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Neuroevolution an be used to evolve neural networks that an ontrol robotmanipulators to perform tasks like target traking and obstale avoidane in omplexenvironments. Neuroontrollers have been suessful in the robot ontrol domainbeause they are robust to noise, they an be adapted to di�erent environments andmanipulator on�gurations, and they an be used to implement ontrollers that anperform online learning.The fous of this report was to evolve neuroontrollers for two environments.First, neuroontrollers are evolved for environments without obstales and their per-formane is ompared to an inverse kinemati ontroller and a potential �eld on-troller. Seond, neuroontrollers are evolved for environments with obstales andompared with a ontroller that uses potential �elds to implement a path planningalgorithm. The neuroontrollers evolved in this report ome lose to mathing theperformane of the analytial ontrollers. The advantage of using neuroontrollers istheir robustness to noise and ability to adapt to di�erent environments.
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Chapter 1IntrodutionThe goal of this report is to present a method that an evolve robust adaptableontrollers for robot manipulators that an operate in environments with obstales.The robot manipulators are used to pik up or trak objets while avoiding obstales.In order to suessfully aomplish this task a ontroller must be able to inorporateinformation about obstales into a ontrol algorithm that generates a trajetory thatpositions the end-e�etor lose to a target.Traditional approahes in roboti ontrol involve solving the inverse kinematiequations of a roboti manipulator in order to develop ontrollers that an move therobot arm. One drawbak of this approah is that the ontrollers developed are for aspei� robot on�guration. If the robot's on�guration or environment hanges thenthe ontroller will have to take into aount the new robot kinematis. An inversekinemati ontroller annot be used to operate a robot manipulator in an environmentwith obstales. Suh a ontroller must be modi�ed to use a path planning algorithmto be able funtion in environments with obstales.Neural network ontrollers have been shown to be e�etive in di�erent ontroltasks suh as pole balaning, robot ontrol and vehile ontrol [9, 10℄. This reportuses the Neuroevolution of Augmenting Topologies (NEAT) [9℄ method to evolveneural network ontrollers that an be adapted to di�erent environments and roboton�gurations. The ontrollers are �rst evolved in environments without obstales todemonstrate that neuroontrollers an solve the inverse kinematis of a robot arm.Then, ontrollers are evolved in environments with obstales so that they an be usedin omplex environments to ontrol robot manipulators.1



The robot arm has sensors along its joints whih are used to sense its distanefrom obstales. The arm has a range sensor present at the end-e�etor whih providesthe relative distane of the target. The neuroontroller is provided with this sensorinput and generates a set of joint angles that will move the end-e�etor to the targetposition.Neural networks were evolved that ould position the end-e�etor to within5m of a target in environments without obstales and within 10m in environmentswith obstales. The performane of the best neural network that was evolved for anenvironment without obstales was ompared to an inverse kinemati ontroller anda potential �eld ontroller. The performane of the best network that was evolved forenvironments with obstales was ompared to a ontroller that uses path planning.The evolved neuroontrollers ome lose to mathing the performane of theinverse kinemati ontroller and potential �eld ontroller for environments withoutobstales. The advantage of using neural network ontrollers is that the same trainingproess an be used for di�erent robot arm on�gurations.For environments with obstales, the neuroontrollers ome lose to math-ing the performane of ontrollers that use path-planning to avoid obstales. Path-planning algorithms do not guarantee an optimal path to an objet. The evolvedneuroontrollers are able to funtion in environments with di�erent target and ob-stale on�gurations beause the target and obstale sensors are egoentri and notbased on global oordinates.The main ontribution of this report is a method that an be used to evolveneuroontrollers for a robot arm that be adapted for di�erent robot and environmenton�gurations. The neuroontrollers an perform omplex tasks like ontrolling thearm in the presene of obstales and also trak moving objets.
2



Chapter 2Bakground and Related WorkStandard approahes in robotis for robot manipulator ontrol involve design-ing ontrollers for spei� robot arm on�gurations. Controllers are developed thatsolve the inverse kinematis of a robot arm. First, a visual observation of a targetobjet is translated into the desired position of the robot arm's end-e�etor by usingomputer vision methods. Then the analytial ontroller is used to alulate the jointstate that ahieves the desired end-e�etor position. The ontroller then sets thejoint state whih is used to drive the motors whih positions the end-e�etor lose toa target [5℄.In order to design ontrollers that an operate in environments with obsta-les, path planning algorithms are used to generate a path for the end-e�etor thatnavigates around obstales towards a target position. This sequene of end-e�etorpositions is onverted to joint angles by using an analytial ontroller. The jointangles are used to set to the gains for the atuators in order to move the joints [5℄.Inverse kinemati ontrollers have been used to aomplish tasks suh as armpositioning, obstale avoidane and target traking. Feddema and Lee [2℄ used a self-tuning adaptive ontroller for performing target traking for a 6 degree of freedomrobot arm with a amera attahed to the end e�etor. The model predited thetarget position based on past observations and then used this predition to movethe end e�etor to trak the target. A geometri model of the amera was usedto determine the linear di�erential transformation from image features to ameraposition and orientation. The self-tuning ontroller is used to adjust for modellingerrors and system nonlinearities and for optimal ontrol.3



Another system that used an inverse kinemati ontroller to trak objetswas implemented by Papanikolopoulos and Khosla [8℄ who used the sum of squareddi�erenes of opti ow vetors to ompute a vetor of disrete target displaements.This vetor was fed into an adaptive ontroller that reated ommands for a robotontrol system. The ontroller required only partial knowledge of the relative distaneof the target with respet to the amera. This approah inorporates the target'sdynamis and kinematis in the system model as opposed to deoupling the problemsof obtaining information about the target using omputer vision methods and thenmoving the robot to a target position using inverse kinemati methods.Weiss[4℄ used image-based visual servo ontrol on simulation studies of twoand three degree of freedom robot arms. Vision-based sensors are used to estimatethe target position relative to the end-e�etor of the robot arm. A model refereneadaptive ontroller is used in a stable losed loop dynamial response system. Jointangles are set using inverse kinematis ontrollers.One drawbak of using analytial ontrollers is that they are alibrated forspei� environments and robot arm on�gurations. The internal model has to bere-alibrated for di�erent environments. As robot arms beome more sophistiatedthey will have a larger number of degrees of freedom. It is diÆult to solve theinverse kinemati equations for robot manipulators with a large number of degrees offreedom.In order to solve this problem researhers have applied supervised learningmethods to train systems that learn to ontrol a robot manipulator e�etively [12℄.These methods require a training set that demonstrates the orret robot joint statefor a di�erent situations. The training set must be arefully hosen so that theontroller learns general behavior that allows it to e�etively ontrol the arm insituations that are not present in the training set. One way to generate trainingexamples is to randomly move the arm while reording the joint angles and end-e�etor positions [12℄. After the ontroller has learned to move the arm to targets4



in the training set, it is evaluated on a di�erent test set to measure its performane.One limitation of this approah is that it is diÆult to generate training examples foromplex behaviors like obstale avoidane. Another drawbak is that random jointmovements might not generate training examples that demonstrate how to move thearm orretly.Another approah to learning to ontrol a robot manipulator is to use ex-ploratory methods. These methods provide the robot with a set of exploratorybehaviors. Stoythev[11℄ developed a system where the robot ontroller learns af-fordanes during a behavioral babbling stage where the robot randomly hooses dif-ferent exploratory behaviors, applies them to objets and detets sensor invariants.The exploratory method was used to learn to position the end-e�etor in order topik up objets of di�erent shapes like H frames, � frames, stiks and dumbells. Ashortoming of this approah is that there are a�ordanes that annot be disoveredbeause the robot does not possess the required exploratory behavior.Researhers have developed systems that use neural network ontrollers forrobot arm ontrol. Neuroontrollers have been suessful in the robot arm ontroltask beause they are robust to noise and an model non-linear systems. Vision-based robot arm ontrol is a omplex task that requires mapping target positions toa set of joint angles. It is diÆult to use supervised learning to train ontrollers foromplex vision based ontrol tasks like ontrolling an arm in situations where therobot on�guration and environment hanges.One example of a robot system that used neuroontrollers was developed byBehrman and Di Paolo[1℄ who used a geneti algorithm for a three degree of freedomrobot arm. The system used an overhead amera with two degrees of freedom, anend-e�etor amera with two degrees of freedom and a two-dimensional array of laserrange �nders arranged in a retangular grid at the end-e�etor. The rays originate atthe same foal point in spae and the angle between them determines the amera's�eld of view. Three di�erent neuro-ontrollers were evolved for the overhead amera,5



the end-e�etor amera and the robot joints. The evolved ontrollers ould positionthe end-e�etor to trak objets.Another system was developed by Moriarty[6℄ who used the SANE genetialgorithm to evolve ontrollers for a three degree of freedom robot arm in a simulatedenvironment with obstales. The robot arm had range sensors that provided the targetposition relative to the end-e�etor and one obstale sensor in the end-e�etor thatould be used to avoid obstales. The ontrollers evolved ould avoid obstales only atthe end-e�etor. During normal operation the ontrollers had to avoid obstales only11% of the time. The obstale was always in one of twelve positions whih limitedthe obstale avoidane behaviors that were learned.This report evolves neuroontrollers using the NEAT method that an fun-tion in environments with obstales. The NEAT methods has been used to evolveneuroontrollers that have been shown to be e�etive in robot ontrol tasks suh aspole balaning, robot ontrol and vehile ontrol [9, 10℄. Unlike previous approahes[1℄ the neuroontrollers are able to funtion in omplex environments with obstales.The neuroontrollers have sensors along the length of the arm whih is used to avoidobstales using the entire arm.This hapter desribes the motivation of using the NEAT method to evolveneuroontrollers. The robot manipulator kinematis for the OSCAR-6 robot armwhih was used to evolve neuroontrollers is also disussed. Finally the two analytialontrollers that were used as a omparison for the neural network ontrollers are alsodesribed.2.1 NEAT geneti algorithmThe NeuroEvolution of Augmenting Topologies (NEAT) [9℄ method evolvesinreasingly omplex neural networks to math the omplexity of the problem. NEATevolves both onnetion weights and topology simultaneously. It has been shown to6



be e�etive in many appliations suh as pole balaning, robot ontrol, vehile ontrol,board games and videogames [9℄.NEAT is based on three fundamental priniples: (1) employing a prini-pled method of rossover of di�erent topologies, (2) proteting strutural innovationthrough speiation, and (3) inrementally growing networks from a minimal struture.Mating, or the rossing over of genomes of two neural networks of possibly di�eringstruture, is aomplished through innovation numbering. Whenever a new onne-tion between nodes is reated through mutation, it is assigned a unique number.O�spring produed with the new onnetion inherit the innovation number. When-ever networks are rossed over, those genes that have the same innovation numberan be safely aligned. Genes of the more �t organism with innovation numbers notfound in the other parent are inherited by the o�spring as well. Speiation ours bydividing the population into separate, distint subpopulations. The struture of eahindividual is ompared dynamially with others and those with similar struture aregrouped together. Individuals within a speies share the speies' overall �tness [3℄,and ompete primarily within that speies. Speiation allows new innovations to beoptimized without faing ompetition from individuals with di�erent strutures. Net-works in NEAT start with minimal struture, onsisting only of inputs onneted tooutputs with no hidden units. Mutation then grows the strutures to the omplexityneeded to solve the problem. Starting this way avoids searhing through needlesslyomplex strutures.The NEAT method was used to evolve neural network ontrollers that ouldontrol the robot arm in environments with obstales. The ability of the NEATmethod to �nd eÆient solutions to omplex ontrol problems by evolving networksusing speiation was the primary reason it was used to evolve neuroontrollers.
7



2.2 Robot Arm KinematisA robot manipulator onsists of a set of links onneted by joints. Commonjoints found in robot arms are revolute (joint desribed by angle of rotation) and pris-mati (joint desribed by the amount of linear displaement). A robot manipulatorwith n joints has n + 1 links. If the joints are numbered 1 to n and the links arenumbered 0 to n, then joint i onnets link i�1 to link i. Joint i is �xed with respetto link i � 1. When joint i is atuated link i moves. Link 0 (the �rst link) is �xedand does not move when the joints are atuated.In order to perform kinemati analysis a oordinate frame oixiyizi is attahedrigidly to eah link i. The oordinates of eah point on link i are onstant whenexpressed in the ith oordinate frame. Coordinate frame 0 is denoted as the inertialor base frame. If Ai is the homogenous transformation matrix that gives the positionand orientation of oixiyizi with respet to oi�1xi�1yi�1zi�1, then the matrix thatexpresses the position and orientation of ojxjyjzj with respet to oixiyizi is alled atransformation matrix and is denoted by T ij :T ij = 8<: Ai+1Ai+2::::::Aj�1Aj if i < jI ifi = j(T ji )�1 if i > j : (2.1)2.2.1 Forward KinematisThe forward kinematis problem is onerned with the relationship betweenposition and orientation of the end-e�etor given the angles or extensions for thevarious rotational or revolute joints for the robot. In order to alulate the positionof the end-e�etor with respet to the base (Joint 0), the Homogenous matrix H isused (qi denotes a single joint variable):H = T 0n = A1q1A2q2 � � �Anqn : (2.2)8



The Denavit-Hartenberg onvention is ommonly used for seleting frames ofreferenes in roboti appliations beause it simpli�es kinemati analysis. In thisonvention eah homogeneous matrix Ai is presented as a produt of four basi trans-formations: Ai = Rotz;�iTransz;diTransx;aiRotx;�i (2.3)= 2664 �i �s�i 0 0s�i �i 0 00 0 1 00 0 0 1 37752664 1 0 0 00 1 0 00 0 1 di0 0 0 1 3775� 2664 1 0 0 ai0 1 0 00 0 1 00 0 0 1 37752664 1 0 0 00 �i �s�i 00 s�i ��i 00 0 0 1 3775= 2664 �i �s�i�i s�is�i ai�is�i �i�i ��is�i ais�i0 s�i �i di0 0 0 1 3775The quantities �i, ai, di and �i are parameters assoiated with link i and jointi whih are the joint angle, link length, link o�set and link twist. These parametersare obtained by the spei� aspets of the geometri relation between two oordinateframes. These parameters are spei�ed in the Denavit-Hartenberg representation ofa robot arm manipulator. Figure 2.1 represents the OSCAR 6 robot arm manipu-lator that was used to evolve neural network ontrollers. The Denavit-Hartenbergparameters for the OSCAR 6 robot are desribed in Table 2.2.1.In order to solve the forward kinematis of the arm, the matrix transforma-tions are used to alulate the position of the end-e�etor with respet to the baseoordinate frame. Here only three of the six degrees of freedom of the robot are usedto ontrol the arm. l1, l2 and l3 are d1, a2 and d4 in Table 2.2.1. The variables x, y9



Figure 2.1: The three joint, six degree of freedom robot arm whih is used to evaluatethe neural network ontrollers. This �gure represents the four oordinate frames thatare used to solve the kinematis of the OSCAR-6 arm. Joints 1 and 2 have one degreeof freedom eah, while joint 3 and the end-e�etor eah have two degrees of freedom.While evolving neuroontrollers only the joint angles �1, �2 and �3 are used to ontrolthe robot while the remaining three joint angles are held at a onstant value.and z denote the position of the robot's end-e�etor with respet to the base. Thesolution to the forward kinematis then beomes:x = (l2os�2 + l3sin�3)os�1 (2.4)y = (l2os�2 + l3sin�3)sin�1 (2.5)z = l1os�2 � l2sin�2 � l3os�3 : (2.6)2.2.2 Inverse KinematisThe inverse kinematis problem deals with �nding the joint variables for agiven end-e�etor position and is usually more diÆult to solve than the forward10



� d a ��1 46m 0m �90o�2 0m 51m 0o�3 0m 0m �90o�4 50m 0m �90o�5 0m 0m 90o�6 21m 0m 0oTable 2.1: Denavit Hartenberg parameters for OSCAR 6 anthropomorphi arm.kinematis problem. The position of the end-e�etor enables the alulation of thehomogeneous matrix H. In order to solve the inverse kinematis a solution has to befound for: T 0n(q1; � � � ; qn) = H ; (2.7)where H = A1q1A2q2 � � �Anqn : (2.8)Equation 2.7 represents 12 non-linear equations in n unknown variables be-ause A is a 4� 4 matrix and the bottom row of both T 0n and H are (0,0,0,1). Thisan be written as T 0ij(q1; � � � ; qn) = hij; i = 1; � � � ; 4 : (2.9)It is diÆult to solve 12 non-linear equations in n variables. In situations wherethe robot arm on�guration hanges, the analytial solution has to be reomputedeah time. For omplex robot manipulators that have a large number of degrees offreedom n is large and �nding an analytial solution is extremely diÆult.
11



The analytial solution to the inverse kinematis of the OSCAR-6 robot armis �1 = artan2(px; py) (2.10)�2 = �artan( jpyjjpxj)� aros(x2 + y2 + z2 + l22 � l232l2 2px2 + y2 + z2 ) (2.11)�3 = �artan( jpyjjpxj)� aros(x2 + y2 + z2 + l22 � l232l2 2px2 + y2 + z2 ) :+3�2 � aros( l22 � l23 � x2 � y2 � z22l2l3 ) (2.12)The performane of the best neuroontroller was ompared against a ontrollerthat implemented an analytial solution of these inverse kinemati equations. Theresults are disussed in the Setion 3.2.3 Path Planning algorithm for environments with obstalesA ontroller that uses path planning moves the arm aording to the sum ofattrative and repulsive fores that at on the arm. The attrative �eld grows as thedistane of the target from the end-e�etor inreases and is zero when the end-e�etoris at the target position. Eah obstale generates a repulsive �eld that grows as theend-e�etor moves lose to an obstale. If the obstale is more than ten units awayfrom the end-e�etor the repulsive fore is zero. The net fore that ats on the armis Uatt(q) = � � T (q) ; (2.13)where Urep(q) = � � 1=O(q) (2.14)U(q) = Uatt(q) + Urep(q) ; (2.15)12



q represents the joint on�guration of the robot at any instant, Uatt(q) the attrativefore due to the target, Urep(q) the repulsive fore due to the obstale, T (q) thedistane of the end e�etor from the target for a given joint on�guration, O(q)represents the distane of the obstale from the target for a given joint on�guration,� and � are onstants.In order to generate a path that moves the robot around obstales towardsa target position, the ontroller alulates the net fore at eah time step for theurrent joint on�guration and moves the arm based on the diretion and magnitudeof the net fore. This proess allows the ontroller to generate a sequene of jointangles that will move the arm towards the target while navigating around obstales.One problem with this approah is that the arm often gets stuk in a loal minimumwhere the net fore is zero but the end e�etor is not near the target. If the ende�etor get stuk in a loal minimum a random movement away from the obstale istaken and the proess is repeated. This proess ontinues for a �xed number of timesteps or until the robot arm hits an obstale. The average path taken and the average�nal distane of the end-e�etor from the target for the training set is ompared withresults from neural network ontrollers.
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Chapter 3Experiments
Experiments were onduted to evolve neural network ontrollers that ouldplae the end e�etor of the robot arm near a target objet in an environment that mayontain obstales. Figure 3.1 shows the OSCAR-6 robot arm as seen in the Simderella3.0 robot arm simulator that was used to train the neural network ontrollers. The�rst and seond joints have one degree of freedom eah while the third joint and theend-e�etor have two degrees of freedom. In the experiments the neural networkswere allowed to ontrol three of the six degrees of freedom. Three degrees of freedomwas suÆient to allow the ontroller to move the arm to over most of the positionsin the spae diretly in front of the robot. This on�guration also allowed the neuralnetworks to evolve a ontroller that ould solve the inverse kinematis of the arm ina fewer number of generations.Neural networks were evolved to learn to ontrol the arm in two di�erentexperiments. First, the neuroontrollers were trained to ontrol the arm in environ-ments without obstales. The performane of the best neuroontrollers was omparedwith an inverse kinemati ontroller and a potential �eld ontroller. Seond, the neu-roontrollers were trained to ontrol the arm in environments with obstales. Theperformane of the best neuroontrollers was ompared with a ontroller that usedpath planning to move the arm around obstales.The neuroontrollers were trained to position the end-e�etor lose to targetsin the spae diretly in front of the arm. The target set was hosen so that thepositions were within the robot's reah spae. The obstales were also plaed in this14



Figure 3.1: Three joint six degree of freedom OSCAR-6 robot arm whih is simulatedusing Simderella. The inputs to the neuroontroller are the urrent joint state (jointangle 1, 2 and 3) and the relative position of the target with respet to the end e�etor.The neuroontrollers outputs three joint angles whih are used to ontrol joints 1, 2and 3. At eah time step the sensor input is presented to the neuroontroller whihmoves the robot to the target position. Joint 1, 2 and 3 are of lengths 46m, 51mand 50m respetively.reah spae in a manner that made it neessary for the ontroller to learn to movearound obstales to reah a target.3.1 Learning to ontrol the arm in an environment withoutobstalesThe objetive of this experiment was to evolve a neural network that ouldoutput the joint angles required to position the end-e�etor lose to target objets. Inorder to evolve neuroontrollers that learn to e�etively ontrol the arm, the neuralnetwork is provided with sensor input from the environment, whih is then used todetermine how to move the robot arm. The inputs to the network ontrollers are the15



the urrent joint angles, and the x, y and z positions of the target relative to theend-e�etor.The network ontroller has three outputs that determine how muh eah jointangle hanges at every timestep. The joint angles are thresholded between [-5,+5℄degrees whih fores the neuroontroller to make several small joint rotations towardsthe target whih allows it to more e�etively ontrol the arm. The networks havean output neuron that ontrols whether or not to stop moving the robot. Thison�guration allows the network to stop the robot more easily that having to set allthree joint rotation angles to 0o. Figure 3.2 shows the on�guration of the networksevolved to ontrol the arm in an environment without obstales. The inputs to thenetwork are the urrent joint angles and the position of the target relative to theend-e�etor. The outputs are the three joint rotations and a stop arm neuron.Eah neural network evaluation starts by resetting the robot arm to a legalinitial on�guration. The targets are plaed within a 180o rotation of the robot's �rstjoint. Eah network is evaluated over a training set with 168 target positions whihare uniformly distributed within the robot's reah spae. During eah evaluation thenetwork is allowed to move the arm until1. The network stops the arm by ativating the stop neuron, or2. The number of timesteps exeeds 30.In order to evaluate a network, the �tness funtion takes into aount the�nal distane from a target and the path length taken by the end-e�etor.The �tnessfuntion onsists of two omponents:1. Perentage of distane travelled towards target (TargetDistaneRatio), and2. Ratio of path length to ideal path length (PathLengthRatio).
16



Figure 3.2: Con�guration of the networks evolved in an environment without obstales.The inputs to the neuroontroller are the urrent joint state and position of the targetrelative to the end e�etor. The outputs are the joint rotations and the stop signal.The initial starting network onsists of inputs onneted diretly to the outputs withzero weights. As the networks evolve more nodes are added and the weights of theonnetions are modi�ed so that the network an e�etively ontrol the arm.TargetDistaneRatio is omputed as the perentage of distane the arm movedfrom the initial starting point towards the target position. For example, if the armstarted 50 units from the target position, and at the end of the trial, the arm was25 units from the target position then TargetDistaneRatio is (50 � 25)=50 = 0:5.Compared to the �nal distane from the target, the perentage distane is a moreaurate omparison between a network that reeives a lose target and a networkthat has to move towards a far-away target.The ideal path length is the length of the straight line between the initialend-e�etor position and the target position. PathLengthRatio is omputed as theratio of the ideal length to the path length taken by the end-e�etor. This omponentis designed to reward networks that an position the end-e�etor lose to the target17



position by taking the shortest path to the target. It also penalizes network ontrollersthat osillate when they are lose to a target while rewarding network ontrollers thatstop when the robot's end-e�etor is lose to the target.The �nal �tness funtion is a weighted sum of the two sub-omponents:a � TargetDistaneRatio + b � PathLengthRatio : (3.1)In the stationary target experiments a = 0:6 and b = 0:4.Figure 3.3 depits the average �tness of the best network found at eah gener-ation with a = 0:6 and b = 0:4 averaged over three runs. The best network that wasfound over the 400 generations has a �tness of 0.78. The best neuroontroller ouldon avereage move to the within 4.43 m of a target.

Figure 3.3: Fitness of the best network found at eah generation in an environmentwithout obstales averaged over �ve runs. The best network that was found had a�tness of 0.78. The �tness of the starting network is low beause it onsists of inputsonneted diretly to outputs with random weights. As evolution proeeds, the �tnessof the best network found at eah generation inreases.Figure 3.4 shows how the best network evolved performs on eah target po-sition in the training set. The target positions are olor oded with yellow having a18



�tness greater than 0.8 and red having a �tness less than 0.2. The neural networkis able to position the robot arm lose to nearly all targets exept for some outlyingtarget position that are very high or low (with respet to the z axis).
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Figure 3.4: Fitness display of best network that was evolved for eah point in thetraining set in an environment without obstales. The points are olor oded aordingto the �tness with yellow being the highest �tness and red the lowest �tness. The�tness of most points in the training set is at least 0.6.The best evolved network ontroller was then ompared with a ontroller thatsolved the inverse kinematis equations to ontrol the arm. The inverse-kinemationtroller an ompute the required joint angles to position the robot's end-e�etorlose to a target position. Figure 3.5 shows the three joint angles at eah time stepfor the analytial ontroller and the neural network ontroller for one target positionduring an evaluation. The analytial ontroller is able to position the arm near thetarget in fewer timesteps ompared to the evolved neural network ontroller. Onethe neural network positions the arm lose to a target it ativates the stop neuron attimestep 17. The �nal distane of the neuroontroller's end e�etor from the targetis quite lose to the inverse kinematis ontroller.19
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Figure 3.5: The three joint angles for the analytial and neural network ontroller fora single target position. The analytial ontroller is able to move to the target in 10timesteps. The neuroontroller also moves to the target but takes 17 timesteps to doso. The neuroontroller is able to move to within 5m of the target whih is lose tothe inverse kinemati ontroller's performane.Table 3.1 shows the average L1,L2 and L1 distanes of the joint angles ofthe best neural network ontroller and the analytial ontroller for one target posi-tion. For most target positions the neural ontroller moves moves the robot to thesame on�guration as the analytial ontroller, however it takes a larger number oftimesteps to reah the orret joint on�guration whih explains the di�erene in theaverage L1 and L2 distanes of the joint angles.The best evolved neuroontroller is also ompared with a ontroller that useda potential �eld algorithm to ontrol the robot arm. In most ases, the potential �eld20



Joint1 Joint2 Joint3L1 6.97 5.19 4.90L2 8.49 6.47 6.14L1 15.49 12.20 11.75Table 3.1: Comparison of Neural Network ontroller and Inverse Kinemati Con-troller This table shows the L1,L2 and L1 between the best evolved neuroontrollerand inverse kinemati ontroller of joint angles 1, 2, and 3 averaged over the trainingset. The neuroontroller omes lose to mathing the inverse kinemati ontrollerin terms of average �nal distane of the end-e�etor from the target. The neuro-ontroller however takes a larger number of timesteps whih is why the L1 and L2distanes are not zero.ontroller takes a shorter, more energy eÆient path to the target than the inversekinemati ontroller. Table 3.1 shows a omparison of the performane of the bestneuroontroller with a potential �eld ontroller. The neuroontroller omes lose tomathing the performane of the potential �eld ontroller. Figure 3.6 shows the pathtaken by the best neuroontroller and the potential �eld ontroller for a single targetposition. The neuroontroller takes a less optimal path, but omes lose to mathingthe �nal target distane of the potential �eld ontroller.AveragePathLength AverageTargetDistNeuralNetworkController 50.81m 4.45mPotientalF ieldController 31.04m 0.84mTable 3.2: Comparison of neural network ontroller and potential �eld ontroller Thistable shows the average path length and average �nal distane of the end e�etorfrom the target for the best evolved neuroontroller and a potential �eld ontroller.The potential �eld ontroller takes a shorter path to the target, and moves loser tothe target but the neuroontroller omes lose to mathing this performane.The best evolved neuroontroller was on average able to position the end-e�etor to within 4.45m of a target position whih is lose to the �nal target distaneusing the potential �eld ontroller. The evolved neuroontrollers take a relativelyshort path to a target position. This experiment demonstrates that it is possible to21
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Figure 3.6: Comparison of the path taken by the end-e�etor for a neural networkontroller and a ontroller that uses a potential �eld. The potential �eld ontrollertakes a shorter path to the target while the neural network ontroller takes a lessoptimal path to the target. The average �nal target distane of the potential �eldontroller is 0.84m while the neural network ontroll omes lose to this performanewith an average distane of 4.45m.evolve neuroontrollers that an e�etively ontrol the arm in environments withoutobstales.3.2 Learning to ontrol the arm in an environment with ob-stalesIn the seond experiment, the neural network ontrollers were trained to movethe objet lose to a target position while avoiding obstales. The inputs to theneural network inlude the urrent joint angles, the position of the target relative tothe end e�etor, and three obstale sensors present in the seond joint, third joint andthe end-e�etor as seen in Figure 3.7. These sensors provide the x,y and z relativedistanes of the losest obstale. The sensors have a 10m range and return 1 if there22



is no obstale is within range. If there is an obstale within range, they return thedistane of the nearest obstale saled between 0 and 1. The outputs of the ontrollerare three joint thresholds and a stop ag. The three outputs determine how muheah joint angle hanges at every timestep. The joint angles are thresholded between[-5,+5℄ degrees. This fores the neuroontroller to make several small joint rotationstowards the target whih allows it to more e�etively sense and avoid obstales alongthe arm's path. Figure 3.8 shows the on�guration of neural network ontrollersevolved for obstale avoidane.

Figure 3.7: Three obstale sensors are used to navigate around obstales while movingthe end-e�etor towards the target. The inputs are the obstale sensor data, targetsensor data, urrent joint state and the outputs are the thresholded joint angles anda ag that indiates whether or not to stop moving the arm. The obstale sensorsallow the neuroontroller to sense obstales along the length of the arm and avoidobstales along the entire arm. The obstale is always initially plaed between theend e�etor and target so that the neuroontroller has to perform obstale avoidanefor every position in the training set to get a high �tness. Joint 1, 2 and 3 are oflengths 46m, 51m and 50m respetively.Eah neural network evaluation starts by resetting the robot arm to the same23



Figure 3.8: Con�guration of the networks evolved in an environment with obstales.The inputs to the neuroontroller are the urrent joint state, position of the targetrelative to the end e�etor and obstale range sensor data. The robot has threeobstale sensors at joint 2, joint 3 and the end e�etor whih returns the thresholdeddistane of the nearest obstale. The outputs are the joint rotations and the stopsignal. As evolution progress NEAT adds more hidden nodes and modi�es the weightsso that the network's �tness inreases and the neuroontroller an e�etively ontrolthe arm while avoiding obstales.joint on�guration. The target is plaed within a 180o rotation of the robot's �rstjoint, and an obstale is plaed at the midpoint of the line between the initial positionof the end-e�etor and the �nal target position. Plaing the obstale in suh a mannermakes it neessary for the ontroller to navigate around an obstale to reah the targetfor every position in the training set. The training set onsists of 96 target positionsthat are uniformly distributed in the robot's reah spae. During eah evaluation thenetwork is allowed to move the arm until1. The network stops the arm,2. The number of timesteps exeeds 30, or24



3. The robot hits an obstale.If during an evaluation the robot arm hits an obstale at any point along thearm, the trial is stopped and the �tness is set to zero. The �tness funtion is aweighted sum of the the relative distane travelled towards the target and the pathlength, similar to the previous experiment. This �tness funtion rewards networksthat are able to navigate around an obstale and move the end-e�etor lose to atarget while taking the shortest path possible.Figure 3.9 depits the average �tness of the best network found at eah gen-eration. The best network that was found over 400 generations has a �tness of 0.7.For the training set that was used this represents a �nal target distane that is 10m,whih is reasonably lose to the target. The neuroontroller is able to inorporateobstale avoidane while the ontrolling the arm while still being able to position theend e�etor lose to targets.Figure 3.10 depits how the best network evolved performs on eah targetposition within the training set. As before, the points are olor oded with yellowbeing the highest �tness and red being the lowest �tness. The neural network is ableto position the robot arm lose to nearly all targets.The best neural network ontroller was then ompared with a ontroller thatuses a path planning algorithm to move the arm as desribed in Setion 2. The resultsare shown in Figure 3.11 for a single position in the training set. The path planningontroller �rst moves diretly to the target but then hits a loal minimum beause ofthe obstale's repulsive fore. It then makes a random move away from the obstaleand then moves to the target. The neuroontroller also avoids the obstale whilemoving to the target. This result is shown quantitatively in Table 3.2. The average�nal distane of the neural network ontroller is less around 10m from the targetposition, and the average path length is omparable to that generated by the pathplanning algorithm. 25



Figure 3.9: Fitness of the best network found at eah generation in an environmentwith obstales averaged over �ve runs. The best network that was found had a �tnessof 0.7. This neuroontroller ould position the end-e�etor to around 10m of atarget while avoiding obstales. This demonstrates that neuroontrollers an be usedto avoid obstales while still ontrolling the arm e�etively.The neuroontrollers were trained to e�etively ontrol the arm while alsoavoiding obstales. The best evolved neuroontroller was on average able to positionthe end-e�etor to within 10.43m of a target position. The evolved neuroontrollerson average takes a shorter path around obstales towards a target position omparedto the path planning algorithm. The average �nal distane of the target from theend e�etor for the neuroontroller is lose to the ontroller that uses path planning.This experiment demonstrates that it is possible to evolve neuroontrollers that ane�etively ontrol the arm in environments with obstales. The best evolved neuro-ontroller takes a short path to the target and positions the arm to within 10m ofthe target.
26
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Figure 3.10: Fitness display of best network that was evolved for eah point in thetraining set in an environment with obstales. The graph shows the performane ofthe best evolved neuroontroller on every point in the training set. The points areolor oded aording to the �tness with yellow being the highest �tness and red thelowest �tness. The �tness of the neuroontroller for most positions in the training setis at least 0.6. The neuroontroller avoids obstales 59 out of the 96 target positionsin the training set.
AveragePathLength AverageTargetDistNeuralNetwork 48.49 10.43PathP lanning 69.45 2.83Table 3.3: Comparison of neural network ontroller and path planning ontroller.This table shows the average path length and average �nal distane of the end e�etorfrom the target for the best evolved neuroontroller and a ontroller that uses pathplanning. The neuroontroller takes a shorter path to the target, but the analytialontroller is able to move loser to the target.27
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Figure 3.11: Comparison of the path taken by the end-e�etor for a neural networkontroller and a ontroller that uses path planning. The obstale is plaed at themidpoint of the line joining the starting position and the target position. The pathplanning ontroller �rst moves diretly to the target, but hits a loal minimum beauseof the obstale. It then makes a random move away from the obstale and then movesto the target. The neuroontrollers moves to takes a path that avoids the obstaletowards the target. The �nal distane of both ontrollers from the target is 2m.
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Chapter 4Disussion
This report presented a method for evolving neuroontrollers that an be usedto operate robot manipulators in environments with and without obstales. Theneuroontrollers use range sensors that are �tted along the robots joints to senseobstales and the distane of the target relative to the end-e�etor.The neuroontrollers that were evolved were ompared with analytial on-trollers that used the solutions to the inverse kinemati equations and path planningto ontrol the robot manipulator. The neuroontrollers evolved in for the environ-ment without obstales an move the end e�etor to within 4.43 m of the target,whih is almost as good as an analytial ontroller. This results demonstrates thatneuroontrollers an be used to ontrol manipulators in environments without obsta-les. The neuroontrollers evolved for environments without obstales are also ableto move the arm to 10m of the target. The path taken by the evolved neuroontrollersis relatively short. These results demonstrates that the neuroontrollers an be usedto perform omplex tasks like obstale avoidane. The performane of the evolvedneuroontrollers omes lose to the analytial ontroller with respet to �nal distanefrom the target.The neuroontrollers evolved are able to over most of the distane from thestarting on�guration to the target and on average are able to position lose to within5m for environments without obstales and 10m for environments with obstales.One possible explanation for this is that robot ontrol onsists of two types of move-29



ment. First, the neuroontroller must make several large joint rotations to move loseto the target. These movements an inlude deteting and avoiding obstales in therobot's path. Seond, the neuroontroller must make smaller, more preise movementto get within grasping range of the target. It is possible to evolve neuroontrollersthat do both, however beause of the diminishing returns of late evolution, it takes alarger number of generations to evolve ontrollers that an move the very lose (lessthan 1m) of the target. One way of overoming this is to evolve a seondary neuralnetworks that are ativated only when the target distane is less than 10m. Thesenetworks are evolved spei�ally to ontrol the arm when the target distane is lessthan 10m. Future work will use seondary neuroontrollers to ontrol the arm afterthe primary neuroontroller positions the end-e�etor within 10m of the target.The advantage of using neuroontrollers is the ability to adapt to di�erentenvironments and manipulator on�gurations. Neuroevolution an be used to retrainneuroontrollers that an funtion in the new environment. The neuroontrollersdesribed in this report do not hange one they have been evolved. It would bedesirable to build a neuroontroller that ould detet and adapt to hanges in therobot arm on�guration or environment. Nol� and Parisi [7℄ developed a self-teahingarhiteture for training online neuroontrollers. In this arhiteture, the traininginput for the neuroontroller is provided by a separate neural network that has thesame sensor input as the neuroontrollers and is subjeted to the same evolutionaryproess as the neuroontroller, but with a �tness funtion that is designed to trainthe network to detet environmental hanges. The teahing network an reognizethe on�guration of the environment and robot and modi�es its outputs in order totrain the neuroontroller to adapt to the new environment.The self-teahing arhiteture ould be used to reate online learning on-trollers by evolving the ability to adapt the neuroontroller in response to hangesin the robot or environment on�guration. Future work will fous on training robustadaptable neuroontrollers in simulation and using these neuroontrollers to ontrol30



real manipulators.
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Chapter 5Conlusion
The goal of this was report was to evolve neuroontrollers that ould ontrolrobot manipulators in environments that ould position the robot manipulator's ende�etor lose to target positions while avoiding obstales.First, neuroontrollers were evolved for environments without obstales todemonstrate that the NEAT geneti algorithm ould be used to evolve neural networkssuited to the robot arm ontrol task. The performane of the best neuroontroller thatwas evolved in this experiment was ompared with an inverse kinematis ontrollerand a potential �eld ontroller. The neuroontroller ould move the end e�etor towithin 5m of a target position, whih is lose to the inverse kinematis and potential�eld ontroller results.In the seond experiment, neuroontrollers were used to evolve ontrollersthat ould funtion in environments with obstales. The performane of the bestneuroontroller that was evolved in this experiment was ompared with a ontrollerthat used a path planning algorithms to navigate around obstales towards a target.The best neuroontroller is able to position the end e�etor to within 10m of a target.This result indiates neuroevolution was able to integrate obstale avoidane behaviorinto the neuroontroller. The best neuroontroller evolved had a shorter average pathlength, and ame lose to mathing the performane of the path planning ontroller.The advantage of using neuroontrollers for robot arm ontrol is that neuro-ontrollers an be adapted to di�erent robot and environment on�gurations. Futureresearh will fous of evolving robust ontrollers that learn online whih evolve to32



adapt to hanges in the robot's environment.
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