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Neuroevolution can be used to evolve neural networks that can control robot
manipulators to perform tasks like target tracking and obstacle avoidance in complex
environments. Neurocontrollers have been successful in the robot control domain
because they are robust to noise, they can be adapted to different environments and
manipulator configurations, and they can be used to implement controllers that can

perform online learning.

The focus of this report was to evolve neurocontrollers for two environments.
First, neurocontrollers are evolved for environments without obstacles and their per-
formance is compared to an inverse kinematic controller and a potential field con-
troller. Second, neurocontrollers are evolved for environments with obstacles and
compared with a controller that uses potential fields to implement a path planning
algorithm. The neurocontrollers evolved in this report come close to matching the
performance of the analytical controllers. The advantage of using neurocontrollers is

their robustness to noise and ability to adapt to different environments.
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Chapter 1

Introduction

The goal of this report is to present a method that can evolve robust adaptable
controllers for robot manipulators that can operate in environments with obstacles.
The robot manipulators are used to pick up or track objects while avoiding obstacles.
In order to successfully accomplish this task a controller must be able to incorporate
information about obstacles into a control algorithm that generates a trajectory that

positions the end-effector close to a target.

Traditional approaches in robotic control involve solving the inverse kinematic
equations of a robotic manipulator in order to develop controllers that can move the
robot arm. One drawback of this approach is that the controllers developed are for a
specific robot configuration. If the robot’s configuration or environment changes then
the controller will have to take into account the new robot kinematics. An inverse
kinematic controller cannot be used to operate a robot manipulator in an environment
with obstacles. Such a controller must be modified to use a path planning algorithm

to be able function in environments with obstacles.

Neural network controllers have been shown to be effective in different control
tasks such as pole balancing, robot control and vehicle control [9,10]. This report
uses the Neuroevolution of Augmenting Topologies (NEAT) [9] method to evolve
neural network controllers that can be adapted to different environments and robot
configurations. The controllers are first evolved in environments without obstacles to
demonstrate that neurocontrollers can solve the inverse kinematics of a robot arm.
Then, controllers are evolved in environments with obstacles so that they can be used

in complex environments to control robot manipulators.



The robot arm has sensors along its joints which are used to sense its distance
from obstacles. The arm has a range sensor present at the end-effector which provides
the relative distance of the target. The neurocontroller is provided with this sensor
input and generates a set of joint angles that will move the end-effector to the target

position.

Neural networks were evolved that could position the end-effector to within
S5cm of a target in environments without obstacles and within 10cm in environments
with obstacles. The performance of the best neural network that was evolved for an
environment without obstacles was compared to an inverse kinematic controller and
a potential field controller. The performance of the best network that was evolved for

environments with obstacles was compared to a controller that uses path planning.

The evolved neurocontrollers come close to matching the performance of the
inverse kinematic controller and potential field controller for environments without
obstacles. The advantage of using neural network controllers is that the same training

process can be used for different robot arm configurations.

For environments with obstacles, the neurocontrollers come close to match-
ing the performance of controllers that use path-planning to avoid obstacles. Path-
planning algorithms do not guarantee an optimal path to an object. The evolved
neurocontrollers are able to function in environments with different target and ob-
stacle configurations because the target and obstacle sensors are egocentric and not

based on global coordinates.

The main contribution of this report is a method that can be used to evolve
neurocontrollers for a robot arm that be adapted for different robot and environment
configurations. The neurocontrollers can perform complex tasks like controlling the

arm in the presence of obstacles and also track moving objects.



Chapter 2

Background and Related Work

Standard approaches in robotics for robot manipulator control involve design-
ing controllers for specific robot arm configurations. Controllers are developed that
solve the inverse kinematics of a robot arm. First, a visual observation of a target
object is translated into the desired position of the robot arm’s end-effector by using
computer vision methods. Then the analytical controller is used to calculate the joint
state that achieves the desired end-effector position. The controller then sets the
joint state which is used to drive the motors which positions the end-effector close to

a target [5].

In order to design controllers that can operate in environments with obsta-
cles, path planning algorithms are used to generate a path for the end-effector that
navigates around obstacles towards a target position. This sequence of end-effector
positions is converted to joint angles by using an analytical controller. The joint

angles are used to set to the gains for the actuators in order to move the joints [5].

Inverse kinematic controllers have been used to accomplish tasks such as arm
positioning, obstacle avoidance and target tracking. Feddema and Lee [2] used a self-
tuning adaptive controller for performing target tracking for a 6 degree of freedom
robot arm with a camera attached to the end effector. The model predicted the
target position based on past observations and then used this prediction to move
the end effector to track the target. A geometric model of the camera was used
to determine the linear differential transformation from image features to camera
position and orientation. The self-tuning controller is used to adjust for modelling

errors and system nonlinearities and for optimal control.



Another system that used an inverse kinematic controller to track objects
was implemented by Papanikolopoulos and Khosla [8] who used the sum of squared
differences of optic flow vectors to compute a vector of discrete target displacements.
This vector was fed into an adaptive controller that created commands for a robot
control system. The controller required only partial knowledge of the relative distance
of the target with respect to the camera. This approach incorporates the target’s
dynamics and kinematics in the system model as opposed to decoupling the problems
of obtaining information about the target using computer vision methods and then

moving the robot to a target position using inverse kinematic methods.

Weiss[4] used image-based visual servo control on simulation studies of two
and three degree of freedom robot arms. Vision-based sensors are used to estimate
the target position relative to the end-effector of the robot arm. A model reference
adaptive controller is used in a stable closed loop dynamical response system. Joint

angles are set using inverse kinematics controllers.

One drawback of using analytical controllers is that they are calibrated for
specific environments and robot arm configurations. The internal model has to be
re-calibrated for different environments. As robot arms become more sophisticated
they will have a larger number of degrees of freedom. It is difficult to solve the
inverse kinematic equations for robot manipulators with a large number of degrees of

freedom.

In order to solve this problem researchers have applied supervised learning
methods to train systems that learn to control a robot manipulator effectively [12].
These methods require a training set that demonstrates the correct robot joint state
for a different situations. The training set must be carefully chosen so that the
controller learns general behavior that allows it to effectively control the arm in
situations that are not present in the training set. One way to generate training
examples is to randomly move the arm while recording the joint angles and end-

effector positions [12]. After the controller has learned to move the arm to targets



in the training set, it is evaluated on a different test set to measure its performance.
One limitation of this approach is that it is difficult to generate training examples for
complex behaviors like obstacle avoidance. Another drawback is that random joint
movements might not generate training examples that demonstrate how to move the

arm correctly.

Another approach to learning to control a robot manipulator is to use ex-
ploratory methods. These methods provide the robot with a set of exploratory
behaviors. Stoytchev([11] developed a system where the robot controller learns af-
fordances during a behavioral babbling stage where the robot randomly chooses dif-
ferent exploratory behaviors, applies them to objects and detects sensor invariants.
The exploratory method was used to learn to position the end-effector in order to
pick up objects of different shapes like H frames, 7w frames, sticks and dumbells. A
shortcoming of this approach is that there are affordances that cannot be discovered

because the robot does not possess the required exploratory behavior.

Researchers have developed systems that use neural network controllers for
robot arm control. Neurocontrollers have been successful in the robot arm control
task because they are robust to noise and can model non-linear systems. Vision-
based robot arm control is a complex task that requires mapping target positions to
a set of joint angles. It is difficult to use supervised learning to train controllers for
complex vision based control tasks like controlling an arm in situations where the

robot configuration and environment changes.

One example of a robot system that used neurocontrollers was developed by
Behrman and Di Paolo[1] who used a genetic algorithm for a three degree of freedom
robot arm. The system used an overhead camera with two degrees of freedom, an
end-effector camera with two degrees of freedom and a two-dimensional array of laser
range finders arranged in a rectangular grid at the end-effector. The rays originate at
the same focal point in space and the angle between them determines the camera’s

field of view. Three different neuro-controllers were evolved for the overhead camera,



the end-effector camera and the robot joints. The evolved controllers could position

the end-effector to track objects.

Another system was developed by Moriarty[6] who used the SANE genetic
algorithm to evolve controllers for a three degree of freedom robot arm in a simulated
environment with obstacles. The robot arm had range sensors that provided the target
position relative to the end-effector and one obstacle sensor in the end-effector that
could be used to avoid obstacles. The controllers evolved could avoid obstacles only at
the end-effector. During normal operation the controllers had to avoid obstacles only
11% of the time. The obstacle was always in one of twelve positions which limited

the obstacle avoidance behaviors that were learned.

This report evolves neurocontrollers using the NEAT method that can func-
tion in environments with obstacles. The NEAT methods has been used to evolve
neurocontrollers that have been shown to be effective in robot control tasks such as
pole balancing, robot control and vehicle control [9,10]. Unlike previous approaches
[1] the neurocontrollers are able to function in complex environments with obstacles.
The neurocontrollers have sensors along the length of the arm which is used to avoid

obstacles using the entire arm.

This chapter describes the motivation of using the NEAT method to evolve
neurocontrollers. The robot manipulator kinematics for the OSCAR-6 robot arm
which was used to evolve neurocontrollers is also discussed. Finally the two analytical
controllers that were used as a comparison for the neural network controllers are also

described.

2.1 NEAT genetic algorithm

The NeuroEvolution of Augmenting Topologies (NEAT) [9] method evolves
increasingly complex neural networks to match the complexity of the problem. NEAT

evolves both connection weights and topology simultaneously. It has been shown to



be effective in many applications such as pole balancing, robot control, vehicle control,

board games and videogames [9].

NEAT is based on three fundamental principles: (1) employing a princi-
pled method of crossover of different topologies, (2) protecting structural innovation
through speciation, and (3) incrementally growing networks from a minimal structure.
Mating, or the crossing over of genomes of two neural networks of possibly differing
structure, is accomplished through innovation numbering. Whenever a new connec-
tion between nodes is created through mutation, it is assigned a unique number.
Offspring produced with the new connection inherit the innovation number. When-
ever networks are crossed over, those genes that have the same innovation number
can be safely aligned. Genes of the more fit organism with innovation numbers not
found in the other parent are inherited by the offspring as well. Speciation occurs by
dividing the population into separate, distinct subpopulations. The structure of each
individual is compared dynamically with others and those with similar structure are
grouped together. Individuals within a species share the species’ overall fitness [3],
and compete primarily within that species. Speciation allows new innovations to be
optimized without facing competition from individuals with different structures. Net-
works in NEAT start with minimal structure, consisting only of inputs connected to
outputs with no hidden units. Mutation then grows the structures to the complexity
needed to solve the problem. Starting this way avoids searching through needlessly

complex structures.

The NEAT method was used to evolve neural network controllers that could
control the robot arm in environments with obstacles. The ability of the NEAT
method to find efficient solutions to complex control problems by evolving networks

using speciation was the primary reason it was used to evolve neurocontrollers.



2.2 Robot Arm Kinematics

A robot manipulator consists of a set of links connected by joints. Common
joints found in robot arms are revolute (joint described by angle of rotation) and pris-
matic (joint described by the amount of linear displacement). A robot manipulator
with n joints has n + 1 links. If the joints are numbered 1 to n and the links are
numbered 0 to n, then joint ¢ connects link ¢ — 1 to link ¢. Joint ¢ is fixed with respect
to link ¢ — 1. When joint ¢ is actuated link ¢ moves. Link 0 (the first link) is fixed

and does not move when the joints are actuated.

In order to perform kinematic analysis a coordinate frame o;x;y;z; is attached
rigidly to each link 7. The coordinates of each point on link 7 are constant when
expressed in the i"® coordinate frame. Coordinate frame 0 is denoted as the inertial
or base frame. If A; is the homogenous transformation matrix that gives the position
and orientation of o;x;y;2; with respect to 0;_1x;_1vy;_12;_1, then the matrix that
expresses the position and orientation of 0;x;y;2; with respect to o;z;y;2; is called a

transformation matrix and is denoted by T;:

) AZ+1AZ+2 ...... Ajf]_A] Zf 7/<j
Ti={ I ifi=j (2.1)
(T if i>j

2.2.1 Forward Kinematics

The forward kinematics problem is concerned with the relationship between
position and orientation of the end-effector given the angles or extensions for the
various rotational or revolute joints for the robot. In order to calculate the position
of the end-effector with respect to the base (Joint 0), the Homogenous matrix H is

used (g; denotes a single joint variable):

H = T,? = Aiq1Aqe - Angn . (2-2)



The Denavit-Hartenberg convention is commonly used for selecting frames of
references in robotic applications because it simplifies kinematic analysis. In this
convention each homogeneous matrix A; is presented as a product of four basic trans-

formations:

A; = Rot, g, Trans, 4, Trans, , Rot, o, (2.3)
co, —sg, 0 0 1 0 0 O
. S9; Cy; 00 010 0
- 0 0 1 0 0 0 1 d;
0 0 01 0 0 0 1
1 0 0 a 1 0 0 0
y 010 0 0 coy —Sq; O
001 0|0 sa —co O
0 0 0 1 0 O 0 1
[ o, —S6,Ca; 56,5a; WiCo,
o S0, Cy;Cq; —Cp,Sa; QS
- 0 Sa; Ca; d;
0 0 0 1

The quantities 6;, a;, d; and «; are parameters associated with link ¢ and joint
¢ which are the joint angle, link length, link offset and link twist. These parameters
are obtained by the specific aspects of the geometric relation between two coordinate
frames. These parameters are specified in the Denavit-Hartenberg representation of
a robot arm manipulator. Figure 2.1 represents the OSCAR 6 robot arm manipu-
lator that was used to evolve neural network controllers. The Denavit-Hartenberg

parameters for the OSCAR 6 robot are described in Table 2.2.1.

In order to solve the forward kinematics of the arm, the matrix transforma-
tions are used to calculate the position of the end-effector with respect to the base
coordinate frame. Here only three of the six degrees of freedom of the robot are used

to control the arm. [y, ls and I3 are dy, as and d4 in Table 2.2.1. The variables z, y
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Figure 2.1: The three joint, six degree of freedom robot arm which is used to evaluate
the neural network controllers. This figure represents the four coordinate frames that
are used to solve the kinematics of the OSCAR-6 arm. Joints 1 and 2 have one degree
of freedom each, while joint 3 and the end-effector each have two degrees of freedom.
While evolving neurocontrollers only the joint angles 6y, 6 and 65 are used to control
the robot while the remaining three joint angles are held at a constant value.

and z denote the position of the robot’s end-effector with respect to the base. The

solution to the forward kinematics then becomes:

z = (lycosby + l3sinbz)cost; (2.4)
y = (lacosty + l3sinbs)sinb; (2.5)
2z = lycosly — lysinfy — lzcosbs . (2.6)

2.2.2 Inverse Kinematics

The inverse kinematics problem deals with finding the joint variables for a

given end-effector position and is usually more difficult to solve than the forward

10



0 d a o
#; 46cm  Ocm —90°
f#; Ocm b5lcm 0°
f; Ocm Ocm —90°
sy 50cm  Ocm —90°
#s Ocm Ocm 90°
s 2lcm  Ocm 0°

Table 2.1: Denavit Hartenberg parameters for OSCAR 6 anthropomorphic arm.

kinematics problem. The position of the end-effector enables the calculation of the
homogeneous matrix H. In order to solve the inverse kinematics a solution has to be

found for:

Ty?(Qla" ) aQTL)

where

H = A1Q1A2Q2 e 'AnQn . (2-8)

Equation 2.7 represents 12 non-linear equations in n unknown variables be-
cause A is a 4 x 4 matrix and the bottom row of both T and H are (0,0,0,1). This

can be written as

T;g'(QIa"'aQn):hij, 1=1,---,4 . (2_9)

It is difficult to solve 12 non-linear equations in n variables. In situations where
the robot arm configuration changes, the analytical solution has to be recomputed
each time. For complex robot manipulators that have a large number of degrees of

freedom n is large and finding an analytical solution is extremely difficult.

11



The analytical solution to the inverse kinematics of the OSCAR-6 robot arm

18

61 = arctan2(py, py) (2.10)
2y + 224150
Wit
R R e
Myt gt 2

3 l2 _ l2 o2 2 2
+25 arccos(2—2 i
2 21513

‘py|
|pw|
|py|
‘pz‘

0y = —arctan(—=) — arccos( (2.11)

05 = —arctan(—=) — arccos(

) (2.12)

The performance of the best neurocontroller was compared against a controller
that implemented an analytical solution of these inverse kinematic equations. The

results are discussed in the Section 3.

2.3 Path Planning algorithm for environments with obstacles

A controller that uses path planning moves the arm according to the sum of
attractive and repulsive forces that act on the arm. The attractive field grows as the
distance of the target from the end-effector increases and is zero when the end-effector
is at the target position. Each obstacle generates a repulsive field that grows as the
end-effector moves close to an obstacle. If the obstacle is more than ten units away

from the end-effector the repulsive force is zero. The net force that acts on the arm

Uatt(q) = axT(q) (2.13)

where
Urep(q) = B % 1/0(q) (2.14)
U(Q) - Uatt(Q) + UTep(Q) s (215)

12



q represents the joint configuration of the robot at any instant, Uy (q) the attractive
force due to the target, U,e,(q) the repulsive force due to the obstacle, T'(q) the
distance of the end effector from the target for a given joint configuration, O(q)
represents the distance of the obstacle from the target for a given joint configuration,

«a and (3 are constants.

In order to generate a path that moves the robot around obstacles towards
a target position, the controller calculates the net force at each time step for the
current joint configuration and moves the arm based on the direction and magnitude
of the net force. This process allows the controller to generate a sequence of joint
angles that will move the arm towards the target while navigating around obstacles.
One problem with this approach is that the arm often gets stuck in a local minimum
where the net force is zero but the end effector is not near the target. If the end
effector get stuck in a local minimum a random movement away from the obstacle is
taken and the process is repeated. This process continues for a fixed number of time
steps or until the robot arm hits an obstacle. The average path taken and the average
final distance of the end-effector from the target for the training set is compared with

results from neural network controllers.

13



Chapter 3

Experiments

Experiments were conducted to evolve neural network controllers that could
place the end effector of the robot arm near a target object in an environment that may
contain obstacles. Figure 3.1 shows the OSCAR-6 robot arm as seen in the Simderella
3.0 robot arm simulator that was used to train the neural network controllers. The
first and second joints have one degree of freedom each while the third joint and the
end-effector have two degrees of freedom. In the experiments the neural networks
were allowed to control three of the six degrees of freedom. Three degrees of freedom
was sufficient to allow the controller to move the arm to cover most of the positions
in the space directly in front of the robot. This configuration also allowed the neural
networks to evolve a controller that could solve the inverse kinematics of the arm in

a fewer number of generations.

Neural networks were evolved to learn to control the arm in two different
experiments. First, the neurocontrollers were trained to control the arm in environ-
ments without obstacles. The performance of the best neurocontrollers was compared
with an inverse kinematic controller and a potential field controller. Second, the neu-
rocontrollers were trained to control the arm in environments with obstacles. The
performance of the best neurocontrollers was compared with a controller that used

path planning to move the arm around obstacles.

The neurocontrollers were trained to position the end-effector close to targets
in the space directly in front of the arm. The target set was chosen so that the

positions were within the robot’s reach space. The obstacles were also placed in this

14



Figure 3.1: Three joint siz degree of freedom OSCAR-6 robot arm which is simulated
using Simderella. The inputs to the neurocontroller are the current joint state (joint
angle 1, 2 and 3) and the relative position of the target with respect to the end effector.
The neurocontrollers outputs three joint angles which are used to control joints 1, 2
and 3. At each time step the sensor input is presented to the neurocontroller which
moves the robot to the target position. Joint 1, 2 and 3 are of lengths 46cm, 51cm
and 50cm respectively.

reach space in a manner that made it necessary for the controller to learn to move

around obstacles to reach a target.

3.1 Learning to control the arm in an environment without
obstacles

The objective of this experiment was to evolve a neural network that could
output the joint angles required to position the end-effector close to target objects. In
order to evolve neurocontrollers that learn to effectively control the arm, the neural
network is provided with sensor input from the environment, which is then used to

determine how to move the robot arm. The inputs to the network controllers are the

15



the current joint angles, and the x, y and z positions of the target relative to the

end-effector.

The network controller has three outputs that determine how much each joint
angle changes at every timestep. The joint angles are thresholded between [-5,+5]
degrees which forces the neurocontroller to make several small joint rotations towards
the target which allows it to more effectively control the arm. The networks have
an output neuron that controls whether or not to stop moving the robot. This
configuration allows the network to stop the robot more easily that having to set all
three joint rotation angles to 0°. Figure 3.2 shows the configuration of the networks
evolved to control the arm in an environment without obstacles. The inputs to the
network are the current joint angles and the position of the target relative to the

end-effector. The outputs are the three joint rotations and a stop arm neuron.

Each neural network evaluation starts by resetting the robot arm to a legal
initial configuration. The targets are placed within a 180° rotation of the robot’s first
joint. Each network is evaluated over a training set with 168 target positions which
are uniformly distributed within the robot’s reach space. During each evaluation the

network is allowed to move the arm until

1. The network stops the arm by activating the stop neuron, or

2. The number of timesteps exceeds 30.

In order to evaluate a network, the fitness function takes into account the
final distance from a target and the path length taken by the end-effector.The fitness

function consists of two components:

1. Percentage of distance travelled towards target (TargetDistanceRatio), and

2. Ratio of path length to ideal path length (PathLengthRatio).

16



Joint Rotation

Anele 1.2 and 3 Stop Neuron
Evolved Topology
Joint Angle 1,2 X, Yand Z
and 3 target sensors

Figure 3.2: Configuration of the networks evolved in an environment without obstacles.
The inputs to the neurocontroller are the current joint state and position of the target
relative to the end effector. The outputs are the joint rotations and the stop signal.
The initial starting network consists of inputs connected directly to the outputs with
zero weights. As the networks evolve more nodes are added and the weights of the
connections are modified so that the network can effectively control the arm.

TargetDistanceRatio is computed as the percentage of distance the arm moved
from the initial starting point towards the target position. For example, if the arm
started 50 units from the target position, and at the end of the trial, the arm was
25 units from the target position then TargetDistanceRatio is (50 — 25)/50 = 0.5.
Compared to the final distance from the target, the percentage distance is a more
accurate comparison between a network that receives a close target and a network

that has to move towards a far-away target.

The ideal path length is the length of the straight line between the initial
end-effector position and the target position. PathLengthRatio is computed as the
ratio of the ideal length to the path length taken by the end-effector. This component

is designed to reward networks that can position the end-effector close to the target

17



position by taking the shortest path to the target. It also penalizes network controllers
that oscillate when they are close to a target while rewarding network controllers that

stop when the robot’s end-effector is close to the target.
The final fitness function is a weighted sum of the two sub-components:

a x T'arget Distance Ratio + b * PathLengthRatio . (3.1)

In the stationary target experiments a = 0.6 and b = 0.4.

Figure 3.3 depicts the average fitness of the best network found at each gener-
ation with a = 0.6 and b = 0.4 averaged over three runs. The best network that was
found over the 400 generations has a fitness of 0.78. The best neurocontroller could

on avereage move to the within 4.43 cm of a target.

0.9
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0.6 /\N/r
05 /

0.4 {/V
0.3 /

0.2
0.1

fﬂw—lw

Fitness

D T T T T T T T
0 50 100 150 200 250 300 350 400

Generation

Figure 3.3: Fitness of the best network found at each gemeration in an environment
without obstacles averaged over five runs. The best network that was found had a
fitness of 0.78. The fitness of the starting network is low because it consists of inputs
connected directly to outputs with random weights. As evolution proceeds, the fitness
of the best network found at each generation increases.

Figure 3.4 shows how the best network evolved performs on each target po-

sition in the training set. The target positions are color coded with yellow having a

18



fitness greater than 0.8 and red having a fitness less than 0.2. The neural network
is able to position the robot arm close to nearly all targets except for some outlying

target position that are very high or low (with respect to the z axis).

95 — r 0.8

90 —

85 — »
80 —

0.6

75 —

70 —

Z axis

0.4

100 0.2

0.0

X axis

Figure 3.4: Fitness display of best network that was evolved for each point in the
training set in an environment without obstacles. The points are color coded according
to the fitness with yellow being the highest fitness and red the lowest fitness. The
fitness of most points in the training set is at least 0.6.

The best evolved network controller was then compared with a controller that
solved the inverse kinematics equations to control the arm. The inverse-kinematic
controller can compute the required joint angles to position the robot’s end-effector
close to a target position. Figure 3.5 shows the three joint angles at each time step
for the analytical controller and the neural network controller for one target position
during an evaluation. The analytical controller is able to position the arm near the
target in fewer timesteps compared to the evolved neural network controller. Once
the neural network positions the arm close to a target it activates the stop neuron at
timestep 17. The final distance of the neurocontroller’s end effector from the target

is quite close to the inverse kinematics controller.
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Figure 3.5: The three joint angles for the analytical and neural network controller for
a single target position. The analytical controller is able to move to the target in 10
timesteps. The neurocontroller also moves to the target but takes 17 timesteps to do
so. The neurocontroller is able to move to within 5cm of the target which is close to
the inverse kinematic controller’s performance.

Table 3.1 shows the average L;,Ls and Loo distances of the joint angles of
the best neural network controller and the analytical controller for one target posi-
tion. For most target positions the neural controller moves moves the robot to the
same configuration as the analytical controller, however it takes a larger number of
timesteps to reach the correct joint configuration which explains the difference in the

average L; and L, distances of the joint angles.

The best evolved neurocontroller is also compared with a controller that used

a potential field algorithm to control the robot arm. In most cases, the potential field
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Jointl | Joint2 | Joint3
Ly 6.97 5.19 4.90
Lo 8.49 6.47 6.14

L 15.49 12.20 11.75

Table 3.1: Comparison of Neural Network controller and Inverse Kinematic Con-
troller This table shows the L;,L, and Loo between the best evolved neurocontroller
and inverse kinematic controller of joint angles 1, 2, and 3 averaged over the training
set. The neurocontroller comes close to matching the inverse kinematic controller
in terms of average final distance of the end-effector from the target. The neuro-
controller however takes a larger number of timesteps which is why the L; and L,
distances are not zero.

controller takes a shorter, more energy efficient path to the target than the inverse
kinematic controller. Table 3.1 shows a comparison of the performance of the best
neurocontroller with a potential field controller. The neurocontroller comes close to
matching the performance of the potential field controller. Figure 3.6 shows the path
taken by the best neurocontroller and the potential field controller for a single target
position. The neurocontroller takes a less optimal path, but comes close to matching

the final target distance of the potential field controller.

AveragePathLength | AverageT argetDist
NeuralNetworkController 50.81cm 4.45cm
Potiental FieldController 31.04cm 0.84cm

Table 3.2: Comparison of neural network ontroller and potential field controller This
table shows the average path length and average final distance of the end effector
from the target for the best evolved neurocontroller and a potential field controller.
The potential field controller takes a shorter path to the target, and moves closer to
the target but the neurocontroller comes close to matching this performance.

The best evolved neurocontroller was on average able to position the end-
effector to within 4.45cm of a target position which is close to the final target distance
using the potential field controller. The evolved neurocontrollers take a relatively

short path to a target position. This experiment demonstrates that it is possible to
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Figure 3.6: Comparison of the path taken by the end-effector for a neural network
controller and a controller that uses a potential field. The potential field controller
takes a shorter path to the target while the neural network controller takes a less
optimal path to the target. The average final target distance of the potential field
controller is 0.84cm while the neural network controll comes close to this performance
with an average distance of 4.45cm.

evolve neurocontrollers that can effectively control the arm in environments without

obstacles.

3.2 Learning to control the arm in an environment with ob-
stacles

In the second experiment, the neural network controllers were trained to move
the object close to a target position while avoiding obstacles. The inputs to the
neural network include the current joint angles, the position of the target relative to
the end effector, and three obstacle sensors present in the second joint, third joint and
the end-effector as seen in Figure 3.7. These sensors provide the x,y and z relative

distances of the closest obstacle. The sensors have a 10cm range and return 1 if there
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is no obstacle is within range. If there is an obstacle within range, they return the
distance of the nearest obstacle scaled between 0 and 1. The outputs of the controller
are three joint thresholds and a stop flag. The three outputs determine how much
each joint angle changes at every timestep. The joint angles are thresholded between
[-5,45] degrees. This forces the neurocontroller to make several small joint rotations
towards the target which allows it to more effectively sense and avoid obstacles along
the arm’s path. Figure 3.8 shows the configuration of neural network controllers

evolved for obstacle avoidance.

obstacle
sensor

e |

arget

Figure 3.7: Three obstacle sensors are used to navigate around obstacles while moving
the end-effector towards the target. The inputs are the obstacle sensor data, target
sensor data, current joint state and the outputs are the thresholded joint angles and
a flag that indicates whether or not to stop moving the arm. The obstacle sensors
allow the neurocontroller to sense obstacles along the length of the arm and avoid
obstacles along the entire arm. The obstacle is always initially placed between the
end effector and target so that the neurocontroller has to perform obstacle avoidance
for every position in the training set to get a high fitness. Joint 1, 2 and 3 are of
lengths 46cm, 51cm and 50cm respectively.

Each neural network evaluation starts by resetting the robot arm to the same
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Figure 3.8: Configuration of the networks evolved in an environment with obstacles.
The inputs to the neurocontroller are the current joint state, position of the target
relative to the end effector and obstacle range sensor data. The robot has three
obstacle sensors at joint 2, joint 3 and the end effector which returns the thresholded
distance of the nearest obstacle. The outputs are the joint rotations and the stop
signal. As evolution progress NEAT adds more hidden nodes and modifies the weights
so that the network’s fitness increases and the neurocontroller can effectively control
the arm while avoiding obstacles.

joint configuration. The target is placed within a 180° rotation of the robot’s first
joint, and an obstacle is placed at the midpoint of the line between the initial position
of the end-effector and the final target position. Placing the obstacle in such a manner
makes it necessary for the controller to navigate around an obstacle to reach the target
for every position in the training set. The training set consists of 96 target positions
that are uniformly distributed in the robot’s reach space. During each evaluation the

network is allowed to move the arm until

1. The network stops the arm,

2. The number of timesteps exceeds 30, or
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3. The robot hits an obstacle.

If during an evaluation the robot arm hits an obstacle at any point along the
arm, the trial is stopped and the fitness is set to zero. The fitness function is a
weighted sum of the the relative distance travelled towards the target and the path
length, similar to the previous experiment. This fitness function rewards networks
that are able to navigate around an obstacle and move the end-effector close to a

target while taking the shortest path possible.

Figure 3.9 depicts the average fitness of the best network found at each gen-
eration. The best network that was found over 400 generations has a fitness of 0.7.
For the training set that was used this represents a final target distance that is 10cm,
which is reasonably close to the target. The neurocontroller is able to incorporate
obstacle avoidance while the controlling the arm while still being able to position the

end effector close to targets.

Figure 3.10 depicts how the best network evolved performs on each target
position within the training set. As before, the points are color coded with yellow
being the highest fitness and red being the lowest fitness. The neural network is able

to position the robot arm close to nearly all targets.

The best neural network controller was then compared with a controller that
uses a path planning algorithm to move the arm as described in Section 2. The results
are shown in Figure 3.11 for a single position in the training set. The path planning
controller first moves directly to the target but then hits a local minimum because of
the obstacle’s repulsive force. It then makes a random move away from the obstacle
and then moves to the target. The neurocontroller also avoids the obstacle while
moving to the target. This result is shown quantitatively in Table 3.2. The average
final distance of the neural network controller is less around 10cm from the target
position, and the average path length is comparable to that generated by the path

planning algorithm.
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Figure 3.9: Fitness of the best network found at each gemeration in an environment
with obstacles averaged over five runs. The best network that was found had a fitness
of 0.7. This neurocontroller could position the end-effector to around 10cm of a
target while avoiding obstacles. This demonstrates that neurocontrollers can be used
to avoid obstacles while still controlling the arm effectively.

The neurocontrollers were trained to effectively control the arm while also
avoiding obstacles. The best evolved neurocontroller was on average able to position
the end-effector to within 10.43cm of a target position. The evolved neurocontrollers
on average takes a shorter path around obstacles towards a target position compared
to the path planning algorithm. The average final distance of the target from the
end effector for the neurocontroller is close to the controller that uses path planning.
This experiment demonstrates that it is possible to evolve neurocontrollers that can
effectively control the arm in environments with obstacles. The best evolved neuro-
controller takes a short path to the target and positions the arm to within 10cm of

the target.
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Figure 3.10: Fitness display of best network that was evolved for each point in the
training set in an environment with obstacles. The graph shows the performance of
the best evolved neurocontroller on every point in the training set. The points are
color coded according to the fitness with yellow being the highest fitness and red the
lowest fitness. The fitness of the neurocontroller for most positions in the training set
is at least 0.6. The neurocontroller avoids obstacles 59 out of the 96 target positions
in the training set.

AveragePathLength | AverageT argetDist
Neural Network 48.49 10.43
PathPlanning 69.45 2.83

Table 3.3: Comparison of neural network controller and path planning controller.
This table shows the average path length and average final distance of the end effector
from the target for the best evolved neurocontroller and a controller that uses path
planning. The neurocontroller takes a shorter path to the target, but the analytical
controller is able to move closer to the target.
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Figure 3.11: Comparison of the path taken by the end-effector for a neural network
controller and a controller that uses path planning. The obstacle is placed at the
midpoint of the line joining the starting position and the target position. The path
planning controller first moves directly to the target, but hits a local minimum because
of the obstacle. It then makes a random move away from the obstacle and then moves
to the target. The neurocontrollers moves to takes a path that avoids the obstacle
towards the target. The final distance of both controllers from the target is 2cm.
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Chapter 4

Discussion

This report presented a method for evolving neurocontrollers that can be used
to operate robot manipulators in environments with and without obstacles. The
neurocontrollers use range sensors that are fitted along the robots joints to sense

obstacles and the distance of the target relative to the end-effector.

The neurocontrollers that were evolved were compared with analytical con-
trollers that used the solutions to the inverse kinematic equations and path planning
to control the robot manipulator. The neurocontrollers evolved in for the environ-
ment without obstacles can move the end effector to within 4.43 cm of the target,
which is almost as good as an analytical controller. This results demonstrates that
neurocontrollers can be used to control manipulators in environments without obsta-

cles.

The neurocontrollers evolved for environments without obstacles are also able
to move the arm to 10cm of the target. The path taken by the evolved neurocontrollers
is relatively short. These results demonstrates that the neurocontrollers can be used
to perform complex tasks like obstacle avoidance. The performance of the evolved
neurocontrollers comes close to the analytical controller with respect to final distance

from the target.

The neurocontrollers evolved are able to cover most of the distance from the
starting configuration to the target and on average are able to position close to within
5cm for environments without obstacles and 10cm for environments with obstacles.

One possible explanation for this is that robot control consists of two types of move-
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ment. First, the neurocontroller must make several large joint rotations to move close
to the target. These movements can include detecting and avoiding obstacles in the
robot’s path. Second, the neurocontroller must make smaller, more precise movement
to get within grasping range of the target. It is possible to evolve neurocontrollers
that do both, however because of the diminishing returns of late evolution, it takes a
larger number of generations to evolve controllers that can move the very close (less
than 1cm) of the target. One way of overcoming this is to evolve a secondary neural
networks that are activated only when the target distance is less than 10cm. These
networks are evolved specifically to control the arm when the target distance is less
than 10cm. Future work will use secondary neurocontrollers to control the arm after

the primary neurocontroller positions the end-effector within 10cm of the target.

The advantage of using neurocontrollers is the ability to adapt to different
environments and manipulator configurations. Neuroevolution can be used to retrain
neurocontrollers that can function in the new environment. The neurocontrollers
described in this report do not change once they have been evolved. It would be
desirable to build a neurocontroller that could detect and adapt to changes in the
robot arm configuration or environment. Nolfi and Parisi [7] developed a self-teaching
architecture for training online neurocontrollers. In this architecture, the training
input for the neurocontroller is provided by a separate neural network that has the
same sensor input as the neurocontrollers and is subjected to the same evolutionary
process as the neurocontroller, but with a fitness function that is designed to train
the network to detect environmental changes. The teaching network can recognize
the configuration of the environment and robot and modifies its outputs in order to

train the neurocontroller to adapt to the new environment.

The self-teaching architecture could be used to create online learning con-
trollers by evolving the ability to adapt the neurocontroller in response to changes
in the robot or environment configuration. Future work will focus on training robust

adaptable neurocontrollers in simulation and using these neurocontrollers to control
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real manipulators.
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Chapter 5

Conclusion

The goal of this was report was to evolve neurocontrollers that could control
robot manipulators in environments that could position the robot manipulator’s end

effector close to target positions while avoiding obstacles.

First, neurocontrollers were evolved for environments without obstacles to
demonstrate that the NEAT genetic algorithm could be used to evolve neural networks
suited to the robot arm control task. The performance of the best neurocontroller that
was evolved in this experiment was compared with an inverse kinematics controller
and a potential field controller. The neurocontroller could move the end effector to
within 5cm of a target position, which is close to the inverse kinematics and potential

field controller results.

In the second experiment, neurocontrollers were used to evolve controllers
that could function in environments with obstacles. The performance of the best
neurocontroller that was evolved in this experiment was compared with a controller
that used a path planning algorithms to navigate around obstacles towards a target.
The best neurocontroller is able to position the end effector to within 10cm of a target.
This result indicates neuroevolution was able to integrate obstacle avoidance behavior
into the neurocontroller. The best neurocontroller evolved had a shorter average path

length, and came close to matching the performance of the path planning controller.

The advantage of using neurocontrollers for robot arm control is that neuro-
controllers can be adapted to different robot and environment configurations. Future

research will focus of evolving robust controllers that learn online which evolve to
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adapt to changes in the robot’s environment.
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