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ABSTRACT

Metalearning of deep neural network (DNN) architectures and
hyperparameters has become an increasingly important area of
research. Loss functions are a type of metaknowledge that is cru-
cial to effective training of DNNs, however, their potential role in
metalearning has not yet been fully explored. Whereas early work
focused on genetic programming (GP) on tree representations, this
paper proposes continuous CMA-ES optimization of multivariate
Taylor polynomial parameterizations. This approach, TaylorGLO,
makes it possible to represent and search useful loss functions
more effectively. In MNIST, CIFAR-10, and SVHN benchmark tasks,
TaylorGLO finds new loss functions that outperform the standard
cross-entropy loss as well as novel loss functions previously dis-
covered through GP, in fewer generations. These functions serve
to regularize the learning task by discouraging overfitting to the
labels, which is particularly useful in tasks where limited training
data is available. The results thus demonstrate that loss function
optimization is a productive new avenue for metalearning.
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1 INTRODUCTION

As deep learning systems have become more complex, their archi-
tectures and hyperparameters have become increasingly difficult
and time-consuming to optimize by hand. In fact, many good de-
signs may be overlooked by humans with prior biases. Therefore,
automating this process, known as metalearning, has become an
essential part of the modern machine learning toolbox. Metalearn-
ing aims to solve this problem through a variety of approaches,
including optimizing different aspects of the architecture from hy-
perparameters to topologies, and by using different methods from
Bayesian optimization to evolutionary computation [7, 32, 35, 42].

Recently, loss-function discovery and optimization has emerged
as a new type of metalearning. Focusing on neural network’s root
training goal it aims to discover better ways to define what is being
optimized. However, loss functions can be challenging to optimize
because they have a discrete nested structure as well as continuous
coeflicients. The first system to do so, Genetic Loss Optimization
(GLO) [13] tackled this problem by discovering and optimizing loss
functions in two separate steps: (1) representing the structure as
trees, and evolving them with Genetic Programming (GP) [2]; and
(2) optimizing the coefficients using Covariance-Matrix Adaptation
Evolutionary Strategy (CMA-ES) [19]. While the approach was
successful, such separate processes make it challenging to find a
mutually optimal structure and coefficients. Furthermore, small
changes in the tree-based search space do not always result in small
changes in the phenotype, and can easily make a function invalid,
making the search process ineffective.

In an ideal case, loss functions would be mapped into fixed-
length vectors in a Hilbert space. This mapping should be smooth,
well-behaved, well-defined, incorporate both a function’s struc-
ture and coefficients, and should by its very nature exclude large
classes of infeasible loss functions. This paper introduces such an
approach: Multivariate Taylor expansion-based genetic loss-function
optimization (TaylorGLO). With a novel parameterization for loss
functions, the key pieces of information that affect a loss function’s
behavior are compactly represented in a vector. Such vectors are
then optimized for a specific task using CMA-ES. Special techniques
can be developed to narrow down the search space and speed up
evolution.

Loss functions discovered by TaylorGLO outperform the stan-
dard cross-entropy loss (or log loss) on the MNIST, CIFAR-10,
CIFAR-100, and SVHN datasets with several different network
architectures. They also outperform the Baikal loss, discovered
by the original GLO technique, and do it with significantly fewer
function evaluations. The reason for the improved performance
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is that evolved functions discourage overfitting to the class labels,
thereby resulting in automatic regularization. These improvements
are particularly pronounced with reduced datasets where such reg-
ularization matters the most. TaylorGLO thus further establishes
loss-function optimization as a promising new direction for met-
alearning.

2 RELATED WORK

Applying deep neural networks to new tasks often involves sig-
nificant manual tuning of the network design. The field of met-
alearning has recently emerged to tackle this issue algorithmically
[7, 32, 35, 42]. While much of the work has focused on hyperparam-
eter optimization and architecture search, recently other aspects,
such activation functions and learning algorithms, have been found
useful targets for optimization [3, 38]. Since loss functions are at
the core of machine learning, it is compelling to apply metalearning
to their design as well.

Deep neural networks are trained iteratively, by updating model
parameters (i.e., weights and biases) using gradients propagated
backward through the network [39]. The process starts from an
error given by a loss function, which represents the primary training
objective of the network. In many tasks, such as classification and
language modeling, the cross-entropy loss (also known as the log
loss) has been used almost exclusively. While in some approaches
a regularization term (e.g. L? weight regularization [47]) is added
to the the loss function definition, the core component is still the
cross-entropy loss. This loss function is motivated by information
theory: It aims to minimize the number of bits needed to identify a
message from the true distribution, using a code from the predicted
distribution.

In other types of tasks that do not fit neatly into a single-label
classification framework different loss functions have been used
successfully [6, 9, 12, 27, 53]. Indeed, different functions have differ-
ent properties; for instance the Huber Loss [24] is more resilient to
outliers than other loss functions. Still, most of the time one of the
standard loss functions is used without a justification; therefore,
there is an opportunity to improve through metalearning.

Genetic Loss Optimization (GLO) [13] provided an initial ap-
proach into metalearning of loss functions. As described above,
GLO is based on tree-based representations with coefficients. Such
representations have been dominant in genetic programming be-
cause they are flexible and can be applied to a variety of function
evolution domains. GLO was able to discover Baikal, a new loss
function that outperformed the cross-entropy loss in image classifi-
cation tasks. However, because the structure and coefficients are
optimized separately in GLO, it cannot easily optimize their inter-
actions. Many of the functions created through tree-based search
are not useful because they have discontinuities, and mutations
can have disproportionate effects on the functions. GLO’s search
is thus inefficient, requiring large populations that are evolved for
many generations. Thus, GLO does not scale to the large models
and datasets that are typical in modern deep learning.

The technique presented in this paper, TaylorGLO, aims to solve
these problems through a novel loss function parameterization
based on multivariate Taylor expansions. Furthermore, since such
representations are continuous, the approach can take advantage
of CMA-ES [19] as the search method, resulting in faster search.
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3 LOSS FUNCTIONS AS MULTIVARIATE
TAYLOR EXPANSIONS

Taylor expansions [46] are a well-known function approximator
that can represent differentiable functions within the neighborhood
of a point using a polynomial series. Below, the common univariate
Taylor expansion formulation is presented, followed by a natural
extension to arbitrarily-multivariate functions.

Given a Ckmax smooth (i.e., first through kmax derivatives are
continuous), real-valued function, f(x) : R — R, a kth-order Taylor
approximation at point a € R, fk(x, a), where 0 < k < kmax, can
be constructed as

k
fitway= Y~ fM @ - ) 1)
n=0 "

Conventional, univariate Taylor expansions have a natural exten-
sion to arbitrarily high-dimensional inputs of f. Given a Chmaxri
smooth, real-valued function, f(x) : R" — R, a kth-order Taylor
approximation at point a € R", fi.(x,a), where 0 < k < kpay, can
be constructed. The stricter smoothness constraint compared to
the univariate case allows for the application of Schwarz’s theorem
on equality of mixed partials, obviating the need to take the order
of partial differentiation into account.

Let us define an nth-degree multi-index, a = (a1, a2, ..., an),
where a; € Ny, |a| = X, Tl x® =1L, xf”, and
x € R™. Multivariate partial derivatives can be concisely written
using a multi-index
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Thus, discounting the remainder term, the multivariate Taylor ex-
pansion for f(x) at a is
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The unique partial derivatives in fk and a are parameters for a kth
order Taylor expansion. Thus, a kth order Taylor expansion of a
function in n variables requires n parameters to define the center, a,
and one parameter for each unique multi-index a, where |a| < k.

) k +k)!
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The multivariate Taylor expansion can be leveraged for a novel
loss-function parameterization. Let an n-class classification loss
function be defined as L1,z = —% X f(xi,yi). The function
f(xi,y;i) can be replaced by its kth-order, bivariate Taylor expan-
sion, fk (x, Y, ax, ay). More sophisticated loss functions can be sup-
ported by having more input variables beyond x; and y;, such as a
time variable or unscaled logits. This approach can be useful, for
example, to evolve loss functions that change as training progresses.

For example, a loss function in x and y has the following third-
order parameterization with parameters 6 (where a = (6, 61)):

1 n
Lxy) == > |02+ 05(s = 00) + $0u(3s - 01

i=1
+205(yi — 01)° + O6(xi — ) + 07(xi — 00)(yi — 61) (4)
+308(xi = 00)(yi — 01)° + 309(xi — O’

+3010(xi — 00)°(yi — 01) + 2011 (xi — 6p)°
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Notably, the reciprocal-factorial coefficients can be integrated to
be a part of the parameter set by direct multiplication if desired.
As will be shown in this paper, the technique makes it possible to
train neural networks that are more accurate and learn faster than
those with tree-based loss function representations. Representing
loss functions in this manner confers several useful properties:

e It guarantees smooth functions;

e Functions do not have poles (i.e., discontinuities going to
infinity or negative infinity) within their relevant domain;

e They can be implemented purely as compositions of addition
and multiplication operations;

e They can be trivially differentiated;

e Nearby points in the search space yield similar results (i.e.,
the search space is locally smooth), making the fitness land-
scape easier to search;

o Valid loss functions can be found in fewer generations and
with higher frequency;

e Loss function discovery is consistent and not dependent on
a specific initial population; and

o The search space has a tunable complexity parameter (i.e.,
the order of the expansion).

These properties are not necessarily held by alternative function
approximators. For instance:

Fourier series are well suited for approximating periodic func-
tions [8]. Consequently, they are not as well suited for loss
functions, whose local behavior within a narrow domain is
important. Being a composition of waves, Fourier series tend
to have many critical points within the domain of interest.
Gradients fluctuate around such points, making gradient de-
scent infeasible. Additionally, close approximations require a
large number of terms, which in itself can be injurious, caus-
ing large, high-frequency fluctuations known as “ringing”,
due to Gibb’s phenomenon [50].

Padé approximants can be more accurate approximations than
Taylor expansions; indeed, Taylor expansions are a special
case of Padé approximants where M = 0 [14]. However, un-
fortunately Padé approximants can model functions with one
or more poles, which valid loss functions typically should
not have. These problems still exist, and are exacerbated, for
Chisholm approximants (a bivariate extension) [4]) and Can-
terbury approximants (a multivariate generalization) [15].

Laurent polynomials can represent functions with discontinu-
ities, the simplest being x~!. While Laurent polynomials
provide a generalization of Taylor expansions into negative
exponents, the extension is not useful because it results in
the same issues as Padé approximants.

Polyharmonic splines can represent continuous functions within
a finite domain, however, the number of parameters is pro-
hibitive in multivariate cases.

The multivariate Taylor expansion is therefore a better choice
than the alternatives. It makes it possible to optimize loss functions
efficiently in TaylorGLO, as will be described next.

4 THE TAYLORGLO METHOD

TaylorGLO (Figure 1) aims to find the optimal parameters for a
loss function represented as a multivariate Taylor expansion. The
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Figure 1: The TaylorGLO method. Loss functions are repre-
sented by fixed-size vectors whose elements parameterize
modified Taylor polynomials. Starting with a population of
initially unbiased loss functions (i.e., vectors around the ori-
gin), CMA-ES optimizes their Taylor expansion parameters
in order to maximize validation accuracy after partial train-
ing. The candidate with the highest accuracy is chosen as the
final, best solution.

parameters for a Taylor approximation (i.e., the center point and
partial derivatives) are referred to as 0 f 2 0 € ©, ® = R¥parameters

TaylorGLO strives to find the vector 0% that parameterizes the

optimal loss function for a task. Because the values are continuous,
as opposed to discrete graphs of the original GLO, it is possible to
use continuous optimization methods.

In particular, Covariance Matrix Adaptation Evolutionary Strat-
egy (CMA-ES) [19] is a popular population-based, black-box opti-
mization technique for rugged, continuous spaces. CMA-ES func-
tions by maintaining a covariance matrix around a mean point that
represents a distribution of solutions. At each generation, CMA-
ES adapts the distribution to better fit evaluated objective values
from sampled individuals. In this manner, the area in the search
space that is being sampled at each step grows, shrinks, and moves
dynamically as needed to maximize sampled candidates’ fitnesses.
TaylorGLO uses the (u/p, 1) variant of CMA-ES [20], which in-
corporates weighted rank-p updates [18] to reduce the number of
objective function evaluations needed.

In order to find 0%, at each generation CMA-ES samples points

in ©. Their fitness is determined by training a model with the cor-
responding loss function and evaluating the model on a validation
dataset. Fitness evaluations may be distributed across multiple ma-
chines in parallel and retried a limited number of times upon failure.
An initial vector of 8 p = 0 is chosen as a starting point in the search
space to avoid bias.

Fully training a model can be prohibitively expensive in many
problems. However, performance near the beginning of training
is usually correlated with performance at the end of training, and
therefore it is enough to train the models only partially to identify
the most promising candidates. This type of approximate evaluation
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is common in metalearning [16, 25]. An additional positive effect is
that evaluation then favors loss functions that learn more quickly.

For a loss function to be useful, it must have a derivative that
depends on the prediction. Therefore, internal terms that do not
contribute to (%Lf(x, y) can be trimmed away. This step implies

that any term ¢ within f(x;, y;) with aiyit = 0 can be replaced with
0. For example, this refinement simplifies Equation 4, providing a
reduction in the number of parameters from twelve to eight:
1 n
L0xy) == > |0alys = 01) + 105(5; = 02" + L0a(; - 01)°
i=1
+05(x; — 00)(yi — 01) + 106(x; — 00)(yi — 61)*

+107(xi — 00)*(yi — 61)| .
(5)
5 EXPERIMENTAL SETUP

This section presents the experimental setup that was used to eval-
uate the TaylorGLO technique.

Domains: MNIST [31] was included as simple domain to il-
lustrate the method and to provide a backward comparison with
GLO; CIFAR-10 [28], CIFAR-100 [28], and SVHN [37] were in-
cluded as more modern benchmarks. Improvements were mea-
sured in comparison to the standard cross-entropy loss function
Lrog = —% 21 xilog(y;), where x is sampled from the true dis-
tribution, y is from the predicted distribution, and »n is the number
of classes.

Evaluated architectures: A variety of architectures were used
to evaluate TaylorGLO: the basic CNN architecture evaluated in
the GLO study [13], AlexNet [29], AIICNN-C [44], Preactivation
ResNet-20 [22], which is an improved variant of the ubiquitous
ResNet architecture [21], and Wide ResNets of different morpholo-
gies [52]. Networks with Cutout [5] and CutMix [51] were also
evaluated, to show that TaylorGLO provides a different, comple-
mentary approach to regularization.

TaylorGLO setup: CMA-ES was instantiated with population
size A = 28 on MNIST and A = 20 on all other datasets, and an initial
step size 0 = 1.2. These values were found to work well in pre-
liminary experiments. The candidates were third-order (i.e., k = 3)
TaylorGLO loss functions (Equation 5). Such functions were found
experimentally to have a better trade-off between evolution time
and performance compared to second- and fourth-order TaylorGLO
loss functions, although the differences were relatively small.

Candidate evaluation: During candidate evaluation, models
were trained for 10% of a full training run on MNIST, equal to 2,000
steps (i.e., four epochs). An in-depth analysis on the technique’s
sensitivity to training steps during candidate evaluation is provided
in Appendix 6.4—overall, the technique is robust even with few
training steps. However, on more complex models with abrupt
learning rate decay schedules, greater numbers of steps provide
better fitness estimates.

Implementation details: Due to the number of partial train-
ing sessions that are needed to evaluate TaylorGLO loss function
candidates, training was distributed across the network to a cluster—
composed of dedicated machines with NVIDIA GeForce GTX 1080Ti
GPUs—using StudioML [36]. Training itself was implemented with
TensorFlow [1] in Python. The primary components of TaylorGLO
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Figure 2: The process of discovering loss functions in MNIST.
Red dots mark generations where new improved loss func-
tions were found. TaylorGLO discovers good functions in
very few generations. The best had a 2000-step validation ac-
curacy of 0.9948, compared to 0.9903 with the cross-entropy
loss, averaged over ten runs. This difference translates to a
similar improvement on the test set, as shown in Table 1.

(i.e., the genetic algorithm and CMA-ES) were implemented in the
Swift programming language which allows for easy parallelization.
The implementation made use of the open-source SwiftCMA [11]
library for CMA-ES. These components run centrally on one ma-
chine and asynchronously dispatch work to the cluster. Training
for each candidate was aborted and retried up to two additional
times if validation accuracy was below 0.15 at the tenth epoch. This
method helped reduce computation costs.

Further dataset and experimental setup details are provided in
Appendix A.

6 RESULTS

This section illustrates the TaylorGLO process and demonstrates
how the evolved loss functions can improve performance over the
standard cross-entropy loss function, especially on reduced datasets.
A summary of results on three datasets across a variety of models
are shown in Table 1.

6.1 The TaylorGLO discovery process

Figure 2 illustrates the evolution process over 60 generations, which
is sufficient to reach convergence on the MNIST dataset. TaylorGLO
is able to discover highly-performing loss functions quickly, i.e.
within 20 generations. Generations’ average validation accuracy
approaches generations’ best accuracy as evolution progresses,
indicating that population as a whole is improving. Whereas GLO’s
unbounded search space often results in pathological functions,
every TaylorGLO training session completed successfully without
any instabilities.

Figure 3 shows the shapes and parameters of each generation’s
highest-scoring loss function. In Figure 3a the functions are plotted
as if they were being used for binary classification, i.e. the loss for
an incorrect label on the left and for a correct one on the right [13].
The functions have a distinct pattern through the evolution process.
Early generations include a wider variety of shapes, but they later
converge towards curves with a shallow minimum around yo = 0.8.
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Table 1: Test-set accuracy of loss functions discovered by TaylorGLO compared with that of the cross-entropy loss. The
TaylorGLO results are based on the loss function with the highest validation accuracy during evolution. All averages are from
ten separately trained models and p-values are from one-tailed Welch’s t-Tests. Standard deviations are shown in parentheses.
TaylorGLO discovers loss functions that perform significantly better than the cross-entropy loss in almost all cases, including
those that include Cutout, suggesting that it provides a different form of regularization.

Task Model Avg. TaylorGLO Acc. Avg. Baseline Acc.  p-value
MNIST Basic CNN ! 0.9951 (0.0005) 0.9899 (0.0003)  2.95x1071°
CIFAR-10  AlexNet 2 0.7901 (0.0026) 0.7638 (0.0046)  1.76x10710
AlexNet + Cutout ° 0.7786 (0.0022) 0.7741 (0.0040) 0.0049
AlexNet + CutMix ’ 0.7928 (0.0027) 0.7856 (0.0026) 8.13x107°
PreResNet-20 4 0.9169 (0.0014) 0.9153 (0.0021) 0.0400
AIICNN-C 3 0.9271 (0.0013) 0.8965 (0.0021)  0.42x10717
AIICNN-C 3 + Cutout © 0.9329 (0.0022) 0.8911 (0.0037)  1.60x10714
AIICNN-C 3 + CutMix 7 0.9327 (0.0014) 0.8749 (0.0042)  1.89x10713
Wide ResNet 16-8 ° 0.9558 (0.0011) 0.9528 (0.0012) 1.77x107°
Wide ResNet 16-8 > + Cutout © 0.9618 (0.0010) 0.9582 (0.0011) 2.55x1077
Wide ResNet 28-5 3 0.9548 (0.0015) 0.9556 (0.0011) 0.0984
Wide ResNet 28-5 > + Cutout © 0.9621 (0.0013) 0.9616 (0.0011) 0.1882
CIFAR-100 PyramidNet 110a48 8 0.7409 (0.0040) 0.7523 (0.0037)  3.87x107°
PyramidNet 110a48 8 + Cutout © 0.7708 (0.0029) 0.7674 (0.0036) 0.0189
SVHN Wide ResNet 16-8 0.9658 (0.0007) 0.9597 (0.0006)  1.94x10713
Wide ResNet 16-8 ° + Cutout © 0.9714 (0.0010) 0.9673 (0.0008) 9.10x1077
Wide ResNet 28-5 ° 0.9657 (0.0009) 0.9634 (0.0006) 6.62x107°
Wide ResNet 28-5 ° + Cutout © 0.9727 (0.0006) 0.9709 (0.0006) 2.96x107°

Network architecture references: ! Gonzalez and Miikkulainen [13] 2 Krizhevsky et al. [29] * Springenberg et al. [44]

4 He etal. [22] ® Zagoruyko and Komodakis [52] © DeVries and Taylor [5] 7 Yunetal. [51] ® Han et al. [17]

In other words, the loss increases near the correct output—which
is counterintuitive. This shape is also strikingly different from the
cross-entropy loss, which decreases monotonically from left to right,
as one might expect all loss functions to do. The evolved shape is
effective most likely because can provide an implicit regularization
effect: it discourages the model from outputting unnecessarily ex-
treme values for the correct class, and therefore makes overfitting
less likely [13]. This is a surprising finding, and demonstrates the
power of machine learning to create innovations beyond human
design.

6.2 Performance comparisons

Over 10 fully-trained models, the best TaylorGLO loss function
achieved a mean testing accuracy of 0.9951 (stddev 0.0005) in
MNIST. In comparison, the cross-entropy loss only reached 0.9899
(stddev 0.0003), and the "Baikal CMA" loss function discovered by
GLO, 0.9947 (stddev 0.0003) [13]; both differences are statistically
significant (Figure 5). Notably, TaylorGLO achieved this result with
significantly fewer generations. GLO required 11,120 partial evalu-
ations (i.e., 100 individuals over 100 GP generations plus 32 individ-
uals over 35 CMA-ES generations), while the top TaylorGLO loss
function only required 448 partial evaluations, i.e. 4.03% as many.
Thus, TaylorGLO achieves improved results with significantly fewer
evaluations than GLO.

Due to the very large number evaluations required by GLO,
TaylorGLO is only compared to GLO on MNIST. GLO is not practi-
cally applicable to deeper models with longer training times. For
example, even a relatively small deep network, PreResNet-20 [22],
would require over 171 GPU days of computation, assuming the
same number of evaluations as above on MNIST.

The large reduction in evaluations during evolution compared
to GLO allows TaylorGLO to tackle harder problems, including
models that have millions of parameters. On CIFAR-10, CIFAR-100,
and SVHN, TaylorGLO was able to outperform cross-entropy base-
lines consistently on a variety models, as shown in Table 1. These
increases in accuracy are greater than what is possible through
implicit learning rate adjustment alone (detailed in Appendix 6.5).
TaylorGLO also provides further improvement on architectures
that use Cutout [5], suggesting that its mechanism of avoiding
overfitting is different from other regularization techniques.

In addition, TaylorGLO loss functions result in more robust
trained models. In Figure 4, accuracy basins for two AIICNN-C
models, one trained with the TaylorGLO loss function and another
with the cross-entropy loss, are plotted along a two-dimensional
slice [—1, 1] of the weight space (a technique due to [33]). The
TaylorGLO loss function results in a flatter, lower basin. This result
suggests that the model is more robust, i.e. its performance is less
sensitive to small perturbations in the weight space, and it also
generalizes better [26].
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Figure 3: The best loss functions (a) and their respective pa-
rameters () from each generation of TaylorGLO on MNIST.
The functions are plotted in a binary classification modality,
showing loss for different values of the network output (yo
in the horizontal axis) when the correct label is 1.0. The func-
tions are colored according to their generation from blue to
red, and vertically shifted such that their loss at yp = 1 is
zero (the raw value of a loss function is not relevant; the
derivative, however, is). TaylorGLO explores varying shapes
of solutions before narrowing down on functions in the red
band; this process can also be seen in (b), where parameters
become more consistent over time, and in the population
plot of Appendix B. The final functions decrease from left to
right, but have a significant increase in the end. This shape
is likely to prevent overfitting during learning, which leads
to the observed improved accuracy.

N Perturbed Weights Perturbed Weights

Cross-entropy loss

test-set accuracy Accuracy

TaylorGLO loss

—_—
test-set accuracy

Figure 4: Accuracy basins for AIICNN-C models trained
with both cross-entropy and TaylorGLO loss functions. The
TaylorGLO basins are both flatter and lower, indicating that
they are more robust and generalize better [26], which re-
sults in higher accuracy.
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score significantly outperforms the cross-entropy loss (p =
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loss [13] (p = 0.0313). (b) Required partial training evalu-
ations for GLO and TaylorGLO on MNIST. The TaylorGLO
loss function was discovered with 4% of the evaluations that
GLO required to discover BaikalCMA.
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Figure 6: Accuracy with reduced portions of the MNIST
dataset. Progressively smaller portions of the dataset were
used to train the models (averaging over ten runs). The
TaylorGLO loss function provides significantly better per-
formance than the cross-entropy loss on all training dataset
sizes, and particularly on the smaller datasets. Thus, its abil-
ity to discourage overfitting is particularly useful in applica-
tions where only limited data is available.

6.3 Performance on reduced datasets

The performance improvements that TaylorGLO provides are es-
pecially pronounced with reduced datasets. For example, Figure 6
compares accuracies of models trained for 20,000 steps on different
portions of the MNIST dataset (similar results were obtained with
other datasets and architectures). Overall, TaylorGLO significantly
outperforms the cross-entropy loss. When evolving a TaylorGLO
loss function and training against 10% of the training dataset, with
225 epoch evaluations, TaylorGLO reached an average accuracy
across ten models of 0.7595 (stddev 0.0062). In contrast, only four
out of ten cross-entropy loss models trained successfully, with those
reaching a lower average accuracy of 0.6521. Thus, customized loss
functions can be especially useful in applications where only lim-
ited data is available to train the models, presumably because they
are less likely to overfit to the small number of examples.
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6.4 MNIST evaluation length sensitivity

200-step. TaylorGLO is surprisingly resilient when evaluations
during evolution are shortened to 200 steps (i.e., 0.4 epochs) of
training. With so little training, returned accuracies are noisy and
dependent on each individual network’s particular random initial-
ization. On a 60-generation run with 200-step evaluations, the best
evolved loss function had a mean testing accuracy of 0.9946 across
ten samples, with a standard deviation of 0.0016. While slightly
lower, and significantly more variable, than the accuracy for the
best loss function that was found on the main 2,000-step run, the
accuracy is still significantly higher than that of the cross-entropy
baseline, with a p-value of 6.3 x 107, This loss function was dis-
covered in generation 31, requiring 1,388.8 2,000-step-equivalent
partial evaluations. That is, evolution with 200-step partial evalua-
tions is over three-times less sample efficient than evolution with
2,000-step partial evaluations.

20,000-step. On the other extreme, where evaluations consist of
the same number of steps as a full training session, one would expect
better loss functions to be discovered, and more reliably, because
the fitness estimates are less noisy. Surprisingly, that is not the case:
The best loss function had a mean testing accuracy of 0.9945 across
ten samples, with a standard deviation of 0.0015. While also slightly
lower, and also significantly more variable, than the accuracy for
the best loss function that was found on the main 2,000-step run,
the accuracy is significantly higher than the cross-entropy baseline,
with a p-value of 5.1 X 107%. This loss function was discovered
in generation 45, requiring 12,600 2,000-step-equivalent partial
evaluations. That is, evolution with 20,000-step full evaluations is
over 28-times less sample efficient than evolution with 2,000-step
partial evaluations.

These results thus suggest that there is an optimal way to evalu-
ate candidates during evolution, resulting in lower computational
cost and better loss functions. Notably, the best evolved loss func-
tions from all three runs (i.e., 200-, 2,000-, and 20,000-step) have
similar shapes, reinforcing the idea that partial-evaluations can
provide useful performance estimates.

6.5 Learning rate sensitivity

Loss functions can embody different learning rates implicitly. This
section shows that TaylorGLO loss functions’ benefits come from
more than just metalearning such learning rates. Increases in per-
formance that result from altering the base learning rate with cross-
entropy loss are significantly smaller than those that TaylorGLO
provides.

More specifically, Figure 7 quantifies the effect of varying learn-
ing rates on the final testing accuracy of AICNN-C models trained
on CIFAR-10. ALICNN-C was chosen for this analysis since it ex-
hibits the largest variations in performance, making this effect more
clear. While learning rates larger than 0.01 (the standard learning
rate for AIICNN-C) reach slightly higher accuracies, this effect
comes at the cost of less stable training. The majority of models
trained with these higher learning rates failed to train. Thus, the
standard choice of learning rate for AIICNN-C is appropriate for
the cross-entropy loss, and TaylorGLO loss functions are able to
improve upon it.
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Figure 7: Effect of varying learning rates in AIICNN-C when
trained with the cross-entropy loss on CIFAR-10. For each
learning rate, ten models were trained, with up to ten re-
tries if training failed. The majority of training attempts
failed for learning rates larger than 0.01. The 0.01 learning
rate used in the experiments in this paper results in best
stable performance. Overall, the small performance differ-
ences that can result from adjusting the learning rate, re-
gardless of stability, are much smaller than those that result
from training with TaylorGLO. Thus, TaylorGLO provides a
mechanism for improvement beyond implicit adjustments
of the learning rate.

Table 2: Performance of Taylor approximations of the cross-
entropy loss function on AIICNN-C with CIFAR-10. Approx-
imations of different orders, with a = (0.5,0.5), are pre-
sented. Presented accuracies are the mean from ten runs.
Higher-order approximations are better, suggesting a poten-
tial (although computationally expensive) opportunity for
improvement in the future.

Loss Function ~ Mean Accuracy (stddev)

k=2 0.1034 (0.0101)
k=3 0.8451 (0.0043)
k=4 0.8592 (0.0032)
k=5 0.8649 (0.0042)

Cross-Entropy 0.8965 (0.0021)

7 TAYLOR APPROXIMATIONS OF THE
CROSS-ENTROPY LOSS

While TaylorGLO’s performance originates primarily from discov-
ering better loss functions, it is informative to analyze what role
the accuracy of the Taylor approximation plays in it. One way to
characterize this effect is to analyze the performance of various
Taylor approximations of the cross-entropy loss.

Table 2 provides results from such a study. Bivariate approxi-
mations to the cross-entropy loss, centered at a = (0.5, 0.5), with
different orders k were used to train AIICNN-C models on CIFAR-
10. Third-order approximations and above are trainable. Approx-
imations’ performance is within a few percentage points of the
cross-entropy loss, with higher-order approximations yielding pro-
gressively better accuracies, as expected.
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Table 3: Estimated TaylorGLO experiment durations and to-
tal emissions. The estimates assume populations of 20 con-
current candidates and 50 generation runs. Emission val-
ues are upper bounds reported in equivalent kilograms of
carbon dioxide, thus accounting for other gases of interest.
Overall, experiments are short enough that they can each be
run over a few days.

TaylorGLO Experiment Duration (hrs) ~ Total Emissions (kgCOzeq)
AlexNet on CIFAR-10 3.60 4.07

ResNet-20 on CIFAR-10 10.24 11.58

Pre ResNet-20 on CIFAR-10 9.26 10.48
AIICNN-C on CIFAR-10 17.06 19.30
PyramidNet 110a48 on CIFAR-10 73.86 83.53

Wide ResNet 28-5 on CIFAR-10 42.90 48.52

Wide ResNet 16-8 on CIFAR-10 36.08 40.80

Wide ResNet 28-10 on CIFAR-10 105.30 119.10

The results thus show that third-order TaylorGLO loss functions
cannot represent the cross-entropy baseline loss accurately. One
possibility for improving TaylorGLO is thus to utilize higher order
approximations. However, it is remarkable that TaylorGLO can still
find loss functions that outperform the cross-entropy loss. Also,
the increase in the number of parameters—and the corresponding
increase in computational requirements—may in practice outweigh
the benefits from a finer-grained representation. This effect was
seen in preliminary experiments, and the third-order approxima-
tions (used in this paper) deemed to strike a good balance.

8 EXPERIMENT DURATIONS AND
ENVIRONMENTAL IMPACT

Understanding the computational costs and broader impacts of
modern deep learning systems is crucial as they become more
complex and computationally intensive over time.

The infrastructure that ran the experiments in this paper is lo-
cated in California, which is estimated to have had an estimated
carbon dioxide equivalent total output emission rate of 226.21
kgCOzeq/kWh in 2018 [48]. This quantity can be used to calcu-
late the climate impact of compute-intensive experiments.

Table 3 provides estimates of durations and total emissions for
various TaylorGLO experiments. Emissions were calculated using
the Machine Learning Impact calculator [30], assuming that no
candidates failed evaluation (which would result in slightly lower
estimates). Presented values can thus be thought of as being an
upper bound.

Overall, experiment durations are short enough that TaylorGLO
can be practically applied to different tasks to find customized loss
functions.

9 DISCUSSION AND FUTURE WORK

TaylorGLO was applied to the benchmark tasks using various stan-
dard architectures with standard hyperparameters. These setups
have been heavily engineered and manually tuned by the research
community, yet TaylorGLO was able to improve them. Interestingly,
the improvements were more substantial with wide architectures
and smaller with narrow and deep architectures such as the Pre-
activation ResNet. While it may be possible to further improve

Santiago Gonzalez and Risto Miikkulainen

upon this result, it is also possible that loss function optimization is
more effective with architectures where the gradient information
travels through fewer connections, or is otherwise better preserved
throughout the network. An important direction of future work is
therefore to evolve both loss functions and architectures together,
taking advantage of possible synergies between them.

As illustrated in Figure 34, the most significant effect of evolved
loss functions is to discourage extreme output values, thereby avoid-
ing overfitting. It is interesting that this mechanism is apparently
different from other regularization techniques such as dropout (as
shown by [13]) and data augmentation with Cutout (as seen in
Table 1). Dropout and Cutout improve performance over the base-
line, and loss function optimization improves it further. This result
suggests that regularization is a multifaceted process, and further
work is necessary to understand how to best take advantage of it.

Another important direction is to incorporate state information
into TaylorGLO loss functions, such as the percentage of training
steps completed. TaylorGLO may then find loss functions that are
best suited for different points in training, where, for example,
different kinds of regularization work best [10]. Unintuitive changes
to the training process, such as cycling learning rates [43], have
been found to improve performance; evolution could be used to
find other such opportunities automatically. Batch statistics could
help evolve loss functions that are more well-tuned to each batch;
intermediate network activations could expose information that
may help tune the function for deeper networks like ResNet. Deeper
information about the characteristics of a model’s weights and
gradients, such as that from spectral decomposition of the Hessian
matrix [41], could assist the evolution of loss functions that adapt to
the current fitness landscape. The technique could also be adapted
to models with auxiliary classifiers [45] as a means to touch deeper
parts of the network.

10 CONCLUSION

This paper proposes TaylorGLO as a promising new technique for
loss-function metalearning. TaylorGLO leverages a novel parame-
terization for loss functions, allowing the use of continuous opti-
mization rather than genetic programming for the search, thus mak-
ing it more efficient and more reliable. TaylorGLO loss functions
serve to regularize the learning task, outperforming the standard
cross-entropy loss significantly on MNIST, CIFAR-10, CIFAR-100,
and SVHN benchmark tasks with a variety of network architec-
tures. They also outperform previously loss functions discovered in
prior work, while requiring many fewer candidates to be evaluated
during search. Thus, TaylorGLO results in higher testing accuracies,
better data utilization, and more robust models, and is a promising
new avenue for metalearning.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Ma-
chine Learning. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). USENIX Association, Savannah, GA, 265-283. https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D Francone. 1998.
Genetic programming: An introduction. Vol. 1. Morgan Kaufmann San Francisco.

5


https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

Optimizing Loss Functions Through Multi-Variate Taylor Polynomial Parameterization

(3]

[4

(5

=

8

[9

=

[10

[11]
[12

[13]

[14]
[15]

[16]

[17]

(18

=
o

[20]

[21]

[22

[23]

[24

[25]

[26

[27

[28]

[29

[30

Garrett Bingham, William Macke, and Risto Miikkulainen. 2020. Evolutionary
Optimization of Deep Learning Activation Functions. In Proceedings of the Genetic
and Evolutionary Computation Conference.

JSR Chisholm. 1973. Rational approximants defined from double power series.

Math. Comp. 27, 124 (1973), 841-848.

Terrance DeVries and Graham W Taylor. 2017. Improved regularization of
convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552
(2017).

Hao Dong, Simiao Yu, Chao Wu, and Yike Guo. 2017. Semantic image synthesis
via adversarial learning. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV). 5706-5714.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural Architecture
Search: A Survey. Journal of Machine Learning Research 20, 55 (2019), 1-21.

Joseph BJ Fourier. 1829. La théorie analytique de la chaleur. Mémoires de

I’Académie Royale des Sciences de I'Institut de France 8 (1829), 581-622.

Ruohan Gao and Kristen Grauman. 2019. 2.5D visual sound. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 324-333.
Aditya Sharad Golatkar, Alessandro Achille, and Stefano Soatto. 2019. Time
Matters in Regularizing Deep Networks: Weight Decay and Data Augmentation
Affect Early Learning Dynamics, Matter Little Near Convergence. In Advances in
Neural Information Processing Systems 32. 10677-10687.

Santiago Gonzalez. 2019. SwiftCMA. https://github.com/sgonzalez/SwiftCMA.
Santiago Gonzalez, Joshua Landgraf, and Risto Miikkulainen. 2019. Faster Train-
ing by Selecting Samples Using Embeddings. In 2019 International Joint Conference
on Neural Networks (IJCNN).

Santiago Gonzalez and Risto Miikkulainen. 2020. Improved Training Speed, Ac-
curacy, and Data Utilization Through Loss Function Optimization. In Proceedings
of the IEEE Congress on Evolutionary Computation (CEC).

PR Graves-Morris. 1979. The numerical calculation of Padé approximants. In
Padé approximation and its applications. Springer, 231-245.

PR Graves-Morris and DE Roberts. 1975. Calculation of Canterbury approximants.
Computer Physics Communications 10, 4 (1975), 234-244.

John ] Grefenstette and J Michael Fitzpatrick. 1985. Genetic search with ap-
proximate function evaluations. In Proceedings of an International Conference on
Genetic Algorithms and Their Applications. 112-120.

Dongyoon Han, Jiwhan Kim, and Junmo Kim. 2017. Deep pyramidal residual
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 5927-5935.

Nikolaus Hansen and Stefan Kern. 2004. Evaluating the CMA evolution strategy
on multimodal test functions. In International Conference on Parallel Problem
Solving from Nature. Springer, 282-291.

Nikolaus Hansen and Andreas Ostermeier. 1996. Adapting arbitrary normal
mutation distributions in evolution strategies: The covariance matrix adaptation.
In Proceedings of IEEE international conference on evolutionary computation. IEEE,
312-317.

Nikolaus Hansen and Andreas Ostermeier. 2001. Completely derandomized
self-adaptation in evolution strategies. Evolutionary computation 9, 2 (2001),
159-195.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2016), 770-778.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity mappings
in deep residual networks. In European conference on computer vision. Springer,
630-645.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and
Ruslan R Salakhutdinov. 2012. Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012).

Peter J Huber. 1964. Robust Estimation of a Location Parameter. The Annals of
Mathematical Statistics (1964), 73-101.

Yaochu Jin. 2011. Surrogate-assisted evolutionary computation: Recent advances
and future challenges. Swarm and Evolutionary Computation 1 (06 2011), 61-70.
https://doi.org/10.1016/j.swev0.2011.05.001

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyan-
skiy, and Ping Tak Peter Tang. 2017. On large-batch training for deep learning:
Generalization gap and sharp minima. In Proceedings of the Fifth International
Conference on Learning Representations (ICLR).

Diederik Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In
Proceedings of the Second International Conference on Learning Representations
(ICLR).

Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features
from tiny images. (2009).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classifi-
cation with Deep Convolutional Neural Networks. In Advances in Neural Infor-
mation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger (Eds.). Curran Associates, Inc., 1097-1105. http://papers.nips.cc/paper/
4824-imagenet- classification- with- deep- convolutional-neural-networks.pdf
Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres.
2019. Quantifying the Carbon Emissions of Machine Learning. arXiv preprint

GECCO ’21, July 10-14, 2021, Lille, France

arXiv:1910.09700 (2019).

Yann LeCun, Corinna Cortes, and CJC Burges. 1998. The MNIST dataset of
handwritten digits.

Christiane Lemke, Marcin Budka, and Bogdan Gabrys. 2015. Metalearning: a
survey of trends and technologies. Artificial Intelligence Review 44, 1 (2015),
117-130.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. 2018.
Visualizing the Loss Landscape of Neural Nets. In Advances in Neural Information
Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (Eds.). Curran Associates, Inc., 6389-6399. http://papers.
nips.cc/paper/7875-visualizing- the-loss-landscape-of-neural-nets.pdf

Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of Machine Learning Research 9, Nov (2008), 2579-2605.

Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink,
Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy,
et al. 2019. Evolving deep neural networks. In Artificial Intelligence in the Age of
Neural Networks and Brain Computing. Elsevier, 293-312.

Karl Mutch. 2017 - 2021. Studio Go Runner. https://github.com/leaf-ai/studio-go-
runner/tree/0.13.1

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-
drew Y Ng. 2011. Reading digits in natural images with unsupervised feature
learning. Neural Information Processing Systems, Workshop on Deep Learning and
Unsupervised Feature Learning (2011).

Esteban Real, Chen Liang, David R. So, and Quoc V. Le. 2020. AutoML-Zero:
Evolving Machine Learning Algorithms From Scratch. arXiv:2003.03384 (2020).
David E Rumelhart, Geoffrey E Hinton, and Ronald ] Williams. 1985. Learning
internal representations by error propagation. Technical Report. California Univ
San Diego La Jolla Inst for Cognitive Science.

Graeme D Ruxton. 2006. The unequal variance t-test is an underused alternative
to Student’s t-test and the Mann-Whitney U test. Behavioral Ecology 17, 4 (2006),
688-690.

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. 2017.
Empirical analysis of the Hessian of over-parametrized neural networks. arXiv
preprint arXiv:1706.04454 (2017).

Jurgen Schmidhuber. 1987. Evolutionary principles in self-referential learning, or
on learning how to learn: the meta-meta-... hook. Ph.D. Dissertation. Technische
Universitat Miinchen.

Leslie N Smith. 2017. Cyclical learning rates for training neural networks. In
2017 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE,
464-472.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A.
Riedmiller. 2015. Striving for Simplicity: The All Convolutional Net. CoRR
abs/1412.6806 (2015).

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 1-9.

Brook Taylor. 1715. Methodus incrementorum directa & inversa. Auctore Brook
Taylor, LL. D. & Regiae Societatis Secretario. typis Pearsonianis: prostant apud
Gul. Innys ad Insignia Principis.

Andrey N. Tikhonov. 1963. Solution of incorrectly formulated problems and the
regularization method. In Proceedings of the USSR Academy of Sciences, Vol. 4.
1035-1038.

United States Environmental Protection Agency. 2020. EPA eGRID2018. https:
//www.epa.gov/egrid.

Bernard L Welch. 1947. The generalization of Student’s problem when several
different population variances are involved. Biometrika 34, 1/2 (1947), 28-35.
Henry Wilbraham. 1848. On a certain periodic function. The Cambridge and
Dublin Mathematical Journal 3 (1848), 198—201.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and
Youngjoon Yoo. 2019. CutMix: Regularization Strategy to Train Strong Classifiers
with Localizable Features. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV). 6023-6032.

Sergey Zagoruyko and Nikos Komodakis. 2016. Wide residual networks. arXiv
preprint arXiv:1605.07146 (2016).

Yao Zhou, Cong Liu, and Yan Pan. 2016. Modelling Sentence Pairs with Tree-
structured Attentive Encoder. In Proceedings of the 26th International Conference
on Computational Linguistics (COLING), Technical Papers. 2912-2922.


https://github.com/sgonzalez/SwiftCMA
https://doi.org/10.1016/j.swevo.2011.05.001
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
https://github.com/leaf-ai/studio-go-runner/tree/0.13.1
https://github.com/leaf-ai/studio-go-runner/tree/0.13.1
https://www.epa.gov/egrid
https://www.epa.gov/egrid

	Abstract
	1 Introduction
	2 Related work
	3 Loss Functions as Multivariate Taylor expansions
	4 The TaylorGLO method
	5 Experimental setup
	6 Results
	6.1 The TaylorGLO discovery process
	6.2 Performance comparisons
	6.3 Performance on reduced datasets
	6.4 MNIST evaluation length sensitivity
	6.5 Learning rate sensitivity

	7 Taylor approximations of the cross-entropy loss 
	8 Experiment durations and environmental impact
	9 Discussion and future work
	10 Conclusion
	References
	A Experimental setup
	A.1 MNIST
	A.2 CIFAR-10 and CIFAR-100
	A.3 SVHN
	A.4 Statistical testing

	B Illustrating the evolutionary process
	C Top MNIST loss function

