To appear (
on chine learning (I

in Proceedings of the Twentieth International
-03, Washi ngton,

Conf er ence

DC), 2003.

Utilizing Domain Knowledge in Neuroevolution

James Fan
Raymond Lau
Risto Miikkulainen

JFANQCS.UTEXAS.EDU
LAURKQCS.UTEXAS.EDU
RISTOQCS.UTEXAS.EDU

Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712

Abstract

We propose a method called Rule-based
ESP (RESP) for utilizing prior knowledge in
evolving Artificial Neural Networks (ANNs).
First, KBANN-like techniques are used to
transform a set of rules into an ANN, then the
ANN is trained using the Enforced Subpopu-
lations (ESP) neuroevolution method. Em-
pirical results show that in the Prey Cap-
ture domain RESP can reach higher level of
performance than ESP. The results also sug-
gest that incremental learning is not neces-
sary with RESP, and it is often easier to de-
sign a set of rules than an incremental evolu-
tion scheme. In addition, an experiment with
some of the rules deleted suggests that RESP
is robust even with an incomplete knowl-
edge base. RESP therefore provides a robust
methodology for scaling up neuroevolution to
harder tasks by utilizing existing knowledge
about the domain.

1. Introduction

Over the past decade there has been much interest
in Hybrid Systems, where a large intelligent system
is built from components with different architectures
and designs, such as Artificial Neural Networks (ANN)
and Rule-Base Systems (Wermter, 1997; Hudson et al.,
1992). This way the strengths of the different ap-
proaches can be combined. Hybrid Neural Systems,
i.e. those that include neural network components,
have shown good promise and good results in numer-
ous domains (McGarry et al., 1999). One successful
such approach is KBANN (Towell & Shavlik, 1994),
where a rule base is converted to an ANN which is
then further trained with backpropagation.

In this paper, we will apply the hybrid systems idea to

neuroevolution in a method called RESP (Rule-based
ESP), based on the ESP (Enforced Subpopulations)
neuroevolution system (Gomez & Miikkulainen, 1997).
Neuroevolution in general and ESP in particular has
been shown highly effective in several difficult rein-
forcement learning problems (Gomez & Miikkulainen,
1997; Gomez & Miikkulainen, 2002; Fogel, 2001; Nolfi
et al., 1994; CIiff et al., 1993; Whitley et al., 1993),
but it is often necessary to train the system through
a series of incrementally more challenging tasks before
the actual task can be solved (Gomez & Miikkulainen,
1997; Wieland, 1990). In RESP, we will solve this
problem by first using a version of KBANN to convert
domain knowledge into an ANN and then evolving the
ANN further with ESP. By utilizing prior knowledge
this way, we can show that:

1. domain knowledge allows RESP to achieve better
performance than ESP;

2. incremental learning is not necessary for RESP;

3. it is often easier to come up with rules than to
devise an incremental learning scheme;

4. RESP is robust and can perform well even with
some rules omitted.

With RESP, neuroevolution can be applied to more
complex domains than before, using the existing
knowledge about the domain as a starting point.

2. Rule-based ESP (RESP)

RESP consists of a knowledge-transferring process
and a training process. First, a modified version of
KBANN, consisting of the following steps, is used to
transfer the knowledge into an ANN:

1. Create a set of rules that describe the domain
knowledge. As mentioned in (Towell & Shavlik,

OUTPUT - P, Q. OUTPUT :— INPUT1, NOT INPUT2, INPUT3.
OUTPUT :- Q, R.
OUTPUT :- INPUT3, INPUT4, INPUT5.
P -— INPUT1, NOT INPUTZ2.
Q - INPUT3.
R - INPUT4, INPUTS5.
1 - Initial KB 2 - Simplification step
Key
OUTPUT
OUTPUT :- OUTPUTL. A Py
OUTPUT :— OUTPUT2. conjunction OUTPUT1 OUTPUT2
OUTPUT1 :- INPUT1, NOT INPUT2, INPUT3.]
OUTPUT2 :- |NPUT3, |NPUT4, INPUT5. unnegated INPUT1 ”\i\PUTZ 1 T3 INPUT4 1
dependency
3 - Rewrite step negated 4 - Translation step
dependency
X
| /%\
5 — Weight assignment step 6 & 7 — Bias calculation and adding missing links steps

Figure 1. The rules-to-network algorithm on a sample KB. Panel I gives the initial KB in the form of 5 Horn Clauses.
Panel 2 through 5 show the rules-to-network translation process, and panel 6 & 7 the final network after the translation.
This process is similar to KBANN except step 2 is added to ensure that the resulting network has exactly 1 hidden layer
so that it can be evolved with the standard ESP method.

1994), each rule should be a Horn Clause, and the 4. Translate the rules into a tree structure where a

rules must be propositional and acyclic. Panel 1
of figure 1 gives an example of such rule set (or
Knowledge Base, KB).

. Replace all intermediate states (states that are
neither inputs nor outputs) with their an-
tecedents. In RESP, this simplification step is
added to KBANN so that the resulting network
will have only one hidden layer, matching the
standard ESP method. This is the only difference
between KBANN and our knowledge-transferring
process. Panel 2 in figure 1 shows the sample KB
after this step. Note that intermediate states P,
@, R have been replaced.

. If there is more than one rule for a consequent,
then every rule for this consequent with more than
one antecedent is rewritten as two rules. This
rewrite step is necessary for step 6 (Towell &
Shavlik, 1994). Panel 3 of figure 1 shows the sam-
ple KB after the rewrite.

parent node corresponds to a consequent and its
child nodes to the antecedents in that rule. Panel
4 shows the tree structure converted from the de-
pendencies in panel 3.

. Assign weights w to connections that corre-

spond to nonnegated dependencies between par-
ent nodes and child nodes, otherwise assign —w,
where w can be any non-zero value. In this paper
w = 4 is used. Because KBANN performance is
not sensitive to this value other values will work
as well (Towell & Shavlik, 1994). Panel 5 shows
the resulting network structure.

. Calculate the bias for every output node and every

hidden node to implement the rule.

For conjunctive rules, the bias is set to (P — })w,
where P is the number of positive antecedents
on a rule, and w is the link weight value used
in step 5. For disjunctive rules, the bias is always
set to 5. The biases are shown inside of the nodes
in italics in panel 6 & 7.

P Tk

Environment

Figure 2. The ESP neuroevolution method. Each neuron
in the network is evolved in a separate population, and net-
works are formed by randomly selecting neurons, one from
each subpopulation. Each network is evaluated in the task
and assigned a fitness. Each neuron’s fitness is the average
fitness of all networks in which it participated. ESP divides
the search for a successful network into subtasks making
it more robust and efficient than a search in the space of
complete networks.

7. Add any missing links between any two adjacent
layers of nodes in the tree, and set the initial
weights of the new links to 0. Panel 6 & 7 of fig-
ure 1 shows the final ANN with the links added as
thin lines. These links can be used by evolution
to improve performance.

The knowledge transfer process results in a neural net-
work that implements the functionality of the rule
base. It is then further refined by evolving it in the
actual task with ESP.

In standard neuroevolution where the population con-
sists of complete neural networks, genetic operators
such as crossover and mutation are applied to them in
order to find a network that solves the task. In con-
trast, in ESP (Gomez & Miikkulainen, 1997; Gomez &
Miikkulainen, 2002) each hidden neuron is evolved in a
separate subpopulation, and full networks are formed
by combining neurons from these subpopulations. The
process consists of the following steps (figure 2):

1. Generate neuron subpopulations. Each subpopu-
lation is made of 100 neurons, and each neuron is
made of a list of floating point values denoting its
input, output and bias weights. In standard ESP,
the neurons in each subpopulation are created by
randomly choosing weight values from a uniform
distribution. In RESP, the neurons in each sub-
population are created from the initial KBANN
network by randomly choosing weight values from
a normal distribution, centered around the initial
weights. A variance of 3 is used in experiments
in this paper. This is the only difference in neu-
roevolution between ESP and RESP.

2. Form a full network by choosing one neuron from
each subpopulation randomly.

3. Measure the fitness of the network by running it
in the task, and update the average fitness of each
neuron accordingly.

4. Tterate steps 2 and 3 until each neuron has been
evaluated a sufficient number of times as part of
a network.

5. Within each subpopulation, use one-point
crossover between randomly-chosen neurons
within the top 25% to generate new offsprings,
and replace the worst 50% of the population with
new neurons. An additional mutation step is ap-
plied with 40% probability on the new offsprings.
For each mutated offspring a randomly generated
value from a Cauchy distribution centered around
0 is added to a randomly selected value in the
neuron.

6. Iterate steps 2 through 5 until a network with
satisfactory performance has been found, or until
a given number of generations has been reached.

Because ESP evolves neurons in separate subpopula-
tions, it breaks the search for a successful network into
subtasks. This strategy is highly efficient (Gomez &
Miikkulainen, 1997), especially given the good initial
starting point that KBANN provides.

3. Prey Capture

RESP was tested in the task of evolving a success-
ful strategy for the predator in the Prey Capture
task (Gomez & Miikkulainen, 1997; Miller & CIliff,
1994). To accomplish the task, a predator, moving
through a simulated environment, must be able to ap-
prehend a prey within a fixed number of timesteps.
Scenarios of this kind are ubiquitous in natural ecosys-
tems. They offer a relatively simple objective that
requires complex sensory-motor coordination with re-
spect to both the environment and the other agent.
Variations of this task have been used to evaluate the
effectiveness of various reinforcement learning meth-
ods, and it forms an appropriate domain for testing
RESP as well.

3.1. Environment

The simulated environment consists of a square spa-
tially and temporally discrete grid world (figure 3).
The world has a size of 100 x 100, and it has a wall at
the north and the west borders. The south and east

~—— WALL_NORTH

NWS

NWN
NEN

NES

SEN

SES

IN_SIGHT
SwWs
SWN

WALL_WEST

Figure 3. The Prey Capture environment and the preda-
tor’s inputs. The best way for the predator to catch the
prey is not to move straight towards the prey, but rather
move into the southeast corner first, and then “drive” the
prey into the northwest corner. The predator sees the
prey in 8 sectors, far and near positions, and moves North,
South, West, and East (N, S, W, E).

borders are open. Both the predator and the prey oc-
cupy a single grid space, can sense the approximate
direction of the other agent and can move in one of
four directions (N, S, W, E) or stay still at each time
step. If the predator or the prey reaches a wall, it can-
not move beyond the wall; it can only move along it.
The predator captures the prey when they both oc-
cupy the same grid. The prey has successfully evaded
the predator when it reaches the non-walled border or
when the time limit expires.

The prey moves probabilistically with a tendency to
move away from the predator. Its behavior is described
by the mowve factor, which is the probability that it
will make a move at a given timestep, and by the flee
factor, which is the probability that its move will be
directed away from the predator. The flee factor ap-
plies when the prey is less than 30 steps away from the
predator (i.e. inside the IN_.SIGHT circle in figure 3);
otherwise it moves randomly. In the hardest version
of the task, these factors are both 1.0, and prey can
be caught only about half of the time, depending on
the initial position of the prey and the predator.

The predator’s behavior is determined by a feed-
forward ANN. The input layer in the network con-
sists of 11 binary inputs that represent the approxi-
mate direction and distance of the prey and the lo-

S - S_CORNER

S - S_BACKOFF

S_CORNER :- WALL_NORTH, SWN, NOT INSIGHT
S_CORNER :- WALL_NORTH, SWS, NOT INSIGHT
S_BACKOFF :— WALL_NORTH, NES, INSIGHT
S_BACKOFF :— WALL_NORTH, NEN, INSIGHT

W -— WALL_WEST, NWS

E :-- E_CORNER
E - E_BACKOFF

E_CORNER :— WALL_WEST, NES, NOT INSIGHT
E_CORNER :- WALL_WEST, NEN, NOT INSIGHT
E_CORNER :— WALL_WEST, SES, NOT INSIGHT
E_CORNER :- WALL_WEST, SEN, NOT INSIGHT

E_BACKOFF :— WALL_WEST, SWN, INSIGHT
E_BACKOFF :- WALL_WEST, SWS, INSIGHT

N :-— N_CORNER

N - N_BACKOFF

N_CORNER :— WALL_N, NWN

N_BACKOFF :- WALL_N, SES, INSIGHT
N BACKOFF :— WALL N. SEN. INSIGHT

Figure 4. The initial KB. The rules direct the predator to
surround the prey and then to corner it instead of moving
directly towards it.

cation of the walls. These inputs are labeled NES
(NorthEastSouth) through SEN (SouthEastNorth),
IN_SIGHT (representing proximity), WALL_NORTH
and WALL_WEST (representing whether a wall is
nearby). The output layer consists of 5 nodes: N,
S, W, E, and NO_MOVE (figure 3).

The fitness f of the predator is

if the prey was caught,
otherwise,

f:{ 10 x (Do — D,)

DO_Da

where Dy is the initial distance between the prey and
the predator, and D, is the final distance between
them. This function rewards predator that can get
closer to the prey, and it gives an extra bonus for
catching the prey in the end. The initial positions
are randomly chosen.

3.2. Initial KB

The initial KB consists of rules described in figure 4.
The inputs to the rules are NES through SEN,
IN_SIGHT, WALL_NORTH and WALL_WEST. The
outputs are S, W, E and N. The intermedi-
ate states, S CORNER, S_BACKOFF, E_CORNER,
E_BACKOFF, NCORNER and N_.BACKOFF specify
whether the predator is in corner mode, i.e. between
the prey and the open space attempting to drive the
prey towards the corner, or in backoff mode, i.e. be-
tween the corner and the prey and in danger of letting

NO-MOVE

—N
N
DS

/

S
\)O“vl: b V)
N
g j
\‘V

D
X
f .‘\'\’{
NA

4
P

SN\

>\
N\
N
N\ X
A B
'A
"‘:“\\‘&i\&\\)"

\
<
2.

Wy
\

NN
AN
RN

A
)

SEN IN_SIGHT WALL_WEST WALL_NORTH
WALL SOUTH WALL EAST

Figure 5. The ANN translated from the KB. The KB in figure 4 is transferred into an ANN using the seven-step process
described in figure 1. In this process, the four ways of deducing S, the six for E; and the three for N become represented as
separate hidden nodes in the network; their labels (S1,...N3) originate from the rewrite step (figure 4¢). Subpopulations
are then generated for each of the hidden node in this network, and evolved using ESP in the prey capture task.

the prey run away.

This KB is then transferred into a network as described
in the previous section. Figure 5 shows the final net-
work structure.

4. Prey Capture Performance

In this section, we present the evaluation of RESP on
the Prey Capture task. Three different experiments
were run. First, as a baseline we trained RESP di-
rectly on the full prey capture task. Second, to make
learning easier we used an incremental learning scheme
where the task was made gradually more difficult by
changing the prey’s behavior and the initial position
of the predator. Third, to evaluate how robust RESP
is with an incomplete rule base, we trained it multi-
ple times in the full task, each time with more and
more rules randomly deleted from the initial KB. In
all these experiments, RESP was compared to three
benchmarks:

1. ESP with four hidden units and random ini-
tial weights (ESP-BEST). Four hidden units were
found experimentally to result in best ESP per-
formance (ranging from 2 to 20 hidden units) in
this task.

2. ESP with the same number of hidden units and
connections as RESP but with initial weights ran-
domly selected (ESP-SAMENET).

3. The initial RESP network, i.e. the network im-
plementing the full initial knowledge base with no
further learning (RULES-ONLY).

4.1. Direct Evolution

In direct evolution the challenge is to make good ini-
tial progress possible. If the task is too difficult, all
individuals perform poorly and the GA gets trapped
in an unfruitful region of the solution space. In RESP,
the individuals should already perform relatively well
based on the initial KB and the GA should be able to
make good progress.

Figure 6 supports this hypothesis. While the fitness
values of the two ESP systems stagnated below 200
(which means the networks rarely captured the prey
at all) the fitness of RESP converged around 1350 (i.e.
the prey was caught half the time). Thus, with direct
evolution, RESP was several times better than the two
ESP systems.

RESP was also able to improve the behavior of the
initial KB. Recall that the initial RESP populations
were created from the RULES-ONLY network by per-
turbing the neurons with a low level noise. As ex-
pected, the RULES-ONLY performed initially better
than RESP. However, the performance of RESP im-
proved dramatically over the course of evolution sur-
passing that of RULES-ONLY already after 8 gener-
ations. After 20 generations of evolution, RESP was

1400
RESP ——+———
,,,,,,,,
WMW ESP-SAMENET =
1200 /j .
/
F
1000 |] B
/
o 800 [/ 4
= |
= |
by |
8 |
5] |
£
i
600 4
|
i
|
|
i
400 -
200 -
ComE
[
o
o 10 20 30 40 50 60 70 80 90 100

Generations

Figure 6. The learning curves of RESP, ESP, and RULES-
ONLY in direct evolution. The predator starts from the
northwest corner. The fitness values are averaged over ten
runs. ESP-BEST and SAME-NET stagnated below 200;
the networks rarely captured the prey at all. RULES-
ONLY had a constant performance around 1050, which
means it captured the prey around 40% of the time. Af-
ter 20 generations of evolution, RESP significantly outper-
formed all the other approaches (based on a single-tailed
t-test with 95% confidence). Its performance was still im-
proving slightly at 100 generations when it reached a fitness
of 1350, i.e. capturing the prey half of the trials. The ini-
tial KB provides an approximate solution that RESP can
utilize to solve the task.

significantly better than all the other three schemes,
and was still improving slightly after 100 generations.
In other words, the initial KB contributed an approxi-
mate solution that RESP could then utilize as a start-
ing point to solve the task, even though it couldn’t
solve it directly from a random starting point.

4.2. Incremental Learning

Next, to better understand the role of the initial KB,
RESP was compared to ESP in an incremental learn-
ing setting. There were 16 increments with the diffi-
culty determined by the prey’s move and flee factors
and the predator’s initial location. For each increment,
the location of the prey was randomly selected but
the location of the predator was carefully chosen. Af-
ter the fitness value exceeded a threshold, the current
task was deemed solved, and evolution continued in a
harder task.

In the simplest task, both the flee and move factors
of the prey were set to 0.97 and the predator was ini-

RedP

1400 | ESP-BEST -{--%---
ESP-$AMENEH
Iy

1200 |- §

1000 |-

|
I
I

]
|
.y

Fitness value

I
s

T

7 8 9 10 11 12 13 14 15
Task numbers

Figure 7. The performance of RULES-ONLY and the
learning curves of RESP and ESP in incremental evolution.
The x-axis represents generations of evolution through the
different tasks, delineated by the vertical lines. Evolution
continued in each task until the fitness exceeded a thresh-
old of 250. Each learning curve was then stretched or com-
pressed to a fixed width, and the curves of all 10 runs
were averaged to obtain the curve shown in the figure. If
a task was solved in very few generations, the stretching
makes the learning curve appear flat. In such cases, the
fitness often also exceeded the threshold by a wide mar-
gin. As a result of averaging, most of the curves appear
elevated above the threshold level, even if they are not flat.
In early tasks, RESP performs similarly to RULES-ONLY
because it solves all these tasks in one or two generations.
ESP-BEST and ESP-SAMENET in contrast learn a lot,
almost catching up with the advantage given by the initial
KB. However, the KB turns out to be a better foundation
for the final task (where evolution was allowed to continue
past the threshold), and RESP significantly outperformed
all the other methods (single-tailed t-test with 95% confi-
dence).

tially placed on the southeast corner. No matter where
the prey is initially positioned, the predator can easily
learn how to force the prey into the corner and capture
it. In a more challenging task, the predator was placed
closer to the northwest corner but still near one of the
non-walled borders of the environment. The flee and
move factors of the prey were also increased. In such a
task the prey has a better chance of escaping to one of
the unwalled borders. For the most challenging task,
the predator was placed on the northwest corner and
the flee and move factors of the prey were set to 1.0.
In this case, the predator must learn to go around the
prey and force it to flee in the direction of the walled
corner, where it can be captured.

Figure 7 summarizes the results of incremental evo-
lution. As before, the x-axis represents the progress
of evolution over time. Each area between a pair of
vertical lines shows the learning curves for one task.
The tasks are arranged left to right in the order of in-
creasing difficulty. Because each task takes a different
number of generations to learn with the different meth-
ods, the learning curves were stretched or compressed
along the x-axis to make them equally wide for all
methods. If a method solved a task in the first few gen-
erations, its learning curve appears flat in the figure.
The threshold for success was set at 250, which was
found experimentally to improve incremental perfor-
mance the most. The threshold was usually achieved
between 0 and 2 generations of evolution. Many of the
learning curves appear higher than 250 because they
are averages of 10 runs, and some of these 10 often had
an early success with a very high fitness.

RULES-ONLY performed well above the threshold in
simpler tasks, but its performance converged to around
1050 for the more challenging ones. RESP solved each
of the increments in very few generations, before it
had much change to evolve beyond its initial approxi-
mation of RULES-ONLY. As a result, its performance
tracks that of RULES-ONLY until the last task, where
its evolution was not cut short after it exceeded the
threshold. Its final fitness was near 1400, which is not
significantly better than its fitness in direct evolution.
This result shows that the initial KB of RESP makes
incremental evolution unnecessary in this task.

In contrast, the ESPs evolved a lot during the early
tasks. In effect they were catching up with the ad-
vantage the initial KB gave to RESP and RULES-
ONLY. Incremental evolution allowed both methods
to learn the task to some degree, and ESP-BEST actu-
ally achieved the same level of performance as RULES-
ONLY. In the end, however, incremental evolution did
not put ESP in as good a position for learning the fi-

1400 . . .

ESP-BEST —+——
Noised RESP ----%----
1200

1000 |- S]

800 |- N i

Fitness value

600 |- * \ i
400 | T -

200 - ‘x‘_

o L L L L L L L L
o 10 20 30 40 50 60 70 80 90

Percentage of rules deleted

Figure 8. The fitness of RESP with rules deleted from the
initial KB. The results for RESP were obtained with di-
rect evolution, and those of the ESPs with incremental
evolution. The plots represent averages of 10 runs. RESP
achieved better fitness with up to 20% of the rules deleted,
and comparable fitness with up to 40% of the rules deleted.
The results show that RESP is robust even with an incom-
plete knowledge base.

nal task as RESP. ESP-BEST achieved a final fitness
of 950, and ESP-SAMENET that of 700, both of which
are significantly less than RESP’s 1400. These results
support the hypothesis that domain knowledge gives
RESP an advantage over ESP in complex problems.

Furthermore, it took us an order of magnitude longer
to devise an effective incremental learning scheme than
it took us to put together the initial KB used by RESP.
This observation supports our claim that it is easier to
come up with a set of initial behavior rules than a set
of effective tasks for incremental learning.

4.3. Robustness of RESP

How accurate does the initial KB have to be? To test
the robustness of RESP against incomplete knowledge
we randomly deleted rules from the initial KB, and
observed how good networks RESP was able to evolve
from that starting point. As can be seen in Figure 8,
as more rules are deleted, the fitness of RESP tends to
deteriorate approximately linearly. RESP was able to
achieve a higher average fitness than ESP-BEST and
ESP-SAMENET even with 20% of the rules deleted.
With 40% of the rules deleted, RESP is still almost as
good as these two methods. These results support our
claim that RESP is robust and provides a significant

advantage even in domains where it may be difficult
to come up with a complete set of rules.

5. Related Work and Future Plan

The application of RESP to the Prey Capture problem
showed that initial knowledge can be useful in learning
difficult tasks with neuroevolution. Because RESP is
based on KBANN, the limitations of KBANN also ap-
ply to RESP, such as the problem of missing rules. As
a possible solution, Opitz and Shavlik (1994) proposed
a specific genetic algorithm to search for the best net-
work topology for a problem. In the near future, we
will explore alternative methods in dealing with this
problem, such as evolving network topology (Stanley &
Miikkulainen, 2002). Another important direction of
future work is application of RESP to multi-agent do-
mains such as Robotic Soccer. Success in such domains
depends crucially on appropriately chosen incremental
evolution, which could be surpassed with RESP.

6. Conclusion

In this paper, we described Rule-based ESP, a hybrid
approach to reinforcement learning using a KBANN-
like rules-to-ANN translation technique and the ESP
neuroevolution method. RESP was evaluated in the
Prey Capture domain. The results show that RESP
can perform complex behaviors better than ESP, is
less likely to need incremental learning, and is robust
even with a significant amount of rules omitted from
the initial knowledge base. Furthermore, because it
is often easier to come up with an initial rule base
than an effective incremental learning scheme, RESP
will allow applying neuroevolution to more complex
domains.

Acknowledgments

Special thanks to Chern Hang Yong for the source code
of the ESP adapted for the Prey Capture domain and
Faustino Gomez for suggestions on tuning ESP. This
research was supported in part by Texas Higher Edu-
cation Coordinating Board under grant ARP-003658-
476-2001 and in part by NSF under grant I1S-0083776.

References

Cliff, D., Husbands, P., & Harvey, I. (1993). Evolving
recurrent dynamical networks for robot control. Pro-
ceedings of ANNGA93, International Conference on
Artificial Neural Networks and Genetic Algorithms
(pp- 428 — 435). Innsbruck: Springer-Verlag.

Fogel, D. B. (2001). Blondie24: Playing at the edge of
AL San Francisco, CA: Morgan Kaufmann.

Gomez, F., & Miikkulainen, R. (1997). Incremental
evolution of complex general behavior. Adaptive Be-
havior, 5, 317-342.

Gomez, F., & Miikkulainen, R. (2002). Learning robust
nonlinear control with neuroevolution (Technical Re-
port AI01-292). Department of Computer Sciences,
The University of Texas at Austin.

Hudson, D., Banda, P., Cohen, M., & Blois, M. (1992).
Medical diagnosis and treatment plans derived from
a hybrid expert system. Hybrid Architectures for
Intelligent Systems (pp. 330-244). CRC Press.

McGarry, K., Wermter, S., & Maclntyre, J. (1999).
Hybrid neural systems: from simple coupling to fully
integrated neural networks. Neural Computing Sur-
veys, 2, 62-93.

Miller, G., & Cliff, D. (1994). Co-evolution of pursuit
and evasion I: Biological and game-theoretic founda-
tions (Technical Report CSRP311). School of Cogni-
tive and Computing Sciences, University of Sussex,
Brighton, UK.

Nolfi, S., Elman, J. L., & Parisi, D. (1994). Learning
and evolution in neural networks. Adaptive Behav-
tor, 2, 5—28.

Opitz, D. W., & Shavlik, J. W. (1994). Using genetic
search to refine knowledge-based neural networks.
Machine Learning: Proceedings of the FEleventh

International Conference (pp. 208 — 216). New
Brunswick, NJ: Morgan Kaufmann.
Stanley, K. O., & Miikkulainen, R. (2002). Evolv-

ing neural networks through augmenting topologies.
Evolutionary Computation, 10, 990-127. In press.

Towell, G. G., & Shavlik, J. W. (1994). Knowledge-
based artificial neural networks. Artificial Intelli-
gence, 70, 119-165.

Wermter, S. (1997). Hybrid approaches to mneural
network-based language processing (Technical Re-
port TR-97-030). UC-Berkeley, Berkeley, CA.

Whitley, D., Dominic, S., Das, R., & Anderson, C. W.
(1993). Genetic reinforcement learning for neuro-
control problems. Machine Learning, 13, 259-284.

Wieland, A. P. (1990). Evolving controls for unstable
systems. In D. S. Touretzky, J. L. Elman, T. J.
Sejnowski and G. E. Hinton (Eds.), Connectionist
models: Proceedings of the 1990 summer school, 91—
102. San Francisco, CA: Morgan Kaufmann.

