
In Proceedings of the International Conference on Artificial Neural Networks (ICANN-98, Skovde, Sweden).
New York: Elsevier, 1998.

2-D Pole Balancing with Recurrent
Evolutionary Networks�

Faustino Gomez

Department of Computer Sciences

The University of Texas at Austin

Austin, TX 78712

inaki@cs.utexas.edu

Risto Miikkulainen

Department of Computer Sciences

The University of Texas at Austin

Austin, TX 78712

risto@cs.utexas.edu

Abstract

The success of evolutionary methods on standard control learning
tasks has created a need for new benchmarks. The classic pole
balancing problem is no longer di�cult enough to serve as a viable
yardstick for measuring the learning e�ciency of these systems. In
this paper we present a more di�cult version to the classic problem
where the cart and pole can move in a plane. We demonstrate
a neuroevolution system (Enforced Sub-Populations, or ESP) that
can solve this di�cult problem without velocity information.

1 Introduction
The pole-balancing or inverted pendulum problem has long been established
as a standard benchmark for arti�cial learning systems. For over 30 years
researchers in �elds ranging from control engineering to reinforcement learning
have tested their systems on this task [1{3]. There are two primary reasons
for this longevity: (1) Pole balancing has intuitive appeal. It is a real-world
task that is easy to understand and visualize. It can be performed manually by
humans and implemented on a physical robot. (2) It embodies many essential
aspects of a whole class of learning tasks that involve temporal credit assignment

[4]. In short, it is an elegant environment that is a good surrogate for more
general problems.

Despite this long history, the relatively recent success of modern reinforce-
ment learning methods on control learning tasks has rendered the basic pole
balancing problem obsolete. It can now be solved so easily that it provides
little or no insight about a system's ability. Neuroevolution (NE) systems (i.e.
systems that evolve neural networks using genetic algorithms), for example,
often �nd solutions in the initial random population [5, 6].

In response to this need for a new benchmark, a variety of ways to extend
the basic pole-balancing task have been suggested. Wieland [7] presented a
series of increasingly di�cult variations on the standard pole balancing task

�This research was supported in part by National Science Foundation under grant #IRI-
9504317.

Task Environment

Figure 1: The Enforced Sub-Populations Method (ESP). The popula-
tion of neurons is segregated into sub-populations shown here as clusters of
circles. The network is formed by randomly selecting one neuron from each
subpopulation.

culminating in a two pole version. In Gomez and Miikkulainen [5], the Enforced
Sub-Populations (ESP) method was shown to be signi�cantly faster than other
NE methods on this control problem. Here we present a di�erent, more intuitive
and realistic task, where the cart and pole can move in a plane instead of just
a 1-D track. We demonstrate how ESP can evolve a fully recurrent network to
solve this di�cult task even when no velocity information is provided.

2 Enforced Sub-Populations (ESP)
ESP is a neuroevolution system based on Symbiotic, Adaptive Neuro-Evolution
(SANE; [8]). Like SANE, it di�ers from other NE systems in that it evolves a
population of neurons instead of complete networks (�gure 1). These neurons
are combined to form neural networks that are then evaluated on a given prob-
lem. ESP di�ers from SANE in that neurons for the di�erent positions in the
network are evolved in separate subpopulations.

Evolution in ESP proceeds as follows:

1. Initialization. The number of hidden units u in the networks that will
be formed is speci�ed and u subpopulations of neuron chromosomes are
created. Each chromosome encodes the input and output connection
weights of a neuron with a random string of oating point numbers.

2. Evaluation. A neuron is selected from each subpopulation at random
to form a network. The network is submitted to a trial in which it is
evaluated on the task and awarded a �tness score. The score is added to
the cumulative �tness of each neuron that participated in the network.
This process is repeated until each neuron has participated in an average
of e.g. 10 trials.

3. Recombination. The average �tness of each neuron is calculated by
dividing its cumulative �tness by the number of trials in which it partic-
ipated. For each subpopulation, the neurons are then ranked by average
�tness. Each neuron in the top quartile of its subpopulation is recombined
with a higher-ranking neuron in the same subpopulation using crossover

and low-probability mutation. The o�spring is used to replace the lowest-
ranking half of the population.

4. Goto 2.

The key di�erence between ESP and SANE is that in SANE all of the neu-
rons belong to a single population and are all allowed to mate with each other.
This feature allows SANE to sustain diversity and prevent premature conver-
gence. If one type of neuron genotype begins to take over the population,
networks will often be formed that contain several copies of that genotype.
Because di�cult tasks usually require several di�erent hidden neurons, such
networks cannot perform well. They incur low �tness, and the dominant geno-
type will be selected against, bringing diversity back into the population. As a
matter of fact, in the advanced stages of SANE evolution, instead of converging
the population around a single individual like the standard GA approaches, the
neuron population clusters into \species" or groups of individuals that perform
specialized functions in the target behavior [8].

ESP builds on the SANE in two ways: (1) It accelerates evolution. The sub-
populations that gradually form in SANE are already circumscribed by design
in ESP. The \species" do not have to organize themselves out of a single large
population, and their progressive specialization is not hindered by recombina-
tion across specializations that usually ful�ll relatively orthogonal roles in the
network. (2) It can evolve recurrent networks more easily. A neuron's behavior
in a recurrent network is critically dependent upon the neurons to which it is
connected. Since SANE forms networks by randomly selecting neurons from a
single population, a neuron cannot rely on being combined with similar neurons
across any two trials. A neuron that behaves one way in one trial may behave
very di�erently in another, and SANE receives very noisy information about
the �tness of recurrent neurons. The sup-population architecture of ESP makes
the evaluation of the neurons more consistent. A neuron's recurrent connection
weight ri will always be associated with neurons from subpopulation Si. As the
sub-populations specialize, neurons evolve to expect, with increasing certainty,
the kinds of neurons to which they will be connected. Therefore, the recurrent
connections to those neurons can be adapted reliably.

3 The 2D Pole Balancing Problem
Figure 2 shows the two-degree-of-freedom pole balancing system. The objective
is to apply force to the cart in both the x and y directions at regular time
intervals such that the pole is balanced inde�nitely and the cart stays within
the track boundaries. The state of this system is de�ned by eight variables:
the angle of the pole from vertical in the x and y directions (�x,�y), the angular

velocities of the pole (_�x, _�y), the position of the cart in the plane (x,y), and
the velocity of the cart (_x, _y). The equations of motion for this system are an
extension of those found in [7] for the single pole problem with one equation for
each principal axis. In all of the experiments we performed the networks were
only provided with x, y, �x, and �y, and the network itself had to determine the

Figure 2: The 2-degree-of-freedom pole balancing system. The
�gure shows a snapshot of a 3D real-time display, available at
http://www.cs.utexas.edu/users/inaki/esp/2dpole-demo.

Method Generations Failures
SANE 579 13
ESP 41 0

Table 1: Comparison between SANE and ESP on the the 2D pole problem
without velocities. Results are the average of 50 simulations.

derivatives. This is a realistic version of the problem since only the positions
can be observed easily in the real world.

The SANE approach has proven faster and more e�cient than other re-
inforcement learning methods in the basic pole balancing task [6] and ESP
has been shown to solve the double pole balancing problem very e�ciently [5].
The two-dimensional problem examined here was found to be more di�cult
to evolve than the double pole problem. There are several factors that make
this problem more challenging for NE systems: (1) The mechanical system has
two degrees of freedom so that the network must have a vector output. (2)
The state space is larger (8 variables instead of 6). (3) Because the networks
are not provided with velocity information they need to be recurrent. (4) The
networks must evolve to control the system by also evolving to compute the
derivatives of the \visible" state variables.

4 Experimental Results
The pole balancing experiments were implemented using the Runge-Kutta
fourth-order method with a time step of 0:01s. The pole was 1 meter long
and was always started leaning 1 degree towards the northeast with a velocity
of zero. This prevented the networks from �nding a solution by simply out-
putting force values close to zero. The force was continuous in the range [-10,
10] N. Fitness was determined by the number of time steps a network could
keep the pole within �15 degrees from vertical and keep the cart within a 3
meter area. A task was considered solved if a network could balance the poles
for 180,000 time steps. Each generation, 600 fully recurrent networks were

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

M
et

er
s

Meters

(a)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

M
et

er
s

Meters

(b)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M
et

er
s

Meters

(c)

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

M
et

er
s

Meters

(d)

Figure 3: Sample solution trajectories for the 2D pole problem. Paths show
the movement of the cart over time starting at the origin.

evaluated. At each time step the networks were relaxed once. Neuron chro-
mosomes were encoded as strings of oating point numbers, and arithmetic
crossover was used to generate new neurons. Each chromosome was mutated
with probability 0.2, replacing a randomly chosen weight value with a ran-
dom value within the range [-6.0, 6.0]. These techniques and parameters were
found e�ective experimentally; small deviations from them produce roughly
equivalent results.

For the ESP runs the system was restarted from a new random seed if
performance ceased to improve over 15 generations. This was done because if
ESP converged early it could spend a great deal of time evaluating suboptimal
solutions{time which could be better spent retrying with a new population,
especially given the speed with which ESP typically solves the task. The total
number of generations over all retries was counted as the performance of each
run.

Table 1 shows the results for SANE and ESP. A simulation was considered
to have failed if a solution could not be found within 1000 generations. SANE
failed to �nd a solution 26% of the time and always took many more generations
than ESP when it did succeed. ESP requires 14 times fewer generations to
reliably �nd a solution with restarts occurring 14% of the time.

Figure 3 shows the path of the cart for four di�erent example solutions. All
of these solutions begin by moving northeast|the direction the pole is leaning
towards initially. Once the pole is brought back towards the vertical position, it
has a non-zero velocity and the networks employ a number of di�erent strategies
to bring the system under control. In �gure 3(a) we see the cart following a
spiral path toward a stable �xed point. In (b) the cart spins outward from an
unstable �xed point to a stable limit cycle. The paths in (c) and (d) appear
chaotic: they follow a regular path that does not repeat itself even for prolonged
observations.

5 Discussion and Conclusion
The 2-D pole balancing task without velocities is signi�cant not only because
it involves a realistic, non-linear, dynamic environment, but also because it re-
quires memory. In the real-world, an agent rarely has direct access to su�cient
state information to act optimally. Many tasks from game-playing to robotics
require memory to disambiguate states.

The current task, therefore, can serve as a surrogate with which new meth-
ods can be tested. SANE has been shown e�ective in a variety of domains,
including robot arm control, constraint satisfaction, and in controlling chaos
[6, 8, 9]. The results presented in this paper show that ESP extends this pow-
erful method by allowing the evolution of recurrent networks and therefore
making it applicable to non-Markovian environments. In the future, we plan
to apply this system to real-world tasks such as robot navigation and game
playing.

References
[1] C. W. Anderson. Learning to control an inverted pendulum using neural networks. IEEE

Control Systems Magazine, 9:31{37, April 1989.
[2] D. Michie and R. A. Chambers. BOXES: An experiment in adaptive control. In E. Dale

and D. Michie, editors, Machine Intelligence. Oliver and Boyd, Edinburgh, UK, 1968.
[3] J. Scha�er and R. Cannon. On the control of unstable mechanincal systems. In Auto-

matic and Remote Control III: Proceedings of the Third Congress of the International
Federation of Automatic Control, 1966.

[4] R. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD thesis, Uni-
versity of Massachusetts, Amherst, MA, 1984.

[5] F. Gomez and R. Miikkulainen. Incremental evolution of complex general behavior.
Adaptive Behavior, 5:317{342, 1997.

[6] D. E. Moriarty and R. Miikkulainen. E�cient reinforcement learning through symbiotic
evolution. Machine Learning, 22:11{32, 1996.

[7] A. Wieland. Evolving neural network controllers for unstable systems. In Proceedings of
the International Joint Conference on Neural Networks (Seattle, WA), volume II, pages
667{673, Piscataway, NJ, 1991. IEEE.

[8] D. E. Moriarty. Symbiotic Evolution of Neural Networks in Sequential Decision Tasks.
PhD thesis, Department of Computer Sciences, The University of Texas at Austin, 1997.
Technical Report UT-AI97-257.

[9] D. E. Moriarty and R. Miikkulainen. Evolving obstacle avoidance behavior in a robot
arm. In P. Maes, M. Mataric, J.-A. Meyer, and J. Pollack, editors, From Animals to
Animats 4: Proceedings of the 4th International Conference on Simulation of Adaptive
Behavior, pages 468{475, Cambridge, MA, 1996. MIT Press.

