value function that represents the intrinsic value of being in a par-
ticular state. Temporal Difference Learning(TD) is an example of a reinforcement
algorithm that attempts to learn a value function by experimenting with differ-
ent actions. Value function reinforcement learning algorithms like TD can solve
problems without requiring examples of correct behavior. However, value function
reinforcement learning methods have problems dealing with large state spaces|7]
and hidden states[15] which characterize physical simulation domains. Further, for
playing games with opponents, algorithms like TD need opponents to be defined
beforehand (hand-coded or using other approaches). It is hard to create opponents

that are conducive to learning.

Evolutionary Algorithms (EA) present an alternative approach to game play-
ing. They are based on the principles of natural evolution. EA uses operators in-
spired by biological evolution: reproduction, mutation, recombination and selection.
EA evolves a population of individuals. Each individual in the population represents
a candidate solution. Like Reinforcement Learning, EA does not require examples
of game situations; It needs a fitness function for evaluating the candidate solution
in the environment. A fitness function is a numerical reward given to an individual

based on its performance in the environment. After evaluating every individual from

the population in the environment, the genetic operators are applied and the next
population is created. The fittest individuals survive and reproduce. The process is

repeated until a solution is obtained.

Evolutionary Algorithms have been used in a number of domains including
game playing. Games are suitable testbeds for EA because every game results a
numerical score (soccer) or a win/loss/draw (tic-tac-toe) result which can be used
as a fitness function. Evolutionary Algorithms have also become popular for their
ability to come up with novel solutions to complex real world problems like antenna
design[8]. Such abilities can be very handy in the game playing domain, to evolve
effective game playing strategies. KEvolutionary Algorithms can also be used to
evolve the opponents along with the game playing controllers. Such approaches,
called Coevolutionary approaches, have been applied successfully to a wide variety

of game playing domains [11], [14], [22].

Neuroevolution is a class of Evolutionary Algorithms that combine the power
of Evolutionary Computation with Neural Networks. Neural Networks have been
successfully used in a wide variety of problems ranging from classification to control
tasks and regression. Their benefits including non-linearity, adaptivity, generaliza-
tion and fault tolerance have been well documented. Despite being a popular and
powerful learning method, the design of Neural Networks is considered difficult. The
number of parameters that need to be configured including the inputs, the connec-
tions, the number of hidden layers, etc. makes the job of a neural network designer
a difficult one. To complicate matters, a neural network that works perfectly in one
domain, may not work in another domain. Hence neural network design is done

using a combination of previous experience and trial and error.

Neuroevolution uses evolutionary principles to evolve the neural network in-

stead of designing it by hand. Evolution starts out with a population of random

networks. It uses a fitness function to evaluate the networks and applies the genetic
operators to create the next population of networks. The Neuro Evolving Augment-
ing Topologies (NEAT) algorithm proposed by Stanley and Miikkulainen[28] is an
example of Neuroevolution. It provides a mechanism to efficiently evolve Neural
Networks through complexification. Using NEAT, the Neural Networks start mini-
mally and grow in complexity (nodes,links) incrementally. Hence NEAT can be used
to design the Neural Network instead of manually designing it. NEAT is described
in Chapter 2.

Neuroevolution has been successfully used in developing controllers for a
variety of tasks. Gomez and Miikkulainen[6] used Enforced Sub Populations for
active finless rocket guidance, a physical simulation domain. In the gaming do-
main, the SANE Neuroevolution method has been used in evolving game players
for board games like GO[11] and Othello. Coevolution using NEAT has been shown
to be successful in General Game Playing[20]. Real Time Neuroevolution has been

successfully used in evolving Non-player characters in the NERO video game[25].

As mentioned above, Neuroevolution methods have been studied and used to
develop controllers for gaming domains and physical simulations, but these studies
focussed only on the control aspect. Developing controllers capable of strategy is
a harder problem and has not received the same amount of attention from the Al
community. Games like Poker and Prisoner’s dilemmalreferences| have been studied
extensively from a strategy perspective. However physical simulation domains have
not been a part of such studies. Is Neuroevolution capable of discovering novel
strategies in such domains? In particular, can NEAT be used to evolve high-level

strategies in physical simulation domains?

Of late, there has been a significant interest in game playing and numerous

competitions have been taking place to encourage research in computational intelli-

gence. Some of the competitions conducted include Ms. Pac-Man, Othello, X-Pilot
Al and Simulated Car Racing. Simulated Car Racing is a two player car-racing
game developed by Lucas and Togelius[29]. The domain used (aptly called ‘sim-
plerace’) is a slightly simplified version of the car racing problem discussed above.
However, it presents plenty of opportunity for evolving skill and strategy. In this
thesis, the simplerace domain is used as the testbed for evolving skill and strategy

using Neuroevolution.

This thesis makes three contributions. First, it implements Neuroevolution
using NEAT on a physical simulation domain i.e. car racing. Second, three different
evolutionary approaches are systematically studied and analyzed on their ability
to evolve advanced skills and strategy. Third, a modular approach is proposed,

evaluated and implemented to evolve high level strategy using Neuroevolution.

The conclusion of this thesis is that NEAT can be used to evolve controllers
for challenging domains like car-racing. NEAT is shown to discover advanced driving
skills without the aid of any domain knowledge. Discovering strategy and high level
behavior is found to be much harder. To overcome this, some domain knowledge
is used in decomposing the problem to relatively independent tasks. Omnce such a
problem decomposition is setup, NEAT is able to evolve high level strategy. This
modular approach can be applied to not only car-racing but physical-simulation
domains in general. Eventually, the knowledge and strategies discovered by Neu-

roevolution from the simulations can be transferred to real-world domains.

Chapter 2

Background

The car-racing domain is an instance of the larger problem of developing
controllers for physical simulation domains. The first section motivates neuroevo-
lution and the suitability of NEAT for such domains. The second section describes
the challenges associated with developing controllers for physical simulation domains
and previous work in these domains. Finally the simplerace car-racing domain that

is used as the testbed for this thesis, is introduced.

2.1 Neuroevolution

Traditional learning methods are supervised i.e. they require examples of
situations that arise in the problem domain. The number of possible situations that
arise in any computer game is extremely large even for board games; for continuous
environment games, it is infinite. Evolutionary Algorithms (EA) present an attrac-
tive approach to game playing. Rather than learning from a set of examples, these
biologically inspired methods learn by experimenting with different possible actions.
Neuroevolution (NE) is a powerful evolutionary algorithm that has shown to be suc-
cessful in a wide variety of domains including game playing. NE is a mechanism for
constructing neural networks using evolutionary algorithms. Neural Networks have
been used in a wide variety of control tasks and are a powerful method for capturing
non-linearity in a domain. They can handle continuous states and inputs effectively.

Further, the hidden neurons of a neural network together with the recurrent con-

nections of the network can capture the hidden states that arise in a problem. Such
recurrent neural networks can provide a non-linear map sensor inputs into an ef-
fective action. The evolutionary algorithm is used for evolving the structure and

weights of the neural network.

Traditional Neuroevolution methods allow only the evolution of the connec-
tion weights of the neural network. The topology has to be designed in advance. A
topology which works for one domain need not work for all domains. If the chosen
topology does not match the problem at hand, evolution searches the wrong solu-
tion space and consequently cannot find a good solution. Hence a designer has to

experimentally try out different configurations before selecting one.

NEAT|28] provides an elegant solution to this problem by evolving the topol-
ogy of the network in addition to the connection weights. Two special operators are
introduced in NEAT to i)add link between existing nodes and ii)create new nodes.
The genetic operators to add nodes and links represent structural mutations. NEAT
networks start minimally and expand during the course of evolution by using the
various genetic operators. The expansion of the topology by adding new links and
nodes allows NEAT to search higher dimensional search spaces. This ability to
expand the dimensionality of the search space while preserving the values of the

majority of dimensions is called complexification.

NEAT has three key features which make complexification possible.

1. Genetic Encoding and operations: The genetic encoding in NEAT is flexible
and allows expansion. Each genome in NEAT has two sets of genes - node
genes and connection genes. The node genes maintain information about the
type of the node (hidden, input or output). The connection genes represent

a link between two nodes. Each connection gene specifies the in-node, the

10

out-node and the weight of the connection. It also has an innovation number
and an enable bit. The innovation number allows finding corresponding genes
during crossover and the enable bit represents whether the connection gene
is expressed or suppressed. Structural mutations are implemented using the
connection genes and node genes. For an add-node mutation, an existing
connection is split and a new node is placed where the old connection used
to be. The old connection gene is disabled and two new connection genes are
added. For an add-connection mutation, a new connection gene is added to
connect two previously unconnected nodes. This flexible definition of genes
is powerful and enables complexification of the networks during the course of

evolution.

. Tracking genes through Historical Markings: Genomes grow large during evo-
lution because of add-node and add-connection mutations. Implementing
crossover between two genomes of different lengths can be tricky. The in-
novation number stored in the gene acts as a historical marking and can be
used to find matching genes. During crossover, genes with same innovation
number are lined up and one of them is randomly selected for the offspring.
Genes that are not matched are inherited from the more fit parent. These in-
novation numbers avoid the need for topological analysis and allow crossover

to be performed efficiently.

. Protecting Innovation through Speciation: New individuals with structural in-
novations cannot compete with the best of the population. They need at least
a few generations to optimize their structure. To protect novel innovation,
NEAT implements speciation. Individuals are grouped into species based on
the similarity of their topologies. Again historical markings are used to find

the similarity between two genomes. During reproduction, individuals com-

11

pete with other individuals within the same species and not with the entire
population. As a reproduction mechanism, NEAT uses explicit fitness sharing.
Organisms within the same species must share the fitness. This has a dual ef-
fect of ensuring that species do not become too big and structural innovations

are protected.

NEAT networks start minimally with no hidden nodes. The three above principles
ensure complexification and hence evolution can search a wide range of increasingly

complex topologies simultaneously.

NEAT has been applied to a variety of hard reinforcement learning problems
including pole-balancing and double-pole balancing. It has been used in the robot
duel domain|[28] and for playing pong[14]. NEAT has also been used for collision
avoidance of vehicles[10]. The success of NEAT in such domains makes it an ideal

choice for evolving game playing controllers for the task of car-racing.

2.2 Controllers for Physical Simulations and Car-Racing

Physical simulations of real world problems abound in the form of Computer
and Video games. Physical simulations present a lot of challenges for developing
controllers. The first challenge comes from the very nature of such simulations.
Physical simulations are dynamic. The number of situations and scenarios that can
arise in a physical simulation is very large. It is important for the controller to be
able to adapt to various situations. Further, the input space and output space of a
controller in such domains are continuous in nature and this makes the state space
infinite. Effects of large state spaces can be alleviated to an extent by approximation.
The harder problem is that arbitrarily small changes in the environment can make

a huge difference in these domains.

12

The second big challenge is to develop controllers that can not only perform
the task, but also possess advanced skills. Advanced skills are important, not only
because they are interesting to watch (which is needed for gaming domains), but
such skills are a sign of intelligent behavior. A harder problem is to play strategically.
For example, bending it like Beckham (in soccer) is a skill. Wearing the opponent
out in boxing like Muhammad Ali is strategy. Strategy can leverage any of the
skills (including advanced skills), but clearly it is one step above skills in terms of

intelligent behavior.

The third significant challenge is the need to adapt to opponents. Playing
with an opponent opens up more possibilities for strategic play. Recognizing op-
ponent’s moves can help the controller gain an edge to counter them. Recognizing
opponent’s strategy can give the controller a stronger advantage to prepare a counter

strategy. Opponent modeling is a challenging task and is a field in its own right[2].

Creating a controller that can do all the above can take significant program-
ming work (if at all possible). Even before the implementation, just designing a
controller which can do the above is a challenge. The way the inputs are presented
to the controller (problem representation) can have a significant difference on the

performance of the controller.

Physical simulations have been used by researchers to develop controllers
with a goal of testing and applying various Al methods. The robocup soccer do-
main mentioned in Section 1.1 is one such domain. It has inspired research in
multiple fields of Al, particularly multi-agent systems and reinforcement learning.
In addition to capturing the challenges listed above, the soccer domain also re-
quires communication between the various team members. Rocket navigation and
real-world vehicle navigation are some other physical simulation domains that have

been used for Al research. Gomez and Miikkulainen used Enforced Sub-Populations

13

for finless rocket guidance in the rocket navigation domain[6]. Kohl and Miikku-
lainen used NEAT for developing real-world vehicle warning systems[10] to prevent

collisions between vehicles.

In the studies mentioned above, the ‘control-aspect’ of physical simulation
domains has been tackled successfully using NE methods. However, neither NE nor
other methods have showed the ability to develop controllers capable of strategy
automatically in any of these domains. In the past, some work has been done
on developing strategic controllers for non-physical simulation domains. Bryant and
Miikkulainen showed that NE can be used to develop visually intelligent behavior in
the Legion II board game[l]. Evolutionary algorithms have been used for evolving
game controllers for strategy games like Poker and Prisoner’s Dilemma. In [28],
Stanley and Miikkulainen observed elaboration of behaviors when using NEAT in the
robot duel domain. This elaboration was shown to be a benefit of complexification
in NEAT. Though elaboration represents newly learned behavior, it does not imply
strategic behavior. This is because strategy also involves selecting one of distinct
multiple behaviors. So far, this has been hard to achieve using NEAT. Another
physical simulation domain where high level decision making ability has been studied
is keepaway. In [31], the authors developed a switch network to make high-level
decisions for the keepaway soccer domain using three different methods: coevolution,
layered learning and concurrent layered learning. Though the methods leveraged
significant human expertise, they were found to perform worse than a hand-coded
strategy in a hard-version of the keepaway task. In summary, previous research in
physical simulation domains has been successful in dealing with the control aspect.
However, developing strategy for physical simulation has been difficult for learning
methods. This thesis uses Neuroevolution to study the strategy aspect in such

domains.

14

Car-racing is a domain which not only captures the challenges listed above,
but also permits easy observation of behaviors and strategies. Car-racing simulations
are inspired from the real world counterparts i.e. human-driver car-racing. Human
driven car-racing competitions like Formula-One have existed for over 50 years. Only
recently have real-world races with driverless vehicles come into existence. The most
popular and inspirational competitions are the DARPA Challenges which started
in 2004. The DARPA Grand Challenge was a gruelling 150 miles race across the
Mojave Desert and the main challenge was to adapt to different kinds of rough
terrain. In the first instance of the challenge(2004), none of the cars finished the
race and only five cars were able to complete the race in the second instance(2005).
The third DARPA challenge was the Urban Challenge. Here the focus was to drive
in an area that resembled a normal urban city. The challenge was to drive over
60 miles in the presence of other cars and follow the traffic lights, stop signs and
negotiate obstacles. Six teams completed the entire course. Robotic Car Racing at
the University of Essex is an ongoing autonomous car racing project. The cars are
much smaller and comprise of a high end retail car, a laptop, a GPS receiver and
camera. The goal here is to encourage teams to build autonomous racers using the
same equipment. Though this competition is a scaled down version of the DARPA

competitions, the challenges are almost the same. though at a much lower cost.

Many teams participate in driverless vehicle competitions. These competi-
tions provide a learning platform that is accessible for researchers. Research in these
platforms is important because driverless navigation is an important goal for the fu-
ture. However for testing algorithms and comparing the strengths and weakness
of different paradigms, simulation environments are preferable. Simulation envi-
ronments like games, abstract some of the complexities that can arise in the real

world and help focus on key research ideas. In this thesis, simulated car racing

15

is used to study the ability of neuroevolution to develop controllers with skill and
high-level strategy. Computational intelligence researchers stress on the fact that
intelligence should be an emergent property[12]. This thesis works along a similar
line of thought. The goal is to develop intelligent behavior in physical simulation

domains without putting in much domain knowledge.

2.3 Simulated Car Racing in the Simplerace domain

The domain used as a testbed for this study is the simplerace package. De-
veloped by Julian Togelius and Simon Lucas for the 2007 Car Racing Competition at
the 2007 IEEE Symposium on Computational Intelligence and Games, the simpler-
ace domain provides a platform for testing automatic controllers. In this domain,
the quality of a controller is measured by the number of waypoints it can capture in
a predefined time interval. The waypoints are randomly distributed around a square
area and the controller knows the position of the current waypoint and the next.
Waypoints can only be captured in the order of appearance, i.e. at any point of time,
only the current waypoint can be captured. Though the next waypoint’s position is
known, it cannot be captured, but can be used to gain a strategic advantage over

the opponent. A picture of the simplerace domain is shown in Figure 2.1.

In order to obtain a reliable estimate of a controllers performance from the
simplerace domain, the average score obtained from five runs is used, where each

run is a race with 1000 time steps.

2.3.1 Dynamics of the Simplerace domain

Though the simplerace domain is limited to a maximum of two players and
does not consider some real-world issues associated with car-racing like wear and

tear, the physics is fairly detailed. In the simplerace domain, the car is simulated

16

Opponent '

Player 1
Second First
WWaypoint Waypoint

Figure 2.1: Simplerace domain. Player 1 and the opponent are marked in the figure. The
dark black circle is the current waypoint; the gray circle is the next waypoint. The light gray
circle is the third waypoint in sequence - it is not a part of the sensor model and is provided
for visual cue only. The goal is to capture maximum number of waypoints(when driving
solo) and defeat the opponent. The presence of an opponent and (randomly distributed)
waypoints make simplerace a good testbed for studying evolution of strategy

as a 20 x 10 pixel rectangle, operating in a rectangular arena of size 400 x 400. The
car’s complete state is specified by its position, velocity, orientation and angular
velocity. The state of the car and the simulation is updated 20 times per second.
For more details including the dynamics of collisions, see [29]. Due to the dynamics
of the simplerace domain(Appendix 1.2.2), the car accelerates faster and reaches
higher top speeds when driving forwards rather than backwards. Also, the car has
a smaller turning radius at low speeds and approximately twice as large turning

radius at higher speeds due to skidding.

The races in the simplerace domain are essentially of two types. The first
type is a single-car race. In this case the quality of the controller is indicated by
the number of waypoints collected. The second is a two-car race - there are two
cars on the track, meaning that a good controller will have to know how to get as
quickly as possible to the current waypoint, and also defeat the other car on track
by capturing more waypoints. In this case, the quality of the controller is indicated
by the number of waypoints captured and the margin of victory over the opponent.

Thus the domain serves as a convenient test-bed to test both skill (i.e. how fast the

17

controller can travel, how sharp it can turn) and strategy (can I get there before the

opponent?)

2.3.2 Features of the Simplerace domain

The representation of the environment and the input representation is an
important step in solving the problem. The simplerace domain provides two kinds
of sensors to get information about the current state of the car race. First-Person
Sensors provide an egocentric representation of the world. The waypoints and the
opponents are described by their distances and angles relative to the player. Third-
Person Sensors on the other hand, provide absolute positions and velocities of the
two players and the waypoints. A comprehensive listing of the sensors is provided

in the Appendix 1.2.1.

A set of controllers are provided as a part of the simplerace domain. These

include :

1. Greedy Controller,
2. Heuristic Sensible and Heuristic Combined Controllers,
3. An evolved multi layer perceptron based controller,

4. An evolved Recurrent multi layer perceptron based controller.

The Greedy controller uses a simple greedy strategy to decide the next move (forward-
left or forward-right). Hence it continuously accelerates and tends to overshoot way-
points. The Heuristic Sensible controller has a similar strategy but it has a speed
limit. If the speed limit is exceeded, it shifts into neutral mode (no acceleration).
The heuristic combined controller is more complex and makes strategic decisions

using an inbuilt mechanism. It has two modes; In the normal mode, it travels like

18

the Heuristic Sensible Controller, but if the opponent is closer to a waypoint, it
enters underdog mode and steers towards next waypoint. If it gets close to the
waypoint in underdog mode, it decreases its speed proportionally based on the dis-
tance to the waypoint. This is a very clever strategy and serves as a good opponent.
The evolved multi layer perceptron based controller (developed by Julian Togelius)
is a fairly developed controller that possesses the basic skills required for driving.
These controllers can be as opponents for evolving new controllers. It is hoped that

Neuroevolution can discover such strategies on its own.

The simplerace package has the required functionality to collect statistics for
races between two controllers and also solo races. It also has a CompetitionScore
functionality which gives the average of three scores the solo scores, score against
the Heuristic Sensible Controller, score against the Heuristic Combined Controller

(each score in turn being the average score obtained in five hundred races).

2.3.3 Challenges of Simplerace Domain

A driver should be able to accomplish the basic task of navigating to the
current waypoint for which the basic skills of turning, accelerating, braking must be
learned. Apart from the basic skills, the simplerace domain presents a lot of scope
for innovation and strategy. The following is a list of skills and strategies possible

in the simplerace domain

1. Avoid overshooting - While reaching the waypoint, it is important to
avoid overshooting. Going too fast can result in missing the waypoint. Or, the way-
point may be captured, but because of the high speed, the car continues travelling
in the same direction for an extra distance before readjusting to the new current
waypoint. This is called overshoot and it can reduce the number of waypoints cap-

tured significantly. To prevent overshoot, it is important to slow down while nearing

19

the waypoint.

2. Reach the current waypoint in such a way that the next waypoint can
be reached quickly - If at the moment of hitting the current waypoint, the car
is already oriented towards the next waypoint, the car can efficiently capture the
current waypoint and head to the next waypoint. This avoids the time taken for

re-orientation and increases the effectiveness of the controller.

3. Overtake the opponent - It is important to be able to overtake the oppo-
nent. This may not be possible if the opponent is travelling at the highest possible
speed, but an opponent that always travels at such a high speed is prone to over-

shooting. Good overtaking skills can help ‘steal’ waypoints from the opponent.

4. Yield to the opponent - Yielding to an opponent is as important as the
ability to overtake the opponent. It is a strategic behavior. Realizing the futility
of chasing down a waypoint that the opponent is sure to capture can save valuable
time. This time can be used to gain an advantage by heading to the next waypoint.
Once the current waypoint is captured by the opponent, the controller can easily

capture the next waypoint because of the headstart.

5. Use collisions to ones advantage - In simplerace domain, collisions do
not cause any damage to the car. Since there is no notion of damage or wear and
tear, bumping the opponent controller out of the way can be helpful while chasing
waypoints. If the controller is really sophisticated, it can use collisions to exchange

momentum with the opponent (collisions in the simplerace domain are elastic).

The goal of this thesis is to evolve controllers that possess such skills and
strategies. In the following chapters, the methods used to tackle the car-racing
problem in the simplerace domain are explained in detail. In order to put things in
perspective, Section 7.2 discusses other approaches that have been successfully used

in the simplerace domain.

20

Chapter 3

Direct Evolution

The first approach used to develop controllers for the car-racing problem is
Direct Evolution. Direct Evolution is the simplest approach to evolution. It is just
a standard implementation of the NEAT algorithm. In the following chapters, three
other evolutionary methods are described which have more levels of complexity than

the direct approach.

3.1 Direct Evolution

For the simplerace car-racing domain, which is a new domain, the best way
to learn is to experiment and learn by trial and error. A controller can learn about
the domain only by trying out various actions and receiving feedback from the en-
vironment. In the car-racing domain, this paradigm of learning by experimentation
translates into driving solo. The goal of this approach is to set up evolution, such
that the controller learns the basic driving skills and more importantly, learns to
capture waypoints efficiently. The hope is that evolution is able to discover some
of the advanced skills mentioned in Section 2.3.3 in order to capture waypoints

efficiently.

Direct Evolution is a straight-forward implementation of the standard NEAT
algorithm. The task used for evaluation is a simple solo race. Each network in the
population is evaluated in the simplerace domain and a fitness is assigned. The

evaluation stage is followed by a reproduction stage, where the next population

21

is constructed from the current population using the reproduction mechanism of
NEAT (Section 2.1). The two stages are repeated until a solution is obtained (or

for a fixed number of iterations).

3.2 Experiment Setup

The goal of this experiment is to discover driving skills by driving solo races.
The track used for racing is a random track (BasicTrack from simplerace package),
i.e. the waypoints are created at random. Only the current waypoint and the next
way point are known to the controller. Due to the use of a random track, the con-
troller should learn how to drive towards the target waypoints rather than learning

a particular track.

The simplerace domain provides relevant information about the first player
in an egocentric fashion. The information includes its speed, distances to both
waypoints, its angle to both waypoints, etc. In order to drive solo, this information
is sufficient. There is however a discontinuity in the domain because of the way
angles are measured. A small change in position of the car (when the waypoint
is behind the car) can result in the angle to a waypoint changing from 7 to —m
(or vice versa). To overcome this big jump, each angle is represented as a (sine,
cosine) pair which eliminates the jump that occurs at the boundary. Hence the

input representation consists of the following seven inputs:-

speed of the controller,

distances to both waypoints,
e (sine,cosine) of angle to first waypoint,

e (sine,cosine) of angle to second waypoint.

22

The controllers have two outputs which are used to control the acceleration/brake
and steering respectively. The track used for evaluation is the BasicTrack from
simplerace domain. The waypoints are randomly distributed and appear one at a
time. They can only be captured in the order of appearance. At any instant of time,

the information of the currently active waypoint and the next waypoint is known.

Evolution was carried out for 100 epochs with a population of 200 networks.
The fitness was the average number of waypoints captured by the controller in five

races, with each race lasting 1000 time steps.

3.3 Results

The experiment monitored the progress of evolution by tracking the way-
points captured by the best individual (peak-fitness) and the waypoints captured
on an average by the entire population (average fitness). Figure 3.1 shows the Fit-
ness plot (values reported are the average values from ten runs). As seen in the
peak fitness curve, evolution is able to discover the skills required to drive solo quite
early. By 25 epochs, the peak fitness curve starts to stagnate; The average fitness
curve shows reasonable progress up to 40 epochs after which no significant increase

is observed.

Table 3.1 shows a comparison of the solo scores obtained by NEAT based
controller to scores obtained by the controllers from the simplerace pack. The best
controller evolved using direct evolution achieved a score of 19.6 which is significantly
better compared to the controllers provided as a part of the domain (Student’s t-

test,p < 0.01).

In addition to achieving creditable scores, Direct Evolution was able to dis-
cover some advanced skills. A surprising fact is that all the controllers evolved

learned to drive in the backward direction. The actions that the controllers use pre-

23

Direct Evolution

25 T T T T T T T T T
Pwerage Fitness ———
Pealk Fitness
20 B
15 B
a2
18]
b= SmezisiSsansaazoEcessaipttenaEaiy
& ﬁH}IE%@{M%@ =
10 P .
Eﬁ
5 3 -
ES
ES
x
o = 1 1 1 1 1 1 1 I I
0] 10 20 30 40 50 50 70 80 S0 100

Generations

Figure 3.1: Fitness Plot for Direct Evolution.The average and peak fitness at each
generation is shown for the duration of the Evolution. Fitness is the average number of
waypoints captured by the controller. The peak fitness reaches high values quickly indicating
that the basic skills are learned quite early in the evolution. Also no noticeable improvement
can be seen after 40 epochs, indicating that the population stagnates.

Controller Minimum | Maximum | Average | Methodology

Direct Evolution 1 25 19.6 NEAT

Heuristic Sensible 0 22 13.706 | Hand-coded with do-
main knowledge

Heuristic Combined 0 20 7.01 Hand-coded with do-
main knowledge

Evolved MLP 0 25 16.578 | Evolved Multi Layer
Perceptron

Table 3.1: Comparison of Solo Scores. Scores obtained by the NEAT based controller are
comparable to controllers provided as a part of the simplerace domain. The heuristic sensible
controller, heuristic combined controller were hand-coded controllers and the evolved MLP
controller was an evolved recurrent neural network. The NEAT based Controller gets an
average score of 19.6 showing that Direct Evolution is capable of evolving skills needed for

solo racing

24

dominantly are back, back-left and back-right. They do not drive forward! This was
found to be a common trait across most approaches, confirming something about
the domain - i.e. it is harder to control the car when driving forward because forward
acceleration is much higher than backward acceleration. Two significantly different

and advanced behaviors were evolved using this approach.

1. Aligning towards the shortest distance path :- The controllers learned to adjust
their direction such that, it is aligned with the line joining the two waypoints.
The straight line joining the two waypoints is obviously the shortest distance
between the two waypoints. What this means is that after reaching a way-
point, not too much work is needed to reach the next one, since the controller
is already aligned along the shortest path from current position to target way-
point. Also, aligning towards the shortest waypoint avoids overshooting to an

extent.

2. V-Turns to save time :- As indicated earlier, most of the evolved controllers
drive in the backwards direction. But few of the controllers evolved the ability
to switch directions occasionally. When a controller has to completely change
directions to go to next waypoint (from a current waypoint), it has to make a
complete U-turn. Evolved controllers learned to avoid the U-turn by reversing
direction and turning to one side (since the controller normally drives back-
ward, this reversal corresponds to driving forward-left or forward-right in the
domain). After this brief reversal and re-orientation, it switches to the old
(dominant) pattern of driving backwards. The controller ends up making a

clever ‘V’ rather than a U-turn (Figure 3.2).

25

- Reorientation complete
d Rewverts to original
’ ' direction.

Switch of direction here

Figure 3.2: Advanced Skill Discovered by Direct Evolution. Figure shows the path
traced by controller as it makes a v-turn. The v-turn is faster than a u-turn for changing
directions and hence makes the controller more efficient in capturing waypoints.

3.4 Discussion

Moving towards randomly distributed target waypoints seems to be a very
simple task at the outset but capturing the maximum number of such randomly
distributed waypoints in a fixed time-interval is not. Unless one is an expert driver,
there are several possible skills like the V-turn discovered by evolution. Experiments
reveal that learning by driving solo is not a bad way to develop a controller. This
is reasonably intuitive because the overall fitness (i.e. the waypoints crossed in a
fixed time) improves directly when the controller learns tricks to avoid overshoot-

ing/overturning, and accelerates along straights to the maximum extent.

For the simplerace domain, the controllers evolved using Direct Evolution
are very good at capturing waypoints when driving solo. Evolution has discovered

the basic driving skills, i.e. accelerate, brake, steering and navigating towards way-

26

points. The dominant behavior discovered by evolution was to drive in the backward
direction. This is because the car becomes harder to control when driving at high
speeds due to skidding and larger turning radius. Apart from basic skills, evolution
was also able to discover some advanced skills like aligning towards the shortest

distance path and V-turns.

The Direct Evolution approach clearly works in the simplerace domain. An
important reason is that the fitness measure, i.e. the number of waypoints captured
is a highly objective and direct measure for the task at hand i.e. capturing waypoints
efficiently. In some cases, such a fitness measure may not be possible. If the goal is
to discover high level behavior while racing with opponents (Chapter 5), the number

of waypoints captured becomes an indirect fitness measure.

In complex domains with more actions and percepts, it becomes harder to
create objective and direct fitness functions that reward good skills and behavior.
Instead of evolving the basic skills, evolution can end up finding solutions that
exploit some eccentricities of the domain. For example, consider a slight variation
of the car racing domain where a solo race (no opponents) takes place on a fixed
track and the race takes place for a number of laps. TORCS (Section 7.3) is an
example of such a domain. Total distance travelled is one good fitness criterion and
lap timing is another. But none of these are fool-proof. If the track is hard enough,
none of the controllers produced by evolution will be able to complete a lap and that
discourages the use of lap timing as a fitness metric. Distance travelled can also be
a tricky metric. Travelling in circles, travelling outside the track, travelling in the
wrong direction, etc. have to be taken into account while computing the distance.
Depending on the environment, this information may or may not be available. In
such situations when there is no obvious fitness metric, Direct Evolution may not

work. Other approaches that decompose the task into simpler subtasks may be

27

Opponent Average Score | Average Score of Opponent
Heuristic Sensible Controller 10.7 11

Heuristic Combined Controller 13.66 14.86

Evolved MLP Controller 10.22 11.69

Table 3.2: Direct Evolution controllers lose with opponents. Scores obtained indicate
that skills learned from Direct Evolution are not sufficient to race against opponents. The
heuristic sensible controller, heuristic combined controller were hand-coded controllers and
the evolved MLP controller was an evolved recurrent neural network.

necessary.

Though Direct Evolution was able to learn the basic and some advanced
driving skills, there are some skills that were not learned. When directly evolved
controllers are raced against opponents, the number of waypoints captured by the
controllers drop substantially. Table 3.2 shows the scores obtained by the cham-
pion controllers from Direct Evolution when raced against hand coded controllers
from the simplerace domain. The scores obtained by the directly evolved controller
and the heuristic combined controller and evolved MLP Controller are significantly
different (Student’s t-test, p < 0.01). Against the heuristic sensible controller, the
scores are not significantly different, but the average fitness of the champion from
Direct Evolution is 10.6 which is almost an eight point drop in fitness. The skills
learned while driving solo are not sufficient for driving with an opponent in the sim-
plerace domain. The next chapter addresses this issue by setting up the car racing

problem as a series of progressively harder tasks.

28

Chapter 4

Incremental Evolution

Direct Evolution solved the problem of driving solo. The next problem is to
learn to drive with an opponent. Driving with an opponent is obviously harder than
driving alone. Incremental approaches lend themselves naturally to such problems

of increasing complexity.

4.1 Need for Incremental Approaches

Trying to solve complex problems head on can be hard for evolutionary
approaches. If the task is too demanding, evolution can get stuck in an unfruitful
region of the solution space.This is where Incremental Approaches can be useful.
Incremental Evolution sets up evolution as a multi-stage process. Each stage is
used to solve a slightly different task. The stages are ordered in the increasing order
of task complexity. Early stages focus on simple tasks and are used for developing
skills/abilities which are essential for later stages. By the time evolution gets to
a particular stage, individuals are prepared for the corresponding task. In other
words, finding the solution for simple tasks related to the complex problem can help

discover a region of the solution space where the complex problem is more accessible.

Further, in the simplerace domain, incremental approach has a clear analogy
to the real world. Human drivers do not get into a formula-one race or an inter-
state highway to learn driving. They learn the basics of driving on less crowded

neighborhood roads. Once they have done that, they practise driving with other-

29

cars on the road. Only drivers who are competent on a variety of roads and cope

with traffic can hope to succeed in a car-race like formula-one.

Incremental approaches can be used to evolve complex adaptive behavior.
They have been used in improving Non-player characteristic (NPC) behavior in
video games([3]) and in improving capture behavior in the well known prey capture
domain([5]). They have also been used in the simplerace domain[29]; Incremental
Evolution was set up on a series of hand-designed fixed waypoint tracks of varying
shapes to master different driving skills and reduce the noise due to random distri-
bution of waypoints. Each Track was designed to master a particular navigational
skill (accelerate, brake, turn, reverse, accelerate on long straights, etc.). In this
work, incremental evolution is set up to learn to drive with an opponent. Incremen-
tal Evolution is set up as a sequence of two tasks : driving alone and racing with

an opponent. A separate stage is used for solving each of the tasks.

4.2 Experiment Setup

The simplerace domain provides relevant information about the first player
in an egocentric fashion (first-person sensors); This includes its speed, distances to
both waypoints, its angle to both waypoints, etc. Among the first person sensors,
opponent information is specified only in terms of its distances and angle to the first

player.

However, to make high level decisions, the controller needs more information
about the opponent like the opponent’s distance and angle to the waypoints. This
information is not directly available, but third-person sensors from the domain can
provide this information. Third-person sensors includes position, velocity, orienta-
tion of both players and the absolute position of the waypoints. From this the speed

of the opponent, and the opponent’s angle and distance to both waypoints can be

30

extracted.

The controller has 15 inputs and two outputs. The inputs include:

e controller information - speed, distance to both waypoints, angles (sine, cosine)

to both waypoints,

e opponent information - speed, distance to both waypoints, angles (sine, cosine)

to both waypoints,

e Explicit binary indicator to indicate the presence of an opponent.

All angles are represented as a sine-cosine pair as described in Section 3.2. The two

outputs are used to control the acceleration/brake and steering respectively.

Incremental Evolution is set up as two stages:

e Solo Evolution: The first stage is the same as the previous approach i.e. Direct
Evolution where the fitness is determined by the number of waypoints crossed
while driving solo. The fitness is the average number of waypoints captured
from five trials, each trial being a race of 1000 timesteps. This stage lasts for

100 epochs.

e Driving with an Opponent: Initial experiments with the Incremental Evolu-
tion showed that, when solo evolution stage was followed by Driving with an
Opponent stage, evolution learned how to drive with an opponent; but the
solo driving abilities became impaired. To avoid forgetting previously learned
driving skills, ‘Refreshing’ is introduced into the second stage. In addition to
being evaluated on the new task, controllers are also refreshed i.e. evaluated
on the old task of driving solo. The fitness of an individual in the second stage

is a weighted combination of the score obtained in the two tasks. A higher

31

weightage is given to the waypoints captured while driving with an opponent
because the solo driving task has been learned already and driving with an op-
ponent is the harder task. In both the tasks, the fitness is the average number
of waypoints captured in five trials, each trial being a race of 1000 timesteps.
The second stage lasts for a total of 200 epochs which is divided into two
equal sub-stages. For the first hundred epochs, the simple heuristic sensible
controller from simplerace domain is used as the opponent. For the remaining
100 epochs, the slightly more advanced heuristic combined controller is used
as the opponent. This sequence ensures that even during the second stage,

the task becomes increasingly hard and encourages evolutionary progress.

The track used (BasicTrack) and the population size (200) are the same as

those used in Direct Evolution.

4.3 Results

Figure 4.1 shows the progress of Incremental evolution through 300 gen-
erations. The results have been averaged over ten runs. While direct evolution
(Figure 3.1) stagnated after 40 epochs, Incremental evolution progress much longer
(until 150 epochs). However, it is not able to maintain progress throughout the
second stage. The second stage lasts for 200 epochs, and out of these 200 epochs,
progress is maintained only for the first 50 epochs. This is a cause of concern and

the topic is revisited in Section 4.4.

Tables 4.1 and 4.2 show how Incremental Evolution helped improve racing
with different opponents. The comparisons are based on the ten best controllers
(since there were ten trials) evolved from each approach. Each champion controller

was evaluated with the opponent for 500 races of 1000 timesteps each and the average

32

Incremental Evolution

T
Average Fitness +——+—
Peak Fitness ——x—

25 T T

Fitness

oL I I I
0 50 100 150 200 250 300

Generations
Figure 4.1: Fitness Plot for Incremental Evolution. The average and peak fitness at

each generation is shown for the duration of the Evolution. Incremental Evolution progresses
longer than Direct Evolution and hence can discover better solutions

33

Opponent Direct Opponent| Incremental | Opponent
Evolution Score Champion | Score
Champion Score

Sensible 10.6 11.14 12.28 10.8

Combined 13.66 14.86 15.1 14.96

Evolved MLP 10.22 11.69 11.5 10.92

Fixed Competitor | 11.96 8.7 12.52 8.75

Table 4.1: Waypoints Captured By Incremental Approach and Direct Evolution.
Incremental Approach produces controllers that can win against opponents

Opponent Direct Evo- | Incremental | Difference
lution champions | in Victory
Margins
Sensible -0.54 1.48 2.02
Combined -1.2 0.15 1.35
Evolved MLP -1.47 0.58 2.05
Fixed Competitor | 3.25 3.77 0.45

Table 4.2: Victory Margins for Incremental and Direct Evolution. The margin of
victory is better for Incremental Controllers as the controllers produced by Incremental
Evolution are more skilled in racing with opponents

waypoints captured were recorded. The numbers presented here are the averages of

the respective controllers from ten trials.

When racing with an opponent, following factors are considered important:

1. Number of waypoints captured: While racing against opponents like the evolved
MLP controller, Incremental Evolution is found to capture more waypoints

than Direct Evolution (Student’s t-test, p < 0.05).

2. The margin of victory: For example, with the Evolved MLP Controller (an
evolved non-recurrent MLP provided with the simplerace domain), the con-
trollers developed using Direct Evolution ended up losing by a margin of 1.47

waypoints on an average. On the other hand, controllers developed using

34

Incremental Evolution ended up winning the races with the MLP controller
and had a positive margin of 0.58. The margins of victory for incrementally

evolved controllers are significantly better (Student’s t-test, p < 0.01).

Effectively, incrementally developed controllers captured two waypoints more in
every race than directly evolved controllers (except while racing with the fixed com-
petitor which was an easy opponent). Further, a one-on-one race between the best
controllers developed using both the approaches also showed the incremental evolved
controller capturing two waypoints more than the Directly evolved controller. Using
a two-stage process, Incremental Evolution was able to produce controllers capable

of defeating opponents.

4.4 Discussion

As shown in Chapter 3, controllers developed using Direct Evolution were
not able to race effectively with opponents. To tackle this problem, evolution was
set up as a sequence of of progressively harder stages. The first stage was the same
as direct evolution and the goal was to learn driving solo. The goal of the second
stage was to learn to drive with an opponent. In order to ensure that controllers did
not forget previously learned skills, the second stage involved a refresh component.
The fitness function for the second stage was the weighted sum of scores from solo
races and races with an opponent. During the second stage, two different opponents

were used to encourage the progress of evolution.

Using such a setup, Incremental Evolution was able to produce controllers
capable of driving with an opponent. On an average, the incrementally evolved
controllers captured two waypoints more than directly evolved controllers in a race
of 1000 timesteps while racing with the same opponent. However, this approach

was not able to discover new skills and strategy. Though the evolved controllers can

35

race with opponents, they do not display any of the high-level strategy described in
Section 2.3.3.

Figure 4.1 shows that progress lasts only for the first 50 epochs of the second
stage (200 epochs total). For the rest of the second stage, including racing with the
second opponent (Heuristic Combined Controller), the fitness does not change sig-
nificantly. This stagnation can prevent evolution from discovering more innovative
controllers. A possible solution is to hand design more opponents and increase the
number of sub-stages in the second stage. Though having a pedagogy of increasingly

tough opponents is helpful, hand designing such opponents is a challenge in itself.

The need of the hour is to ensure that the population’s fitness does not
stagnate, for which the opponents must keep improving in each generation. It is
impossible to manually design one opponent for each generation of evolution. In
the next chapter, an evolutionary approach is introduced that, 1)Provides candi-
date opponents automatically 2)Ensures continuous improvement of opponents by

evolving them.

36

Chapter 5

Competitive Coevolution

The last chapter illustrated an incremental approach to solving the problem
of racing with opponents. The main problem with this approach is that the oppo-
nent is fixed. If the fixed opponent is fairly advanced, the individuals from early
generations of evolution end up getting very low fitness and evolution never takes
off. On the other hand, if the fixed opponent is too simple, apart from learning
to exploit weaknesses of the opponent(overfitting), it prevents evolution from im-
proving continually and yielding better solutions. Once evolution discovers a good
strategy, evolution can stagnate. One way to avoid this is to evolve against a se-
quence of opponents starting with a simple opponent and gradually increasing the
complexity and skill level of the opponent. The approach of evolving against a se-
quence of opponents will only work if such opponents are automatically available
which is normally not the case. This chapter discusses a coevolutionary approach

to overcome this problem by evolving opponents as part of the process.

5.1 Coevolution and Competitive Coevolution

Coevolution is defined as a ‘process of mutual adaptation that occurs amongst
a set of agents that interact strategically in some domain’[4]. By definition, a coevo-
lutionary domain is interactive. The key difference between Evolutionary algorithms
and Coevolutionary algorithms lies in the evaluation. In Coevolution, the fitness

of the organisms depend on one another. Competitive coevolution is the classical

37

case of coevolution in which individual fitness is evaluated through competition with
other individuals in the population, rather than through an absolute fitness mea-
sure. Normally, there are two populations(though coevolution can be implemented
with single or multiple populations); the population currently being evaluated is
called the ‘host’ and the population from which opponents are drawn is called the
‘parasite’ population. During each evaluation an organism from the host population
is evaluated against an organism from the parasite population. The goal of the host
is to overcome the parasite and the goal of the parasite is to exploit the weaknesses
in the host. One of the advantages of Competitive Coevolution is that a precise
fitness function is not needed for the domain, a measure of the relative strengths
of solutions is sufficient. An increased fitness in one solution leads to a decreased
fitness for another. Further opponent strategies need not be designed by hand. As
coevolution progresses, competing solutions strive to improve in order to survive.

This can lead to an ‘arms race’ of increasingly better solutions.

Competitive coevolution flourishes as long as the arms race continues. In
practice, it is difficult to ensure that the arms race takes place[4]. This is because
coevolution is susceptible to forgetting. Given a finite population, an individual must
be successful in every generation in order to survive. Otherwise, it is eliminated from
the population and the unique skills(if any) learned by this individual are gone and
have to be rediscovered. Hence, skills learned in the past can sometimes be forgotten
by the entire population. In conventional evolutionary algorithms, forgetting is not
a big problem because the lost individual is strictly worse in terms of an absolute
fitness measure and is replaced by better individuals. However, in coevolution the
fitness is not absolute and an individual with low fitness may resurface again or an

individual with good skills maybe lost.

Several techniques have been proposed for overcoming forgetting. One such

38

technique is to maintain a Coevolutionary Memory(CM) like Hall of Fame[22] or
Layered Pareto Coevolution Archive(LAPCA). CM helps overcome forgetting by
storing the best players and hence the strategies learned by evolution. While evalu-
ating a host, it is not only evaluated against a parasite but also against individuals
picked from the CM. Evaluating against a CM ensures that past skills and strategies

are not forgotten.

The Hall Of Fame(HOF) is a best of generation coevolutionary memory
where the fittest individual from each generation is stored. A host is evaluated by
playing against a parasite and also against individuals from the HOF. It is suffi-
cient to play against a random sample of opponents picked from HOF rather than
evaluating against the entire HOF. HOF is used as the CM because it is easy to

implement and smaller number of games need to be played.

To monitor progress in Coevolution and select the overall champion, the
dominance tournament method is used. Dominance Tournament was proposed by
Stanley and Miikkulainen[26] as a method to guarantee that strictly more sophisti-

cated strategies are discovered as evolution progresses.

Dominance is defined recursively as follows:-

e The first dominant strategy d; is the champion of the first generation.

e Dominant strategy d;, where j > 1 is a generation champion such that for all
i < j, d; is superior to d;. where the definition of ‘superior’ depends on the

domain.

This definition ensures that there are no dominance cycles as each successive

dominant strategy has to be superior to all the previous dominant strategies.

The process of deriving such a ranking from a population is called dominance

tournament. The main advantage of this approach compared to other approach like

39

master tournament is that the number of comparisons needed to establish such a
ranking is significantly reduced. If the candidate strategy d, is not superior to the
first dominant strategy di, d; can be rejected without comparing it with the rest of

the dominant strategies.

5.2 Experimental Setup

In the simplerace domain, both the player and the opponent have the same
task i.e. to capture maximum number of waypoints. The game is symmetrical as
player one and player two can be interchanged. Hence it is sufficient to use just one
population. Both the host and the parasite are picked from the same population.
Consequently, the Hall of Fame is also filled with the Best of Generation individual
from this population. In the rest of this chapter, the host is referred to as ‘individual’

or ‘player’; and the parasite is referred to as opponent.

The population size is fixed at 200 and each evolution runs for 100 epochs.
The fitness of an individual is the average score obtained from three components.
Each component includes a series of races against a set of opponents. The opponents
are not fixed but are picked from the evolving population. Each set of opponents
have a role to play in competitive evolution. The components and their importance

are described below.

1. Number of Waypoints captured while racing with Best of Species Opponents:
It is essential to make sure that the individual is evaluated against good op-
ponents. Since NEAT has an explicit speciation mechanism, we can take
advantage of this to select a diverse set of good opponents. Like Stanley
and Miikkulainen in [28], the champion individual from the four best species

are selected to be the opponents. Since opponents are selected from different

40

species, they are likely to be diverse. Each opponent plays one race of 1000
timesteps with the player. The fitness awarded to the player is the average

number of waypoints captured with the four best of species opponents.

2. Number of Waypoints captured while racing with HOF opponents: Racing
with HOF opponents is done to make sure that previously learned skills are
not forgotten. Four opponents are picked at random from the Hall of Fame.
Again, each opponent plays one race of 1000 timesteps with the player. The
fitness awarded to the player is the average number of waypoints captured

with the four opponents.

3. Number of Waypoints captured while racing with Random Opponents: The
motivation for playing with random opponents is to make sure that the player
learns to race with different kinds of opponents. Evaluating only with HOF
opponents or the Best of Species opponents may help the player play against
strong opponents, but it could also lead to a player overfitting a few good
opponent strategies. Each opponent plays one race of 1000 timesteps with the
player. The fitness awarded to the player is the average number of waypoints

captured with the five opponents.

At the end of each generation, the best individual of the generation is added
to the HOF. In the dominance tournament, the comparison between two strategies
is based on five races of 1000 timesteps each. That is, an individual x is superior to

individual y if = captures more waypoints in aggregate than y over the five races.

The input representation is the same as the input representation used in the
incremental approach. The controller has 15 inputs and two outputs. The inputs

include:

41

Controller Margin of Victory
Direct Evolution -1.55
Incremental Evolution 3.48
Coevolution 1.33

Table 5.1: Comparison of Margin of Victory for Direct, Incremental and Coevolu-
tionary Approaches. Coevolved controllers have a higher margin of victory than Direct
Evolution controllers when racing with opponents. This shows that coevolution is capable
of discovering how to race with opponents

e controller information - speed, distance to both waypoints, angles(sine, cosine)

to both waypoints,

e opponent information - speed, distance to both waypoints, angles(sine, cosine)

to both waypoints,

e Explicit binary indicator to indicate the presence of an opponent.

The two outputs are used to control the acceleration/brake and steering respectively.

5.3 Results

Coevolved controllers can race with opponents as well as drive solo. The
ability to race with opponents is natural because the controllers evolve by competing
against other controllers in the population. Unlike the incremental approach, which
required multiple stages(300 epochs) for learning the two tasks, coevolution is able
to gain both sets of skills within 100 epochs. The following table(Table 5.1) shows
a comparison between the best controller evolved using the three approaches. The
Margin refers to the aggregate margin of victory(in terms of waypoints) while racing
with three good opponents - i.e. the simplerace heuristic controller, the simplerace

combined controller, and the evolved MLP controller provided in the domain.

The margins for the three approaches were significantly different (Student’s

42

t-test,p < 0.05). The coevolved controllers are clearly better than the controllers
evolved using Direct Evolution. However, the incrementally evolved controllers have
the best margin. The high margins could be due to the fact that two out of these
three opponents(heuristic sensible and heuristic combined controllers) were used
during incremental evolution as opponents and hence the incrementally evolved

controllers had experience racing against them.

The main goal of this approach was to discover innovative behaviors and the

controllers evolved some new behaviors:

1. V-turn: The directly evolved controller had learned to switch directions, and
made a nice V-turn(Section 3.3). This was however a short-lived behavior as
the controller reverted to its original backward driving mode after making the
adjustment in orientation. Coevolved controllers were also able to discover

this behavior.

2. Forward and Backward Driving: In previous approaches, most of the evolved
controllers preferred to drive backward. Coevolved controllers were able to
travel in both directions. Typically, coevolved controllers drive much faster
when they are driving forward. When they drive backward, they are slower
but much more refined. Ideally one would expect these controllers to slow
down when they near the waypoint, but while travelling forward they occa-
sionally accelerate too much and overshoot the waypoint. If this overshooting
is eliminated, these controllers can capture much more waypoints while racing
with opponents. In spite of the overshooting, the discovery of the forward and

backward-driving behavior represents a progress from the earlier approaches.

43

wp-2 @ Driving backwards
/ Y WP-1 capture
< e . I/‘
WP-: WP-1 WP-3 WPz
WP-3) -
(a) 1 (b) 2 (c)3
o WP-3 WP-3
WP -1 o
Change Driving
of forward to
new WP-3 Direction! I WP-1
z’ V‘
»
o @ @
WP-2 WP-2 WP-2
(d) 4 (e) 5 (f) 6
WP-3 WP-3 WP-1 @
|
|
WP-3
@ . .
WP-2 WP-2 WP.2
(g) 7 (h) 8 (i) 9

Table 5.2: Forward and Backward Driving. A sequence of nine screenshots from a solo
race of a coevolved controller is shown from top left to bottom right. The first, fourth and
ninth screenshots show the entire 400x400 field; the rest of the screenshots show only the
part of the field containing the action. The reversal in direction can be seen in the fifth
image. This ability to drive in both directions for long distances gives the controller an edge
in capturing waypoints. Note: The little black line on the red-car that indicates the front
of the car. WP-1, WP-2 represent the first and next waypoints respectively. WP-3 is not a
part of the sensor model and is shown only for visual cue.

44

5.4 Discussion

The coevolution approach was set up to encourage continuous progress dur-
ing evolution. Dominance tournament was used to monitor progress and HOF was
used as the coevolutionary memory. Controllers evolved using this approach were
able to race solo and drive with an opponent. Though the coevolved controllers
were better than directly evolved controller, incrementally evolved controllers had
the highest margin of victory. In spite of this fact, coevolved controllers possessed
a few interesting skills. Developing skills solves only one part of the problem. The
second goal of discovering strategies was not accomplished by coevolution. In the
next chapter, an approach is outlined that explicitly encourages the discovery of

high level behavior by problem decomposition.

45

Chapter 6

Modular Evolution

Competitive Coevolution enabled the controllers to learn the basics of driv-
ing and a few impressive skills, but no high-level strategy emerged. Although the
simplerace domain provides opportunities for strategy (Chapter 2), evolution was
not able to discover them on its own. This chapter proposes another approach
to evolution - a modular approach, where the problem is decomposed into smaller

sub-problems.

6.1 Modularity

Modularly constructed systems are necessary to solve complex real-world
problems, because they allow subproblems to be isolated and solved separately[16].
Two concepts are central to modularity: Decomposition and Replication. In Nature,
one can find numerous examples of replication: limbs, eyes, ears, etc. are replicated
and can be considered as modules which perform the same function. Indeed there
is a strong biological motivation to develop artificial systems that have symmetry.
In Computer Science too, the divide and conquer paradigm encapsulates the notion
of decomposing a complex problem into smaller sub-problems which can be solved
easily. In neural network literature, Modular Neural Networks have been evolved

for solving problems like time series prediction[16] and robot control([30],[17]).

Instead of trying to find a single solution which has all the skills and strate-

gies needed to be an intelligent driver, dividing the car-racing problem into inde-

46

Opponent' Opponent'

P1
¢ 0 Selected
| WP

P1

¢
o 0,
WP 2

.{L\.\”.f. /}{L. Sensors Q{L\.\\/{\//{LO Sensors
\.// Output .I ® Outputs
Waypoint ID Waypoint Acc;‘brakle Steer
Selected
Target.WP — Navigation
Selection

Figure 6.1: Modular Design. The Waypoint selection and Navigation modules are shown.
P1 represents Player 1; WP-1 and WP-2 are the current and next waypoints respectively.
The waypoint selection module selects the waypoint, which is passed to the navigation
module. Car-racing is decomposed into two separate modules as shown with a goal of
evolving strategy

pendent tasks makes it easier for evolution to discover driving skills and interesting
strategies.Car-racing in simplerace domain is decomposed into 2 tasks : Navigation
and Waypoint Selection. The Waypoint selection module involves deciding a target
waypoint. It takes into account the controller’s current state (position, velocity)
and the opponent’s current state and the position of the waypoints to select a tar-
get waypoint. Once a target is selected, the role of the navigator is to travel to that
waypoint in the shortest possible time. Waypoint Selection and Navigation are two
separate tasks and by isolating the tasks, it should be easier to evolve 1)Intelligent
waypoint selection and 2)Improved navigation. Improved waypoint selection is a
high-level strategic decision. By designing modules in the above fashion, evolution

is provided with a structure to learn high-level decision making.

The inputs to the navigator include the car’s current speed, the car’s distance

47

and angle to the target waypoint, the opponent’s speed, and the opponent’s distance
and angle to the target waypoint. The navigator has two outputs: one to control
steering and one for driving. The waypoint selector has 15 inputs and one output.
It takes into account the speed, distances to both waypoints, and angles to both
waypoints of both the controller and the opponent. The single output is used to

decide the target waypoint.

If there is no opponent (this information is explicitly given as a binary input
to both navigator and waypoint selector), all information regarding opponent is
zeroed out. If there is no opponent, there is no role for target selection, the controller
should always drive towards the first waypoint. Recall from Chapter 2 that the
second waypoint becomes available for capture only after the first waypoint has
been captured. So, evolution has to figure out this subtle difference between driving

alone and driving with an opponent.

6.2 Experimental Setup

In this approach, the navigator and waypoint selector controllers are evolved
together by having two populations: one each for the navigator and waypoint selec-
tor. The populations consist of 200 networks each and the evolution is carried out

for 100 epochs.

For the purpose of evaluation, an organism from the waypoint selector pop-
ulation is paired up with five different navigators from the navigator population.
Each such pair is assigned a fitness that is a weighted combination of the average
number of waypoints captured during 1)Five races of driving alone and 2)Five races
of driving with a fixed opponent. Because it is harder to drive with an opponent,
the waypoints captured while racing with an opponent are weighted higher than

waypoints captured while driving alone. Each race is set up to last 1000 timesteps.

48

The fitness assigned to the networks (both navigator and waypoint selector) is the
best fitness obtained from all their pairings. The opponent used for this approach

was the simple heuristic controller from the simplerace domain (Chapter 2).

6.3 Results

Experiments show that the champion controller produced by using the Mod-
ular approach is better than the controllers produced by the Direct Evolution ap-
proach for racing with an opponent. However, incremental and coevolutionary ap-
proaches achieve slightly better scores while racing with an opponent. Direct Evolu-
tion is found to be better than all the other approaches for evolving the skills needed
to drive solo. The main advantage of modular approach is that the approach is able

to evolve clearly discernible high-level strategy.

This approach was designed to help evolution discover solutions with the
ability to make intelligent high-level decisions (selecting waypoints) and also to
navigate effectively. Further evolution had to realize that the waypoint selection
is trivial while driving solo. Controllers evolved using this approach were able to
achieve all the above goals. Waypoint selectors were able to make the (trivial) choice
of always navigating to the first waypoint while driving alone. In addition, evolution
was also able to discover two related high-level behaviors - Waypoint Selection and

Hang-Around, which are described below.:

1. Waypoint Selection Behavior: This behavior may appear to be a straight-
forward and easy to accomplish. Assume using the following heuristic: if
the opponent is closer to the first waypoint, the controller should travel to
the second waypoint, otherwise it should travel to the first waypoint. One

such controller (heuristic combined controller that is provided as a part of the

49

Player 1

- " |
- Player 2 1
@ '
!

‘. WP1

Figure 6.2: Intelligent Waypoint Selection. The figure shows the path traced by modular
controller (player 1) when the opponent (player 2) is close to the current waypoint. The
controller sacrifices the current waypoint and travels to the next one. Such intelligent
behavior can save a lot of time in this car-racing domain. Note that the modular controller
travels predominantly in the backward direction.

50

domain) does reasonably when driving with an opponent but struggles while
driving solo (Table :3.1). The waypoint selection decision is not that simple.
There are factors like speeds of the two players and the direction in which the
two players are headed that should be considered in the decision making. If
the player is heading in one direction in high speed, and the next waypoint
appears somewhere close but in the opposite direction, the player is going to
find it hard to slow down and change directions and get to this waypoint.
If the other player uses the above heuristic to make the decision, it is going
to miss out on valid scoring opportunities. Also, during the course of the
game several other scenarios may arise; one of the players may get stuck near
the first waypoint (Chapter 7). If the other player uses the simple distance
heuristic and navigates to the second waypoint, the game is stalled because
waypoints need to be captured in their order of appearance. Handling every
possible scenario that can arise in a domain is not easy and this approach
does not scale up. In such cases its advantageous to use evolution to discover
strategies by repeatedly playing the games. Figure 6.2 shows the ability of the

evolved controller to select waypoints intelligently.

. Hang-Around: Hang-Around behavior is related to the waypoint selection
behavior. In some scenarios, the controller makes an early call and selects
the second waypoint. It travels to the second waypoint and reaches it. But
the second waypoint cannot be captured until the other player captures the
first waypoint. So the controller has to wait - but it cannot afford to lose the
advantage gained by moving away from the second waypoint. Interestingly,
evolution has discovered an interesting behavior where it tries to capture the
second waypoint repeatedly almost as if in a loop. This behavior ensures that,

the controller does not tread too far from the second waypoint and hangs

o1

around in the vicinity of the waypoint. Further the controller does not throw
away the advantage earned by making a strategic decision to go for the second
waypoint. In rare scenarios where the opponent gets stuck trying to capture
the current waypoint, the modular controller was observed to reverse its initial
decision and get back to the current waypoint. These observations indicate

intelligent decisions made dynamically according to the state of the game.

The controllers evolved using the modular approach were able to make intel-
ligent decisions like waypoint selection and hang-around. These intelligent decisions
relied on the navigational skills of the controller. This decision making behavior

represents a progress over the previous approaches.

6.4 Discussion

Evolution of high level strategy for complex games is hard. Neuroevolution
methods fail to discover high level strategy in the simplerace domain without any
domain knowledge. A modular approach was setup to explicitly encourage evolution
of high level strategy. This was done by using domain knowledge and decomposing
the car-racing problem into two sub-problems viz. waypoint-selection and naviga-
tion. Once such a decomposition was setup, modular evolution was able to discover
high level behavior and learn navigational skills. This methodology based on task
decomposition and modularity is a promising approach for evolving strategic be-
havior. In this thesis, the modular approach using Neuroevolution was used in a
car-racing simulation, but it can be extended to evolving strategy in other domains

and tasks.

52

Chapter 7

Discussion and Future Work

The goal of the thesis was to evolve intelligent behavior for challenging phys-
ical simulations, in particular simulated car-racing using Neuroevolution. Towards
that goal, four approaches viz. Direct Evolution, Incremental Evolution, Coevolu-
tion and Modular Evolution were implemented using the NEAT algorithm. The
four approaches were evaluated on the simplerace car-racing domain. In this chap-
ter, the strengths and weaknesses of each of the approaches are analyzed and areas

for future work are identified.

7.1 Lessons Learned

Direct Evolution was used to evolve controllers by driving solo races and
experimenting with different actions. The controllers evolved using this approach
were able to learn the basics of driving and also a few advanced driving skills. Only
seven inputs were needed to implement this approach :- the first player’s speed, its
distance to both waypoints, and its angles (represented as a sine, cosine pair) to
both waypoints. Advanced skills like aligning towards the shortest distance path
and V-turns enabled this controller to get high solo scores. The solo scores of con-
trollers obtained using this approach were comparable to the solo scores of winners
of the CIG and CEC 2007 competitions. Out of the four approaches evaluated, the
controllers produced by direct evolution were the best in capturing waypoints while

driving solo.

53

However such controllers were not able to race well with opponents. The
hand-coded controllers from the simplerace domain were able to defeat the directly
evolved controllers. Racing with opponents is harder than driving solo. In order to

deal with increasingly hard tasks, an incremental approach was implemented.

The incremental approach was implemented in two main stages; the first
stage was solo evolution and the second stage was racing with an opponent. To
counter the forgetting of previously learned abilities, a refreshing component was
introduced in the second stage. In addition to being tested with the opponents, the
second stage also involved a test to refresh the skills learned during the first stage.
Controllers evolved using this approach were able to race better with opponents.
An additional improvement made was to split the second stage into multiple sub-
stages, where each successive sub-stage had a stronger opponent. This approach
was found to yield better results than racing with a single opponent. Due to these
changes, the controllers evolved using the incremental approach captured two more
waypoints per race when compared to the directly evolved controllers. Though the
incremental approach was successful in evolving controllers capable of racing with
an opponent, no intelligent behavior was observed i.e. no strategies were discovered

by evolution.

Competitive Coevolution was implemented to overcome the drawbacks of the
incremental approach. Competitive Coevolution usually involves two populations
competing against each other. Since the simplerace domain is symmetric with re-
spect to the two players, a single population was sufficient. As the individuals of the
population compete with each other and strive to stay ahead of the rest of the pop-
ulation, this approach encourages continual progress during evolution. Controllers
evolved using this approach were able to race with an opponent as well as race solo,

but they were not the best in either task: they were slightly inferior to incrementally

o4

evolved controllers while racing with opponents and to directly evolved controllers
while racing solo. The key benefit from this approach was in terms of observed
behavior. Coevolved controllers were capable of driving forward and backward and
switching directions when needed. The directly evolved controller switched to the
forward direction momentarily while doing a V-turn, but this behavior was short-
lived and occurred only during the V-turn behavior. But coevolved controllers were
able to drive in both forward and reverse directions for significantly long periods
of time i.e. turn, accelerate, slow down, etc. This behavior is difficult for human
drivers, but coevolution was able to master this skill. However, discovering such
advanced skills is only part of the problem. Coevolved controllers were not able to

evolve strategy.

The modular approach was designed bottom up to encourage evolution to
discover strategic behavior. The car-racing problem was decomposed into two sub-
problems viz. Waypoint Selection and Navigation. The Waypoint Selector acted as
a high level module and selected the target waypoint. The navigator’s role was to
navigate effectively to the target waypoint. The Navigator and Waypoint Selector
populations were evolved together. Given such an explicit decomposition of tasks,
evolution was able to discover solutions to the target waypoint selection and naviga-
tion sub-problems. The evolved controllers were able to select the target waypoints
intelligently based on the opponent’s proximity, speed and orientation to the current
waypoint. The controller also evolved the ability to wait for the opponent to cap-
ture the current waypoint (if needed) while hanging around near the next waypoint.
One drawback was that the target waypoint selection was not perfect. The target
waypoint selector module, occasionally made incorrect waypoint choices, this some-
times resulted in the loss of a waypoint. However this did not happen frequently

and the advantage gained due to this behavior far outweighed the occasional loss

95

of a waypoint. The modular approach was able to evolve strategic behavior for the
car-racing domain. An explicit decomposition of tasks was necessary to achieve high
level behaviors using neuroevolution. These experiments demonstrated the use of a
modular neuroevolution approach to evolve strategy in car-racing simulations but

it can be extended to evolving strategy in other domains and tasks.

7.2 Comparative Study

In this work, NEAT has been used in the simplerace car-racing domain to
evolve strategies and advanced skills. To put things in perspective, it is important
to compare the approaches described in this thesis with other learning methods
that have been used in this domain. The CIG 2007 and CEC 2007 car-racing
competitions used simplerace domain as the racing platform and hence winners from
these competitions can be considered as powerful controllers implemented using
other learning methods. This section does two types of comparisons. The first
comparison looks at the scores obtained by controllers while racing solo and the
second comparison analyzes the scores obtained while racing with an opponent.
Before making the comparisons, the top two controllers from each competition are

described.

The winning controller from the CIG 2007 competition was developed by
Pete Burrow who pioneered modular approaches in the car-racing competition. Bur-
row’s controller used a simple genetic algorithm to evolve two modules called action
and decision which were similar to the navigation and waypoint selection modules
described in this thesis. However, there were some important differences. Burrow
used an ordinary MLP for the decision module and a recurrent MLP for the action
module. The topologies for these modules were hand-designed and the weights were

evolved for 500 generations using a population of size 30. The decision module was

56

evolved first in solo races, after which the action module was evolved by racing with
an opponent. Further, the decision module had only three inputs and made use of
domain knowledge: the ratio of speeds of the controllers, and the ratio of distances
of the two controllers to the two waypoints. The runner-up controller from the CIG
2007 competition developed by Thomas Haferlach, was based on a modified CoSyNE
algorithm|[7]. It used two modules, one for driving and one for steering. The neural

networks were evolved using a population size of 100 for 2000 generations.

The winning controller from the CEC 2007 competition developed by Ho Duc
Thang and Jon Garibaldi, used a heuristic internal controller(which used internal
simulation of the race) for target waypoint selection and a Non-stationary fuzzy sys-
tem for navigation. The runner-up in the competition was developed by Tomoharu
Nakashima and his students at Osaka Prefecture University. It used a hybrid model
based on controllers from the package and the competition. A combination of two
neural networks and the heuristic sensible controller from the simplerace domain
were used for low-level decision making (navigation). In addition, four selection
rules and an exception handling mechanism constructed using domain knowledge
were used to select one of the three controllers. For high-level decision making, a
heuristic mechanism was used. The two neural networks used for navigation were
developed using a combination of TD learning and Evolutionary computation. De-
tails about the various approaches used in the CEC competition including Genetic

Programming and Fuzzy Systems can be obtained in [29].

For the first part of the comparative study, the solo scores of the controllers
developed using NEAT are compared with two best controllers from the two car-
racing competitions. As the Table 7.1 shows, the NEAT based controller performs
statistically better than the CIG 2007 winner (Student’s t-test, p < 0.05). Though
the NEAT controller has better scores than the CEC runner-up and CIG runner-up,

o7

NEAT 1125 | 19.6 | Direct Evolution using NEAT

CIG 2007 runner up | 7 | 26 | 19.338 | Modular Controller based on CoSyNE
CIG 2007 winner 0 | 25 | 18.648 | Evolved Modular Controller

CEC 2007 winner 17 | 32 | 24.24 | Non-stationary fuzzy system

CEC 2007 runner up | 2 | 27 | 19.354 | Hybrid model using Neural networks

Table 7.1: Comparison of Solo Scores with Competition Winners. Solo scores repre-
sent the average scores obtained from 500 races of 1000 timesteps each. The scores obtained
by the NEAT based controller are comparable to winning controllers from the CIG and CEC
car-racing competition.

NEAT 15.3 Modular Evolution using NEAT
CIG 2007 runner up | 16.9 | Modular Controller based on CoSyNE
CIG 2007 winner 15.2 Evolved Modular Controller
CEC 2007 winner 20.3 Non-stationary fuzzy system
CEC 2007 runner up | 19.5 | Hybrid model using Neural networks

Table 7.2: Comparison of Competition Scores. Competition Score is the average of 3
components: average solo score, average score while racing with Heuristic Sensible Controller
and average score while racing with Heuristic Combined Controller. The scores obtained
by the winners from the CEC car-racing competition are better than the NEAT based
controller. Approaches which use internal simulation and heuristic knowledge performed
much better than approaches which did not internally simulate the race.

the scores are not statistically significant. The CEC 2007 winner is significantly
better than NEAT based controller (Student’s t-test, p < 0.05); However, the CEC
2007 winner cannot be used in real time because the controller internally simulates
the actual race for selecting the action at each timestep and this makes it extremely

slow.

For the second part of the comparative study, Competition Scores are consid-
ered. The Competition Score is the average score obtained while racing solo, racing
with the heuristic sensible controller and racing with the heuristic combined con-
troller. Table 7.2 shows the Competition Score obtained by the best controllers from
the CIG and CEC car-racing competitions. Burrow’s evolved modular controller and

the NEAT based controller were inferior compared to the other controllers. (Stu-

o8

dent’s t-test, p < 0.05). There was no significant difference between NEAT based
controller and Burrow’s evolved modular controller. One of the important reason
for such a huge difference between the winners of the two competitions was that
most of the top ranked controllers in the CEC competition used internal simulation

of the race and heuristic knowledge to generate the next action.

In summary, the more successful controllers from the CEC competition lever-
aged internal simulation, heuristic knowledge and hybrid models. Though they were
successful in achieving high competition scores, such approaches cannot be directly

applied to other physical simulation domains in which humans are not experts.

Out of the controllers discussed in this section, the NEAT based controllers,
Burrow’s evolved modular controller and Haferlach’s CoSyNE based controller were
based on Neuroevolution. These three NE methods were the only approaches which
‘discovered’ strategic capabilities. Haferlach’s CoSyNE based approach was the
closest to the NEAT based approach used in this thesis because it used minimal
domain knowledge to evolve the strategic waypoint selection behavior. Although
Burrow’s evolved modular controller developed this strategic capability, the input
representation used by Burrow leveraged human expertise and understanding of
speeds, distances and their ratios. Like NEAT, CoSyNE has been shown to be a
powerful NE method for control tasks. Since all the NE methods discovered strategic
capabilities, the higher competition score for CoSyNE based approach may mean
that CoSyNE is better than NEAT for solving the underlying control task in the
simplerace domain. However, it is not possible to draw concrete conclusions about
underlying algorithms based on competition scores and solo scores because because
the difference in scores may be because of other factors like the input representation

used, the number of evaluations, and other evolution parameters.

The NEAT based approach was implemented with a goal to evolve advanced

59

skills and strategic behavior. In addition to evolving advanced skills and strategic
behavior, NEAT based controllers also achieved credible solo and competition scores
comparable to some of the winning controllers from the car-racing competitions. The
comparative study shows that NEAT and Neuroevolution in general is a promising
approach for developing strategic controllers. More investigation is necessary to

ascertain the relative abilities of CoSyNE and NEAT to evolve strategy.

7.3 Future Work

The work presented in this thesis provides several avenues for future research.

Some of them are outlined below.

First, neuroevolution has difficulty overcoming the orbiting phenomenon.
This phenomenon happens when the controller accelerates while turning towards
a waypoint. The turning radius becomes large and the grip becomes low when
the car accelerates, and consequently the controller misses the waypoint. If the car
doesn’t stop or slow down, there is a chance of this event recurring and the controller
orbiting the waypoint. Once the controller starts orbiting, no more waypoints can be
captured, unless the race involves an opponent who is not orbiting. Neuroevolution
wasn’t able to overcome this problem because orbiting did not happen often enough
for evolution to consider as a serious setback. Many of the entries to the CEC
2007 competition[29], worked around this by having a hand-coded mechanism to
detect orbiting and taking appropriate actions when necessary. Such measures are
sometimes necessary to solve problems in the real world. An analogous approach

using Neuroevolution would be to evolve a separate module that detects orbiting.

Second, though the modular approach was successful in evolving strategic
behavior, it does involve a human element in the design of the modules. The next

logical step would be to try to evolve the modules automatically. A mechanism was

60

proposed by Reisinger and Miikkulainen[21] for coevolving reusable modules for
high dimensional search spaces. This mechanism can be applied to the simplerace
domain in order to evolve the modules required automatically. Evolution may be

able to discover smaller and finer decompositions than the design used here.

Third, coevolutionary approaches were able to discover some interesting
skills, but they were not able to discover any high level strategies for the car-racing
domain. This is surprising because competitive coevolution is expected to result
in evolution of increasingly sophisticated solutions. In [9], Kohl and Miikkulainen
stated that high-level strategy problems that require the integration of multiple sub-
behaviors are difficult for neuroevolution to solve. The authors consider the sim-
plerace domain to be a fractured domain. Fractured domains are domains where the
correct action varies discontinuously as the agent moves from state to state.They
propose a modification to the NEAT algorithm that uses Radial Basis Function
(RBF) to overcome this problem. It may prove worthwhile to implement the four
approaches, particularly the coevolutionary approach using this modified version of

NEAT.

Fourth, learning to bump the opponent is an useful skill, and bumping the
other opponent in order to get to a waypoint first is an example of a strategy.
Initial experiments show that it is possible to evolve controllers which can bump
the opponent. These controllers however, were not able to leverage the skill to
capture waypoints. The modular approach outlined before could be adapted to
have bumping the opponent as one of the choices in addition to target waypoint
selection. Learning when to bump the opponent will provide a strategic advantage

to the player.

Fifth, in the simplerace domain, controllers were not penalized for having

slow response times. In the real world, response time is a critical issue. One factor

61

which affects the response time is the size of the evolved NEAT network. Though
NEAT is set up to grow networks incrementally, compact networks can be rewarded
to explicitly encourage evolution of smaller networks. Another way, would be to
penalize large networks, based on the number of nodes and connections. Evolving

smaller networks will reduce the response time of NEAT based controllers.

Sixth, evaluation in Torcs domain can validate the results obtained in sim-
plerace domain. Torcs is an open-source car racing simulation. It features different
cars, around 20 tracks, and 50 opponents to race against. It is more advanced in
terms of dynamics, collision handling and graphics. It also has gear shifting. The
disadvantage is that TORCS is not designed for learning algorithms. Currently,
work is being done to make TORCS more suitable for learning using a client-server
setup. Once completed, torcs should prove to be the logical successor to simplerace
domain for evaluating the above approaches. Multiple opponents and tracks will

provide more opportunities for strategic behavior.

62

Chapter 8

Conclusion

Developing controllers capable of strategic behavior for physical simulation
domains is a challenging problem. This thesis had two specific goals : 1) to demon-
strate that Neuroevolution can be used to evolve controllers for physical simulation
domains and 2)to show that Neuroevolution and NEAT in particular, can evolve

advanced skills and high-level strategy for such domains.

Four different approaches to evolution were studied and their strengths com-
pared. Controllers developed using direct evolution were able to learn the basic skills
of driving and some advanced skills. In the simplerace domain, direct evolution was
implemented as solo racing. The controllers developed using this approach were able

to race solo, but were not successful while racing with opponents.

An Incremental approach with refreshing was shown to evolve the necessary
skills needed to compete with an opponent. Refreshing was needed to ensure that
the controller retained the skills learned in previous stages. The disadvantage of this
approach was that the population started to stagnate after the individuals learned
to drive against the selected opponent. A pedagogy of increasingly sophisticated

opponents was needed to ensure progress of evolution.

Competitive coevolution was implemented to create such a pedagogy of op-
ponents. Since the simplerace domain was a symmetrical domain, the same popu-
lation was used to evolve the hosts and the parasites (opponents). Controllers of

increasing sophistication were produced by competitive coevolution. Consequently,

63

coevolutionary approaches were able to discover skills that are hard to code by hand.
However, competitive coevolution was not able to discover strategic high-level be-

havior in the simplerace domain.

Evolution of high-level strategy for physical simulation domains is hard for
NEAT. For the simplerace domain, the problem was decomposed into two relatively
independent tasks. With such a decomposition in place, modular neuroevolution was
successful in evolving controllers capable of skill and strategy. The decomposition
of the car racing problem into two independent tasks i.e. way point selection and
navigation required domain knowledge. It remains to be seen if such a decomposition

can be achieved automatically by evolution.

In summary, Neuroevolution is certainly capable of evolving advanced driv-
ing skills physical simulation domains like car racing. However, it is hard to evolve
high-level strategic behavior in such domains. This thesis demonstrates that given a
appropriate task decomposition, modular neuroevolutionary approaches can evolve
high-level strategy. The results obtained in the car-racing domain suggest that
the modular approach can be applied to evolve strategic behavior in other physical

simulation domains and tasks.

64

Appendix

65

Appendix 1

Simplerace Domain and Parameters

The appendix has two sections. The first section describes the NEAT param-
eters used for the various experiments. The second section describes the dynamics

of the simplerace domain.

1.1 NEAT Parameters

Parameter Value in Simplerace domain
Population Size 200
C1 1
C2 1
C3 3
Ct 15
Mutate Only Probability 0.25
Mate By Choosing Probability 0.6
Mate By Averaging Probability 0.4
Mate Only Probability 0.2
Recurrent Connection Probability 0.2
Weight Mutation Power 2.5

Table 1.1: NEAT Parameters

1.2 Simplerace Domain

This section provides detailed information about the simplerace domain.
In 1.2.1, the sensor model of the simplerace domain is described. 1.2.2 lists the

equations that govern the simplerace domain.

66

1.2.1

Sensor Model

There is a slight difference in the convention used to refer to the sensors in

the simplerace java package and this thesis. The currently active waypoint is called

as ‘Next Waypoint’ in the simplerace package, but is referred to as the‘current

waypoint’ in the thesis.

Similarly, the second waypoint is called as ‘Next Next

Waypoint’ in the simplerace domain, but is referred to as the ‘next’ or ‘second’

waypoint in this thesis.

S.No | Sensor Name Sensor Type | Use

1 Speed First Person | Speed of first player

2 Angle To Next Waypoint First Person | Angle between first player and
current waypoint

3 Distance To Next Waypoint First Person | Distance between first player and
current waypoint

4 Angle To Next Next Waypoint First Person | Angle between first player and
second waypoint

5 Distance To Next Next Waypoint | First Person | Distance between first player and
the second waypoint

6 Angle To Other Vehicle First Person | Angle between first player and
second player

7 Distance To Other Vehicle First Person | Distance between first player and
second player

8 Other Vehicle Is Present First Person | This input is true if other vehicle
is present

9 Position Third Person | x,y co-ordinates of first player

10 Velocity Third Person | velocity of first player in vector
form

11 Orientation Third Person | orientation of the first player

12 Other Vehicle Position Third Person | x,y co-ordinates of second player

13 Other Vehicle Velocity Third Person | velocity of second player in vec-
tor form

14 Other Vehicle Orientation Third Person | orientation of the second player

15 Next Waypoint Position Third Person | x,y co-ordinates of second way-
point

16 Next Next Waypoint Position Third Person | x,y co-ordinates of second way

point

Table 1.2: Sensor Model of the Simplerace Package

67

1.2.2 Dynamics

The state of the car in the simplerace domain is represented by its position(s),
velocity (v), orientation (#) and angular velocity (8). The simulation is updated 20
times per second in simulated time and at each timestep, the state of the car is

updated. The following four equations govern the update of state in simplerace

domain[29)].
St41 = St + vy (1.1)
Vi1 = V(1 — Carag) + fariving + forip (1.2)
Oip1 =0, + 0 (1.3)
011 = firaction(fsteering() — Ot) (1.4)
where,

t denotes the time

Cdrag 18 a scalar constant set to 0.1

fariving equals 4 for forward mode, 2 for backward mode and 0 for neutral.
ftraction limits the change in angular velocity to between -0.2 and 0.2

fsteering() is defined as mag(v) if steering command is left and is defined as —mag(v)
if steering command is right and 0 if it is center.

fgrip represents the effort from tyres to stop skidding.

68

1]

[4]

Bibliography

Bobby Bryant and Risto Miikkulainen. Acquiring visibly intelligent behavior
with example-guided neuroevolution. In Proceedings of the Twenty-Second

National Conference on Artificial Intelligence, 2007.

David Carmel and Shaul Markovitch. Incorporating opponent models into
adversary search. In In Proceedings of the Thirteenth National Conference on

Artificial Intelligence, pages 120-125. AAAIL 1996.

Thomas D’Silva, Roy Janik, Michael Chrien, Kenneth Stanley, and Risto Mi-
ikkulainen. Retaining learned behavior during real-time neuroevolution. Arti-

ficial Intelligence and Interactive Digital Entertainment, 2005.

Sevan Ficici. Solution Concepts in Coevolutionary Algorithms. PhD thesis,

Brandeis University, 2004.

Faustino Gomez and Risto Miikkulainen. Incremental evolution of complex

general behavior. Adaptive Behavior, 5:317-342, 1997.

Faustino Gomez and Risto Miikkulainen. Active guidance for a finless rocket
using neuroevolution. In Proceedings of the Genetic and Evolutionary Compu-

tation Conference, pages 2084-2095, 2003.

Faustino Gomez and Risto Miikkulainen. Efficient non-linear control through
neuroevolution. In Proceedings of the European Conference on Machine Learn-

ing, volume 5, pages 317-342, 2006.

69

8]

[10]

[14]

J.D.Lohn, D.S.Linden, G.S.Hornby, W.F.Kraus, A.Rodriguez, and S.Seufert.
Evolutionary design of an x-band antenna for nasa’s space technology 5 mis-
sion. In Proc. 2004 IEEE Antenna and Propagation Society International
Symposium and USNC/URSI National Radio Science Meeting, volume 3, pages
2313-2316, 2004.

Nate Kohl and Risto Miikkulainen. Evolving neural networks for fractured
domains. In Proceedings of the Genetic and Fvolutionary Computation Con-

ference, pages 1405-1412, 2008.

Nate Kohl, Kenneth O. Stanley, Risto Miikkulainen, Michael Samples, and Rini
Sherony. Evolving a real-world vehicle warning system. In Proceedings of the

Genetic and Evolutionary Computation Conference, 2006.

Alex Lubberts and Risto Miikkulainen. Co-evolving a go-playing neural net-

work. In Coevolution: Turning Adaptive Algorithms Upon Themselves, Birds-

of-a-Feather Workshop, Genetic and Evolutionary Computation Conference (GECCO-

2001), 2001.

Simon Lucas. Computational intelligence and games:challenges and opportu-

nities. International Journal of Automation and Computing, 5:45-57, 2008.

Risto Miikkulainen, Bobby D. Bryant, Ryan Cornelius, Igor V. Karpov, Ken-
neth O. Stanley, and Chern Han Yong. Computational intelligence in games.
In In Gary Y. Yen and David B. Fogel (editors), Computational Intelligence:
Principles and Practice, IEEE Computational Intelligence Society., pages 155—
191, 2007.

German Monroy, Kenneth Stanley, and Risto Miikkulainen. Coevolution of
neural networks using a layered pareto archive. In Proceedings of the Genetic

and Evolutionary Computation Conference, pages 329-336, 2006.

70

[15]

[16]

[17]

[18]

[19]

[22]

David E. Moriarty, Alan C. Schultz, and John J. Grefenstette. FEvolution-
ary algorithms for reinforcement learning. Journal of Artificial Intelligence

Research, 11:241-276, 1999.

Jacob Murre. Learning and Categorization in Modular Neural Networks.

L.Erlbaum Associates, 1992.

Sethuraman Muthuraman, Grant Maxwell, and Christopher MacLeod. The
evolution of modular artificial neural networks for legged robot control. In Ar-
tificial Neural Networks and Neural Information Processing ICANN/ICONIP
2003, page 180. Springer, 2003.

Dana S. Nau. Ai game playing techniques: Are they useful for anything other
than games? a synopsis of the panel discussion at iaai-98. pages 117-118, 1999.

Itsuki Noda and Peter Stone. The robocup soccer server and cmunited: Im-
plemented infrastructure for mas research. In Revised Papers from the Inter-
national Workshop on Infrastructure for Multi-Agent Systems, pages 94-101,
London, UK, 2001. Springer-Verlag.

Joseph Reisinger, Erkin Bahceci, Igor Karpov, and Risto Miikkulainen. Coe-
volving strategies for general game playing. In Proceedings of the IEEE Sym-

posium on Computational Intelligence and Games, 2007.

Joseph Reisinger, Kenneth O. Stanley, and Risto Miikkulainen. Evolving
reusable neural modules. In Proceedings of the Genetic and Evolutionary Com-

putation Conference, 2004.

C. D. Rosin and R. K. Belew. New methods for competitive evolution. FEwvo-

lutionary Computation, 5, 1997.

71

[23]

[24]

[25]

[27]

[28]

Christopher D. Rosin and Richard K. Belew. Methods for competitive co-

evolution: Finding opponents worth beating.

Stuart Russel and Peter Norvig. Artificial Intelligence a Modern Approach.
Pearson Education, 2003.

Kenneth O. Stanley, Bobby D. Bryant, and Risto Miikkulainen. Real-time
neuroevolution in the NERO video game. TEEE Transactions on Evolutionary

Computation, 9(6):653-668, 2005.

Kenneth O. Stanley and Risto Miikkulainen. The dominance tournament
method of monitoring progress in coevolution. In Proceedings of the Genetic

and Evolutionary Computation Conference, 2002.

Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through

augmenting topologies. FEvolutionary Computation, 10:99-127, 2002.

Kenneth O. Stanley and Risto Miikkulainen. Competitive coevolution through
evolutionary complexification. Journal of Artificial Intelligence Research, 21:63—

100, 2004.

Julian Togelius, Simon Lucas, Ho Duc Than, Jonathan Garibaldi, Tomoharu
Nakashima, Tan Chin Hiong, Itamar Elhanany, Shay Berant, Philip Hingston,
Bob MacCallum, Thomas Haferlach, Aravind Gowrisankar, and Pete Burrow.
The 2007 ieee cec simulated car racing competition. Genetic Programming and

Evolvable Machines, 9:295-329, 2008.

Khare V.R, Xin Yao, Sendhoff B., Yaochu Jin, and Wersing H. Co-evolutionary
modular neural networks for automatic problem decomposition. In The 2005

Congress on Evolutionary Computation, volume 3, pages 2691-2698, 2005.

72

[31] Shimon Whiteson, Nate Kohl, Risto Miikkulainen, and Peter Stone. Evolving
keepaway soccer players through task decomposition. Machine Learning, 59:5—

30, 2005.

73

Vita

Aravind Gowriankar was born in Chennai, Tamilnadu on 31 January 1984,
the son of Gowrisankar and Jamuna. He received his Bachelors in Engineering degree
from Anna University,Chennai in 2005. After graduation, he worked as Programmer
Analyst at Cognizant Technology Solutions Ltd in Chennai . In August 2006, he
started his graduate studies in Computer Science at the University of Texas at
Austin. Aravind works with Professor Risto Miikkulainen at the Neural Network
Research Group in UT Austin. His research interests are in Machine Learning and
NeuroEvolution. In his free time, Aravind dabbles with digital photography. He is
an active member of the Technology Entrepreneurship Society at UT and serves as

the Vice-President of Communications.

Permanent address: 924 E. Dean Keeton St, Apt 124
Austin, Texas 78705

This thesis was typeset with ATEX' by the author.

TITEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

74

