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Abstract. For a robot in a dynamic environment, the ability to detect
motion is crucial. Motion often indicates areas of the robot’s surroundings
that are changing, contain another agent, or are otherwise worthy of atten-
tion. Although legs are arguably the most versatile means of locomotion for
a robot, and thus the best suited to an unknown or changing domain, exist-
ing methods for motion detection either require that the robot have wheels
or that its walking be extremely slow and tightly constrained. This paper
presents a method for detecting motion from a quadruped robot walking
at its top speed. The method is based on a neural network that learns to
predict optic flow caused by its walk, thus allowing environment motion
to be detected as anomalies in the flow. The system is demonstrated to be
capable of detecting motion in the robot’s surroundings, forming a founda-
tion for intelligently directed behavior in complex, changing environments.

Keywords: robot vision, image processing

1 Introduction

The ability to detect motion is important to a robot in a novel or changing envi-
ronment. Motion can potentially be a very significant clue about which parts of
the environment are interesting or dangerous. For example, consider a consumer
robot in the home, such as the commercially available Sony Aibo[1]. Motion can
give it clues to where humans are located in its environment, which will help it
interact with them more effectively. It can also be used to direct the robot’s at-
tention to potential danger, such as a stack of books sliding off of a desk or the
family dog preparing to pounce on it. As another example, consider a surveillance
robot [2]. Modern surveillance systems are primarily based on motion detection.
If a robot must stop its own motion in order to detect motion in its surroundings,
much of the advantage of using a robot instead of a simpler system (such as a set
of stationary cameras) is lost.

If a robot is to be able to deal with truly novel environments, it is also an
advantage for the robot to have legs rather than wheels. Legs allow traversal of
highly uneven surfaces. A legged robot can step over obstacles or climb stairs,
whereas analogous feats are often impossible for a wheeled robot. However, the
motion of a legged robot is not as smooth as that of a wheeled robot. This charac-
teristic introduces additional challenges for detecting motion in the environment
while the robot itself is moving.



The main contribution of this paper is a method for detecting motion from
a quadruped robot while it is walking at its maximum speed (approximately
35cm/sec). The overall architecture is inspired by that of Lewis [3], but our
method differs in several important ways: preprocessing of optic flow has been
eliminated, a substantial postprocessing step has been added to the output of
the neural network, and the details of most of the architecture’s components have
been redesigned. These innovations make our method effective in a less constrained
environment than Lewis’s method requires, and also allow use of a significantly
faster-moving robot.

The paper is organized as follows. Section 2 gives a background on optic flow
and describes related work that uses optic flow for navigation and obstacle de-
tection on mobile robots. Section 3 introduces the method for detecting external
motion. Section 4 describes the setup of the system used in the experiments, as well
as the details of the experiments themselves. Section 5 presents the results of these
experiments, and Section 6 discusses these results as well as possible directions for
the future.

2 Background and Related Work

2.1 Optic Flow

Optic flow is a way of describing the apparent motion between two images of the
same scene taken in quick succession. It is typically expressed as a vector field, with
a two-dimensional vector for each pixel in the first image, representing vertical and
horizontal displacement. These vectors give a complete description of where each
pixel in the first image appears to have moved in the second image.

The apparent motion in two dimensions depends on the actual motion in three
dimensions in a complex manner. Sometimes it is difficult to determine whether
the motion is the result of the camera moving or objects in the scene moving. In
other cases, it is clear that an object is moving and not the camera, but the actual
direction of the object’s motion cannot be determined because only part of the
object is visible (this effect is known as the aperture problem).

For an intuitive understanding of some of these issues, consider a passenger
looking out the right-hand side window of a car at an adjacent vehicle while s/he
is waiting for a stoplight to turn green. Without prior knowledge, the scenes s/he
perceives if the car appears to move to the left could be interpreted in a number of
ways – the other car might be moving forward and the passenger’s car might still be
stationary, or the other car might be stopped and the passenger might be moving
backward, or both cars might be moving forward or backward at different rates.
Thus, while the optic flow field contains a wealth of knowledge, interpretation can
be difficult.

Optic flow is formulated in terms of instantaneous (in space and time) image
intensity gradients. The key formula defining the optic flow between two images
in a sequence is

It+dt(x + u(x, y), y + v(x, y)) = It(x, y), (1)



where It(x, y) is the image intensity at each pixel at time t, It+dt(x, y) is the image
intensity at time (t+dt), u(x, y) is the horizontal flow at each pixel, and v(x, y) is
the vertical flow at each pixel. Thus the horizontal and vertical optic flows generate
a “mapping” between corresponding pixels in the two images.

A perfect solution to the optic flow formula is rarely available because of effects
such as noise and occlusion. Instead of trying to compute a total solution, most
approaches attempt to minimize the error in equation (1) summed over all pixels
in the image. Computation of optic flow is an underconstrained problem; there-
fore, in addition to minimizing the error in the pixel matching between images,
a smoothness constraint is typically included. This constraint is justified because
for images of real-world objects (which are, in general, smooth and connected) the
optic flow field is likely to be smooth at almost every pixel. The objective function
for optimization then becomes
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where f ∈ {I, u, v}. The correctness and smoothness components to the optimiza-
tion are clearly visible as the first and second group of terms in the objective
function, respectively. As the optic flow field generates a more accurate matching
between pixel intensities in the two images, the first group of terms will decrease
towards zero. As the field becomes smoother (showing less variation between ad-
jacent pixels), the second group of terms will decrease towards zero. The relative
importance of these terms is regulated by the parameter λ. Because formulation
of the optic flow field is based on local gradient information, its computation is
often more accurate when images are only incrementally different.

Optic flow is often computed via iterative relaxation, by one variation or an-
other of an approach developed by Horn and Schunk in the 1980s [4]. In this
approach, the proposed solution is initialized, and on each iteration, the solution
is refined by propagating information from each pixel to its local neighbors through
a local averaging of the optic flow field. This process is guided by the equations

uk(i, j) = ūk−1(i, j) − Ix(i, j)
P (i, j)

D(i, j)
,

vk(i, j) = v̄k−1(i, j) − Iy(i, j)
P (i, j)
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In these equations, uk(i, j) and vk(i, j) are the kth iteration’s estimates of the hor-
izontal and vertical flow at pixel (i, j), and f̄(x, y) is the local average of function
f(·) near pixel (x, y). Iteration continues until a convergence condition is reached
or a maximum number of iterations, kmax, have occurred. Although many alter-
natives have been studied, this 25-year-old approach continues to be one of the
most common and effective methods of optic flow computation.



2.2 Optic Flow in Navigation

Optic flow is useful in navigation and obstacle detection, and several groups have
used it for these purposes in robots [5, 6]. In general, the robots are wheeled (or
airborne) instead of legged, which means that their typical motion is smoother.
This regularity of motion makes normal optic flow easier to characterize, so ab-
normalities such as the ones caused by obstacles can readily be detected.

A method for detecting obstacles in the walking path of a bipedal robot using
optic flow information was recently developed by Lewis [3]. In this method, a neural
network uses the robot’s joint angles and gait phase to predict optic flow events.
This prediction is compared to observed optic flow events, and any significant
difference between the two indicates that an obstacle has been detected.

The success of Lewis’s approach indicates that optic flow can be a source of
useful information even on legged robots. It also suggests that neural networks are
a promising tool for overcoming the difficulty of characterizing normal optic flow
on legged robots, as discussed above. However, Lewis’s experiments take place in a
highly constrained environment. The robot is tethered so that it walks in a circle,
and its camera is fixed at a slight downward angle so that it is always focusing on
the ground slightly in front of it, which is the same at all points around the circle
(with the exception of the obstacles it must detect during the testing phase). It
also walks very slowly (2cm/sec).

In order to be generally useful, a motion detection method for a legged robot
should be free of these constraints. If the robot cannot move freely through non-
uniform environments and still detect motion, there is little benefit to using a
legged robot at all – a wheeled robot or even a stationary camera could probably
do the same task more reliably. In addition, a robot should ideally not have to slow
down its own movements in order to accommodate the motion detection algorithm.

The method presented in this paper is effective on a freely moving robot walking
at its top speed (35cm/sec). It also differs from Lewis’s approach in that it operates
on the raw optic flow field rather than on preprocessed data (optic flow “events”),
and a substantial postprocessing step has been added as part of comparing the
neural network’s prediction to the actual observed optic flow. It is not clear to what
extent the predictor neural network differs from that of Lewis, because details of
his architecture are not available.

3 Motion Detection Method

The proposed method is depicted in Figure 1. First, the optic flow in the image
is calculated. The resulting vector field is then given as input to a neural network
along with information about the current position in the robot’s walk cycle and
readings from its three accelerometers. This neural network outputs a prediction
of the optic flow to be seen in the next image. When the robot receives this next
image, the optic flow is calculated and compared with the network’s prediction. A
postprocessing algorithm then looks for discontinuities in the difference between
the calculated and predicted optic flow to determine where in the image the ex-
ternally moving objects are likely to be found.
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Fig. 1. An overview of the method for detecting moving objects in the robot’s envi-
ronment. (Z−1 is a one-step delay operator.) Optic flow, accelerometer readings, and
information about the current phase of the robot’s walk are given as inputs to a neural
network, which then predicts the optic flow to be observed at the next timestep. The
difference between the prediction and the observed optic flow is then used to detect any
locations in the image that contain moving objects.

3.1 Optic Flow

Training and testing sequences of optic flow were obtained from the Aibo and
transferred to a set of image files on a desktop PC’s hard disk. Image sequences
were then loaded off the disk, the optic flow calculations were run, and the resulting
flow fields were stored back to the disk for later use in training or comparison
against predicted flow. Although in principle these calculations could be done in
real time on the Aibo, offline experiments test the method more efficiently.

The optic flow fields were computed by a Matlab implementation of Horn &
Schunk’s iterative relaxation algorithm described in Section 2.1. Identical param-
eters, λ = 1.0 and kmax = 1000, were used to compute all training and testing
data. These parameter choices resulted in very smooth fields. While generally
smooth fields might be expected given the Aibo’s known motion characteristics
and environment, additional work will have to be performed in the future to un-
derstand whether using parameters that generate more rapidly-varying optic flow
fields could allow more accurate motion discrimination.



3.2 Predictor Neural Network

The predictor neural network, shown in Figure 1, accepts three types of infor-
mation as input. The first is an optic flow field. The second is a single number
indicating the robot’s position in the walk cycle at the time of the second image
(of the two images used to calculate the optic flow field). The third is a set of ac-
celerometer data corresponding to the same image. In the experiments described
in this paper, a simple recurrent network architecture [7] was used 3 (Figure 2).

Hidden layer

Previous hidden layer

(copy)

Input layer (actual optic flow at time , walk phase and accelerometer info)t

Output layer (predicted optic flow at time )t+1

Fig. 2. The simple recurrent network used to predict the optic flow. All projections are
full and feed-forward, except for the projection from the hidden layer to the previous
hidden layer. This projection is a direct copy of the hidden layer activations into the
previous hidden layer. In this way, some context is kept in the network, allowing it to
retain information from previous inputs.

The network is trained on sequences of optic flow fields, which are generated
from sequences of robot camera images in which there is no external motion. Thus,
the network is effectively learning to produce what the next optic flow field should
look like if there is no external motion, given the last optic flow field observed
and information about the robot’s acceleration and position in the walk cycle. By
comparing this prediction to the actual optic flow observed at the next timestep, it
is possible to see which parts of the image exhibit unpredictable motion, indicating
where objects moving relative to the world can be found in the image.

3.3 Postprocessing

Consider the vector field resulting from taking the (vector) difference of the pre-
dicted and actual optic flow fields. Taking the magnitude of each of the elements
of this vector field results in a matrix of the same size, called the difference field.

3 Informal experimentation indicated that a simple recurrent network performs better
than a three layer feed-forward network. However, such a non-recurrent network is also
capable of some success at this task.



The discontinuous motion of the robot’s camera and the noisy nature of real-
world sensor data make the optic flow prediction task quite difficult. Although the
neural network typically does a reasonable job of predicting optic flow for image
sequences containing no external motion, its prediction is occasionally entirely
wrong. Therefore, the naive approach – simply taking the size of the difference
field at each point to be the likelihood of external motion at that point – will not
suffice.

However, these magnitudes do contain useful information. Because the neu-
ral network is trained with images from an environment in which nothing other
than the robot itself is moving, all of its targets during training were optic flow
fields with coherent motion. So, assuming the images contain no external motion,
even when the network makes a wrong prediction that prediction will be more or
less “equally wrong” at all points. If there is external motion in the scene, how-
ever, there will often be sharp discontinuities in the difference field, which can be
discovered by running an edge detection algorithm on each difference field.

The edge detection used in the postprocessing step is rather unconventional.
Many edge detection algorithms are designed to find the best edges in an image,
even if that image has only poor candidates for edges. However, if there are no
sharp edges in the difference field at some timestep, there is probably no motion
in the image. Therefore, in this case the postprocessing algorithm should not find
any edges. To this end, first a binary version of the difference field is obtained by
finding its maximum element and replacing every element extremely far away from
this maximum4 with a zero, and replacing the rest with ones. Then a conventional
edge detection algorithm (such as the Laplacian of Gaussian method) is run over
this binary difference field.

4 Experimental Procedure

The images used in the experiments discussed here were acquired by a Sony Aibo
ERS-7 walking across a standard 2004 RoboCup legged league field [8]. The Aibo
has three degrees of freedom in each of its four legs as well as its head. It has a
CMOS camera in the head, from which it is possible to capture approximately
25 images per second5. The robot always starts close to the center of the yellow
goal facing outward toward the field center (although not always in the exact
same location) and then walks most of the way across the field6 using the fastest
available forward walk (approximately 35cm/sec)[9]. Due to the Aibo’s slight left-
right weight asymmetry, the forward walk curves slightly to the right over long
distances. Thus a typical trajectory looks like the one depicted in Figure 3.

4 In practice, to be “extremely far away from the maximum,” an element must be very
close to zero and the maximum over the difference field must be large. This constraint
enforces that all edges found in the next step will correspond to very sharp edges in
the original difference field.

5 The hardware is capable of capturing 30 frames per second, but software overhead
reduces this number somewhat.

6 The length of these trajectories is constrained by the amount of memory available on
the Aibo.



Fig. 3. A typical trajectory used in our experiments.

The resolution of the Aibo images was first reduced by a factor of 6 in both
the horizontal and vertical directions by averaging 3-by-3-pixel blocks of half-
resolution Aibo images. Images were converted from full color to grayscale before
the optic flow computation, but no other image preprocessing (histogram equal-
ization, deblurring, etc.) was performed.

The resulting images and flow fields consisted of 35 columns by 27 rows. This
lowered image resolution allowed a simpler neural network to be trained and de-
creased the runtime of optic flow computations. Exact runtime performance was
not recorded, but computing the optic flow field for one frame pair required ap-
proximately 1s of CPU time on a 1.8GHz desktop machine. Real-time performance
will require that the current implementation be optimized for speed and translated
from Matlab to a language more suitable for embedded operation on the Aibo.

As discussed in Section 3.2, a simple recurrent architecture was used for the
predictor neural network. This network had a 200-unit hidden layer. It was trained
with backpropagation (using momentum) on data from six runs of the robot on
an empty field, where each run consisted of approximately 150 sequential images.
Training of this network took approximately 1050 epochs.

5 Results

As was discussed in Section 1, motion detection on a robot is most useful for
alerting the robot to potential anomalies in its environment, particularly those
that suggest there are changes taking place. Thus, robots will typically want to
react immediately as soon as any motion is detected; the value of such informa-
tion decays very rapidly. However, this means false positive motion detections are
particularly dangerous – each one is likely to distract the robot from its primary
task unnecessarily. Thus, before incorporating this technology into any robotic
system, it is important not only to demonstrate that it can provide useful infor-
mation about motion, but also that it can do so while keeping false positives to a
minimum.

The results shown here reflect these priorities. The parameters of the post-
processing algorithm were set to make the system maximally resistant to false



positives. Then, to judge the classification accuracy of the system, it was applied
to four sets of images from trajectories of the sort shown in Figure 3. Two of
these runs contained one moving robot, one contained three moving robots, and
one contained no external motion. Each image in the four sets was divided into
9 sectors (Figure 4), and each sector was labeled by hand as containing motion
or not. If less than 1/4 of the sector contained a moving object, the sector was
labeled as not containing motion. This ground truth was compared to the motion
detected by the system.

Fig. 4. An example image showing division into sectors, for use in the quantitative eval-
uation of the motion detection method. Though both robots and the ball in this image
are moving, the middle sector would not be labeled as containing motion, because less
than 1/4 of it contains moving objects.

The system correctly labeled a significant portion of the image sectors contain-
ing motion, despite the postprocessing parameter values that virtually eliminated
false positive motion detections (see Figures 5 and 6). Note that if these parameters
are set to less extreme values, classification accuracy of sectors containing motion
can be improved, so in this sense Figure 6 reflects the “worst-case” result for mo-
tion detection. However, the current settings have the considerable advantage that
image sectors labeled as containing motion are virtually certain to actually contain
motion.

The typical qualitative behavior of the system is shown in Figures 7 and 8.
Figure 7 contains four sequential frames from one test run of the system. The
robot in the foreground is moving at full speed; all other parts of the image are
stationary relative to the world. For comparison, Figure 8 shows typical errors
from a testing run with no external motion. In this testing run, over 95% of the
sectors were correctly labeled as containing no motion (see Figure 5).
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Fig. 5. Classification accuracy for image sectors not containing motion. The x-axis cor-
responds to the number of edge pixels in a sector required for motion to be detected in
that sector, and the y-axis is the fraction of total image sectors not containing motion
that were correctly labeled as not containing motion. As more edge pixels are required
for a sector to be labeled as containing motion, accuracy in labeling non-moving sectors
increases (i.e., false positives decrease), though there is a tradeoff with accuracy in label-
ing moving sectors (see Figure 6). Note, however, that even when this threshold is set to
1, accuracy is greater than 95% for all testsets.

6 Discussion and Future Work

Based on informal observations, the system appears to detect motion more reliably
when the moving object is closer to the robot and moving more rapidly. Because the
robot’s own motion is so rapid, it is understandable that slow-moving objects would
be hard to detect. Near motion will appear more rapid in two dimensions; also,
because of the downsampling, a moving object sufficiently far away will appear as
a single pixel whose color is changing slightly.

This observation suggests an important direction for future work: extension
of the system to work with larger images. Although the predictor neural network
will have to be larger, it should not make training intractable: training time for
the current network only requires a few hours of CPU time. Moreover, optic flow
calculation over a half-resolution image (as opposed to the 1/6 resolution images
currently used) has already been verified to be tractable.

Another important direction for future work is to implement the system to run
in real time on an Aibo robot. This extension is plausible given the size of the
images. The Aibo has a 576 MHz 64 bit RISC processor that allows for significant
amounts of onboard computation. Although the computation required to process
the images would reduce the rate at which images can be captured, a slower gait
could compensate for any challenges posed to the optic flow algorithm by the
increased time between images.
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Fig. 6. Classification accuracy for image sectors containing motion. The system can de-
tect a significant fraction of the motion in the robot’s environment while maintaining
the extremely low false positive rate shown in Figure 5. The x-axis corresponds to the
number of edge pixels in a sector required for motion to be detected in that sector. As
more edge pixels are required, fewer sectors containing motion are correctly labeled, lead-
ing to a tradeoff between accuracy in motion detection and elimination of false positives
(Figure 5).

Fig. 7. Four sequential frames from a test run. The robot in the images is moving to the
left at full speed. Overlaid black squares on the image indicate the discontinuities found
by the postprocessing algorithm; when enough of these squares appear in a sector of the
image, the system concludes that this sector contains motion.

7 Conclusion

A method was presented for detecting external motion from a quadruped robot
while it is walking freely and quickly. The system is resistant to false positives and
is sufficiently accurate on real-world sensor data, and it is able to process this data
with a speed that suggests that future onboard implementation is possible. Thus,
it provides a way for a legged robot to sense motion in its environment, allowing
it to direct its attention more intelligently, and ultimately making it more able to
negotiate novel or changing environments.



Fig. 8. Some typical errors on a field with no motion. The overlaid squares only indicate
discontinuities, and enough of these squares must appear in the same sector for motion
to be detected there. In the run from which these images were taken, in which there was
no motion on the field, 83% of the frames contained no discontinuities of this type, and
over 95% of the image sectors were correctly labeled as containing no motion.
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