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Neuroevolution 
an be used to evolve neural networks that 
an 
ontrol robotmanipulators to perform tasks like target tra
king and obsta
le avoidan
e in 
omplexenvironments. Neuro
ontrollers have been su

essful in the robot 
ontrol domainbe
ause they are robust to noise, they 
an be adapted to di�erent environments andmanipulator 
on�gurations, and they 
an be used to implement 
ontrollers that 
anperform online learning.The fo
us of this report was to evolve neuro
ontrollers for two environments.First, neuro
ontrollers are evolved for environments without obsta
les and their per-forman
e is 
ompared to an inverse kinemati
 
ontroller and a potential �eld 
on-troller. Se
ond, neuro
ontrollers are evolved for environments with obsta
les and
ompared with a 
ontroller that uses potential �elds to implement a path planningalgorithm. The neuro
ontrollers evolved in this report 
ome 
lose to mat
hing theperforman
e of the analyti
al 
ontrollers. The advantage of using neuro
ontrollers istheir robustness to noise and ability to adapt to di�erent environments.
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Chapter 1Introdu
tionThe goal of this report is to present a method that 
an evolve robust adaptable
ontrollers for robot manipulators that 
an operate in environments with obsta
les.The robot manipulators are used to pi
k up or tra
k obje
ts while avoiding obsta
les.In order to su

essfully a

omplish this task a 
ontroller must be able to in
orporateinformation about obsta
les into a 
ontrol algorithm that generates a traje
tory thatpositions the end-e�e
tor 
lose to a target.Traditional approa
hes in roboti
 
ontrol involve solving the inverse kinemati
equations of a roboti
 manipulator in order to develop 
ontrollers that 
an move therobot arm. One drawba
k of this approa
h is that the 
ontrollers developed are for aspe
i�
 robot 
on�guration. If the robot's 
on�guration or environment 
hanges thenthe 
ontroller will have to take into a

ount the new robot kinemati
s. An inversekinemati
 
ontroller 
annot be used to operate a robot manipulator in an environmentwith obsta
les. Su
h a 
ontroller must be modi�ed to use a path planning algorithmto be able fun
tion in environments with obsta
les.Neural network 
ontrollers have been shown to be e�e
tive in di�erent 
ontroltasks su
h as pole balan
ing, robot 
ontrol and vehi
le 
ontrol [9, 10℄. This reportuses the Neuroevolution of Augmenting Topologies (NEAT) [9℄ method to evolveneural network 
ontrollers that 
an be adapted to di�erent environments and robot
on�gurations. The 
ontrollers are �rst evolved in environments without obsta
les todemonstrate that neuro
ontrollers 
an solve the inverse kinemati
s of a robot arm.Then, 
ontrollers are evolved in environments with obsta
les so that they 
an be usedin 
omplex environments to 
ontrol robot manipulators.1



The robot arm has sensors along its joints whi
h are used to sense its distan
efrom obsta
les. The arm has a range sensor present at the end-e�e
tor whi
h providesthe relative distan
e of the target. The neuro
ontroller is provided with this sensorinput and generates a set of joint angles that will move the end-e�e
tor to the targetposition.Neural networks were evolved that 
ould position the end-e�e
tor to within5
m of a target in environments without obsta
les and within 10
m in environmentswith obsta
les. The performan
e of the best neural network that was evolved for anenvironment without obsta
les was 
ompared to an inverse kinemati
 
ontroller anda potential �eld 
ontroller. The performan
e of the best network that was evolved forenvironments with obsta
les was 
ompared to a 
ontroller that uses path planning.The evolved neuro
ontrollers 
ome 
lose to mat
hing the performan
e of theinverse kinemati
 
ontroller and potential �eld 
ontroller for environments withoutobsta
les. The advantage of using neural network 
ontrollers is that the same trainingpro
ess 
an be used for di�erent robot arm 
on�gurations.For environments with obsta
les, the neuro
ontrollers 
ome 
lose to mat
h-ing the performan
e of 
ontrollers that use path-planning to avoid obsta
les. Path-planning algorithms do not guarantee an optimal path to an obje
t. The evolvedneuro
ontrollers are able to fun
tion in environments with di�erent target and ob-sta
le 
on�gurations be
ause the target and obsta
le sensors are ego
entri
 and notbased on global 
oordinates.The main 
ontribution of this report is a method that 
an be used to evolveneuro
ontrollers for a robot arm that be adapted for di�erent robot and environment
on�gurations. The neuro
ontrollers 
an perform 
omplex tasks like 
ontrolling thearm in the presen
e of obsta
les and also tra
k moving obje
ts.
2



Chapter 2Ba
kground and Related WorkStandard approa
hes in roboti
s for robot manipulator 
ontrol involve design-ing 
ontrollers for spe
i�
 robot arm 
on�gurations. Controllers are developed thatsolve the inverse kinemati
s of a robot arm. First, a visual observation of a targetobje
t is translated into the desired position of the robot arm's end-e�e
tor by using
omputer vision methods. Then the analyti
al 
ontroller is used to 
al
ulate the jointstate that a
hieves the desired end-e�e
tor position. The 
ontroller then sets thejoint state whi
h is used to drive the motors whi
h positions the end-e�e
tor 
lose toa target [5℄.In order to design 
ontrollers that 
an operate in environments with obsta-
les, path planning algorithms are used to generate a path for the end-e�e
tor thatnavigates around obsta
les towards a target position. This sequen
e of end-e�e
torpositions is 
onverted to joint angles by using an analyti
al 
ontroller. The jointangles are used to set to the gains for the a
tuators in order to move the joints [5℄.Inverse kinemati
 
ontrollers have been used to a

omplish tasks su
h as armpositioning, obsta
le avoidan
e and target tra
king. Feddema and Lee [2℄ used a self-tuning adaptive 
ontroller for performing target tra
king for a 6 degree of freedomrobot arm with a 
amera atta
hed to the end e�e
tor. The model predi
ted thetarget position based on past observations and then used this predi
tion to movethe end e�e
tor to tra
k the target. A geometri
 model of the 
amera was usedto determine the linear di�erential transformation from image features to 
ameraposition and orientation. The self-tuning 
ontroller is used to adjust for modellingerrors and system nonlinearities and for optimal 
ontrol.3



Another system that used an inverse kinemati
 
ontroller to tra
k obje
tswas implemented by Papanikolopoulos and Khosla [8℄ who used the sum of squareddi�eren
es of opti
 
ow ve
tors to 
ompute a ve
tor of dis
rete target displa
ements.This ve
tor was fed into an adaptive 
ontroller that 
reated 
ommands for a robot
ontrol system. The 
ontroller required only partial knowledge of the relative distan
eof the target with respe
t to the 
amera. This approa
h in
orporates the target'sdynami
s and kinemati
s in the system model as opposed to de
oupling the problemsof obtaining information about the target using 
omputer vision methods and thenmoving the robot to a target position using inverse kinemati
 methods.Weiss[4℄ used image-based visual servo 
ontrol on simulation studies of twoand three degree of freedom robot arms. Vision-based sensors are used to estimatethe target position relative to the end-e�e
tor of the robot arm. A model referen
eadaptive 
ontroller is used in a stable 
losed loop dynami
al response system. Jointangles are set using inverse kinemati
s 
ontrollers.One drawba
k of using analyti
al 
ontrollers is that they are 
alibrated forspe
i�
 environments and robot arm 
on�gurations. The internal model has to bere-
alibrated for di�erent environments. As robot arms be
ome more sophisti
atedthey will have a larger number of degrees of freedom. It is diÆ
ult to solve theinverse kinemati
 equations for robot manipulators with a large number of degrees offreedom.In order to solve this problem resear
hers have applied supervised learningmethods to train systems that learn to 
ontrol a robot manipulator e�e
tively [12℄.These methods require a training set that demonstrates the 
orre
t robot joint statefor a di�erent situations. The training set must be 
arefully 
hosen so that the
ontroller learns general behavior that allows it to e�e
tively 
ontrol the arm insituations that are not present in the training set. One way to generate trainingexamples is to randomly move the arm while re
ording the joint angles and end-e�e
tor positions [12℄. After the 
ontroller has learned to move the arm to targets4



in the training set, it is evaluated on a di�erent test set to measure its performan
e.One limitation of this approa
h is that it is diÆ
ult to generate training examples for
omplex behaviors like obsta
le avoidan
e. Another drawba
k is that random jointmovements might not generate training examples that demonstrate how to move thearm 
orre
tly.Another approa
h to learning to 
ontrol a robot manipulator is to use ex-ploratory methods. These methods provide the robot with a set of exploratorybehaviors. Stoyt
hev[11℄ developed a system where the robot 
ontroller learns af-fordan
es during a behavioral babbling stage where the robot randomly 
hooses dif-ferent exploratory behaviors, applies them to obje
ts and dete
ts sensor invariants.The exploratory method was used to learn to position the end-e�e
tor in order topi
k up obje
ts of di�erent shapes like H frames, � frames, sti
ks and dumbells. Ashort
oming of this approa
h is that there are a�ordan
es that 
annot be dis
overedbe
ause the robot does not possess the required exploratory behavior.Resear
hers have developed systems that use neural network 
ontrollers forrobot arm 
ontrol. Neuro
ontrollers have been su

essful in the robot arm 
ontroltask be
ause they are robust to noise and 
an model non-linear systems. Vision-based robot arm 
ontrol is a 
omplex task that requires mapping target positions toa set of joint angles. It is diÆ
ult to use supervised learning to train 
ontrollers for
omplex vision based 
ontrol tasks like 
ontrolling an arm in situations where therobot 
on�guration and environment 
hanges.One example of a robot system that used neuro
ontrollers was developed byBehrman and Di Paolo[1℄ who used a geneti
 algorithm for a three degree of freedomrobot arm. The system used an overhead 
amera with two degrees of freedom, anend-e�e
tor 
amera with two degrees of freedom and a two-dimensional array of laserrange �nders arranged in a re
tangular grid at the end-e�e
tor. The rays originate atthe same fo
al point in spa
e and the angle between them determines the 
amera's�eld of view. Three di�erent neuro-
ontrollers were evolved for the overhead 
amera,5



the end-e�e
tor 
amera and the robot joints. The evolved 
ontrollers 
ould positionthe end-e�e
tor to tra
k obje
ts.Another system was developed by Moriarty[6℄ who used the SANE geneti
algorithm to evolve 
ontrollers for a three degree of freedom robot arm in a simulatedenvironment with obsta
les. The robot arm had range sensors that provided the targetposition relative to the end-e�e
tor and one obsta
le sensor in the end-e�e
tor that
ould be used to avoid obsta
les. The 
ontrollers evolved 
ould avoid obsta
les only atthe end-e�e
tor. During normal operation the 
ontrollers had to avoid obsta
les only11% of the time. The obsta
le was always in one of twelve positions whi
h limitedthe obsta
le avoidan
e behaviors that were learned.This report evolves neuro
ontrollers using the NEAT method that 
an fun
-tion in environments with obsta
les. The NEAT methods has been used to evolveneuro
ontrollers that have been shown to be e�e
tive in robot 
ontrol tasks su
h aspole balan
ing, robot 
ontrol and vehi
le 
ontrol [9, 10℄. Unlike previous approa
hes[1℄ the neuro
ontrollers are able to fun
tion in 
omplex environments with obsta
les.The neuro
ontrollers have sensors along the length of the arm whi
h is used to avoidobsta
les using the entire arm.This 
hapter des
ribes the motivation of using the NEAT method to evolveneuro
ontrollers. The robot manipulator kinemati
s for the OSCAR-6 robot armwhi
h was used to evolve neuro
ontrollers is also dis
ussed. Finally the two analyti
al
ontrollers that were used as a 
omparison for the neural network 
ontrollers are alsodes
ribed.2.1 NEAT geneti
 algorithmThe NeuroEvolution of Augmenting Topologies (NEAT) [9℄ method evolvesin
reasingly 
omplex neural networks to mat
h the 
omplexity of the problem. NEATevolves both 
onne
tion weights and topology simultaneously. It has been shown to6



be e�e
tive in many appli
ations su
h as pole balan
ing, robot 
ontrol, vehi
le 
ontrol,board games and videogames [9℄.NEAT is based on three fundamental prin
iples: (1) employing a prin
i-pled method of 
rossover of di�erent topologies, (2) prote
ting stru
tural innovationthrough spe
iation, and (3) in
rementally growing networks from a minimal stru
ture.Mating, or the 
rossing over of genomes of two neural networks of possibly di�eringstru
ture, is a

omplished through innovation numbering. Whenever a new 
onne
-tion between nodes is 
reated through mutation, it is assigned a unique number.O�spring produ
ed with the new 
onne
tion inherit the innovation number. When-ever networks are 
rossed over, those genes that have the same innovation number
an be safely aligned. Genes of the more �t organism with innovation numbers notfound in the other parent are inherited by the o�spring as well. Spe
iation o

urs bydividing the population into separate, distin
t subpopulations. The stru
ture of ea
hindividual is 
ompared dynami
ally with others and those with similar stru
ture aregrouped together. Individuals within a spe
ies share the spe
ies' overall �tness [3℄,and 
ompete primarily within that spe
ies. Spe
iation allows new innovations to beoptimized without fa
ing 
ompetition from individuals with di�erent stru
tures. Net-works in NEAT start with minimal stru
ture, 
onsisting only of inputs 
onne
ted tooutputs with no hidden units. Mutation then grows the stru
tures to the 
omplexityneeded to solve the problem. Starting this way avoids sear
hing through needlessly
omplex stru
tures.The NEAT method was used to evolve neural network 
ontrollers that 
ould
ontrol the robot arm in environments with obsta
les. The ability of the NEATmethod to �nd eÆ
ient solutions to 
omplex 
ontrol problems by evolving networksusing spe
iation was the primary reason it was used to evolve neuro
ontrollers.
7



2.2 Robot Arm Kinemati
sA robot manipulator 
onsists of a set of links 
onne
ted by joints. Commonjoints found in robot arms are revolute (joint des
ribed by angle of rotation) and pris-mati
 (joint des
ribed by the amount of linear displa
ement). A robot manipulatorwith n joints has n + 1 links. If the joints are numbered 1 to n and the links arenumbered 0 to n, then joint i 
onne
ts link i�1 to link i. Joint i is �xed with respe
tto link i � 1. When joint i is a
tuated link i moves. Link 0 (the �rst link) is �xedand does not move when the joints are a
tuated.In order to perform kinemati
 analysis a 
oordinate frame oixiyizi is atta
hedrigidly to ea
h link i. The 
oordinates of ea
h point on link i are 
onstant whenexpressed in the ith 
oordinate frame. Coordinate frame 0 is denoted as the inertialor base frame. If Ai is the homogenous transformation matrix that gives the positionand orientation of oixiyizi with respe
t to oi�1xi�1yi�1zi�1, then the matrix thatexpresses the position and orientation of ojxjyjzj with respe
t to oixiyizi is 
alled atransformation matrix and is denoted by T ij :T ij = 8<: Ai+1Ai+2::::::Aj�1Aj if i < jI ifi = j(T ji )�1 if i > j : (2.1)2.2.1 Forward Kinemati
sThe forward kinemati
s problem is 
on
erned with the relationship betweenposition and orientation of the end-e�e
tor given the angles or extensions for thevarious rotational or revolute joints for the robot. In order to 
al
ulate the positionof the end-e�e
tor with respe
t to the base (Joint 0), the Homogenous matrix H isused (qi denotes a single joint variable):H = T 0n = A1q1A2q2 � � �Anqn : (2.2)8



The Denavit-Hartenberg 
onvention is 
ommonly used for sele
ting frames ofreferen
es in roboti
 appli
ations be
ause it simpli�es kinemati
 analysis. In this
onvention ea
h homogeneous matrix Ai is presented as a produ
t of four basi
 trans-formations: Ai = Rotz;�iTransz;diTransx;aiRotx;�i (2.3)= 2664 
�i �s�i 0 0s�i 
�i 0 00 0 1 00 0 0 1 37752664 1 0 0 00 1 0 00 0 1 di0 0 0 1 3775� 2664 1 0 0 ai0 1 0 00 0 1 00 0 0 1 37752664 1 0 0 00 
�i �s�i 00 s�i �
�i 00 0 0 1 3775= 2664 
�i �s�i
�i s�is�i ai
�is�i 
�i
�i �
�is�i ais�i0 s�i 
�i di0 0 0 1 3775The quantities �i, ai, di and �i are parameters asso
iated with link i and jointi whi
h are the joint angle, link length, link o�set and link twist. These parametersare obtained by the spe
i�
 aspe
ts of the geometri
 relation between two 
oordinateframes. These parameters are spe
i�ed in the Denavit-Hartenberg representation ofa robot arm manipulator. Figure 2.1 represents the OSCAR 6 robot arm manipu-lator that was used to evolve neural network 
ontrollers. The Denavit-Hartenbergparameters for the OSCAR 6 robot are des
ribed in Table 2.2.1.In order to solve the forward kinemati
s of the arm, the matrix transforma-tions are used to 
al
ulate the position of the end-e�e
tor with respe
t to the base
oordinate frame. Here only three of the six degrees of freedom of the robot are usedto 
ontrol the arm. l1, l2 and l3 are d1, a2 and d4 in Table 2.2.1. The variables x, y9



Figure 2.1: The three joint, six degree of freedom robot arm whi
h is used to evaluatethe neural network 
ontrollers. This �gure represents the four 
oordinate frames thatare used to solve the kinemati
s of the OSCAR-6 arm. Joints 1 and 2 have one degreeof freedom ea
h, while joint 3 and the end-e�e
tor ea
h have two degrees of freedom.While evolving neuro
ontrollers only the joint angles �1, �2 and �3 are used to 
ontrolthe robot while the remaining three joint angles are held at a 
onstant value.and z denote the position of the robot's end-e�e
tor with respe
t to the base. Thesolution to the forward kinemati
s then be
omes:x = (l2
os�2 + l3sin�3)
os�1 (2.4)y = (l2
os�2 + l3sin�3)sin�1 (2.5)z = l1
os�2 � l2sin�2 � l3
os�3 : (2.6)2.2.2 Inverse Kinemati
sThe inverse kinemati
s problem deals with �nding the joint variables for agiven end-e�e
tor position and is usually more diÆ
ult to solve than the forward10



� d a ��1 46
m 0
m �90o�2 0
m 51
m 0o�3 0
m 0
m �90o�4 50
m 0
m �90o�5 0
m 0
m 90o�6 21
m 0
m 0oTable 2.1: Denavit Hartenberg parameters for OSCAR 6 anthropomorphi
 arm.kinemati
s problem. The position of the end-e�e
tor enables the 
al
ulation of thehomogeneous matrix H. In order to solve the inverse kinemati
s a solution has to befound for: T 0n(q1; � � � ; qn) = H ; (2.7)where H = A1q1A2q2 � � �Anqn : (2.8)Equation 2.7 represents 12 non-linear equations in n unknown variables be-
ause A is a 4� 4 matrix and the bottom row of both T 0n and H are (0,0,0,1). This
an be written as T 0ij(q1; � � � ; qn) = hij; i = 1; � � � ; 4 : (2.9)It is diÆ
ult to solve 12 non-linear equations in n variables. In situations wherethe robot arm 
on�guration 
hanges, the analyti
al solution has to be re
omputedea
h time. For 
omplex robot manipulators that have a large number of degrees offreedom n is large and �nding an analyti
al solution is extremely diÆ
ult.
11



The analyti
al solution to the inverse kinemati
s of the OSCAR-6 robot armis �1 = ar
tan2(px; py) (2.10)�2 = �ar
tan( jpyjjpxj)� ar

os(x2 + y2 + z2 + l22 � l232l2 2px2 + y2 + z2 ) (2.11)�3 = �ar
tan( jpyjjpxj)� ar

os(x2 + y2 + z2 + l22 � l232l2 2px2 + y2 + z2 ) :+3�2 � ar

os( l22 � l23 � x2 � y2 � z22l2l3 ) (2.12)The performan
e of the best neuro
ontroller was 
ompared against a 
ontrollerthat implemented an analyti
al solution of these inverse kinemati
 equations. Theresults are dis
ussed in the Se
tion 3.2.3 Path Planning algorithm for environments with obsta
lesA 
ontroller that uses path planning moves the arm a

ording to the sum ofattra
tive and repulsive for
es that a
t on the arm. The attra
tive �eld grows as thedistan
e of the target from the end-e�e
tor in
reases and is zero when the end-e�e
toris at the target position. Ea
h obsta
le generates a repulsive �eld that grows as theend-e�e
tor moves 
lose to an obsta
le. If the obsta
le is more than ten units awayfrom the end-e�e
tor the repulsive for
e is zero. The net for
e that a
ts on the armis Uatt(q) = � � T (q) ; (2.13)where Urep(q) = � � 1=O(q) (2.14)U(q) = Uatt(q) + Urep(q) ; (2.15)12



q represents the joint 
on�guration of the robot at any instant, Uatt(q) the attra
tivefor
e due to the target, Urep(q) the repulsive for
e due to the obsta
le, T (q) thedistan
e of the end e�e
tor from the target for a given joint 
on�guration, O(q)represents the distan
e of the obsta
le from the target for a given joint 
on�guration,� and � are 
onstants.In order to generate a path that moves the robot around obsta
les towardsa target position, the 
ontroller 
al
ulates the net for
e at ea
h time step for the
urrent joint 
on�guration and moves the arm based on the dire
tion and magnitudeof the net for
e. This pro
ess allows the 
ontroller to generate a sequen
e of jointangles that will move the arm towards the target while navigating around obsta
les.One problem with this approa
h is that the arm often gets stu
k in a lo
al minimumwhere the net for
e is zero but the end e�e
tor is not near the target. If the ende�e
tor get stu
k in a lo
al minimum a random movement away from the obsta
le istaken and the pro
ess is repeated. This pro
ess 
ontinues for a �xed number of timesteps or until the robot arm hits an obsta
le. The average path taken and the average�nal distan
e of the end-e�e
tor from the target for the training set is 
ompared withresults from neural network 
ontrollers.

13



Chapter 3Experiments
Experiments were 
ondu
ted to evolve neural network 
ontrollers that 
ouldpla
e the end e�e
tor of the robot arm near a target obje
t in an environment that may
ontain obsta
les. Figure 3.1 shows the OSCAR-6 robot arm as seen in the Simderella3.0 robot arm simulator that was used to train the neural network 
ontrollers. The�rst and se
ond joints have one degree of freedom ea
h while the third joint and theend-e�e
tor have two degrees of freedom. In the experiments the neural networkswere allowed to 
ontrol three of the six degrees of freedom. Three degrees of freedomwas suÆ
ient to allow the 
ontroller to move the arm to 
over most of the positionsin the spa
e dire
tly in front of the robot. This 
on�guration also allowed the neuralnetworks to evolve a 
ontroller that 
ould solve the inverse kinemati
s of the arm ina fewer number of generations.Neural networks were evolved to learn to 
ontrol the arm in two di�erentexperiments. First, the neuro
ontrollers were trained to 
ontrol the arm in environ-ments without obsta
les. The performan
e of the best neuro
ontrollers was 
omparedwith an inverse kinemati
 
ontroller and a potential �eld 
ontroller. Se
ond, the neu-ro
ontrollers were trained to 
ontrol the arm in environments with obsta
les. Theperforman
e of the best neuro
ontrollers was 
ompared with a 
ontroller that usedpath planning to move the arm around obsta
les.The neuro
ontrollers were trained to position the end-e�e
tor 
lose to targetsin the spa
e dire
tly in front of the arm. The target set was 
hosen so that thepositions were within the robot's rea
h spa
e. The obsta
les were also pla
ed in this14



Figure 3.1: Three joint six degree of freedom OSCAR-6 robot arm whi
h is simulatedusing Simderella. The inputs to the neuro
ontroller are the 
urrent joint state (jointangle 1, 2 and 3) and the relative position of the target with respe
t to the end e�e
tor.The neuro
ontrollers outputs three joint angles whi
h are used to 
ontrol joints 1, 2and 3. At ea
h time step the sensor input is presented to the neuro
ontroller whi
hmoves the robot to the target position. Joint 1, 2 and 3 are of lengths 46
m, 51
mand 50
m respe
tively.rea
h spa
e in a manner that made it ne
essary for the 
ontroller to learn to movearound obsta
les to rea
h a target.3.1 Learning to 
ontrol the arm in an environment withoutobsta
lesThe obje
tive of this experiment was to evolve a neural network that 
ouldoutput the joint angles required to position the end-e�e
tor 
lose to target obje
ts. Inorder to evolve neuro
ontrollers that learn to e�e
tively 
ontrol the arm, the neuralnetwork is provided with sensor input from the environment, whi
h is then used todetermine how to move the robot arm. The inputs to the network 
ontrollers are the15



the 
urrent joint angles, and the x, y and z positions of the target relative to theend-e�e
tor.The network 
ontroller has three outputs that determine how mu
h ea
h jointangle 
hanges at every timestep. The joint angles are thresholded between [-5,+5℄degrees whi
h for
es the neuro
ontroller to make several small joint rotations towardsthe target whi
h allows it to more e�e
tively 
ontrol the arm. The networks havean output neuron that 
ontrols whether or not to stop moving the robot. This
on�guration allows the network to stop the robot more easily that having to set allthree joint rotation angles to 0o. Figure 3.2 shows the 
on�guration of the networksevolved to 
ontrol the arm in an environment without obsta
les. The inputs to thenetwork are the 
urrent joint angles and the position of the target relative to theend-e�e
tor. The outputs are the three joint rotations and a stop arm neuron.Ea
h neural network evaluation starts by resetting the robot arm to a legalinitial 
on�guration. The targets are pla
ed within a 180o rotation of the robot's �rstjoint. Ea
h network is evaluated over a training set with 168 target positions whi
hare uniformly distributed within the robot's rea
h spa
e. During ea
h evaluation thenetwork is allowed to move the arm until1. The network stops the arm by a
tivating the stop neuron, or2. The number of timesteps ex
eeds 30.In order to evaluate a network, the �tness fun
tion takes into a

ount the�nal distan
e from a target and the path length taken by the end-e�e
tor.The �tnessfun
tion 
onsists of two 
omponents:1. Per
entage of distan
e travelled towards target (TargetDistan
eRatio), and2. Ratio of path length to ideal path length (PathLengthRatio).
16



Figure 3.2: Con�guration of the networks evolved in an environment without obsta
les.The inputs to the neuro
ontroller are the 
urrent joint state and position of the targetrelative to the end e�e
tor. The outputs are the joint rotations and the stop signal.The initial starting network 
onsists of inputs 
onne
ted dire
tly to the outputs withzero weights. As the networks evolve more nodes are added and the weights of the
onne
tions are modi�ed so that the network 
an e�e
tively 
ontrol the arm.TargetDistan
eRatio is 
omputed as the per
entage of distan
e the arm movedfrom the initial starting point towards the target position. For example, if the armstarted 50 units from the target position, and at the end of the trial, the arm was25 units from the target position then TargetDistan
eRatio is (50 � 25)=50 = 0:5.Compared to the �nal distan
e from the target, the per
entage distan
e is a morea

urate 
omparison between a network that re
eives a 
lose target and a networkthat has to move towards a far-away target.The ideal path length is the length of the straight line between the initialend-e�e
tor position and the target position. PathLengthRatio is 
omputed as theratio of the ideal length to the path length taken by the end-e�e
tor. This 
omponentis designed to reward networks that 
an position the end-e�e
tor 
lose to the target17



position by taking the shortest path to the target. It also penalizes network 
ontrollersthat os
illate when they are 
lose to a target while rewarding network 
ontrollers thatstop when the robot's end-e�e
tor is 
lose to the target.The �nal �tness fun
tion is a weighted sum of the two sub-
omponents:a � TargetDistan
eRatio + b � PathLengthRatio : (3.1)In the stationary target experiments a = 0:6 and b = 0:4.Figure 3.3 depi
ts the average �tness of the best network found at ea
h gener-ation with a = 0:6 and b = 0:4 averaged over three runs. The best network that wasfound over the 400 generations has a �tness of 0.78. The best neuro
ontroller 
ouldon avereage move to the within 4.43 
m of a target.

Figure 3.3: Fitness of the best network found at ea
h generation in an environmentwithout obsta
les averaged over �ve runs. The best network that was found had a�tness of 0.78. The �tness of the starting network is low be
ause it 
onsists of inputs
onne
ted dire
tly to outputs with random weights. As evolution pro
eeds, the �tnessof the best network found at ea
h generation in
reases.Figure 3.4 shows how the best network evolved performs on ea
h target po-sition in the training set. The target positions are 
olor 
oded with yellow having a18



�tness greater than 0.8 and red having a �tness less than 0.2. The neural networkis able to position the robot arm 
lose to nearly all targets ex
ept for some outlyingtarget position that are very high or low (with respe
t to the z axis).
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Figure 3.4: Fitness display of best network that was evolved for ea
h point in thetraining set in an environment without obsta
les. The points are 
olor 
oded a

ordingto the �tness with yellow being the highest �tness and red the lowest �tness. The�tness of most points in the training set is at least 0.6.The best evolved network 
ontroller was then 
ompared with a 
ontroller thatsolved the inverse kinemati
s equations to 
ontrol the arm. The inverse-kinemati

ontroller 
an 
ompute the required joint angles to position the robot's end-e�e
tor
lose to a target position. Figure 3.5 shows the three joint angles at ea
h time stepfor the analyti
al 
ontroller and the neural network 
ontroller for one target positionduring an evaluation. The analyti
al 
ontroller is able to position the arm near thetarget in fewer timesteps 
ompared to the evolved neural network 
ontroller. On
ethe neural network positions the arm 
lose to a target it a
tivates the stop neuron attimestep 17. The �nal distan
e of the neuro
ontroller's end e�e
tor from the targetis quite 
lose to the inverse kinemati
s 
ontroller.19
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Figure 3.5: The three joint angles for the analyti
al and neural network 
ontroller fora single target position. The analyti
al 
ontroller is able to move to the target in 10timesteps. The neuro
ontroller also moves to the target but takes 17 timesteps to doso. The neuro
ontroller is able to move to within 5
m of the target whi
h is 
lose tothe inverse kinemati
 
ontroller's performan
e.Table 3.1 shows the average L1,L2 and L1 distan
es of the joint angles ofthe best neural network 
ontroller and the analyti
al 
ontroller for one target posi-tion. For most target positions the neural 
ontroller moves moves the robot to thesame 
on�guration as the analyti
al 
ontroller, however it takes a larger number oftimesteps to rea
h the 
orre
t joint 
on�guration whi
h explains the di�eren
e in theaverage L1 and L2 distan
es of the joint angles.The best evolved neuro
ontroller is also 
ompared with a 
ontroller that useda potential �eld algorithm to 
ontrol the robot arm. In most 
ases, the potential �eld20



Joint1 Joint2 Joint3L1 6.97 5.19 4.90L2 8.49 6.47 6.14L1 15.49 12.20 11.75Table 3.1: Comparison of Neural Network 
ontroller and Inverse Kinemati
 Con-troller This table shows the L1,L2 and L1 between the best evolved neuro
ontrollerand inverse kinemati
 
ontroller of joint angles 1, 2, and 3 averaged over the trainingset. The neuro
ontroller 
omes 
lose to mat
hing the inverse kinemati
 
ontrollerin terms of average �nal distan
e of the end-e�e
tor from the target. The neuro-
ontroller however takes a larger number of timesteps whi
h is why the L1 and L2distan
es are not zero.
ontroller takes a shorter, more energy eÆ
ient path to the target than the inversekinemati
 
ontroller. Table 3.1 shows a 
omparison of the performan
e of the bestneuro
ontroller with a potential �eld 
ontroller. The neuro
ontroller 
omes 
lose tomat
hing the performan
e of the potential �eld 
ontroller. Figure 3.6 shows the pathtaken by the best neuro
ontroller and the potential �eld 
ontroller for a single targetposition. The neuro
ontroller takes a less optimal path, but 
omes 
lose to mat
hingthe �nal target distan
e of the potential �eld 
ontroller.AveragePathLength AverageTargetDistNeuralNetworkController 50.81
m 4.45
mPotientalF ieldController 31.04
m 0.84
mTable 3.2: Comparison of neural network ontroller and potential �eld 
ontroller Thistable shows the average path length and average �nal distan
e of the end e�e
torfrom the target for the best evolved neuro
ontroller and a potential �eld 
ontroller.The potential �eld 
ontroller takes a shorter path to the target, and moves 
loser tothe target but the neuro
ontroller 
omes 
lose to mat
hing this performan
e.The best evolved neuro
ontroller was on average able to position the end-e�e
tor to within 4.45
m of a target position whi
h is 
lose to the �nal target distan
eusing the potential �eld 
ontroller. The evolved neuro
ontrollers take a relativelyshort path to a target position. This experiment demonstrates that it is possible to21
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Figure 3.6: Comparison of the path taken by the end-e�e
tor for a neural network
ontroller and a 
ontroller that uses a potential �eld. The potential �eld 
ontrollertakes a shorter path to the target while the neural network 
ontroller takes a lessoptimal path to the target. The average �nal target distan
e of the potential �eld
ontroller is 0.84
m while the neural network 
ontroll 
omes 
lose to this performan
ewith an average distan
e of 4.45
m.evolve neuro
ontrollers that 
an e�e
tively 
ontrol the arm in environments withoutobsta
les.3.2 Learning to 
ontrol the arm in an environment with ob-sta
lesIn the se
ond experiment, the neural network 
ontrollers were trained to movethe obje
t 
lose to a target position while avoiding obsta
les. The inputs to theneural network in
lude the 
urrent joint angles, the position of the target relative tothe end e�e
tor, and three obsta
le sensors present in the se
ond joint, third joint andthe end-e�e
tor as seen in Figure 3.7. These sensors provide the x,y and z relativedistan
es of the 
losest obsta
le. The sensors have a 10
m range and return 1 if there22



is no obsta
le is within range. If there is an obsta
le within range, they return thedistan
e of the nearest obsta
le s
aled between 0 and 1. The outputs of the 
ontrollerare three joint thresholds and a stop 
ag. The three outputs determine how mu
hea
h joint angle 
hanges at every timestep. The joint angles are thresholded between[-5,+5℄ degrees. This for
es the neuro
ontroller to make several small joint rotationstowards the target whi
h allows it to more e�e
tively sense and avoid obsta
les alongthe arm's path. Figure 3.8 shows the 
on�guration of neural network 
ontrollersevolved for obsta
le avoidan
e.

Figure 3.7: Three obsta
le sensors are used to navigate around obsta
les while movingthe end-e�e
tor towards the target. The inputs are the obsta
le sensor data, targetsensor data, 
urrent joint state and the outputs are the thresholded joint angles anda 
ag that indi
ates whether or not to stop moving the arm. The obsta
le sensorsallow the neuro
ontroller to sense obsta
les along the length of the arm and avoidobsta
les along the entire arm. The obsta
le is always initially pla
ed between theend e�e
tor and target so that the neuro
ontroller has to perform obsta
le avoidan
efor every position in the training set to get a high �tness. Joint 1, 2 and 3 are oflengths 46
m, 51
m and 50
m respe
tively.Ea
h neural network evaluation starts by resetting the robot arm to the same23



Figure 3.8: Con�guration of the networks evolved in an environment with obsta
les.The inputs to the neuro
ontroller are the 
urrent joint state, position of the targetrelative to the end e�e
tor and obsta
le range sensor data. The robot has threeobsta
le sensors at joint 2, joint 3 and the end e�e
tor whi
h returns the thresholdeddistan
e of the nearest obsta
le. The outputs are the joint rotations and the stopsignal. As evolution progress NEAT adds more hidden nodes and modi�es the weightsso that the network's �tness in
reases and the neuro
ontroller 
an e�e
tively 
ontrolthe arm while avoiding obsta
les.joint 
on�guration. The target is pla
ed within a 180o rotation of the robot's �rstjoint, and an obsta
le is pla
ed at the midpoint of the line between the initial positionof the end-e�e
tor and the �nal target position. Pla
ing the obsta
le in su
h a mannermakes it ne
essary for the 
ontroller to navigate around an obsta
le to rea
h the targetfor every position in the training set. The training set 
onsists of 96 target positionsthat are uniformly distributed in the robot's rea
h spa
e. During ea
h evaluation thenetwork is allowed to move the arm until1. The network stops the arm,2. The number of timesteps ex
eeds 30, or24



3. The robot hits an obsta
le.If during an evaluation the robot arm hits an obsta
le at any point along thearm, the trial is stopped and the �tness is set to zero. The �tness fun
tion is aweighted sum of the the relative distan
e travelled towards the target and the pathlength, similar to the previous experiment. This �tness fun
tion rewards networksthat are able to navigate around an obsta
le and move the end-e�e
tor 
lose to atarget while taking the shortest path possible.Figure 3.9 depi
ts the average �tness of the best network found at ea
h gen-eration. The best network that was found over 400 generations has a �tness of 0.7.For the training set that was used this represents a �nal target distan
e that is 10
m,whi
h is reasonably 
lose to the target. The neuro
ontroller is able to in
orporateobsta
le avoidan
e while the 
ontrolling the arm while still being able to position theend e�e
tor 
lose to targets.Figure 3.10 depi
ts how the best network evolved performs on ea
h targetposition within the training set. As before, the points are 
olor 
oded with yellowbeing the highest �tness and red being the lowest �tness. The neural network is ableto position the robot arm 
lose to nearly all targets.The best neural network 
ontroller was then 
ompared with a 
ontroller thatuses a path planning algorithm to move the arm as des
ribed in Se
tion 2. The resultsare shown in Figure 3.11 for a single position in the training set. The path planning
ontroller �rst moves dire
tly to the target but then hits a lo
al minimum be
ause ofthe obsta
le's repulsive for
e. It then makes a random move away from the obsta
leand then moves to the target. The neuro
ontroller also avoids the obsta
le whilemoving to the target. This result is shown quantitatively in Table 3.2. The average�nal distan
e of the neural network 
ontroller is less around 10
m from the targetposition, and the average path length is 
omparable to that generated by the pathplanning algorithm. 25



Figure 3.9: Fitness of the best network found at ea
h generation in an environmentwith obsta
les averaged over �ve runs. The best network that was found had a �tnessof 0.7. This neuro
ontroller 
ould position the end-e�e
tor to around 10
m of atarget while avoiding obsta
les. This demonstrates that neuro
ontrollers 
an be usedto avoid obsta
les while still 
ontrolling the arm e�e
tively.The neuro
ontrollers were trained to e�e
tively 
ontrol the arm while alsoavoiding obsta
les. The best evolved neuro
ontroller was on average able to positionthe end-e�e
tor to within 10.43
m of a target position. The evolved neuro
ontrollerson average takes a shorter path around obsta
les towards a target position 
omparedto the path planning algorithm. The average �nal distan
e of the target from theend e�e
tor for the neuro
ontroller is 
lose to the 
ontroller that uses path planning.This experiment demonstrates that it is possible to evolve neuro
ontrollers that 
ane�e
tively 
ontrol the arm in environments with obsta
les. The best evolved neuro-
ontroller takes a short path to the target and positions the arm to within 10
m ofthe target.
26
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Figure 3.10: Fitness display of best network that was evolved for ea
h point in thetraining set in an environment with obsta
les. The graph shows the performan
e ofthe best evolved neuro
ontroller on every point in the training set. The points are
olor 
oded a

ording to the �tness with yellow being the highest �tness and red thelowest �tness. The �tness of the neuro
ontroller for most positions in the training setis at least 0.6. The neuro
ontroller avoids obsta
les 59 out of the 96 target positionsin the training set.
AveragePathLength AverageTargetDistNeuralNetwork 48.49 10.43PathP lanning 69.45 2.83Table 3.3: Comparison of neural network 
ontroller and path planning 
ontroller.This table shows the average path length and average �nal distan
e of the end e�e
torfrom the target for the best evolved neuro
ontroller and a 
ontroller that uses pathplanning. The neuro
ontroller takes a shorter path to the target, but the analyti
al
ontroller is able to move 
loser to the target.27
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Figure 3.11: Comparison of the path taken by the end-e�e
tor for a neural network
ontroller and a 
ontroller that uses path planning. The obsta
le is pla
ed at themidpoint of the line joining the starting position and the target position. The pathplanning 
ontroller �rst moves dire
tly to the target, but hits a lo
al minimum be
auseof the obsta
le. It then makes a random move away from the obsta
le and then movesto the target. The neuro
ontrollers moves to takes a path that avoids the obsta
letowards the target. The �nal distan
e of both 
ontrollers from the target is 2
m.
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Chapter 4Dis
ussion
This report presented a method for evolving neuro
ontrollers that 
an be usedto operate robot manipulators in environments with and without obsta
les. Theneuro
ontrollers use range sensors that are �tted along the robots joints to senseobsta
les and the distan
e of the target relative to the end-e�e
tor.The neuro
ontrollers that were evolved were 
ompared with analyti
al 
on-trollers that used the solutions to the inverse kinemati
 equations and path planningto 
ontrol the robot manipulator. The neuro
ontrollers evolved in for the environ-ment without obsta
les 
an move the end e�e
tor to within 4.43 
m of the target,whi
h is almost as good as an analyti
al 
ontroller. This results demonstrates thatneuro
ontrollers 
an be used to 
ontrol manipulators in environments without obsta-
les. The neuro
ontrollers evolved for environments without obsta
les are also ableto move the arm to 10
m of the target. The path taken by the evolved neuro
ontrollersis relatively short. These results demonstrates that the neuro
ontrollers 
an be usedto perform 
omplex tasks like obsta
le avoidan
e. The performan
e of the evolvedneuro
ontrollers 
omes 
lose to the analyti
al 
ontroller with respe
t to �nal distan
efrom the target.The neuro
ontrollers evolved are able to 
over most of the distan
e from thestarting 
on�guration to the target and on average are able to position 
lose to within5
m for environments without obsta
les and 10
m for environments with obsta
les.One possible explanation for this is that robot 
ontrol 
onsists of two types of move-29



ment. First, the neuro
ontroller must make several large joint rotations to move 
loseto the target. These movements 
an in
lude dete
ting and avoiding obsta
les in therobot's path. Se
ond, the neuro
ontroller must make smaller, more pre
ise movementto get within grasping range of the target. It is possible to evolve neuro
ontrollersthat do both, however be
ause of the diminishing returns of late evolution, it takes alarger number of generations to evolve 
ontrollers that 
an move the very 
lose (lessthan 1
m) of the target. One way of over
oming this is to evolve a se
ondary neuralnetworks that are a
tivated only when the target distan
e is less than 10
m. Thesenetworks are evolved spe
i�
ally to 
ontrol the arm when the target distan
e is lessthan 10
m. Future work will use se
ondary neuro
ontrollers to 
ontrol the arm afterthe primary neuro
ontroller positions the end-e�e
tor within 10
m of the target.The advantage of using neuro
ontrollers is the ability to adapt to di�erentenvironments and manipulator 
on�gurations. Neuroevolution 
an be used to retrainneuro
ontrollers that 
an fun
tion in the new environment. The neuro
ontrollersdes
ribed in this report do not 
hange on
e they have been evolved. It would bedesirable to build a neuro
ontroller that 
ould dete
t and adapt to 
hanges in therobot arm 
on�guration or environment. Nol� and Parisi [7℄ developed a self-tea
hingar
hite
ture for training online neuro
ontrollers. In this ar
hite
ture, the traininginput for the neuro
ontroller is provided by a separate neural network that has thesame sensor input as the neuro
ontrollers and is subje
ted to the same evolutionarypro
ess as the neuro
ontroller, but with a �tness fun
tion that is designed to trainthe network to dete
t environmental 
hanges. The tea
hing network 
an re
ognizethe 
on�guration of the environment and robot and modi�es its outputs in order totrain the neuro
ontroller to adapt to the new environment.The self-tea
hing ar
hite
ture 
ould be used to 
reate online learning 
on-trollers by evolving the ability to adapt the neuro
ontroller in response to 
hangesin the robot or environment 
on�guration. Future work will fo
us on training robustadaptable neuro
ontrollers in simulation and using these neuro
ontrollers to 
ontrol30



real manipulators.
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Chapter 5Con
lusion
The goal of this was report was to evolve neuro
ontrollers that 
ould 
ontrolrobot manipulators in environments that 
ould position the robot manipulator's ende�e
tor 
lose to target positions while avoiding obsta
les.First, neuro
ontrollers were evolved for environments without obsta
les todemonstrate that the NEAT geneti
 algorithm 
ould be used to evolve neural networkssuited to the robot arm 
ontrol task. The performan
e of the best neuro
ontroller thatwas evolved in this experiment was 
ompared with an inverse kinemati
s 
ontrollerand a potential �eld 
ontroller. The neuro
ontroller 
ould move the end e�e
tor towithin 5
m of a target position, whi
h is 
lose to the inverse kinemati
s and potential�eld 
ontroller results.In the se
ond experiment, neuro
ontrollers were used to evolve 
ontrollersthat 
ould fun
tion in environments with obsta
les. The performan
e of the bestneuro
ontroller that was evolved in this experiment was 
ompared with a 
ontrollerthat used a path planning algorithms to navigate around obsta
les towards a target.The best neuro
ontroller is able to position the end e�e
tor to within 10
m of a target.This result indi
ates neuroevolution was able to integrate obsta
le avoidan
e behaviorinto the neuro
ontroller. The best neuro
ontroller evolved had a shorter average pathlength, and 
ame 
lose to mat
hing the performan
e of the path planning 
ontroller.The advantage of using neuro
ontrollers for robot arm 
ontrol is that neuro-
ontrollers 
an be adapted to di�erent robot and environment 
on�gurations. Futureresear
h will fo
us of evolving robust 
ontrollers that learn online whi
h evolve to32



adapt to 
hanges in the robot's environment.
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