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Abstract

Generative Adversarial Networks (GANs) have extended deep learning to complex generation
and translation tasks across different data modalities. However, GANs are notoriously difficult to
train: Mode collapse and other instabilities in the training process often degrade the quality of
the generated results, such as images. This paper presents a new technique called TaylorGAN for
improving GANs by discovering customized loss functions for each of its two networks. The loss
functions are parameterized as Taylor expansions and optimized through multiobjective evolution.
On an image-to-image translation benchmark task, this approach qualitatively improves generated
image quality and quantitatively improves two independent GAN performance metrics. It therefore
forms a promising approach for applying GANs to more challenging tasks in the future.

1 Introduction

Generative Adversarial Networks (GANs) have recently emerged as a promising technique for
building models that generate new samples according to a distribution within a dataset. In GANs,
two separate networks—a generator and a discriminator—are trained in tandem in an adversarial
fashion: The generator attempts to synthesize samples that the discriminator believes is real, while
the discriminator attempts to differentiate between samples from the generator and samples from
a ground-truth dataset. However, GANs are challenging to train. Training often suffers from
instabilities that can lead to low-quality and potentially low-variety generated samples. These
difficulties have lead many researchers to try formulating better GANs, primarily by designing new
generator and discriminator loss functions by hand.

Neuroevolution may potentially offer a solution to this problem. It has recently been extended
from optimizing network weights and topologies to designing deep learning architectures (Stanley
et al., 2019; Real et al., 2019; Liang et al., 2019b). Advances in this field,—known as evolutionary
metalearning—have resulted in designs that outperform those that are manually-tuned. One
particular family of techniques—loss-function metalearning—has allowed for neural networks to be
trained more quickly, with higher accuracy, and better robustness (Gonzalez and Miikkulainen, 2020,
2021). Perhaps loss-function metalearning can be adapted to improve GANs?

In this paper, such a technique is developed to evolve entirely new GAN formulations that
outperform the standard Wasserstein loss. Leveraging the TaylorGLO loss-function parameterization
approach (Gonzalez and Miikkulainen, 2021), separate loss functions are constructed for the two
GAN networks. A genetic algorithm is then used to optimize their parameters against two non-
differentiable objectives. A composite transformation of these objectives (Shahrzad et al., 2018) is
further used to enhance the multiobjective search.
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This TaylorGAN approach is evaluated experimentally in an image-to-image translation bench-
mark task where the goal is to generate photorealistic building images based on a building segment
map. The CMP Facade dataset (Tyleček and Šára, 2013) is used as the training data and the
pix2pix-HD conditional GAN (Wang et al., 2018) as the generative model. The approach is found
to both qualitatively enhance generated image quality and quantitatively improve the two metrics.
The evaluation thus demonstrates how evolution can improve a leading conditional GAN design
by replacing manually designed loss functions with those optimized by a multiobjective genetic
algorithm.

Section 2 reviews key literature in GANs, motivating the evolution of their loss functions. The
next section describes the TaylorGLO metalearning technique for optimizing loss-functions in general.
Section 4 introduces the TaylorGAN variation of it, focusing on how the TaylorGLO loss-function
parameterization is leveraged for evolving GANs. Section 5 details the experimental configuration
and evaluation methodologies. In Section 6, TaylorGAN’s efficacy is evaluated on the benchmark
task. Section 7 places these these findings in the general context of the GAN literature and describes
potential avenues for future work.

2 Variations of GAN Architectures

Generative Adversarial Networks (GANs; Goodfellow et al., 2014), are a type of generative model
consisting of a pair of networks, a generator and discriminator, that are trained in tandem. GANs are
a modern successor to Variational Autoencoders (VAEs; Kingma and Welling, 2014) and Boltzmann
Machines (Hinton and Sejnowski, 1983), including Restricted Boltzmann Machines (Smolensky, 1986)
and Deep Boltzmann Machines (Salakhutdinov and Hinton, 2009).

The following subsections review prominent GAN methods. Key GAN formulations, and
the relationships between them, are described. Consistent notation (shown in Table 1) is used,
consolidating the extensive variety of notation in the field.

Table 1: GAN Notation Decoder
Symbol Description

G(x, θG) Generator function
D(z, θD) Discriminator function
Pdata Probability distribution of the original data
Pz Latent vector noise distribution
Pg Probability distribution of G(z)
x Data, where x ∼ Pdata
x̃ Generated data
z Latent vector, where z ∼ Pz
c Condition vector
λ Various types of weights / hyperparameters
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2.1 Overview

A GAN’s generator and discriminator are set to compete with each other in a minimax game,
attempting to reach a Nash equilibrium (Nash, 1951; Heusel et al., 2017). Throughout the training
process, the generator aims to transform samples from a prior noise distribution into data, such
as an image, that tricks the discriminator into thinking it has been sampled from the real data’s
distribution. Simultaneously, the discriminator aims to determine whether a given sample came from
the real data’s distribution, or was generated from noise.

Unfortunately, GANs are difficult to train, frequently exhibiting instability, i.e., mode collapse,
where all modes of the target data distribution are not fully represented by the generator (Radford
et al., 2015; Metz et al., 2016; Isola et al., 2016; Mao et al., 2017; Arjovsky et al., 2017; Gulrajani
et al., 2017; Mao et al., 2018). GANs that operate on image data often suffer from visual artifacts
and blurring of generated images (Isola et al., 2016; Odena et al., 2016). Additionally, datasets with
low variability have been found to degrade GAN performance (Mao et al., 2018).

GANs are also difficult to evaluate quantitatively, typically relying on metrics that attempt to
embody vague notions of quality. Popular GAN image scoring metrics, for example, have been
found to have many pitfalls, including cases where two samples of clearly disparate quality may have
similar values (Borji, 2019).

2.2 Original Minimax and Non-Saturating GAN

Using the notation described in Table 1, the original minimax GAN formulation by Goodfellow et al.
(2014) can be defined as

min
θG

max
θD

Ex∼Pdata [logD(x)] + Ez∼Pz [log (1−D(G(z)))] . (1)

This formulation can be broken down into two separate loss functions, one each for the discriminator
and generator:

LD = − 1

n

n∑
i=1

[logD(xi) + log(1−D(G(zi)))] , and (2)

LG =
1

n

n∑
i=1

log(1−D(G(zi))) . (3)

The discriminator’s loss function is equivalent to a sigmoid cross-entropy loss when thought of as
a binary classifier. Goodfellow et al. (2014) proved that training a GAN with this formulation is
equivalent to minimizing the Jensen-Shannon divergence between Pg and Pdata, i.e. a symmetric
divergence metric based on the Kullback-Leibler divergence.

In the above formulation the generator’s loss saturates quickly since the discriminator learns to
reject the novice generator’s samples early on in training. To resolve this problem, Goodfellow et
al. provided a second “non-saturating” formulation with the same fixed-point dynamics, but better,
more intense gradients for the generator early on:

maxθD Ex∼Pdata [logD(x)] + Ez∼Pz [log (1−D(G(z)))] , (4)
maxθG Ez∼Pz [logD(G(z))] . (5)
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Each GAN training step consists of training the discriminator for k steps, while sequentially
training the generator for only one step. This difference in steps for both networks helps prevent the
discriminator from learning too quickly and overpowering the generator.

Alternatively, Unrolled GANs (Metz et al., 2016) aimed to prevent the discriminator from
overpowering the generator by using a discriminator which has been unrolled for a certain number of
steps in the generator’s loss, thus allowing the generator to train against a more optimal discriminator.
More recent GAN work instead uses a two time-scale update rule (TTUR; Heusel et al., 2017), where
the two networks are trained under different learning rates for one step each. This approach has
proven to converge more reliably to more desirable solutions.

Unfortunately, with both minimax and non-saturating GANs the generator gradients vanish for
samples that are on the correct side of the decision boundary but far from the true data distribution
(Mao et al., 2017, 2018). The Wasserstein GAN, described next, is designed to solve this problem.

2.3 Wasserstein GAN

The Wasserstein GAN (WGAN; Arjovsky et al., 2017) is arguably one of the most impactful
developments in the GAN literature since the original formulation by Goodfellow et al. (2014).
WGANs minimize the Wasserstein-1 distance between Pg and Pdata, rather than the Jensen-Shannon
divergence, in an attempt to avoid vanishing gradient and mode collapse issues. In the context of
GANs, the Wasserstein-1 distance can be defined as

W (Pg,Pdata) = inf
γ∈Π(Pg ,Pdata)

E(u,v)∼γ [‖u− v‖] , (6)

where, γ(u,v) represents the amount of mass that needs to move from u to v for Pg to become Pdata.
This formulation with the infimum is intractable, but the Kantorovich-Rubinstein duality (Villani,
2009) with a supremum makes the Wasserstein-1 distance tractable, while imposing a 1-Lipschitz
smoothness constraint:

W (Pg,Pdata) = sup
‖f‖L≤1

Eu∼Pg [f(u)]− Eu∼Pdata [f(u)] , (7)

which translates to the training objective

min
θG

max
θD∈ΘD

Ex∼Pdata [D(x)]− Ez∼Pz [D(G(z))] , (8)

where ΘD is the set of all parameters for which D is a 1-Lipschitz function.

WGANs are an excellent example of how generator and discriminator loss functions can profoundly
impact the quality of generated samples and the prevalence of mode collapse. However, the WGAN
has a 1-Lipschitz constraint that needs to be maintained throughout training for the formulation to
work. WGANs enforce the constraint via gradient clipping, at the cost of requiring an optimizer that
does not use momentum, i.e., RMSProp (Tieleman and Hinton, 2012) rather than Adam (Kingma
and Ba, 2015).

To resolve the issues caused by gradient clipping, a subsequent formulation, WGAN-GP (Gulrajani
et al., 2017), added a gradient penalty regularization term to the discriminator loss:

GP = λ Ex̂∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
, (9)
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where Px̂ samples uniformly along lines between Pdata and Pg. The gradient penalty enforces a
soft Lipschitz smoothness constraint, leading to a more stationary loss surface than when gradient
clipping is used, which in turn makes it possible to use momentum-based optimizers. The gradient
penalty term has even been successfully used in non-Wasserstein GANs (Fedus et al., 2018; Mao
et al., 2018). However, gradient penalties can increase memory and compute costs (Mao et al., 2018).

2.4 Least-Squares GAN

Another attempt to solve the issue of vanishing gradients is the Least-Squares GAN (LSGAN Mao
et al., 2017). It defines the training objective as

minθD
1

2
Ex∼Pdata

[
(D(x)− b)2

]
+ Ez∼Pz

[
(D(G(z))− a)2

]
, (10)

minθG
1

2
Ez∼Pz

[
(D(G(z))− c)2

]
, (11)

where a is the label for generated data, b is the label for real data, and c is the label that G wants
to trick D into believing for generated data. In practice, typically a = 0, b = 1, c = 1. However,
subsequently, a = −1, b = −1, c = 0 were found to result in faster convergence, making it the
recommended parameter setting (Gulrajani et al., 2017). Training an LSGAN was shown to be
equivalent to minimizing the Pearson χ2 divergence (Pearson, 1900) between Pdata + Pg and 2 ∗ Pg.
Generated data quality can oscillate throughout the training process (Mao et al., 2018), indicating a
disparity between data quality and loss.

2.5 Conditional GAN

Traditional GANs learn how to generate data from a latent space, i.e. an embedded representation
of the training data that the generator constructs. Typically, the elements of a latent space have no
immediately intuitive meaning (Chen et al., 2016; Larsen et al., 2015). Thus, GANs can generate
novel data, but there is no way to steer the generation process to generate particular types of data.
For example, a GAN that generates images of human faces cannot be explicitly told to generate a
face with a particular hair color or of a specific gender. While techniques have been developed to
analyze this latent space (Volz et al., 2018; Li et al., 2019), or build more interpretable latent spaces
during the training process (Chen et al., 2016), they do not necessarily translate a human’s prior
intuition correctly or make use of labels when they are available. To tackle this problem, Conditional
GANs, first proposed as future work by Goodfellow et al. (2014) and subsequently developed Mirza
and Osindero (2014), allow directly targetable features (i.e., conditions) to be an integral part of the
generator’s input.

The conditioned training objective for a minimax GAN can be defined, without loss of generality,
as

min
θG

max
θD

Ex∼Pdata [logD(x⊕ c)] + Ez∼Pz [log (1−D(G(z ⊕ c)))] , (12)

where z ⊕ c is basic concatenation of vectors. During training, the condition vector, c, arises from
the sampling process that produces each x. This same framework can be used to design conditioned
variants of other GAN formulations.

Conditional GANs have enjoyed great successes as a result of their flexibility, even in the face of
large, complex condition vectors, which may even be whole images. They enable new applications for
GANs, including repairing software vulnerabilities (framed as sequence to sequence translation; Harer
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et al., 2018), integrated circuit mask design (Alawieh et al., 2019), and image to image translation
(Isola et al., 2016)—the generation of images given text (Reed et al., 2016)—which is used as the
target setting for this paper. Notably, conditional GANs can increase the quality of generated
samples for labeled datasets, even when conditioned generation is not needed (van den Oord et al.,
2016). Conditional GANs are therefore used as the platform for the TaylorGAN technique described
in the next section.

2.6 Opportunity: Optimizing Loss Functions

The GAN formulations described above all have one property in common: The generator and
discriminator loss functions have been arduously derived by hand. A GAN’s performance and
stability is greatly impacted by the choice of loss functions. Different regularization terms, such
as the aforementioned gradient penalty can also affect a GAN’s training. These elements of the
GAN are typically designed to minimize a specific divergence. However, a GAN does not need to
decrease a divergence at every step in order to reach the Nash equilibrium (Fedus et al., 2018). In
this situation, an automatic loss-function optimization system may find novel GAN loss functions
with more desirable properties. Such a system is presented in Section 4 and evaluated on conditional
GANs in Section 6. The basic method for evolving loss functions, TaylorGLO, is reviewed in the
next section.

3 Evolution of Loss Functions

Loss-function metalearning makes it possible to regularize networks automatically; TaylorGLO is a
flexible and scalable implementation of this idea based on multivariate Taylor expansions.

3.1 Motivation

Loss-function metalearning for deep networks was first introduced by Gonzalez and Miikkulainen
(2020) as an automatic way to find customized loss functions that optimize a performance metric for
a model. The technique, a genetic programming approach named GLO, discovered one particular
loss function, Baikal, that improves classification accuracy, training speed, and data utilization.
Intuitively, Baikal achieved these properties through a form of regularization that ensured the model
would not become overly confident in its predictions. That is, instead of monotonically decreasing
the loss when the output gets closer to the correct value, Baikal loss increases rapidly when the
output is almost correct, thus discouraging extreme accuracy.

TaylorGLO (Gonzalez and Miikkulainen, 2021) is a scalable reformulation of the GLO approach.1

Instead of trees evolved through genetic programming, TaylorGLO represents loss functions as
parameterizations of multivariate Taylor polynomials. It is then possible to evolve the parameters
directly with CMA-ES, which makes it possible to scale to models with millions of trainable
parameters and a variety of deep learning architectures.

1Open-source code for TaylorGLO is available at https://github.com/cognizant-ai-labs/taylorglo.
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Figure 1: The TaylorGLO method (Gonzalez and Miikkulainen, 2021). Loss functions are represented
by fixed-size vectors whose elements parameterize modified Taylor polynomials. Starting with a
population of initially unbiased loss functions (i.e., vectors around the origin), CMA-ES optimizes
their Taylor expansion parameters in order to maximize validation accuracy after partial training.
The candidate with the highest accuracy is chosen as the final, best solution. This approach biases
the search towards functions with useful properties, and is also amenable to theoretical analysis, as
shown in this paper.

3.2 Loss Functions as Multivariate Taylor Expansions

Taylor expansions (Taylor, 1715) represent differentiable functions within the neighborhood of a
point using a polynomial series. In the univariate case, given a Ckmax smooth (i.e., first through kmax
derivatives are continuous), real-valued function, f(x) : R→ R, a kth-order Taylor approximation at
point a ∈ R, f̂k(x, a), where 0 ≤ k ≤ kmax, can be constructed as

f̂k(x, a) =
k∑

n=0

1

n!
f (n)(a)(x− a)n. (13)

This formulation can be extended to the multivariate case by defining an nth-degree multi-index,
α = (α1, α2, . . . , αn), where αi ∈ N0, |α| =

∑n
i=1 αi, α! =

∏n
i=1 αi!. xα =

∏n
i=1 x

αi
i , and x ∈ Rn.

Multivariate partial derivatives can be concisely written using a multi-index as

∂αf = ∂α1
1 ∂α2

2 · · · ∂
αn
n f =

∂|α|

∂xα1
1 ∂xα2

2 · · · ∂x
αn
n
. (14)

Thus, discounting the remainder term, the multivariate Taylor expansion for f(x) at a is

f̂k(x,a) =
∑

∀α,|α|≤k

1

α!
∂αf(a)(x− a)α. (15)

The unique partial derivatives in f̂k and a are parameters for a kth order Taylor expansion. Thus, a
kth order Taylor expansion of a function in n variables requires n parameters to define the center, a,
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and one parameter for each unique multi-index α, where |α| ≤ k. That is:

#parameters(n, k) = n+

(
n+ k

k

)
= n+

(n+ k)!

n! k!
. (16)

The multivariate Taylor expansion can be leveraged for loss-function parameterization (Gon-
zalez and Miikkulainen, 2021). Let an n-class classification loss function be defined as LLog =
− 1
n

∑n
i=1 f(xi, yi). The function f(xi, yi) can be replaced by its kth-order, bivariate Taylor ex-

pansion, f̂k(x, y, ax, ay). For example, a loss function in x and y has the following third-order
parameterization with parameters θ (where a = 〈θ0, θ1〉):

L(x,y) = − 1

n

n∑
i=1

[
θ2 + θ3(yi − θ1) + 1

2θ4(yi − θ1)2

+1
6θ5(yi − θ1)3 + θ6(xi − θ0) + θ7(xi − θ0)(yi − θ1)

+1
2θ8(xi − θ0)(yi − θ1)2 + 1

2θ9(xi − θ0)2

+1
2θ10(xi − θ0)2(yi − θ1) + 1

6θ11(xi − θ0)3
]

(17)

As was shown by Gonzalez and Miikkulainen (2021), the technique makes it possible to train
neural networks that are more accurate and learn faster than those with tree-based loss function
representations. Representing loss functions in this manner guarantees that the functions are smooth,
do not have poles, can be implemented through addition and multiplication, and can be trivially
differentiated. The search space is locally smooth and has a tunable complexity parameter (the order
of expansion), making it possible to find valid loss functions consistently and with high frequency.
These properties are not necessarily held by alternative function approximators, such as Fourier
expansions, Padé approximants, Laurent polynomials, and Polyharmonic splines (Gonzalez and
Miikkulainen, 2021).

3.3 The TaylorGLO Method

TaylorGLO (Figure 1) aims to find the optimal parameters for a loss function represented as a
multivariate Taylor expansion. The parameters for a Taylor approximation (i.e., the center point and
partial derivatives) are referred to as θf̂ : θf̂ ∈ Θ, Θ = R#parameters . TaylorGLO strives to find the
vector θ∗

f̂
that parameterizes the optimal loss function for a task. Because the values are continuous,

as opposed to discrete graphs of the original GLO, it is possible to use continuous optimization
methods.

In particular, Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES; Hansen and
Ostermeier, 1996) is a popular population-based, black-box optimization technique for rugged,
continuous spaces. CMA-ES functions by maintaining a covariance matrix around a mean point
that represents a distribution of solutions. At each generation, CMA-ES adapts the distribution
to better fit evaluated objective values from sampled individuals. In this manner, the area in the
search space that is being sampled at each step grows, shrinks, and moves dynamically as needed to
maximize sampled candidates’ fitnesses. TaylorGLO uses the (µ/µ, λ) variant of CMA-ES (Hansen
and Ostermeier, 2001), which incorporates weighted rank-µ updates (Hansen and Kern, 2004) to
reduce the number of objective function evaluations needed.

In order to find θ∗
f̂
, at each generation CMA-ES samples points in Θ. Their fitness is determined

by training a model with the corresponding loss function and evaluating the model on a validation
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dataset. Fitness evaluations may be distributed across multiple machines in parallel and retried a
limited number of times upon failure. An initial vector of θf̂ = 0 is chosen as a starting point in the
search space to avoid bias.

Fully training a model can be prohibitively expensive in many problems. However, performance
near the beginning of training is usually correlated with performance at the end of training, and
therefore it is enough to train the models only partially to identify the most promising candidates.
This type of approximate evaluation is common in metalearning (Grefenstette and Fitzpatrick, 1985;
Jin, 2011). An additional positive effect is that evaluation then favors loss functions that learn more
quickly.

For a loss function to be useful, it must have a derivative that depends on the prediction.
Therefore, internal terms that do not contribute to ∂

∂yLf (x,y) can be trimmed away. This step
implies that any term t within f(xi, yi) with ∂

∂yi
t = 0 can be replaced with 0. For example, this

refinement simplifies Equation 17, providing a reduction in the number of parameters from twelve to
eight:

L(x,y) = − 1

n

n∑
i=1

[
θ2(yi − θ1) + 1

2θ3(yi − θ1)2 + 1
6θ4(yi − θ1)3

+θ5(xi − θ0)(yi − θ1) + 1
2θ6(xi − θ0)(yi − θ1)2

+1
2θ7(xi − θ0)2(yi − θ1)

]
.

(18)

Building on this foundation, the method for evolving GAN formulations is described next.

4 The TaylorGAN Approach

As GANs have grown in popularity, the difficulties involved in training them have become increasingly
evident. The loss functions used to train a GAN’s generator and discriminator constitute the core
of how GANs are formulated. Thus, optimizing these loss functions jointly can result in better
GANs. This section presents an extension of TaylorGLO to evolve loss functions for GANs. Images
generated in this way improve both visually and quantitatively, as the experiments in Section 6 show.

TaylorGLO parameterization represents a loss function as a modified third-degree Taylor polyno-
mial. Such a parameterization has many desirable properties, such as smoothness and continuity,
that make it amenable for evolution (Gonzalez and Miikkulainen, 2021). In TaylorGAN, there are
three functions that need to be optimized jointly (using the notation described in Table 1):

1. The component of the discriminator’s loss that is a function of D(x), the discriminator’s
output for a real sample from the dataset,

2. The synthetic / fake component of the discriminator’s loss that is a function of D(G(z)), the
discriminator’s output from the generator that samples z from the latent distribution), and

3. The generator’s loss, a function of D(G(z)).

The discriminator’s full loss is simply the sum of components (1) and (2). Table 2 shows how existing
GAN formulations can be broken down into this tripartite loss.

These three functions can be evolved jointly. GAN loss functions have a single input, i.e. D(x)
or D(G(z)). Thus, a set of three third-order TaylorGLO loss functions for GANs requires only 12
parameters to be optimized, making the technique quite efficient.
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Table 2: Interpretation of existing GAN formulations. These three components are all that is
needed to define the discriminator’s and generator’s loss functions (sans regularization terms). Thus,
TaylorGAN can discover and optimize new GAN formulations by jointly evolving three separate
functions.

Formulation Loss D (real) Loss D (fake) Loss G (fake)
Ex∼Pdata Ez∼Pz Ez∼Pz

GAN (minimax; Goodfellow et al., 2014) − logD(x) − log(1−D(G(z))) log(1−D(G(z)))
GAN (non-saturating; Goodfellow et al., 2014) − logD(x) − log(1−D(G(z))) − logD(G(z))
WGAN (Arjovsky et al., 2017) −D(x) D(G(z)) −D(G(z))
LSGAN (Mao et al., 2017) 1

2
(D(x)− 1)2 1

2
(D(G(z)))2 1

2
(D(G(z))− 1)2

Fitness for each set of three functions requires a different interpretation than in regular TaylorGLO.
Since GANs cannot be thought of as having an accuracy, a different metric needs to be used. The
choice of fitness metric depends on the type of problem and target application. In the uncommon
case where the training data’s sampling distribution is known, the clear choice is the divergence
between such a distribution and the distribution of samples from the generator. This approach will
be used in the experiments below.

Reliable metrics of visual quality are difficult to define. Individual image quality metrics can
be exploited by adversarially constructed, lesser-quality images (Borji, 2019). For this reason,
TaylorGAN utilizes a combination of two or more metrics, and multiobjective optimization of them.
Good solutions are usually located near the middle of the resulting Pareto front, and they can
be found effectively through an objective transformation technique called Composite Objectives
(Shahrzad et al., 2018). In this technique, evolution is performed against a weighted sum of metrics.
Individual metrics are scaled such that their ranges of typical values match. Thus, if one metric
improves, overall fitness will only increases if there is not a comparable regression along another
metric.

5 Experimental Setup

The technique was integrated into the LEAF evolutionary AutoML framework (Liang et al., 2019a).
TaylorGAN parameters were evolved by the LEAF genetic algorithm as if they were hyperparameters.
The implementation of CoDeepNEAT (Miikkulainen et al., 2019) for neural architecture search in
LEAF was not used.

The technique was evaluated on the CMP Facade (Tyleček and Šára, 2013) dataset with a
pix2pix-HD model (Wang et al., 2018). The dataset consists of only 606 perspective-corrected
256× 256 pixel images of building facades. Each image has a corresponding annotation image that
segments facades into twelve different components, such as windows and doors. The objective is for
the model to take an arbitrary annotation image as an input, and generate a photorealistic facade as
output. The dataset was split into a training set with 80% of the images, and validation and testing
sets, each with a disjoint 10% of the images.

Two metrics were used to evaluate loss function candidates: (1) structural similarity index
measure (SSIM; Wang et al., 2004) between generated and ground-truth images, and (2) perceptual
distance, implemented as the L1 distance between VGG-16 (Simonyan and Zisserman, 2014) ImageNet
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(Russakovsky et al., 2015) embeddings for generated and ground-truth images. During evolution, a
composite objective (Shahrzad et al., 2018) of these two metrics was used to evaluate candidates.
The metrics were normalized (i.e., SSIM was multiplied by 17 and perceptual distance by −1) to
have a similar impact on evolution.

The target GAN model, pix2pix-HD, is a refinement of the seminal pix2pix model (Isola et al.,
2016). Both models generate images conditioned upon an input image. Thus, they are trained
with paired images. The baseline was trained with the Wasserstein loss (Arjovsky et al., 2017) and
spectral normalization (Miyato et al., 2018) to enforce the Lipschitz constraint on the discriminator.
The pix2pix-HD model is also trained with additive perceptual distance and discriminator feature
losses. Both additive losses are multiplied by ten in the baseline. Models were trained for 60 epochs.

When running experiments, each of the twelve TaylorGAN parameters was evolved within
[−10, 10]. The learning rate and weights for both additive losses were also evolved since the baseline
values, which are optimal for the Wasserstein loss, may not necessarily be optimal for TaylorGAN
loss functions.

6 Results

TaylorGAN found a set of loss functions that outperformed the original Wasserstein loss with spectral
normalization. After 49 generations of evolution, it discovered the loss functions

LDreal = 5.6484 (D(x)− 8.3399) + 9.4935 (D(x)− 8.3399)2

+8.2695 (D(x)− 8.3399)3
(19)

LDfake = 6.7549 (D(G(z))− 8.6177) + 2.4328 (D(G(z))− 8.6177)2

+8.0006 (D(G(z))− 8.6177)3
(20)

LGfake = 0.0000 (D(G(z))− 5.2232) + 5.2849 (D(G(z))− 5.2232)2

+0.0000 (D(G(z))− 5.2232)3.
(21)

A learning rate of 0.0001, discriminator feature loss weight of 4.0877, and perceptual distance loss
weight of 10.3155 evolved for this candidate.

Figure 2 compares images for five random test samples that were generated with both the
Wasserstein baseline and metalearned TaylorGAN loss functions. Visually, the TaylorGAN samples
have more realistic coloration and details than the baseline. Baseline images all have an orange
tint, while TaylorGAN images more closely match ground-truth images’ typical coloration. Note
that color information is not included in the model’s input, so per-sample color matching is not
possible. Additionally, TaylorGAN images tend to have higher-quality fine-grained details. For
example, facade textures are unnaturally smooth and clean in the baseline, almost appearing to be
made of plastic.

Quantitatively, the TaylorGAN model also outperforms the Wasserstein baseline. Across ten
Wasserstein baseline runs, the average test-set SSIM was 9.4359 and the average test-set perceptual
distance was 2129.5069. The TaylorGAN model improved both metrics, with a SSIM of 11.6615 and
perceptual distance of 2040.2561.

Notably, the training set is very small, with fewer than 500 image pairs, showing how loss-function
metalearning’s benefits on small classification datasets also extend to GANs. Thus, metalearned
loss functions are an effective way to train better GAN models, extending the types of problems to
which evolutionary loss-function metalearning can be applied.

11



Input:

Ground-Truth:

Wasserstein Reproduction (Baseline):

TaylorGAN Reproduction:

Figure 2: Five random samples from the CMP Facade test dataset, comparing Wasser-
stein and TaylorGAN loss functions. The loss functions are used to train pix2pix-HD models
that take architectural element annotations (top row) and generate corresponding photorealistic
images similar to the ground-truth (second row). Images from the model trained with TaylorGAN
(bottom row) have a higher quality than the baseline (third row). TaylorGAN images have more
realistic coloration, better separation of the buildings from the sky, and finer details than the baseline.
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7 Discussion and future work

The results in this paper show that evolving GAN formulations is a promising direction for research.
On the CMP Facade benchmark dataset, TaylorGAN discovered powerful loss functions: With
them, GANs generated images that were qualitatively and quantitatively better than those produced
by GANs with a Wasserstein loss. This unique application showcases the power and flexibility of
evolutionary loss-function metalearning, and suggests that it may provide a crucial ingredient in
making GANs more reliable and scalable to harder problems.

At first glance, optimizing GAN loss functions is difficult because it is difficult to quantify
a GAN’s performance. That is, performance can be improved on an individual metric without
increasing the quality of generated images. Multiobjective evolution, via composite objectives, is
thus a key technique that allows evolution to work on GAN formulations. That is, by optimizing
against multiple metrics, each with their own negative biases, the effects of each individual metric’s
bias will not deleteriously affect the path evolution takes.

There are several avenues of future work with TaylorGAN. First, it can naturally be applied to
different datasets and different types of GANs. While image-to-image translation is an important
GAN domain, there are many others that can benefit from optimization, such as image super-
resolution and unconditioned image generation. Since TaylorGAN customizes loss functions for a
given task, dataset, and architecture, unique sets of loss functions could be discovered for each of
them.

There is a wide space of metrics, such as Delta E perceptual color distance (Robertson, 1990),
that quantify different aspects of image quality. They can be used to evaluate GANs in more detail
and thus guide multiobjective evolution more precisely, potentially resulting in more effective and
creative solutions.

8 Conclusion

While GANs provide fascinating opportunities for generating realistic content, they are difficult
to train and evaluate. This paper proposes an evolutionary metalearning technique, TaylorGAN,
to optimize a crucial part of their design automatically. By evolving loss-functions customized
to the task, dataset, and architecture, GANs can be more stable and generate qualitatively and
quantitatively better results. TaylorGAN may therefore serve as a crucial stepping stone towards
scaling up GANs to a wider variety and harder set of problems.
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