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Abstract

A model is proposed to demonstrate how
neurons in the primary visual cortex could
self-organize to represent the direction of
motion. The model is based on a temporal
extension of the Self-Organizing Map where
neurons act as leaky integrators. The map is
trained with moving Gaussian inputs, and it
develops a retinotopic map with orientation
columns that divide into areas of opposite
direction selectivity, as found in the visual
cortex.

1 Introduction

Since the pioneering research of Hubel and
Wiesel [1], neurons in several areas of the
primary visual cortex have been known to
be selective to both orientation and direc-
tion of movement of the input. Although
evidence for columnar organization was orig-
inally found only for orientation selectivity,
later microelectrode studies suggested that
direction selectivity is also arranged in a sys-
tematic fashion. The details of this organiza-
tion were only recently mapped out. Optical
imaging methods [2, 3] revealed that there
is a mosaic-like map of direction preference,
which varies smoothly across the map. Be-
tween smooth areas there are line-like areas
of discontinuity where the direction abruptly
changes. The functional maps for orienta-
tion and direction preference are closely re-
lated: typically, an iso-orientation patch can
be divided into regions that exhibit prefer-
ence to opposite directions, orthogonal to
the orientation.

A number of models of directional selec-
tivity have been built (see [4, 5, 6, 7] and ref-
erences therein), but we are aware of no work

that would demonstrate how such selectivity
could arise through self-organization like the
other response properties of the neurons. In
this paper, we present such a model based
on an extension of the self-organizing neural
network [8] to input sequences.

2 The model

The standard Self-Organizing Map (SOM)
[8, 9] forms a mapping from a high-
dimensional input space to a discrete grid
of units. If successful, the mapping pre-
serves the local similarities in the data. This
model can be used to demonstrate how self-
organization of the visual cortex could take
place [10].

In our adaptation of SOM to visual cortex
modeling, a square retina of R�R receptors
projects onto the cortex modeled by SOM,
containing N �N neurons (the transforma-
tions in the LGN were bypassed for simplic-
ity). Every cortex neuron has a receptive
�eld (RF), which is the set of receptors in
the retina from which the neuron receives
input. Each neuron is assigned a circular re-
gion of receptors of diameter s centered on
its projection as its RF. Typically, s � 1

2
R,

and the RFs of neighboring neurons overlap
signi�cantly. The RFs of neurons near the
boundary are not fully circular but cut from
one side (Fig. 1).

The model preserves the main features of
the original SOM, that is, the processes of
determining the winner, shrinking the neigh-
borhood, and decreasing the learning rate,
but uses a di�erent, temporally enhanced
model of the neuron. It is very similar to
the RSOM model [11], which has been used
for time series prediction.

In the model, every neuron (i; j) has a
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Figure 1: The architecture of the visual cor-
tex model. Every cortex neuron receives inputs
from its receptive �eld in the retina and acts as
a leaky integrator.

set of parameters, a�erent weights �ij;r1r2 ,
corresponding to retinal receptors (r1; r2)
within its RF. It performs leaky integration
of input signals �r1r2 . The state sij of neuron
(i; j) at discrete time t is computed as

sij(t) = 
X

r1;r2

�r1r2�ij;r1r2+(1�)sij(t�1) ;

(1)
where  2 (0; 1) is the memory parameter
whose value de�nes the trade-o� between the
depth and resolution. (For  = 1 the state
equation reduces to the static, memoryless
case.) In view of �ltering theory, eq. 1 de-
scribes an exponentially weighted IIR �lter
with the impulse response h(t) = (1 � )t

(see, e.g. [12]).
The output �ij of neuron (i; j) is de�ned

by standard sigmoid function � whose non-
linear e�ect is important for enhancing the
neuron's selectivity:

�ij(t) = �(:) =
1

1 + exp(�k(sij(t)� �ij(t)))
:

The k and �ij are parameters that must be
set experimentally. Speci�cally, if k is high
enough, the neuron has the ability to amplify
its response to strong stimuli and attenuate
it for weaker ones. This e�ect can be seen as
an approximation of lateral connections be-
tween units in the map, which in other mod-
els serve to sharpen the output responses.
The thresholds �ij must also be properly
set to achieve the right amount of activa-
tion in the map. The �ij is updated during
training: every neuron remembers its maxi-
mum state level smax

ij (t) = max��tfsij(�)g,
and �ij is updated at every time step with
�ij(t) =

1

2
smax
ij (t).

The input to the map consists of sequences
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Figure 2: Input activity corresponding to a di-
agonal direction of motion to the left (! = �=4).
Top: Initial pattern on the retina (24�24 recep-
tors) at the beginning of the sequence. Bottom:

Accumulated (leaky-integrated) input that the
cortical neurons receive at the end of the se-
quence (eq. 2).

of moving normalized Gaussian bars whose
direction of motion is always perpendicular
to their orientation (Fig. 2). The activity
�r1r2 of receptor (r1; r2) is given by

�r1r2 = exp(�
(r1xi

cos! � r2yi sin!)
2

a2

�
(r1xi

sin! + r2yi cos!)
2

b2
) ;

where r1xi
= r1 � xi; r2yi = r2 � yi are

shifted point coordinates, a2 and b2 specify
the major and minor variances of the Gaus-
sian, ! : 0 � ! � � speci�es its orientation,
and (xi; yi) : 0 < (xi; yi) < R speci�es its
center.
Sequences have a �xed length that covers

a part of the retina. They start at randomly
chosen positions (xi; yi) in the retina and
their directions are also randomly chosen.
Altogether, 16 possible directions are in-
cluded corresponding to 8 orientations. The
bars move in a constant speed equal to one
receptor per time step.
In temporal models of self-organization,

the goal is to make neurons sensitive to
particular set of sequences, hence sequences
running across certain part in the retina and
with certain direction of motion. To achieve
direction selectivity, it is necessary to look
for a representative winner [9], which is the
neuron (c1; c2) whose accumulated response
becomes the strongest after the presentation
of the complete sequence. Hence,

�c1c2(T ) = max
i;j

f�ij(T )g ;



where T is the sequence length. Once the
winner is found, the neurons in its neigh-
borhood should have their weights rotated
towards all the inputs in the sequence. How-
ever, this is not possible because these inputs
are no longer available. One way to solve
this problem is to set up a short-term mem-
ory for the bu�ering of training samples [9].
It is unclear how such a bu�er could be im-
plemented in a biological model. However,
a more plausible solution is to integrate the
incoming samples and produce accumulated
input

�acr1;r2(T ) = 

TX

t=1

(1� ) �T�tr1r2
(t) : (2)

The accumulated input (Fig. 2b) is then
used for weight update. We use the stan-
dard Hebbian-type Oja's rule [13]

��ij;r1r2(t) = �(t) �ij (�
ac
r1r2

��ij;r1r2(t) �ij) ;

which implicitly normalizes the weight vec-
tors. This rule is applied to all neurons
within the representative winner's neighbor-
hood. (Of course, standard SOM rule would
also work.) As usual, both the learning rate
�(t) and the neighborhood radius decrease
over time.
Even though learning is based on accu-

mulated inputs (eq. 2), neurons generate re-
sponses throughout the sequences, not just
at the end. This way the model exhibits true
temporal recognition behavior, instead of
just mapping the input sequence into a spa-
tial representation, as previously reported in
literature [14].

3 Experiments

We simulated the temporal SOM model with
the following parameters: R = 24; s =
0:6R; N = 72; a2 = 1:5; b2 = 160; T =
7;  = 0:2; k = 15. Learning rate � lin-
early decreased from 5 to 1 during the �rst
half of self-organization, when also neighbor-
hood radius shrinked linearly from 24 to 1.
During the second half, the learning rate de-
creased to 0, and the neighborhood radius
remained unchanged, i.e. equal to 1. Pre-
sentation of 6000 sequences was su�cient
for self-organization: prolonging the train-
ing time did not improve the quality of the
�nal map.

The most important of the parameter set-
tings was that of the memory parameter .
Range [0:15; 0:25] turned out to be suitable,
allowing a unit to integrate input samples
within its RF without losing direction infor-
mation. Too high a value of  would reduce
the map to represent purely orientation, be-
cause the \tail" in the weight pro�les would
be lost. On the other hand, too small a 

would make the �nal weight pro�les more
radially symmetric, which would reduce the
mapping to retinotopy only.
In demonstration of the �nal map, meth-

ods similar to the evaluation of cortical maps
were used [3]. Altogether, there were only 16
sequences (one for each direction), each con-
sisting of a Gaussian that extended across
the whole retina, and moved across the
whole retina.
During a presentation of a sequence,

the maximum output of every neuron was
recorded. After presenting all 16 sequences,
a directional response pro�le for every neu-
ron (16-dimensional vector) was obtained.
Neuron's direction preference was then found
as the direction for which neuron's response
was the highest. Neuron's direction selectiv-
ity was calculated as the ratio of neuron's
response to its preferred direction and the
sum of all its responses. Neuron's orienta-
tion preference was calculated by �rst sum-
ming the neuron's responses for the opposite
directions, and �nding the largest of these 8
sums. Orientation selectivity was evaluated
analogically, as the ratio of the neuron's re-
sponse to preferred orientation and the sum
of all its orientation responses.

4 Results

The �nal direction and orientation map is
shown in Fig. 3. Almost all units are orien-
tation selective, and most of these are also
direction selective (with varying degree of se-
lectivity). Typically, a unit that is direction
sensitive also has an orientation preference
perpendicular to its preferred direction of
motion. Orientations vary smoothly across
the map and most iso-orientation patches
can be subdivided into subpatches with op-
posite direction preferences. The orientation
map has the usual structure found in the vi-
sual cortex, including pinwheel centers, frac-
tures and linear zones (Fig. 4).



Figure 3: The self-organized direction and orientation map. Each neuron in the inner 64� 64 region of
the cortex (out of total 72� 72) is marked with a line that identi�es the neuron's orientation preference.
In a similar fashion, (usually) perpendicular to it and touching its center is the shorter line that identi�es
neuron's directional preference. The length of a line (either orientational or directional) is proportional
to neuron's selectivity. Most of the neurons are orientation selective except a few at pinwheel centers.
Most of the orientation-selective neurons are also direction selective with varying degree of selectivity.
In addition, at most parts of the map, an iso-orientation patch contains subregions that correspond to
neurons most responsive to opposite directions, perpendicular to that orientation. All these features have
been observed in biological direction maps.



Figure 4: The larger-scale features of the orien-
tation and direction map. The orientation pref-
erence is shown in gray scale. The map con-
tains typical features of visuo-cortical maps such
as singularities (pinwheel centers), fractures and
linear zones. Almost every iso-orientation patch
consists of subpatches corresponding to neurons
selective to opposite directions. Major direction
discontinuities are marked by black dotted lines.
They often originate from pinwheels, as is found
to be the case in the direction maps in the visual
cortex.

Neurons in the model can be roughly cate-
gorized into three groups, whose representa-
tive weight pro�les are shown in Fig. 5. Most
of the units become both orientation and di-
rection selective, as shown by their asym-
metric weight pro�les (left). Some neurons
are only orientation selective, with symmet-
ric pro�les (center). There are also a few
non-selective neurons (right) near singular-
ities, as observed also in biological orienta-
tion maps.

In terms of neuron's response pro�les, the
di�erence between direction selective and
non-elective neurons is not that big (Fig. 6).
An only-orientation-selective neuron has two
peak responses of roughly equal strength; for
an orientation and direction-selective neu-
ron, one of the peaks is slightly higher. Such
pro�les are not surprising. The responses
are determined by the weight pro�le, which
matches both directions to some degree. The
di�erence can be adjusted by tuning the non-
linearity parameter � of the neuron.

Similarly to biological maps, the neurons
in the model also respond to non-oriented
moving stimuli, such as Gaussian spots, pro-

Figure 5: Typical �nal weight pro�les of the
neurons. From left to right: both direction and
orientation-selective neuron (23 rows from the
top and 8 columns from the left), an orientation-
selective neuron (12,10), and a non-selective
neuron (20,10). A direction-selective neuron
typically has a longer tail from the direction
to which it is most responsive, whereas a neu-
ron selective to only orientation has a symmetric
weight pro�le.

vided that they move in the preferred di-
rection. The model also makes the pre-
diction that the neuron should respond to
a sequence of spots moving in a direction
perpendicular to its preferred one, provided
that the sequence overlaps considerably with
the unit's weight pro�le. However, there are
more such sequences moving in its preferred
direction that match the neuron's weight
pro�le well. This suggests that �nding this
phenomenon experimentally requires a care-
ful study of individual responses, instead of
averaging.

5 Conclusion

The model in its current form demonstrates
several major characteristics observed in bi-
ological direction maps. First, most of the
orientation-selective neurons are also direc-
tion selective. Second, a neuron's prefer-
ence to a direction of motion is perpendicu-
lar to its preferred orientation. Third, most
of the iso-orientation patches contain dis-
continuities that subdivide them into sub-
patches with opposite direction selectivity.
Fourth, these discontinuities have the shape
of curved lines within an iso-orientation
patch. The model also makes the prediction
that the neuron would have a high response
to a dot moving perpendicularly to its pre-
ferred direction if it happens to hit the peak
of the weight pro�le accurately.
On the other hand, there are features ob-

served in biological direction maps that are
di�cult to reproduce in the model. First,
direction discontinuity lines do not run the
whole length between pinwheel centers, nor
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Figure 6: Response pro�les of the neurons in
Fig. 5. Direction \1" is \up", and index grows
counterclockwise. The direction-selective neu-
ron (top) has a clear preference, although it also
responds considerably to the opposite direction.
The orientation-selective one (middle) responds
equally strongly to both, and the non-selective
(bottom) has no preference at all.

do they tend to run across the center of iso-
orientation domains. Second, the neuron's
response to a direction of motion opposite
to its preferred one is rather high compared
to the response measured in biological direc-
tion maps. To solve these problems, it may
be necessary to increase the resolution by en-
larging the retina and the cortex or change
the model of the neuron.
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