
USING MARKER-BASED GENETIC ENCODING OF NEURAL NETWORKS
TO EVOLVE FINITE-STATE BEHAVIOUR �y

Brad Fullmer and Risto Miikkulainen
Department of Computer Sciences

The University of Texas at Austin, Austin, TX 78712-1188

email fullmer,risto@cs.utexas.edu

Abstract

A new mechanism for genetic encoding of neural
networks is proposed, which is loosely based on the
marker structure of biological DNA. The mechanism
allows all aspects of the network structure, includ-
ing the number of nodes and their connectivity, to
be evolved through genetic algorithms. The e�ective-
ness of the encoding scheme is demonstrated in an
object recognition task that requires arti�cial crea-
tures (whose behaviour is driven by a neural network)
to develop high-level �nite-state exploration and dis-
crimination strategies. The task requires solving the
sensory-motor grounding problem, i.e. developing a
functional understanding of the e�ects that a crea-
ture's movement has on its sensory input.

1 Introduction

The behaviour of a particular biological organism is
driven by its neural circuitry. In modeling arti�cial life
forms it is therefore natural to represent the organism
as an arti�cial neural network (ANN) with a set of
sensory inputs and motor outputs. ANNs have been
shown to be capable of very complex processing, and
in most cases they can learn the processing task from
examples (Siegelman and Sontag, 1991; McClelland
et al., 1986).

However, the usual neural network learning algo-
rithms are not always useful in arti�cial life problems.
Many algorithms, such as backpropagation (Rumel-
hart et al., 1986), require that the correct output is
known at each input situation. This requirement is
relaxed in reinforcement learning, where only an es-
timate of the goodness of the action (or sequence of
actions) is needed for learning (Barto et al., 1983). In

�This research was supported in part by a grant from the
University of Texas Research Institute to the second author.
Majority of simulations were run on a Cray Y{MP8/864 at the
University of Texas Center for High-Performance Computing.

yTo appear in Proceedings of the First European Conference
on Arti�cial Life (ECAL-91), Paris, 1991.

arti�cial life, even this feedback may not be immedi-
ately available. For example, if the arti�cial creatures
are supposed to learn cooperation in a complicated
task, there is no easy way to specify what the correct
actions at each point are, or even whether a particular
sequence of actions is good or bad.

For this reason, genetic algorithms (Holland, 1975;
Goldberg, 1988) are naturally well-suited for develop-
ing neural networks in arti�cial life. It is only neces-
sary to specify a �tness function that estimates how
well the creature performs in the task over its lifetime.
The best creatures are then genetically combined to
produce o�spring, thereby increasing the density of
successful traits in the population. Over many gener-
ations, the average �tness of the population improves
until a su�cient pro�ciency level is attained. As in bi-
ological evolution, the population adjusts to evolution-
ary pressures by developing advantageous attributes
including high-level behavioural strategies and low-
level sensory processing capabilities. Genetic algo-
rithms have been used previously to evolve various
types of behaviour in arti�cial creatures such as fol-
lowing a broken trail (Je�erson et al., 1991), foraging
for food (Collins and Je�erson, 1991) and communi-
cating instructions (Werner and Dyer, 1991).

A central question in the neuro-evolution approach
is how the network structure can be represented in
terms of genetic information so that genetic algorithms
are maximally e�ective. In this paper, a new rep-
resentation mechanism that is loosely based on the
marker structure of DNA is proposed. Unlike previ-
ous approaches, this mechanism allows all aspects of
the network structure, including the number of nodes
and their connectivity, to be controlled by evolution.

The e�ectiveness of the encoding scheme is demon-
strated in an object discrimination task. Successful
completion of this task requires that the creatures
develop high-level �nite-state exploration strategies.
The creatures in our experiments possess a primitive
visual apparatus, i.e. their input consists of a coarse

Object

Creature

Visual field

World

Legend

Figure 1: Object discrimination task. The object oc-

cupies the center of the world and the edges of the world

wrap around. A creature is initially placed on a random

empty square facing a random direction and it sees the

squares in front of it and beside it.

visual image. In order to recognize the object, the
creatures �rst need to evolve a capability to make
sense out of their raw sensory information, and to re-
late it to their own actions (movements). We will call
this task the \sensory-motor grounding problem".

2 The object discrimination task

In the experiments described below, creatures are
evolved in the task of discriminating between a \good"
and a \bad" object in an arti�cial world. An unpro-
cessed \digitized" representation of the visual �eld is
given as input, and the creatures have to evolve high-
level search and recognition strategies.

The basic test scenario involves placing a creature
and an object together in the simulated world and
allowing the creature to explore the world (�gure 1).
The world is a toroidal �ve-by-�ve grid. The edges
of the grid wrap around, i.e. the square immediately
to the right of the rightmost square on the grid is
the leftmost square on the same row, and similarly
in the vertical direction. The objects vary in size and
shape but generally occupy �ve to nine squares and are
placed in the center of the grid. A creature occupies
one square and can \see" �ve squares around it: the
square directly in front of it, directly to its left and
right and diagonally to its front left and right.

The creature can perform the following actions:

1. Turn left

2. Turn right

3. Move forward

4. Do nothing

The fourth option is included so that the creature
can change the internal state of its neural net with-
out changing its position (Je�erson et al., 1991).

The creature is initially placed on a random square
(one not occupied by the object) and faces a random
direction. The creature is given a lifespan of 35 cycles,
where each cycle consists of:

1. Evaluating the creature's neural network given
the network's current state and the creatures vi-
sual �eld as input.

2. Adjusting the creature's physical position accord-
ing to the network's output.

There are two possible outcomes for each creature's
lifespan:

1. The creature succeeds if:

� The object was `good' and the creature hit
it, i.e. moved onto a square occupied by the
object -or-

� The object was `bad' and the creature
avoided it for all 35 cycles.

2. The creature fails if:

� The object was `good' and the creature did
not hit it in 35 cycles -or-

� The object was `bad' and the creature hit it.

If the creature succeeds, it is given a new lifespan
and the test is repeated with a new object. This pro-
cess continues until the creature fails, at which point
the creature's �tness level is determined by adding
up the number of consecutive tests that the creature
has successfully completed. After each creature has
been tested and scored in this manner, the population
of creatures is evolved using genetic algorithms (sec-
tion 4). If a creature evolves that performs correctly
for su�ciently many runs, it is said to have perfected
the task and the evolution terminates.

3 Genetic representation of neural

networks

3.1 Motivation

Genetic algorithms require that a creature's neural
network be represented in a chromosome, that is, as a
homogeneous string of e.g. integer values. It is these
strings that the algorithm manipulates in order to im-
prove the �tness of the population.

Node de�nition:
<start> <key> <initial value> <k1> <w1> <k2> <w2> <kn> <wn> <end>

where:
start - Start marker.

key - Node identi�cation value used in the connections (see below).

initial value - Output value of this node prior to �rst evaluation.

<ki> <wi> - Input connection speci�cations:
- ki speci�es the source of the connection. The node whose key
value (see above) is closest to this value is taken as the source.

- wi speci�es the weight of the connection.

<end> - End marker.

Figure 2: Structure of a node de�nition. Every node in the network is de�ned by this sequence, which may appear

anywhere on the chromosome.

Previous approaches to genetic representation of
neural networks have restricted the number of neu-
rons (nodes) or the connectivity of the network (Dress,
1987; Mjolsness et al., 1988; Hancock, 1990; Collins
and Je�erson, 1991; Je�erson et al., 1991; Werner
and Dyer, 1991). These encoding schemes simplify the
work of the genetic algorithm by reducing the number
of parameters that must be optimized. However, any
constraints placed on the network structure can re-
sult in a network that is either ine�cient or incapable
of performing the desired task. In order to maximize
chances of evolving an optimal network, the search
space of the genetic algorithm should be as large as
possible. The marker-based encoding scheme, pro-
posed below, allows every aspect of the network ar-
chitecture to be controlled by evolution.

3.2 Marker-based encoding

The key feature of the marker-based encoding scheme
is to use marker values to section o� the working areas
of the genetic material. This approach is inspired by
the structure of biological DNA.

In DNA, the genetic information is contained in a
sequence of nucleotide triplets. These triplets specify
strings of amino-acids that make up a protein. Typ-
ically, a single strand of DNA speci�es multiple pro-
teins in this fashion. To separate the speci�cation of
di�erent proteins, certain nucleotide triplets serve as
markers rather than being part of amino-acid de�ni-
tions. Each protein speci�cation consists of a start
marker and an end marker with the triplets in be-
tween de�ning the composition of the protein (Roth-
well, 1988).

In a similar manner, we use markers to separate
individual node de�nitions. Each de�nition contains
all information that the node needs in order to carry

out its computations. Instead of encoding the net-
work structure in global terms such as number of lay-
ers or degree of connectivity, we let these features
emerge from individual node de�nitions. The number
of nodes in the network depends solely on the number
of start/end marker pairs found in the chromosome.

Each node de�nition contains the identi�cation of
the node, its initial activation value, and a list spec-
ifying its input sources and weights (�gure 2). The
neuron may receive input from other nodes, from the
sensors, and from its own output. The number of con-
nections is determined by the distance between the
start and end markers, allowing each node to use as
many or as few inputs as it requires.

The chromosome in our experiments is a list of 800
integers ranging between -100 and 100. The start and
end markers are identi�ed by their absolute values:
if this value MOD 15 equals 1, the integer is a start
marker; if the value MOD 15 equals 2, the integer
is an end marker. The interpretation of other chro-
mosome integers depends on their position relative to
the start and end markers. This scheme gives each
value approximately 13% chance of being some type
of a marker. By making the MOD constant larger
or smaller, the density of node de�nitions can be ad-
justed.

The chromosome is implemented as a linear list but
is treated as a continuous circular entity, that is, a
node de�nition may begin near the end of the list and
continue at the beginning of the list (�gure 3). Node
de�nitions are not allowed to overlap. If a start marker
is encountered in the middle of a node de�nition it is
treated like any other value (as a weight, or key, etc.).
A node de�nition that `wraps around' to the start of
the chromosome is terminated by the start marker of
the �rst node de�nition if an end marker has not yet

S a 1 b 5 a -2 EE3 abS 0

'a' node 'b' node

initial value = 1 initial value = 0

5

-2

3

E

S

a, b

SSSSttttaaaarrrrtttt MMMMaaaarrrrkkkkeeeerrrr

EEEEnnnndddd MMMMaaaarrrrkkkkeeeerrrr

KKKKeeeeyyyy VVVVaaaalllluuuueeeessss

CCCChhhhrrrroooommmmoooossssoooommmmeeee VVVVaaaalllluuuueeeessss

UUUUnnnnuuuusssseeeedddd VVVVaaaalllluuuueeee

9 CCCCoooonnnnnnnneeeeccccttttiiiioooonnnn WWWWeeeeiiiigggghhhhtttt

Figure 3: Sample marker-based chromosome-to-neural-network mapping. The chromosome contains two node

de�nitions. The 'a' node de�nition begins at the �fth chromosome position and ends at the 12th. The 'b' de�nition

begins at the 17th position and wraps around to the beginning of the chromosome, �nally terminating at the second

position.

been encountered. Integers between an end marker
and a start marker are considered inactive, i.e. they
do not take part in de�ning any part of the network.

3.3 Evaluating the network

During evaluation (execution) of the network, each
node computes the weighted sum of its input and
thresholds at zero:

ok = F (�n

i=1wioki) (1)

where ok is the output of node identi�ed by key k and
F (x) is a binary threshold function at 0.

The nodes are evaluated in the order in which they
are read o� the chromosome. Before each node's initial
evaluation, its output value is set to its initial value
(speci�ed in the node de�nition) MOD 2. There are
�ve binary inputs to the network, each representing
whether a square within the creature's �eld of vision
is empty or occupied. These inputs are referenced in
the node's input connection list by mapping them to
a certain range of key values. We de�ne any connec-
tion key whose absolute value is less than 20 to be a
reference to an input. The actual input is then iden-
ti�ed as the key's absolute value MOD 5. This gives
each connection a 20% chance of coming from a sen-
sory input. The output of the network, specifying one
of the four possible actions, is taken as the output val-
ues of the last two nodes read o� of the chromosome.
If a network contains fewer than two nodes it is not
evaluated.

3.4 Properties

Most genetic representations of neural networks �x
each position on the chromosome to a particular net
characteristic (Dress, 1987; Mjolsness et al., 1988;
Hancock, 1990; Collins and Je�erson, 1991; Je�erson
et al., 1991; Werner and Dyer, 1991). Marker-based
representation allows each position to be used in the
way that produces the maximum bene�t for the crea-
ture. In some cases many nodes with a small number
of connections may be ideal, in other cases fewer nodes
with a larger number of connections may be required.
If a small, e�cient network topology is desired, net-
work size or execution speed can be incorporated into
the �tness function.

An interesting phenomenom which consistently
emerges when using this encoding scheme is the oc-
currence of nodes with no input connections, or `con-
stant nodes'. Since they receive no input, the output
value of these nodes will never deviate from the initial
value. Other nodes can reference these nodes as in-
puts, e�ectively establishing a non-zero threshold for
that node. In other words, the constant nodes act
as bias nodes, which are commonly used in place of
threshold parameters in e.g. backpropagation learn-
ing (Rumelhart et al., 1986).

4 The Genetic Algorithm

4.1 Overall Strategy

The genetic algorithmused in our experiments is based
on standard techniques (Goldberg, 1988). After all

One Iteration of GA for a Population of 50

1. Combine the best 15 chromosomes to form 30
new chromosomes (pairing each with another
chromosome whose score is at least as good).

2. Replace the worst 30 chromosomes with the
new o�spring.

3. Mutate chromosomes (except the top scorer's).

4. Sort chromosomes by score.

Table 1: Summary of the Genetic Algorithm.

creatures have been tested and assigned a score, a
mate is assigned to each elite creature (elite = the
highest scoring 30% of the population) by randomly
selecting another creature whose score is at least as

good. This strategy ensures that the best creature in
the entire population is always duplicated in the o�-
spring, and the higher-scoring creatures have better
chances of propagating their genetic information. The
new creatures replace the worst creatures in the pop-
ulation, while the original elite remain in the popu-
lation. Finally, every creature except the top-scorer
undergoes mutation. A population of 50 creatures
was used in the experiments. The genetic algorithm is
summarized in table 1.

It is common in genetic algorithm experiments to
allow the genetic operators to manipulate the chromo-
some at the bit level (Goldberg, 1988). Our scheme,
however, treats the integer as the basic genetic unit.
This approach was adopted mainly to reduce process-
ing overhead, thereby allowing larger chromosomes.

4.2 Crossover

The standard two-point crossover approach is used
to generate o�spring (Goldberg, 1988). The parent
chromosomes are partitioned at two randomly chosen
points (�gure 4). Since the chromosome is treated as
a circular entity, this e�ectively breaks the chromo-
some into two continuous chunks. An o�spring chro-
mosome is constructed by taking one chunk from each
parent. This way two new o�spring are generated at
each crossover operation. The idea behind crossover
is that di�erent bene�cial traits, previously encoded
on di�erent parent chromosomes, will have a chance
of ending up on the same o�spring chromosome, re-
sulting in an o�spring superior to either parent.

The marker-based representation scheme interacts
with the crossover process in an interesting way. Since
much of the space in the chromosome is unused (the

Parent 1
Parent 2

Offspring 1
Offspring 2

Crossover

Figure 4: Two-point crossover operation. Two o�-

spring are generated by recombining the genetic material

of the parents.

space between the end of one node de�nition and the
start of the next), the crossover points have a chance of
falling in the unused sections, in which case the node
de�nitions are transferred to the o�spring without be-
ing disrupted. Additionally, because the connections
are speci�ed with key values (rather than e.g. with
positions on the chromosome), a whole group of nodes
can be passed from a parent to an o�spring with their
connections intact, perhaps preserving a useful trait.
On the other hand, it is also possible to break node
de�nitions during crossover, and some keys may take
on di�erent meanings in the new context. The like-
lihood of preservation vs. variation can be adjusted
by changing the density of the start and end markers
(section 3.2).

If the crossover operation was performed at the bit
level, some chromosome values could change if a split
broke up the bits of a chromosome integer. This would
introduce new variability in the gene pool. However,
much of the same variability can also be achieved
through mutation.

4.3 Mutation

The standard mutation operation works by ipping a
bit in a chromosome (Goldberg, 1988). To simulate
the natural variability of this scheme at the integer
level, the following approach is used: individual in-
teger elements are mutated by randomly selecting a
delta value within the legal range and adding the delta
to the existing integer value. If the new value falls
outside of the allowable range, it will \wrap around".
Each element in the chromosome has a 0.4% change of
undergoing mutation during each evolutionary cycle.

Three types of changes can occur, depending on
where the mutation takes place. Most of the muta-
tions occur in connection weights, and result in minor,
smooth changes in the creature's behaviour. Muta-
tion in a connection source is as frequent but has no

Good Bad

Figure 5: Data set 1. The objects can always be identi-

�ed before hitting them.

Seed Generations Nodes Connects/Node
1 304 15 11.20
2 4 11 9.00
3 77 16 7.56
4 7 15 10.07
5 296 15 9.73

Table 2: Test results for data set 1. Listed are: ran-

dom number generator seed, number of nodes in the perfect

creature's neural network, and average number of connec-

tions per node for the same network.

e�ect on behaviour until the change is large enough
so that a di�erent source is identi�ed. This change is
discrete, and may result in more signi�cant changes
in functionality. The third type of mutation occurs in
start and stop markers. These are relatively rare but
result in very signi�cant changes. Nodes may be cre-
ated and deleted, or large groups of connections may
be created or deleted. In other words, mutation in the
marker-based genetic representation can account for
both smooth and discrete evolutionary steps.

5 The Experiments

In each experiment, a population of creatures is
evolved until a creature completely mastering the task
emerges. This creature must be able to always seek
out the good object and avoid the bad object from an
arbitrary starting position and orientation. The dif-
�culty of this task depends on the choice of objects.
Three di�erent data sets (i.e. object selections) are
used. The initial chromosome values for all creatures
are generated randomly. Each data set was tested �ve
times using �ve di�erent random number generator
seeds.

Good Bad

Figure 6: Data set 2. Several ambiguous views exist.

Recognizing the good object requires traversing around it

looking for a characteristic view.

Seed Generations Nodes Connects/Node
1 116 17 6.94
2 211 15 10.80
3 36 16 9.25
4 414 14 8.29
5 15 9 20.11

Table 3: Test results for data set 2.

5.1 Data set 1: Straightforward pattern

recognition

The �rst data set (�gure 5) is relatively simple because
each object can be easily identi�ed. The creature only
needs to go directly towards the object. When the
creature sees an object square directly in front of it, it
can always tell whether the object is good or bad. For
example, if the creature sees \ " , it can simply
stop, since this pattern cannot be found in the good
object. Likewise, if the creature sees a \ " directly
in front of it and a \ " directly to one side it should
know to move forward, since this pattern only appears
in the good object.

The creatures learned to master this task in an av-
erage of 138 generations (iterations of the genetic al-
gorithm, table 2). Two types of behaviour evolved. In
one case the creatures would search for a distinguish-
ing view of the object and once found, either go into a
wait sequence if the object was bad, or hit the object
if it was good. The other type of behaviour (developed
in one of the �ve experiments) had the creature circle
the bad object inde�nitely and quickly hit the good
object.

5.2 Data set two: Surveying required

The objects in the second data set (�gure 6) present a
greater challenge as there is no longer any unique view
that identi�es the bad object. Every view found with

Good Bad

Figure 7: Data set 3. Objects are reversed from data

set two. Hitting the good object requires using information

from at least two di�erent views.

the bad object is also possible with the good object.
The creature must survey di�erent parts of the object
and hit it only if it sees the unique characteristics of
the good object.

The average number of generations taken to evolve
a perfect creature in this test was 158 (table 3). The
behaviour of all these creatures followed the same basic
pattern: circle the bad object inde�nitely and hit the
object if a missing corner is seen. Note that this is
identical to the behaviour of one of the creatures in
the �rst data set. In fact when this creature was run
on data set two, it achieved a perfect score.

An interesting phenomenomwas observed in the cir-
cling creatures. They seem to have evolved an initial-
ization phase, where they will �rst usually move for-
ward one square and rotate 360 degrees before they
start circling. Occasionally, though, they will forgo
this phase and start circling immediately. It seems
that for certain initial positions and orientations, they
cannot determine exactly where they are from the vi-
sual �eld input and must look around to get oriented.
Other starting situations, however, leave no doubt as
they have a unique visual �eld associated with them.

5.3 Data set 3: Memory required

The third data set consists of the same two objects as
the second data set. The di�culty of the problem is
increased, however, by making the object with the dis-
tinguishing characteristic bad. There is no single view
that indicates that an object should be hit. Now, in
order to act correctly in the presence of the good ob-
ject, the creature must survey at least two sides of the
object, determine that it does not have the undesirable
characteristic and then hit it.

This task is signi�cantlymore complex than the pre-
vious ones, because it requires that the creature must
internally \remember" what it has seen previously and
use that data along with the current input to deter-

Seed Generations Nodes Connects/Node
1 820 13 10.30
2 1302 13 5.92
3 1643 16 5.94
4 832 14 10.93
5 978 11 13.00

Table 4: Test results for data set 3.

mine the appropriate action. In other words, a simple
reex response to its immediate input is not su�cient.
It has to develop a �nite-state strategy.

The average number of generations taken to evolve
a perfect creature for this data set was 1115 (table 4).
The behaviour of the �ve creatures was very similar.
When encountering a good object, they would survey
two sides and if both were found to be at, then hit the
object. If a bad object was recognized, the creatures
would go into a waiting pattern of a few cyclic moves.

6 Discussion

Given the creatures' high-level behaviour, can we in-
fer that they have solved the sensory-motor grounding
problem? Let's consider their task in more detail. Ev-
ery time a creature moves, certain predictable changes
occur. For example, if the creature sees a \ " directly
in front of it and executes a right turn, the creature
will always see the \ " to its left. In the case of right
turns the left view will never contain any new informa-
tion. Consider now the e�ect of a left turn. The left
view now reveals previously unseen information that
may be important in determining the identity of an ob-
ject. The same visual input which was previously re-
dundant, now contains valuable data. For each move-
ment that the creature makes, there is a predictable
change that will occur in the creature's visual �eld.
Without the ability to relate a particular movement
to a predictable change, the visual input would make
no sense. In order to perform complicated recognition
tasks, the creature must �rst develop a functional un-
derstanding of what e�ects its own movements have
on its visual inputs.

What would happen if instead of giving a crea-
ture a �ve-element visual �eld, a (more sophisticated)
creature was equipped with a 10,000 element retina?
Could it evolve the capacity to use this data in a
meaningful way? Processing large amounts of `real
world' data such as visual images using traditional AI
techniques has proven to be somewhat problematic.
Perhaps, noting the success achieved through natural
evolution of biological neural networks, using a neuro-

evolution approach would prove promising in this area.

The behaviour exhibited by the creatures in the
experiments is at the complexity of �nite-state au-
tomata. A creature takes an action based on its cur-
rent visual input and its internal state, and updates
its internal state. Similar behaviour also evolves in
other neuro-evolution systems such as Genesys (Jef-
ferson et al., 1991) and AntFarm (Collins and Je�er-
son, 1991). An interesting direction for future work is
to determine how far this approach can be carried on.
ANNs even with �nite number of nodes are Turing-
equivalent (Siegelman and Sontag, 1991). Would it be
possible to evolve creatures that recognize context-free
or context-sensitive languages?

But how far can the behavioural strategies be
pushed? Could the creatures learn to hunt, or to play
chess if it was necessary for survival? Unfortunately,
the computational complexity of evolving such crea-
tures grows very fast with the complexity of the task.
The free-form genetic encoding scheme introduced in
this paper is well-suited for more complicated applica-
tions since it can develop nets of arbitrary complexity
and capacity. Exactly how e�cient it is in highly com-
plex tasks remains to be seen.

7 Conclusion

We have shown that marker-based genetic encoding of
neural networks can evolve high-level behaviour sim-
ilar to that of �nite-state automata. In addition, the
networks evolve an understanding of their sensory in-
puts and actions, i.e. they develop an internal world
model. The main direction for future research is to
see exactly how far this approach can take us in devel-
oping sophisticated visual processing capabilities and
behaviour in highly complex tasks.

References

Barto, A. G., Sutton, R. S., and Anderson, C. W.
1983. Neuronlike adaptive elements that can
solve di�cult learning control problems. IEEE

Transactions on Systems, Man, and Cybernetics,
13:834{846.

Collins, R. J. and Je�erson, D. R. 1991. AntFarm:
Towards simulated evolution. In Farmer, J. D.,
Langton, C., Rasmussen, S., and Taylor, C., ed-
itors, Arti�cial Life II. Reading, MA: Addison-
Wesley.

Dress, W. B. 1987. Darwinian optimization of syn-
thetic neural systems. In Proceedings of the IEEE

First International Conference on Neural Net-

works. Piscataway, NJ: IEEE.

Goldberg, D. E. 1988. Genetic Algorithms in Search,

Optimization and Machine Learning. Reading,
MA: Addison-Wesley.

Hancock, P. J. B. 1990. GANNET: Design of a neu-
ral net for face recognition by genetic algorithm.
Unpublished Research Report.

Holland, J. H. 1975. Adaptation in Natural and Arti�-

cial Systems: An Introductory Analysis with Ap-

plications to Biology, Control and Arti�cial Intel-

ligence. Ann Arbor, MI: University of Michigan
Press.

Je�erson, D., Collins, R., Cooper, C., Dyer, M., Flow-
ers, M., Korf, R., Taylor, C., and Wang, A.
1991. Evolution as a theme in arti�cial life: The
genesys/tracker system. In Farmer, J. D., Lang-
ton, C., Rasmussen, S., and Taylor, C., editors,
Arti�cial Life II. Reading, MA: Addison-Wesley.

McClelland, J. L., Rumelhart, D. E., and Hinton,
G. E. 1986. The appeal of parallel distributed
processing. In Rumelhart, D. E. and McClel-
land, J. L., editors, Parallel Distributed Process-

ing: Explorations in the Microstructure of Cog-

nition. Volume 1: Foundations. Cambridge, MA:
MIT Press.

Mjolsness, E., Sharp, D. H., and Alpert, B. K.
1988. Scaling, machine learning and genetic neu-
ral nets. Technical Report YALEU/DCS/TR-613:
Department of Computer Science, Yale Univer-
sity.

Rothwell, N. V. 1988. Understanding Genetics. New
York: Oxford University Press, Inc. Fourth edi-
tion.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
1986. Learning internal representations by error
propagation. In Rumelhart, D. E. and McClel-
land, J. L., editors, Parallel Distributed Process-

ing: Explorations in the Microstructure of Cog-

nition. Volume 1: Foundations. Cambridge, MA:
MIT Press.

Siegelman, H. and Sontag, E. D. 1991. Neural nets are
universal computing devices. Technical Report
SYCON-91-08: Rutgers Center for Systems and
Control, Rutgers University.

Werner, G. M. and Dyer, M. G. 1991. Evolution of
communication in arti�cial organisms. In Farmer,
J. D., Langton, C., Rasmussen, S., and Taylor, C.,
editors, Arti�cial Life II. Reading, MA: Addison-
Wesley.

