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ABSTRACT
Current approaches to deep learning are beginning to rely heavily
on transfer learning as an effective method for reducing overfitting,
improving model performance, and quickly learning new tasks.
Similarly, such pre-trained models are often used to create embed-
ding representations for various types of data, such as text and
images, which can then be fed as input into separate, downstream
models. However, in cases where such transfer learning models
perform poorly (i.e., for data outside of the training distribution),
one must resort to fine-tuning such models, or even retraining them
completely. Currently, no form of data augmentation has been pro-
posed that can be applied directly to embedding inputs to improve
downstream model performance. In this work, we introduce four
new types of data augmentation that are generally applicable to
embedding inputs, thus making them useful in both Natural Lan-
guage Processing (NLP) and Computer Vision (CV) applications. For
models trained on downstream tasks with such embedding inputs,
these augmentation methods are shown to improve the AUC score
of the models from a score of 0.9582 to 0.9812 and significantly
increase the model’s ability to identify classes of data that are not
seen during training.

1 INTRODUCTION
In many deep learning applications, the ability to generalize from
one distribution of data to another is quite difficult. Due to the lack
of alignment between training and testing distributions, many deep
learning models struggle with overfitting and fail to perform well in
real world environments, despite high training accuracy. Much of
this performance discrepancy is caused by the sampling bias that is
created when randomly selecting a training set, as the distribution
of this training set will not perfectly match the distribution of data
that is seen in the real world. To combat issues with overfitting,
many methods, such as transfer learning and data augmentation,
have been employed. However, the generalization performance of
deep learning models is still in need of further improvement.

Transfer learning has become an extremely popular method
of reducing overfitting in deep learning. In CV, large, pre-trained
convolutional neural networks (CNNs) have been shown to perform
well when fine-tuned to accomplish other, downstream tasks after
pre-training [4, 13]. In a similar vein, deep learning models in NLP
have began to heavily utilize self-supervised learning, in which
deep learning models are pre-trained on large corpora of unlabeled
text to yield pre-trained language models that can be fine-tuned
to accomplish downstream NLP tasks [5, 20]. In addition to fine-
tuning pre-trained models to accomplish downstream tasks, one
also can use a pre-trained model to create vector embeddings of
data that can be used as input to a separate model, which is then
trained to accomplish the downstream task [2, 9]. Such an approach
avoids the cost of fine-tuning large pre-trained models, focusing
instead on training the smaller, downstream model.

Generalization performance can be improved with the use of
data augmentation. In CV, such augmentations typically take the
form of either geometric or color augmentations on input images,
which have been extremely effective at reducing overfitting in
CNNs [3, 18]. More recently, Mixup was proposed, which applies
data augmentation by taking a weighted average of two images
and trying to predict the weights of each class in the output layer
[22]. Mixup has been shown to yield several benefits, such as re-
ducing overfitting and better calibrating the confidence of deep
learning models [11, 19]. Data augmentation has also recently been
expanded to NLP tasks [6, 10]. However, augmenting textual data
has proven to be quite difficult due to the fact that replacing or
changing words within a corpus of text could easily destroy the
semantic meaning of a sentence or phrase. In this work, the pro-
posed forms of data augmentation draw on ideas from all such
forms of data augmentation, but are applied to embedding inputs
(i.e., either textual or image vectors), instead of raw data inputs.
To our knowledge, such methodology of augmenting embedding
inputs for deep learning has not yet been explored.

Recent research has begun to address the tendency of one-hot la-
bels to foster overfitting and overconfidence in supervised learning
domains. Such overconfidence, characterized by a model outputting
extremely high logits for a single class relative to other classes in
the output distribution, can be detrimental to model performance
because it diminishes the model’s generalization accuracy and leads
to poor performance in situations that rely on sampling from the
output distribution of the model, such as beam search [12], be-
cause the output distribution is too peaked. Label smoothing was
proposed as a way to better calibrate model confidence and avoid
such issues created by one-hot target vectors by computing the
target vector as a weighted average between the one-hot target and
a uniform distribution [16]. Similarly, Mixup was also shown to
regularize model confidence [11], due to the fact that it produces
soft labels for use during training. In this work, we further explore
the use of label softening in combination with the proposed forms
of embedding augmentation and expand the use of label softening
to situations in which a softmax output transformation is not used.

One of the largest bottlenecks in deploying useful deep learn-
ing models is the lack of sufficient labeled data for supervised
learning, which worsens sampling bias and makes models more
susceptible to overfitting. Therefore, finding ways to improve gen-
eralization performance of deep learning models, especially with
limited training data available, is an important topic of current deep
learning research. In this work, we focus on ways to improve the
generalization performance of deep learning models by leveraging
embeddings generated by large, pre-trained networks. Specifically,
our work shows that by deriving new forms of data augmentation
that are generally applicable to such embedding representations,
the generalization performance of downstream models that utilize
these embeddings as input can be improved. Additionally, these



Figure 1: Outlines how embedding representations are aug-
mented using E-Mixup. Both the embedding inputs and
their associated target vectors (i.e., one-hot prediction tar-
gets) are augmented using the same process outlined above.

novel data augmentations, especially when combined with label
softening, can be shown to regulate overconfidence in downstream
models and allow such models to accurately identify unseen classes
of data, thus pinpointing data that must be labeled and included in
the training set to further improve the model’s performance.

The organization of the paper is as follows: First, the method-
ology of the paper will be proposed. This methodology includes
several novel forms of data augmentation that are generally appli-
cable to embedding representations used as input to deep learning
models. Following the methodology, the experiment details and the
results of each of the experiments will be outlined and compared to
the control experiment in order to highlight the benefits of the pro-
posed augmentation methods. Next, analysis of these methods will
be presented, followed by possible ideas for future research in the
area. Lastly, the major conclusions of the work will be summarized.

2 METHODOLOGY
The novel contributions of this work are as follows:

(1) Four new forms of data augmentation are proposed that are
generally applicable to embedding representations of data.

(2) These data augmentations are shown to be effective in in-
creasing validation performance and regulating model over-
confidence.

(3) The benefits and drawbacks for each of the data augmen-
tation methods are outlined to determine the situations in
which they are most useful.

The novel forms of data augmentation proposed in this work
avoid any fine-tuning or modification of pre-trained models and
ensure that the downstream network will never see the same input
twice, thus reducing overfitting. Additionally, because embedding
inputs can be pre-calculated for all data such that inference is only
run once on the pre-trained model for each element of data (i.e.,
to produce the associated embedding of the data), these augmen-
tation methods have minimal added cost, only creating an extra
constant factor of complexity within the processing of each mini-
batch. These new contributions form a basis for optimizing the
performance of downstream deep learning models that utilize any
type of embedding inputs, especially when minimal training data
is available.

2.1 Creating Text and Image Embeddings
For both textual and image data, it is possible to use pre-trained
deep learning models to produce embedding representations of
data, which contain quantitative characterizations of the associated
data and can be used effectively as input to a deep learning model.
Such embeddings can be produced by a variety of different pre-
trained models. For textual data, recently proposed transformer
architectures, such as BERT [2, 5] and XLNet [21], can be used to
create textual embeddings of phrases or sentences. Similarly for
images, modern deep learning models such as Residual Networks
[7] can be used to produce image embeddings, as well as some older
CNN architectures such as VGG [15], which has been shown to be
surprisingly effective at producing useful image embeddings. Such
embeddings are created by passing the image or textual data as
input to a pre-trained model and using the activation values within
the last layers of the pre-trained network to produce embedding
vectors. Because the final layers of such models generally contain
informative, semantic information about the input data within their
activations, such embedding vectors tend to be quite descriptive
and form good inputs for deep learning models. In this work, all
data is transformed into an associated embedding before being
passed as input to the downstream model.

2.2 E-Mixup
The first form of data augmentation proposed in this work is re-
ferred to as E-Mixup, which stands for "Embedding Mixup". This
form of data augmentation draws inspiration from the original idea
of Mixup [22], a form of data augmentation commonly used in
computer vision applications. In E-Mixup, two input embeddings
are combined by first sampling a random value, lambda, from a
Beta distribution having a parameter alpha. It should be noted that,
in this work, alpha is used to refer to this distribution parameter, as
opposed to the learning rate, and generally lies in the range of 0 to
0.5. Once the value of lambda has been sampled, E-Mixup takes a
weighted average over the embedding inputs of two unique training
examples, where lambda is the weight of the average. A different
lambda value is sampled each time two embeddings are combined,
thus randomly perturbing each sample that is passed as input to the
model and ensuring the model will never see the same input twice.
E-Mixup, as well as all other proposed embedding augmentation
methods, cause the size of each mini-batch to be halved because
each mini-batch is constructed by combining pairs of embeddings
into a single input. The process of combining two input embeddings
using E-Mixup can be visualized in Fig. 1.

It should be noted that E-Mixup is performed both on a pair of
input embeddings and on the target, or label, vectors associated
with these input embeddings. The resulting target vector for a
combined embedding input after E-Mixup has been applied is a
weighted average of the two original, one-hot target vectors, thus
creating two classes with positive probability in the target output
distribution. This has the effect of softening the target labels that
are being predicted by the model. This softening of the target vector
has a regularizing effect on the downstream classification model,
as will be further outlined in following sections (see Sec. 2.4).
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Figure 2: Outlines how embedding representations are aug-
mented in E-Stitchup. The label vectors associated with
these embedding inputs are not handled in the same way,
but are instead handled by taking a weighted average of the
two label vectors, as in E-Mixup.

2.3 E-Stitchup
The second proposed form of data augmentation is referred to as
E-Stitchup, which stands for "Embedding Stitchup". Similarly to
E-Mixup, E-Stitchup creates a combination of two unique training
examples. However, instead of taking a weighted average of a pair
of embedding inputs, this method randomly samples elements from
each of the two vectors to create a combination of the two (e.g., 1/4
of the elements may come from one vector, while 3/4 of the elements
will come from the other). This sampling of embedding elements is
performed by randomly choosing an element from one of the two
vectors to populate each index of the resulting vector. Similarly to
E-Mixup, the probability of choosing an element from either vector
in E-Stitchup (i.e., the ratio of elements to take from each vector)
is determined by sampling a value, lambda, from a random Beta
distribution with parameter alpha. The resulting, mixed embedding
is the same size as the original and contains elements from either
of the original embeddings at each of its indices. The process of
combining two input embeddings using E-Stitchup can be seen in
Fig. 2.

Although E-Stitchup augments the input embeddings differently
than E-Mixup, the associated label vectors are handled identically
as in E-Mixup, by taking a weighted average of the two label vec-
tors. The weight used to take this average is the same randomly
sampled weight, lambda, that determines the ratio of elements to
sample from each embedding vector when E-Stitchup is performed.
Therefore, similar to E-Mixup, E-Stitchup yields softened target
vectors where multiple classes have nonzero probability.

2.4 Soft E-Mixup and Soft E-Stitchup
The third and fourth forms of data augmentation incorporate a
change that can be added to both E-Mixup and E-Stitchup. The
process of creating the mixed input embeddings is identical to E-
Mixup and E-Stitchup, respectively. However, the way in which
the associated label vector is created is slightly modified. Again, a
weighted average of the two one-hot target vectors is taken, thus
resulting in a soft target vector to be predicted by the model. Once
this target vector is created, its values are randomly perturbed by
subtracting a small value from the two positive classes and adding
a small value to the rest of the negative classes. The values added to

the negative classes are normalized such that the total probability
distributed among all negative classes is equal to a value of one,
which is possible because a binomial output transformation is used
in the downstream classification model instead of softmax (See Sec.
3.3). By default, a value of 0.05 was subtracted from each of the
positive classes and the subtraction was clamped such that it will
never result in a negative class probability (i.e., if subtracting 0.05
results in a negative value, the value is set equal to 0). This process,
in effect, further softens the target vector and introduces noise
into the target that the model is trying to predict, thus creating a
regularizing effect on the network. This method of softening the
resulting label vector is applied to both E-Mixup and E-Stitchup,
which, when used with softened labels, are referred to as Soft E-
Mixup and Soft E-Stitchup, respectively.

As an example of how soft labels would be created during train-
ing, consider two training elements that are classified as class one
and two, respectively. Now, assume that the lambda value, or the
weight, sampled during E-Mixup is equal to 0.2. Then, the target
vectors, when mixed together, would yield a single target vector
with a value of 0.2 for class one and 0.8 for class two, representing
the mixed probability of the two original classes. In order to soften
this label vector, a value of 0.05 is subtracted from each of the pos-
itive classes, resulting in probabilities of 0.15 and 0.75 for classes
one and two, respectively. It should be noted that if this subtraction
resulted in any negative value, the negative value would be set
equal to zero, as there cannot exist any negative probabilities in
the target vector. Then, a small value must be added to each of
the negative classes, such that a total value of one is distributed
across all negative classes. Assume that there exist a total of 12
possible output classes, leaving 10 negative classes to which a small
value must be added. In this case, a value of 0.1 would be added
to each of the negative classes, resulting in a final target vector
having probabilities of 0.15 and 0.75 for the first two classes and a
probability of 0.1 for all other classes. This softened vector would
then be used as the target for the model if soft labels are being
utilized during training, such as in Soft E-Mixup or Soft E-Stitchup.

2.5 The "None" Category
Because the ability to identify data that belongs to an unseen class is
a useful skill for deep learning models in production environments,
the proposed augmentation methods are not only evaluated on their
ability to improve validation performance and reduce overfitting,
but also on their ability to correctly identify data that belongs to
a class that is not included in the training distribution (i.e., assign
low probability to all classes in the output distribution). In order
to identify data that belongs to no class, a confidence threshold is
created. To predict data into a given class, the model’s probability
assigned to this class in the output distribution must be greater than
the confidence threshold, otherwise the prediction is discarded. If
multiple classes are given probabilities greater than the confidence
threshold, the class with the greatest probability is selected (i.e.,
multiple classes cannot be predicted for a single input). Additionally,
if no classes are assigned probabilities greater than the confidence
threshold, the data is considered to not be a part of any class, which
is referred to in this work as the "none" category. This concept of
the "none" category is used throughout the analysis of the proposed

3



augmentationmethods, as the ability to identify products accurately
as part of the "none" category is one of the major goals of the
proposed augmentation methods. Such an ability to identify data
that belongs to an unseen class is important for deep learning
models that are exposed to continuously expanding datasets (i.e.,
any deep learning model in production), as it can be used to identify
data that needs to be labeled and data on which the model is not
performing well.

3 EXPERIMENTAL DETAILS
All experiments were performed using the Fashion Product Images
Dataset. Separate experiments were performed to analyze the effect
of each proposed data augmentation method on the performance of
downstream classification models. Each of the experiments that are
presentedwere repeated for several trials with different training and
validation splits to ensure the consistency of the results. For each of
the augmentation methods, various settings of the alpha parameter,
or the parameter to the distribution from which the augmentation
weight is sampled, are explored using a grid search. However, only
a single alpha value is generally presented for each experiment,
which was determined through grid search to be the empirically
optimal value. The control experiment, which is presented alongside
results for all proposed augmentation methods, corresponds to an
experiment in which no augmentation is used. All parameters and
settings for the control experiment, besides the use of embedding
augmentation, are kept identical to the other experiments.

3.1 Fashion Product Images Dataset
For the experiments performed in this work, the Fashion Product
Images dataset is used, which is available at [1]. This dataset con-
tains data for 44K apparel products, each of which has an associated
image, product title, and product description. These products are
classified into 171 unique categories of products. The textual data
associated with each product (i.e., the product title and product
description) is converted into an embedding vector following the
procedure outlined in 3.2. Additionally, all images are converted
into an associated embedding representation following the same
procedure. These embeddings, including two text vectors and one
image vector, are concatenated together before being fed as in-
put into a fully connected classification model, and the model is
trained to predict a product’s associated class given these input
embeddings.

3.2 Embedding Models
In this work, the BERT transformer model [5] is utilized to create
phrase and sentence embeddings. Our implementation utilized the
BERT Base model (i.e., HuggingFace PyTorch implementation) for
the creation of all textual embeddings. This model was never fine
tuned or modified in any way. To create these textual embeddings,
input phrases are first tokenized using a WordPiece tokenizer [14].
The resulting tokens are then converted into token embeddings and
fed as input into the BERT Base model. Once the forward pass of
BERT is complete, the sentence embedding is created by averaging
the output activation vectors corresponding to each input token
in each layer of the transformer, thus yielding a single average
activation vector for each layer, and concatenating the average

output activation vectors of the final two layers. This process creates
an embedding vector with 1536 elements to represent a textual
phrase. If there are multiple phrases associated with a single data
element (e.g., a product on an e-commerce site may have both a
product title and description), embeddings are created separately
for each of these phrases and then concatenated together.

All embeddings for image data were created with the EfficientNet
B4 model [17]. This pre-trained CNNmodel was never fine-tuned or
modified in any way. To create the image embeddings, the original
image is passed as input into EfficientNet to retrieve the activation
maps at each layer of the CNN. From these activation maps, the
resulting image embedding is created by performing a global aver-
age pooling on the final convolutional layer of the network, thus
yielding a single value for every channel of the feature map at this
layer. This process creates an embedding vector with 1792 elements
to represent each image. In cases where both image and textual
data are available, all image and textual embeddings are created
separately and concatenated together before being passed as input
to the downstream model.

3.3 Classification Model
Once the input embeddings are augmented using the chosen form
of data augmentation (e.g., E-Mixup, E-Stitchup, Soft E-Mixup, or
Soft E-Stitchup), the augmented examples are fed into a down-
stream classification model. This model is a deep, fully-connected
network, which accepts a fixed size input and outputs a probability
distribution over all possible classes. The model used in this work
is comprised of two hidden layers of size 250, although the model
size may need to be increased or decreased depending on the situ-
ation. This downstream model is significantly smaller than most
pre-trained models used for transfer learning and can be retrained
at a low computational cost. Each hidden layers is followed by a
Dropout layer with probability of 0.3, as well as a Rectified Linear
Unit activation. The last layer of the model, however, is not followed
by a Rectified Linear Unit activation.

A binomial output transformation, or an element-wise sigmoid
activation, is applied to the model’s output layer before the pre-
dicted class is determined. This binomial output transformation is
used instead of Softmax so that the model has the ability to assign
low probability to all classes, thus enabling the model to handle
data that does not belong to a class that was seen during training by
assigning low probability to all classes. The ability to identify such
unknown classes is a common problem in deep learning. Models
trained using softmax output layers tend to be overly confident
when running inference on such unknown data due to the fact that
they are forced to assign non-zero probability to some class. In cases
where there is very limited training data, such an ability to identify
data within an unseen class is useful, as it can prevent inaccurate
predictions on such data and identify portions of a dataset that are
in need of labeling. Furthermore, in a setting with a continuously
expanding dataset (i.e., any deep learning model running in pro-
duction), the proposed methodology is quite useful, as data that
belongs to an unknown class can be identified and labeled before
retraining to maximize the performance of the model.
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3.4 Training Parameters
Each experiment for the proposed forms of data augmentation
utilize identical training parameters. For every experiment, a linear
learning rate cycle is utilized that fluctuates from a learning rate
of 0.0003 to 0.003 with a step size of 12 epochs and weight decay
was set to 0.0001. Training is continued for 576 epochs for most
cases, including both control experiments (i.e., those that utilize
no data augmentation) and augmentation experiments, to ensure
convergence.

For all experiments, only 10 percent of the available data is used
for training (i.e., about 4,400 of the available 44,000 total products).
The rest of the data is used for validation, and all results presented
in this work are measured using this validation set. Such a small
training set is used in order to simulate a scenario when very limited
training data is available, which is when such augmentation is
most useful. Such a limited amount of training data is common
for deep learning models in production, in which one would want
to label the least amount of data possible before having a high-
performing model. In such cases, reaching high accuracy with only
10 percent of known data, or even less, would be ideal. Additionally,
including fewer products in the training set allows some classes
of products to be excluded from the training set, which, in turn,
allows the augmentation methods to be evaluated by their ability to
identify products that belong to the "none" category, as described
in 2.5. For each trial of every experiment, a different training and
validation split is created with 10 percent training data and 90
percent validation data, thus allowing the consistency of the results
across different validation splits to be ensured.

3.5 Accuracy Metric
There exist multiple manners in which the accuracy metric can
be defined for the purposes of this work, which raises the need
to clearly define the accuracy metric as it is used in this context.
For all results presented, accuracy is considered to be the top-one
accuracy of class probabilities (i.e., the class that is assigned the
highest probability in the model’s output layer is considered the
predicted class). However, if the confidence of the prediction (i.e.,
the probability of the output element after sigmoid is applied) is less
than a certain confidence threshold, then the product is considered
to be in the "none" category. Similarly, all product classes that are
not present in the training set, but are present in the validation
set, are considered to be a part of the "none" category. A product is
considered to be classified correctly if the top-one class, or the class
with the highest probability, is equal to the correct class and the top-
one prediction has a probability that is higher than the confidence
threshold. A correct classification occurs when either the top-one
prediction, with probability above the confidence threshold, is equal
to the actual labeled class, or if no classes are assigned a probability
higher than the confidence threshold when the product is part of
the "none" category.

The confidence threshold is a hyperparameter that can be used
to tune the performance of the different augmentation methods. By
default, this value is set to 0.6. However, the confidence threshold
can be slightly changed to yield different performance, as described
in Sec. 5.1.

4 RESULTS
In this section, the results of the proposed augmentation methods,
as well as a control model trained without any augmentation, are
provided. These models were evaluated in terms of their ability to
both improve generalization accuracy and identify products in the
"none" category. The alpha values used for each of the augmentation
methods were chosen using a grid search over possible alpha values,
which yields the optimal alpha value that is used for each of the
respective augmentation methods.

Aug. Method Weighted AUC
Control 0.9582 ± 0.0015
E-Mixup 0.9763 ± 0.0002
E-Stitchup 0.9768 ± 0.0002

Soft E-Mixup 0.9795 ± 0.0001
Soft E-Stitchup 0.9812 ± 0.0004

Table 1: Displays weighted average AUC scores across all
product categories, including the "none" category, for mod-
els trained with each of the proposed augmentation meth-
ods. These values represent the average of AUC scores
recorded across multiple trials of the experiment. Themaxi-
mumdeviation from each of the average values is listed next
to each value.

The performance of each of the augmentation methods is mea-
sured in various manners. First, accuracies for both the "none"
category and other categories are measured separately to deter-
mine the performance of each augmentation method in relation to
the control (Fig. 3). It should be noted, however, that the accuracy
metric is dependent upon the value of the confidence threshold, due
to how accuracy is defined (see Sec. 3.5). To avoid this dependence
on the confidence threshold, ROC curves and AUC scores, which
evaluate model performance in a way that is independent of the
value of the confidence threshold, are presented for each of the
augmentation methods and the control.

The ROC curve that is provided (see Fig. 4) is a weighted av-
erage ROC curve across all product categories within the dataset,
including the "none" category. The weight for each product class is
determined by the ratio of examples that product class has in the
dataset (i.e., a class with lots of examples relative to other classes
will be weighted more). Similarly, the associated AUC scores in
Table 1 are determined by measuring the AUC of these weighted
average ROC curves. Furthermore, each of these ROC curves are
recorded across multiple trials of the experiment and the average
of all such trials is presented in Fig. 4 and Table 1.

4.1 E-Mixup
As seen in Table 1, E-Mixup has an AUC score of 0.9763, as com-
pared to a score of 0.9582 for the control. From this AUC score,
it is known that E-Mixup has better validation performance than
the control, both for general product categories and for the "none"
category. E-Mixup has the lowest AUC score of all proposed aug-
mentation methods despite its improvements over the control, but
its performance is only slightly behind that of E-Stitchup.
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Figure 3: Overall and "none" category accuracies for both the control experiment and all augmentation methods across vari-
ous confidence thresholds. This figure displays the relationship between overall and "none" category accuracy, as well as the
performance capabilities of models trained with each augmentationmethod. The solid lines represent the average of accuracy
values recorded across multiple trials, while the dotted lines represent the minimum and maximum accuracy recorded across
multiple trials.

When label softening (see Sec. 2.4) is applied to E-Mixup, the
AUC measure is still superior to the control, yielding an AUC score
of 0.9795 for Soft E-Mixup. Soft E-Mixup has the 2nd highest AUC
score of all proposed augmentation methods, thus highlighting
its effectiveness in improving generalization performance. Addi-
tionally, Soft E-Mixup performs better than both the control and
E-Mixup, as it improves the weighted AUC score by 0.0213 and
0.0032, respectively.

4.2 E-Stitchup
As seen in Fig. 4, E-Stitchup yields an AUC score of 0.9768. E-
Stitchup has a better weighted AUC score than the control and
results in the 3rd best AUC score of the proposed augmentation
methods. E-Stitchup performs better than E-Mixup in terms of AUC
score. However, the difference in performance between these two
methods is quite minimal (i.e., their AUC scores differ by a value
of 0.0005), thus revealing that these augmentation methods yield
similar performance in the downstream classification model.
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Figure 4: Illustrates the weighted average ROC curve across
all product categories, including the "none" category, for
models trained with each of the proposed augmentation
methods. These curves are the average of ROC curves pro-
duced across multiple trials of the experiment. The ROC
curve associated with the control experiment, which used
no embedding augmentation, is bolded.

Soft E-Stitchup yields an AUC score of 0.9812, which is the
best AUC score out of all proposed augmentation methods. Such
a high AUC score highlights the effectiveness of Soft E-Stitchup
in improving the downstream model’s generalization performance.
Again, Soft E-Stitchup yields better performance than the control.
Additionally, the performance of Soft E-Stitchup and Soft E-Mixup
are somewhat similar, as their AUC scores differ only by a value of
0.0017.

5 ANALYSIS
As seen in Table 1 and Fig. 3, each of the different augmentation
methods has its own strengths and weaknesses. In this section, the
behavior of each of the proposed augmentation methods will be
outlined such that the situations in which they would each be most
useful can be understood.

5.1 E-Mixup and E-Stitchup
From the provided results, it is clear that both E-Mixup and E-
Stitchup provide better overall and "none" category performance in
comparison to the control, as revealed by their superior AUC scores.
However, the actual performance, or accuracy measure, of models
trained with these methods is dependent upon on the value of the
confidence threshold, which can be manipulated to find different
balances between overall and "none" category accuracy as seen in
Fig. 3. For example, using E-Mixup or E-Stitchup, the confidence
threshold can be set to 0.65 to yield an accuracy of about 83 percent

both overall and for the "none" category. Similarly, the validation
accuracy can be increased to a maximum value of about 90 percent
by decreasing the confidence threshold to 0.1, which leads to an
associated decrease in "none" category accuracy.

In the provided experiments, the control is not able to achieve a
"none" category accuracy that is equal to or greater than the model’s
overall accuracy. However, both E-Mixup and E-Stitchup are able
to achieve such a balance between the two accuracy metrics, as
revealed by the points at which the two curves intersect in Fig. 3.
Such an ability to achieve a performant balance between overall
and "none" category accuracy highlights the ability of E-Mixup
and E-Stitchup to simultaneously balance performance in each of
these domains, which, as seen in the control experiment, is not
easily achievable without embedding augmentation. Additionally,
the highest overall accuracy achieved by both of these methods
(i.e., at a confidence threshold of 0.1) is slightly higher than that of
the control experiment, thus revealing that these methods can also
be used to achieve higher generalization performance.

The sweep over possible confidence thresholds, as seen in Fig.
3, was performed to examine the entire scope of performance for
each of the possible augmentation methods. In this experiment, it
can be seen that the overall accuracy decreases as the confidence
threshold increases, while the "none" category accuracy increases as
the confidence threshold increases for all experiments. Similarly, as
the confidence threshold decreases, the overall accuracy increases
while the "none" category accuracy decreases for all experiments.
The confidence threshold must be set such that a good balance
between these metrics is achieved. Although the control may yield
higher overall accuracies at certain confidence thresholds, the con-
trol is not able to achieve a balance between overall and "none"
category accuracy that is comparable to that of the augmentation
experiments and, instead, tends to only perform well in terms of
overall accuracy. Therefore, this sweep over possible confidence
threshold values both illustrates the relationship between the con-
fidence threshold and accuracy and reveals that E-Stitchup and
E-Mixup are able to achieve a more performant balance between
overall accuracy and "none" category accuracy when compared to
the control.

5.2 Soft E-Mixup and Soft E-Stitchup
Both E-Mixup and E-Stitchup were also evaluated with the use of
softened labels (see Sec. 2.4). Both methods of softened embedding
augmentation perform better than the control, as revealed by the
respective AUC scores of Soft E-Mixup and Soft E-Stitchup (see
Table 1). Moreover, models trained with Soft E-Stitchup have the
highest AUC scores of models trained with all proposed augmenta-
tion methods, thus highlighting the effectiveness of Soft E-Stichup
in improving validation performance. Additionally, Soft E-Mixup
yields the second highest overall AUC score when compared to
the other augmentation methods. From these observations, it is
evident that label softening, which results in the two highest per-
forming experiments in terms of AUC score, effectively regularizes
the downstream model and improves generalization accuracy more
than the other proposed augmentation methods. Therefore, Soft
E-Stitchup and Soft E-Stitchup are shown to be best choice of embed-
ding augmentation for improving the generalization performance
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of a downstream classification model. As observed in Fig. 3, Soft
E-Mixup and Soft E-Stitchup are able to achieve a wide range of dif-
ferent performance balances between overall accuracy and "none"
category accuracy. For example, at a confidence threshold of 0.5,
both methods achieve overall and "none" category accuracies of
about 82 percent. As mentioned in the previous section, the control
is never able to achieve such a balance between "none" category
and overall accuracy and, instead, tends to only perform well in
terms of overall accuracy.

Although Soft E-Mixup and Soft E-Stitchup are both able to
achieve more performant balances between overall and "none"
accuracy when compared to the control, it is also interesting to
observe their scope of performance in comparison to the other pro-
posed augmentation methods. As seen in Fig. 3, the augmentation
methods with soft labels achieve equal overall and "none" category
accuracies at a confidence threshold of about 0.5, while those with-
out soft labels achieve such a balance at a confidence threshold of
about 0.65. By finding this point of equal overall and "none" cate-
gory accuracy at a lower confidence threshold, Soft E-Mixup and
Soft E-Stitcup are able to yield a wider range of overall and "none"
category performance. This increased range of performance across
different confidence thresholds is revealed by the fact that both
Soft E-Mixup and Soft E-Stitchup achieve slightly higher "none"
category accuracies at a confidence threshold of 0.9 when compared
to E-Mixup and E-Stitchup. However, these slightly higher "none"
category accuracies are accompanied by a large decrease in overall
accuracy.

Interestingly, the use of label softening has a noticeable and
significant impact on model performance, resulting in different
behavior for models trained with Soft E-Mixup and Soft E-Stitchup
when compared to models trained with the other augmentation
methods. This difference in performance results in the unique shape
of the accuracy curves for Soft E-Mixup and Soft E-Stitchup, as seen
in Fig. 3. The accuracy curves of Soft E-Mixup and Soft E-Stitchup
have a very similar appearance and have a different shape when
compared to accuracy curves produced by the other augmentation
methods, thus highlighting the visible impact of label softening on
the downstream classification model’s performance.

5.3 Confidence Regularization
Label softening has the effect of decreasing the confidence of predic-
tions (i.e., the magnitude of outputted probabilities from the model)
made by a deep learning model. When comparing the magnitude of
outputted probabilities produced by a network trained using Soft
E-Mixup or Soft E-Stitchup to those of models trained without label
softening (i.e., E-Mixup, E-Stitchup, and the control experiment),
the prediction probabilities are of a significantly lower magnitude.
Furthermore, prediction probabilities produced by models trained
with E-Mixup and E-Stitchup were also found to be of lesser mag-
nitude in comparison to models trained in the control experiment.
High prediction magnitudes, which are a characteristic of models
trained with one-hot labels, can be observed in the behavior of
models trained for the control experiment. For example, the ROC
curve for the control experiment in Fig. 4 has a sharp edge at the
upper left corner of the curve, which does not occur any of the

other ROC curves. This sharp corner is present in the control exper-
iment’s ROC curve because almost all of the model’s predictions
have extremely high confidence (i.e., confidence of 1.0). Such high
confidence in all of the model’s predictions causes the measures
taken for the ROC curve to change drastically at a single threshold
while remaining almost constant when other measures are taken,
thus creating the sharp corner that is seen in Fig. 4. This sharp
corner is not present in the other ROC curves because their predic-
tions are of lower confidence and better reflect the true accuracy of
the model, thus eliminating the sudden change in ROC metrics at a
single threshold that is seen in the control.

From the above observations, it becomes evident that soft la-
bels regularize the confidence of the network, leading to lower-
probability predictions in comparison to networks trained without
label softening. This confidence regularization effect occurs because
the model, when soft labels are used, is no longer forced to make
predictions with perfect confidence. Although a prediction confi-
dence that is slightly below 1.0 is sufficient in most cases, the model
will typically be trained to make perfect predictions, which allows
marginal errors (e.g., a prediction with a confidence of 0.95 instead
of 1.0) to dominate the gradient during training and leads the model
to overfit at the cost of perfectly matching one-hot targets. Because
the target probability of each class is decreased when label soft-
ening is used, the model is no longer forced to perfectly replicate
one-hot targets, thus avoiding this issue. Such confidence regular-
ization improves a network’s ability to identify data in the "none"
category and prevents the model from making confident, incorrect
predictions on data that it does not understand well, as is shown
by the improved "none" category performance of models trained
with embedding augmentation and softened labels. Although all
of the proposed augmentation methods create soft labels during
training (i.e., all forms of embedding augmentation eliminate one-
hot labels), Soft E-Mixup and Soft E-Stitchup use added softening
to increase the amount of confidence regularization that occurs
during training.

To more closely examine the proposed methods’ performance
and their ability to regulate the confidence of a model, accuracy
metrics were recorded throughout training for models using each
type of embedding augmentation, as well as without any augmen-
tation. The results for the control experiment in comparison to
E-Mixup are illustrated in Fig. 5. At the beginning of training, the
"none" category accuracy for both methods is quite high because
most predictions are near 0, thus causing the majority of products
to be predicted in the "none" category. Over time, the model begins
to make correct predictions with higher confidence, thus leading
to slightly lower accuracy in the "none" category as the overall
accuracy increases. During training, the network must find a bal-
ance between making correct, confident predictions and avoiding
overfitting such that the "none" category accuracy is not decreased
more than necessary. If the "none" category accuracy continues to
decrease with marginal gains in overall accuracy, then the model is
becoming overconfident, causing some products that belong in the
"none" category to be incorrectly predicted with high confidence
with minimal gains in overall accuracy.

When E-Mixup augmentation is utilized during training, it can
be seen in Fig. 5 that the "none" category accuracy decreases for
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Figure 5: Overall and "none" category accuracies through-
out training of the downstream classification model for the
Control and with E-Mixup augmentation. The "none" cat-
egory accuracy continues to decrease in the Control but
plateaus after decreasing initially with E-Mixup, thus illus-
trating that embedding augmentation regulates model over-
confidence.

several epochs but quickly plateaus and stops decreasing. Addition-
ally, as training continues, the "none" category accuracy increases,
converging at a higher value than the overall accuracy. After this
point, both overall accuracy and "none" category accuracy remain
stable for the rest of training. However, without any embedding
augmentation, the "none" category accuracy continues to decrease
throughout training, even after the overall validation accuracy of
the model converges. This trend reveals that, without augmenting
the embedding inputs, the model can become overconfident during
training, causing it to become less effective at identifying products
in the "none" category and, in turn, make incorrect predictions
for such products. In contrast, the "none" category and overall ac-
curacy of the model trained with E-Mixup remain stable as the
"none" category accuracy of the control experiment decreases. This
observation illustrates that such augmentation methods regularize
the model’s tendency to become overconfident during training,
resulting in a stable convergence both overall and for the "none"
category.

Such an ability to regularize the overconfidence of a model is
one of the main benefits of the proposed augmentation methods, as
it leads to higher performance in identifying the "none" category
and, in many cases, increased overall performance (see Table 1). As
a result, such methods are quite useful for deep learning models
that are deployed into production, as they allow a model to dynam-
ically identify data that belongs to an unseen class. As a result, an
informed decision can then be made regarding data that should be
labeled before the model is retrained (i.e., data within the "none"
category should be labeled because the model does not know how
to classify it). Additionally, as seen in Fig. 5, models trained with the
proposed augmentation methods converge to their maximum over-
all accuracy much quicker than those trained without embedding
augmentation. Therefore, the proposed augmentation methods can
be used to easily recommend new data that should be labeled and

Figure 6: Overall Accuracy (top) and "none" accuracy (bot-
tom) during training for both Soft E-Stitchup trained with
different levels of label softness and E-Stitchup without any
extra label softening. The alpha value for E-Stitchup was
kept constant at 0.3 for each of these experiments.

included in the training set and to retrain the downstream model
quickly and at minimal computational cost, completely avoiding
any expensive fine-tuning of pre-trained embedding models.

5.4 Manipulating Label Softness
In addition to the experiments with the default label softness of 0.05
(i.e., Soft E-Mixup and Soft E-Stitchup), several experiments were
performed to determine if altering the amount of label softness
has any impact on models trained with Soft E-Mixup and Soft E-
Stitchup. As seen in Fig. 6, increasing the amount of label softness
follows a predictable pattern of decreasing overall accuracy, but
increasing "none" category accuracy. Although only Soft E-Stitchup
is displayed in Fig. 6, an almost identical pattern was observed
when running the same test using Soft E-Mixup. Additionally, as
the amount of softness is decreased, the performance of the model
begins to resemble that of the model trained without label softening,
as is seen in the similar performance of the models trained with
E-Stitchup and Soft E-Stitchup with softness of 0.01.

Despite the patterns that are observedwhile changing the amount
of label softness, there was no significant difference between the
"none" category and overall AUC scores of models trained with
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different levels of softness, thus revealing that the models can yield
identical performance if the confidence threshold is set accordingly.
All models trained with added label softness of 0.05 or greater
performed almost identically in terms of overall and "none" cate-
gory AUC scores, while models trained with less added softness
began to yield AUC scores similar to E-Stitchup or E-Mixup (i.e.,
the methods that do not use added label softening). Because of these
observations, the amount of label softness for Soft E-Mixup and
Soft E-Stitchup was set to 0.05 by default, as models trained with
this amount of softness yields identical performance even when
the amount of label softening is increased.

6 DISCUSSION AND FUTUREWORK
The proposed augmentation methods are shown to be effective in
boosting validation performance of the deep classification model by
improving both the validation accuracy of the model as well as its
ability to identify data belonging to unseen classes(i.e., the "none"
category). Furthermore, these methods result in faster convergence
for downstream models, can be used for any type of embedding
representation of data, and do not require any fine-tuning of larger
transfer learningmodels.We believe these proposedmethods form a
foundation for improving deep transfer learning with embeddings,
as such methods are compatible with all types of data and can
increase model performance with minimal added complexity.

There are various avenues that can be explored to further expand
upon this work. First, it would be useful to run a wider range of tests
with embedding augmentations using many different types of em-
beddings methods, such as XLNet [21] or FastText [8] embeddings
for text or VGG [15] for producing image embeddings. Such a study
would allow the effectiveness of these augmentation methods to be
observed across many different methods of producing embeddings,
thus leading to a better understanding of when such augmentation
methods are most effective. Second, E-Mixup could be compared to
the performance of Mixup, as it was originally proposed, on raw
image inputs. In this study, one could retrain a Residual Network
using normal Mixup augmentation, train a separate classification
model using embedding augmentation, and compare the results
from each of the twomethods. If embedding augmentation is shown
to produce comparable results to fine-tuning the Residual network
directly with Mixup, is would be proven that embedding augmen-
tations can create such performance improvements at significantly
lower computational cost. Finally, it would be useful to further
explore the impact of label softening in other areas of deep learning.
For example, soft labeling could be combined with the original
Mixup data augmentation to see if it improves model performance
or creates different behavior for the resulting model.

7 CONCLUSIONS
In this work, four new types of data augmentation are presented;
E-Mixup, E-Stitchup, Soft E-Mixup, and Soft E-Stitchup; that are
generally applicable to embedding representations of data. Because
these embedding augmentation methods are generally applicable
to embedding representations, they can be applied to embeddings
produced by many different types of data, including both textual
and image data. Each of these augmentation methods is evaluated

both in terms of generalization performance and ability to iden-
tify data that belongs to an unseen class, referred to as the "none"
category accuracy. The proposed methods are shown to increase
validation performance and "none" category accuracy when com-
pared to a model that does not use any embedding augmentation
during training. In comparison to models trained without embed-
ding augmentation, the AUC scores of resulting models improved
from a score of 0.9582 to 0.9812 when Soft E-Stitchup is included in
training and "none" category accuracy improves by over 25 percent
in certain cases by using any form of embedding augmentation.
Additionally, embedding augmentation is shown to lead to faster
convergence in downstream models and introduces minimal extra
cost into the training process, requiring only a few lines of code and
a constant factor of added complexity in the processing of eachmini-
batch. These proposed methods hold promise in the area of transfer
learning, as they allow unseen classes of data to be dynamically
identified, thus highlighting data that needs to be labeled and in-
cluded in the training set for retraining, and improves downstream
model performance without modifying any pre-trained networks.
Therefore, these methods provide a viable alternative for improving
model performance when resources are not available to incur the
cost of fine-tuning pre-trained embedding models.
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