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Abstract- Natural deduction is essentially a sequential de-
cision task, similar to many game-playing tasks. Such
a task is well suited to benefit from the techniques of
neuro-evolution. Symbiotic, Adaptive Neuro-Evolution
(SANE)(Moriarty and Miikkulainen 1996) has proven
successful at evolving networks for such tasks. This pa-
per will show that SANE can be used to evolve a natural
deduction system on a neural network. Particularly, it
will show that (1) incremental evolution through progres-
sively more challenging problems results in more effective
networks than does direct evolution, and (2) an effective
network can be evolved faster if the network is allowed
to “brainstorm” or suggest any move regardless of its ap-
plicability, even though the highest-ranked valid move is
always applied. This way evolution results in neural net-
works with human-like reasoning behavior.

1 Introduction

Many of the successes in theorem proving have been achieved
through symbolic systems (Boyer and Moore 1975; Ander-
son 1983; Newell 1980b). Most of these symbolic theorem
provers depend on some decision procedure particular to the
logic on which they operate. They must restrict the logic to
a decidable subset of first-order logic, such as propositional
logic or Horn logic. Others, like the well-known resolution
method (Robinson 1963), perform in an unintuitive manner.
While these methods are complete for decidable logics, they
do not scale up to more complicated logics.

Natural deduction systems are heuristics-based methods
that prove theorems using inference rules such as modus po-
nens, disjunctive syllogism, and modus tollens. They cre-
ate proofs in an intuitively human-like manner. They rely on
heuristics in choosing which rules to apply. While decision
procedures are particular to the logic in question, heuristics
are more general and scalable to more complex logics.

Neural networks are effective for pattern recognition tasks
and can be used to implement heuristic proof decisions. Ge-
netic algorithms learn from sparse feedback and can per-
form credit assignment even when the correct behavior is
unknown. This paper shows how these two methods can be
combined to form a natural deduction system that learns and
reasons similarly to humans.

2 The Domain of Theorem Proving

Back-chaining is a goal-driven method that provides a natural
platform for studying human-like theorem proving. In back-
chaining, the prover starts with the theorem and determines
what information is needed to prove it. It proceeds recursively
until it arrives at an axiom. For example, given the axioms:

1. a

2. a! b

3. b! c

and “b” as the theorem, we first use modus ponens on axiom
2 to find out that we need to provea. Since axiom 1 isa we
have found the full proof:(a ^ (a! b))! b.

Back-chaining is easily characterized as a sequential de-
cision task. Such tasks require multiple steps to arrive at a
solution and provide only sparse reinforcement. Credit must
be assigned for each step even though there is no way of
knowing immediately if the step is correct. The system will
only know if it followed the correct path at the end of the
process. For this reason, there needs to be some kind of
heuristic mechanism to determine the benefits of each deci-
sion, i.e. to perform credit assignment. Neuro-evolution is
such a method.

3 Symbiotic, Adaptive Neuro-Evolution

Most neuro-evolution methods evaluate and evolve whole
networks. If a network performs well in a given environment,
it is rated highly and recombined with other good networks
to produce offspring networks. If it does not, it receives a low
fitness value and may be removed from the population.

However, if neuro-evolution is done at the level of partial
solutions, the process turns out much more effective. This
idea is used in SANE (Moriarty and Miikkulainen 1996).
SANE evolves two separate populations, one of nodes and
another of network blueprints. The node population focuses
on developing specific problem-solving functionality for the
given task. The network population focuses on combining the
nodes effectively.

The key to successful evolution is maintaining a diverse
population. In SANE, nodes are assigned fitness values based
on the networks in which they participate. If the same node
is used in many good networks it will be rated highly. Just as
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a team will work well if it has players that can work well to-
gether, a network will be effective if it has nodes that can
cooperate. By evolving nodes that come together to form
networks, SANE maximizes diversity and enables an effi-
cient search of the solution space (Moriarty and Miikkulainen
1996).

SANE has proven to be more effective than other neuro-
evolution and reinforcement learning techniques in several
domains, including the pole-balancing benchmark (Moriarty
and Miikkulainen 1996). It also provides a general learning
algorithm that can be reused in many domains, which makes
it a good candidate for implementing natural deduction.

Two discoveries made in prior work with SANE are partic-
ularly relevant for the natural deduction domain: incremental
evolution and brainstorming. In the usual direct evolution,
each network in the population is evaluated based on the full
desired functionality in the task. In incremental evolution
(Gomez and Miikkulainen 1997), the population is evolved
to achieve a subset of the full desired functionality, and grad-
ually more functionality is added. For example, in the direct
approach, networks would be evolved both to find relevant
rules and to come up with short proofs. In the incremental
approach, networks would first be evolved to make an infer-
ence for a given step in a proof. Then, in the second stage,
the fitness function would be modified to include minimizing
the number of steps. This way, the environment is gradually
made more challenging, culminating in the complete task.

In brainstorming the network suggests inferences regard-
less of whether they can be applied (Moriarty and Miikku-
lainen 1995). However, only the valid inference with the
highest activation is ever executed. Because diversity is the
key to successful evolution, any restrictions on behavior can
reduce diversity and risk harming the performance of the al-
gorithm. Brainstorming, by reducing restrictions, allows ex-
ploring a wider set of behaviors and results in a more effective
search.

Incremental evolution and brainstorming are very human-
like methods of learning, and will be shown to be beneficial
also in artificial evolution for theorem proving.

4 Hypotheses

This paper will show that a natural deduction system can be
evolved on a neural network. The goal is not to implement all
rules of natural deduction, only to show that neuro-evolution
is capable of evolving networks with heuristics for the most
central set of rules, i.e. modus ponens and modus tollens, and
how to realize when the proof is complete. If the network
can prove transitivity, it will show understanding of modus
ponens. Thus, givena; a! b; b! c, it must be able to show
c. If it can prove negations, it understands modus tollens:
given (a ! b) ^ :b it must be able to show:a. A system
that shows such a facility with modus ponens and modus tol-
lens will theoretically be extensible to a full natural deduction
system.

In order to verify network performance, this experiment
will focus on propositional logic. However, a network that
learns this method will be equally usable to solve first-order
logic theorems provided it can be extended with rules for rea-
soning with quantification symbols.

This experiment was designed to test the following three
hypotheses:

1. A neural network can be evolved to perform natural
deduction.

2. Incremental evolution will produce more effective net-
works than would be produced by evolving all func-
tionality at the same time.

3. Allowing brainstorming results in more effective evolu-
tion than requiring the network to always suggest only
valid inferences.

5 Procedure

In this section, network configuration and encoding will be
described. The experiment will be discussed in three subsec-
tions. Section 5.2 will report on the evolution of networks in
three separate populations to infer when to apply either QED,
MP, or MT. Section 5.3 combines these three populations to
evolve networks that can handle all three rules. Section 5.4
takes the final population from section 5.3 and evolves it fur-
ther to create multi-step proofs. This way, full functionality
is evolved incrementally.

5.1 Representation and Configuration

The first step is to configure the parameters for the networks
that will be generated by SANE, which includes deciding on
a number of input and output nodes, and what these nodes
will represent.

We used a three-layer neural network architecture with 24
input, 120 hidden, and 9 output nodes as shown in figure 1.
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Input = "b"

MP MT 1 2 3 4 5 6

Input Layer

Hidden Layer

Output Layer

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

QED

0.02 0.98 0.04 0.12 0.04 0.09 0.030.020.87

Figure 1: Network architecture and behavior given the input
of “b”.

Networks are evolved to prove theorems for a particular
set of axioms. In the current experiment we used the follow-
ing set of axioms:

1. a
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2. a! b

3. b! c

4. a! c

5. d! :c

6. d! :a.

The network’s input represents the theorem to be proven, and
the output indicates the axiom to be used and the rule that is
applied to that axiom. The rule is applied and the theorem
that needs to be shown next is determined outside the system.
Thus, if “b” is given as the input theorem, the network proves
it in two steps, generating the following output:

1. modus ponens on axiom 2

2. QED, axiom 1.

The first step of this proof is demonstrated in figure 1.
A localist 24-node encoding scheme was used to input the

representations of theorems. There are three groups of eight
nodes in this encoding. Each group of eight nodes represents
a literal or a binary operator. The group on the left and the
right can represent eithera, b, c, d, :a, :b, :c, or :d. The
middle eight can represent!, ^, or_ (^ and_ are not used
in this experiment but are included for future extensions). The
rightmost unit in the left and right groups stands for the char-
actera, the one next to itb, thenc andd. The fourth unit
from the left represents negation. Thus,[00010010] = :b.
The three leftmost nodes are currently not used. In the mid-
dle group, the leftmost unit indicates an implication. Figure
2 provides some examples of how theorems are encoded.

b = [00000000 00000000 00000010]
a! b = [00000001 10000000 00000010]

:c! :d = [00010100 10000000 00011000]

Figure 2: Examples of theorem encoding.

Output is encoded with nine nodes. The first three nodes
indicate the rules QED, MP, and MT. The remaining six each
represents a different axiom. The network will activate the
output node for the rule it chooses to apply and the axiom
to which this rule is applied. Figure 1 shows the output of a
network suggesting the application of MP on axiom 2. The
MP node and the axiom 2 node have high activation while all
other nodes have low activation.

With the current encoding scheme, 72 different inputs can
be represented. The four atoms and their negations consti-
tute eight of them. The remaining 64 consist of all possible
implications between these eight primitives. This encoding
scheme allows representations to be distinct. However, it uses
many input (24) and output (9) nodes and requires many hid-
den nodes (120) to achieve satisfactory performance, which
slows learning and performance. In this domain, though, the
advantages outweigh the disadvantages.

During evolution, the fitness values of the different net-
works were evaluated based on how they performed when the
six different axioms, “:b”, “ b”, “:d”, and nine other ran-
domly selected theorems (out of the total 72) were given as
input. The first six were selected to evolve QED function-
ality. The next three were selected to evolve MP and MT
functionality. The remaining nine were selected randomly at
each evolution to achieve good generalization.

5.2 Part I: Three Distinct Populations

The first goal was to evolve three populations: (1) one popu-
lation to detect the end of a proof (QED), (2) another popula-
tion to detect when to apply modus ponens (MP), (3) the last
to detect when to apply modus tollens (MT).

A QED network checks to see if the input theorem is an
axiom. If so, the network activates the output node for the
axiom that matches the theorem and the rule node for QED.
For example, if the input is “a” and axiom 2 is also “a”, the
QED output node and the axiom 2 output node should have
high values. All other output nodes should have low values.

An MP network checks to see if there is a premise that
has the input theorem as the consequent. For example, if the
input theorem is “c” and axiom 3 is “b ! c”, the MP output
node and the axiom 3 output nodes should have high values.
The remaining theorem to be shown is “b”.In other words,
MP can be used with premises of the formx ! y wherey is
the theorem.

An MT network checks to see if there is a premise of the
form:x ! y wherex is the given input theorem. For exam-
ple, if the input theorem is “c” and axiom 3 is “:c! a”, the
MT output node and the axiom 3 output nodes should have
high values. The remaining theorem to be shown then is “a”.

In order to apply SANE to this task, the experimenter
needs to write an evaluation function that assigns fitness val-
ues to networks. The evaluation function must rate those net-
works highly that give the desired output, and rate those net-
works poorly that do not.

Let nodec be the node corresponding to the correct axiom,
d be the node corresponding to the rule to apply,n be the
number of output nodes, andouti be the activation of nodei.
The evaluation function returns the following value.

Fitness= outc + outd �

nX

i=0;i6=c;i6=d

outi: (1)

In evolving the QED population,d = 0 since node 0 of
the output layer is the node representing QED (figure 1),c is
the node representing an axiom that is equivalent to the given
theorem. For MP,d = 1 andc is the node representing an
axiom of the formr ! s wheres is the given theorem. For
MT, d = 2 andc is the node representing an axiom of the
form:r ! s wherer is the given theorem.



In Proceedings of the The First IEEE Symposium on Combinations of
Evolutionary Computation and Neural Networks (ECNN2000)
May 11-13, 2000. 

5.3 Part II: The Combined Single-Step Network

The next goal was to combine the above three network popu-
lations into a single population and evolve a network to per-
form well on all three rules. This evolution was done both in-
crementally, using populations from section 5.2 and directly
by starting over with a new random population.

When the QED, MP, and MT fitness functions are com-
bined, the evolution should generate a network that is capable
of using all three rules. Therefore, each network evaluation
consisted of three components: all variations of QED, four
randomly chosen examples of MP, four randomly chosen ex-
amples of MT. The component fitness values were summed
and divided by the number of examples to get the final net-
work evaluation.

For both the direct and incremental evolution experiments,
two distinct network populations were evolved to investigate
brainstorming. One was evolved with a fitness function that
allowed brainstorming, the other with a fitness function that
penalized for invalid inferences. Thus, in the brainstorming
case, if the network suggested both MP and MT when only
MP applied, it was not penalized. Thus, the network could
suggest invalid moves, but only the highest valid move was
actually applied.

5.4 Part III: The Multi-step Network

The third goal was to evolve a network able to generate short
multi-step proofs using QED, MP, and MT. To do this, we
need an evaluation function that assigns fitness values only
after a series of inferences. At this point the problem be-
comes a true sequential-decision task. Again, four different
evolution experiments were run: directly from a random pop-
ulation and incrementally from the final population of section
5.3, both with and without brainstorming.

If the network failed to complete the proof within a certain
number of steps, its fitness was proportional to the number of
rules and axioms for which it inferred correctly. If a network
got all the way through the proof, choosing correct rules and
axioms at each step, it was given a fitness inversely propor-
tional to the number of rules and axioms it inferred correctly,
then doubled to ensure that successful proofs receive a higher
fitness than failed proofs.

6 Results

This section will present the results of the experiments de-
scribed above. Each experiment was performed ten times
with different random seeds so that statistical error could be
calculated.

6.1 Part I: Three Distinct Populations

In Part I, separate networks were evolved for QED, MP, and
MT. The QED evolution performed very well. The final net-
work was tested on each of the six axioms, and the network
selected the rule QED correctly in every case.

The final network evolved in the MP population was tested
on the theorems “a”, “ b”, “ c”, “:d” and four other randomly
selected theorems of the formx ! y, namely “b ! d”,
“a ! :b”,“ d ! c”, and “:a ! :d”. The MP network
also performed exceedingly well. In all test cases it produced
the proper output. For example, when the theorem “b” was
the given as input, the network activated output nodes for
premises of the formx ! b. Also, when given “c” the net
inferred to use MP on axioms 3 and 4, even though “c” was
never presented during evolution as a theorem.

The final network of the MT population was also tested
on the theorems used to test MP. The MT evolution also per-
formed well. The final network was able infer correctly for
each theorem tested. For example, given the theorem “:d”,
the final network was able to recognize that MT could be used
on axiom 5 and 6.

6.2 Part II: The Combined Single-Step Network

The combined networks were tested on all the test inputs from
Part I. In direct evolution, where the population was started
with random values and all rules were evolved at once, evo-
lution had trouble finding networks that could use all three
rules. The networks performed correctly for some inputs and
not for others. Even prolonged evolution did not help. How-
ever, in the incremental evolution, where the three final pop-
ulations from section 5.3 were combined and evolved further,
the final network worked for all test cases.

Because the direct evolution failed, brainstorming could
be tested only the incrementally evolved population. On the
usual set of axioms, performance of brainstorming evolu-
tion was not statistically significantly different from the non-
brainstorming evolution. Both were able to infer correctly.

However, on a separate evolution with different axioms we
had some interesting results. A population was evolved with
the axioms “a”, “ a ! b”, “ b ! a” and “b ! c”. It was then
asked to prove the theorem “a”. This is an example of an am-
biguous step because either QED on axiom 1 or MP on axiom
3 can be applied. The brainstorming network was unable to
give a confident suggestion on what to do in this situation. It
was able to suggest QED but could not decide which axiom
to apply. On the other hand, in a non-brainstorming evolution
with the same axioms, the network was not confused because
the evaluation function explicitly ordered QED above MP and
MT. The network was explicitly penalized if it tried to apply
MP or MT before QED. Therefore the final network knew
to apply QED to axiom 1, not axiom 3, because QED only
applies to axiom 1.

The final networks of both the brainstorming and non-
brainstorming evolutions were able perform well on all test
cases with the usual set of six axioms. The problem in the sec-
ond set is interesting because it identifies a potential pitfall of
brainstorming: looser constraints may lead to networks that
cannot decide between alternatives. Interestingly, this prob-
lem does not arise when the networks are evolved to perform
multi-step proofs, as will be discussed next.
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6.3 Part III: A Multi-step Network

As mentioned in section 5.1, networks in Part III were evalu-
ated based on the same set as in Part I and Part II, but now
network fitness for evolution was calculated only after the
proof was completed. Direct evolution was again not very
effective because it was very difficult to get started on proofs.
For example, when “b” is the input theorem, the solution is a
two-step proof. The second step will only be reached if the
network makes the correct inference on step one. However, it
does not get to the end of the proof, and always gets a poor
fitness. Thus the networks do not even learn to perform the
first step of multi-step proofs.

In incremental evolution, the best network population
from section 6.2 for single step proofs was used as a start-
ing point, but now evaluated on their performance on multi-
step proofs. Thus, the basic theorem proving functionality
was evolved first and then extended into a more challenging
task. This method resulted in successful networks. Not only
was the best network able to complete the proof in most situ-
ations, it was able to minimize the number of steps. If given
“c”, the network was able to infer MP on axiom 4 rather than
MP on axiom 3, which would result in a longer proof. Recall
that the population never saw “c” as input during evolution;
the network was able to generalize and optimize. The incre-
mental approach succeeded where the direct method failed.

We then tested the performance of the final networks
evolved with and without brainstorming. Both networks per-
formed well in all test cases. They were both able to pro-
duce the shortest possible proofs for the theorems tested.
Thus, there was no significant qualitative difference in the
performance of the two networks. However, the brainstorm-
ing evolution was on the average 6.35� 1.05% faster than
non-brainstorming evolution, based on ten trials with differ-
ent random seeds. Most importantly, it was able to use the
goal of generating short multi-step proofs to solve the ambi-
guity problem in section 6.2. The loosening of restrictions
during evolution did not diminish overall performance, but
rather, led to an overall speedup in training. Such a result is a
good indication of the power of brainstorming evolution.

7 Further Research

This experiment is a good starting point for further research
into evolving human-like natural deduction systems. It shows
that such a theorem prover can be evolved in a limited do-
main. However, it also prescribes a procedure for how to
scale to larger domains. In order to create a general purpose
theorem prover we need to include more rules. While logi-
cally all propositional logic can be proven using negation and
modus ponens, we are interested in intuitive human-like nat-
ural deductions systems, and need rules that humans would
use, such as those dealing with with conjunctions and dis-
junctions. For conditional proofs it is necessary to be able to
include assumptions in the axiom list, which means the ax-
ioms must be explicitly represented. The network also needs

some type of memory to distinguish actual axioms from the
assumptions. We also need common sense rules to identify
tautologies like “a! a.” After these extensions, the theorem
prover could be extended to first-order logic.

Another important result that should be investigated fur-
ther is that neuro-evolution can be used to model human
learning and reasoning. Rules were learned one at a time and
incorporated into a growing body of knowledge. Internal rep-
resentations of axioms were developed through evolution of
localist output only. Finally, heuristic strategies were devel-
oped for using rules of inference. With the neuro-evolution
approach, we can learn much about the process of reasoning
on rational systems in general, including that of humans.

8 Conclusions

This experiment showed that neuro-evolution can be used to
learn natural deduction. More specifically, SANE was suc-
cessful at evolving networks that, through back-chaining, cre-
ate multi-step proofs using modus ponens and modus tollens.
Incremental evolution through a series of gradually more dif-
ficult tasks was more effective at producing successful net-
works than direct evolution. The experiment also showed that
brainstorming allows a genetic algorithm to evolve networks
faster by enforcing fewer constraints. These results consti-
tute a promising starting point for developing comprehensive
natural deduction systems through neuro-evolution.
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