
Functional Generative Design of Mechanisms with
Recurrent Neural Networks and Novelty Search

Cameron R. Wolfe
The University of Texas at Austin

wolfe.cameron@utexas.edu

Cem C. Tutum
The University of Texas at Austin

tutum@cs.utexas.edu

Risto Miikkulainen
The University of Texas at Austin

risto@cs.utexas.edu

ABSTRACT
Consumer-grade 3D printers have made the fabrication of aesthetic
objects and static assemblies easier, opening the door to automate
the design of such objects. However, while static designs are easily
produced with 3D printing, functional designs, with moving parts,
are more difficult to generate: The search space is high-dimensional,
the resolution of the 3D-printed parts is not adequate, and it is dif-
ficult to predict the physical behavior of imperfect, 3D-printed
mechanisms. An example challenge for automating the design of
functional, 3D-printed mechanisms is producing a diverse set of
reliable and effective gear mechanisms that could be used after pro-
duction without extensive post-processing. To meet this challenge,
an indirect encoding based on a Recurrent Neural Network (RNN)
is proposed and evolved using Novelty Search. The elite solutions
of each generation are 3D printed to evaluate their functional per-
formance in a physical test platform. The proposed RNN model
successfully discovers sequential design rules that are difficult to
discover with other methods. Compared to a direct encoding of
gear mechanisms evolved with Genetic Algorithms (GAs), the de-
signs produced by the RNN are geometrically more diverse and
functionally more effective, thus forming a promising foundation
for the generative design of 3D-printed, functional mechanisms.

CCS CONCEPTS
•Computingmethodologies→Neural networks;Genetic al-
gorithms; Shape analysis; • Applied computing → Computer-
aided design;

KEYWORDS
3D Printing, Functional Generative Design, Gear Mechanism, Re-
current Neural Networks, Novelty Search

ACM Reference Format:
Cameron R. Wolfe, Cem C. Tutum, and Risto Miikkulainen. 2019. Func-
tional Generative Design of Mechanisms with Recurrent Neural Networks
and Novelty Search. In Genetic and Evolutionary Computation Conference
(GECCO ’19), July 13–17, 2019, Prague, Czech Republic. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3321707.3321785

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’19, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6111-8/19/07. . . $15.00
https://doi.org/10.1145/3321707.3321785

Figure 1: (a) A gear that was fabricated with an FDM 3D
printer and (b) the gcode file that was used to prepare the
fabrication of the gear. The imprecision of FDM printers on
smaller, detailed parts can be observed.

1 INTRODUCTION
Fused Deposition Modeling (FDM), commonly known as 3D Print-
ing, is a practical prototyping technique in which a digital model
of a 3D object is sliced, via dedicated software, into thin layers and
fabricated by fusing these layers on top of each other until the final
product is produced. Its low cost and ease of use has made FDM the
standard technology for consumer-grade 3D printers, and its wide
adoption has made the fabrication of a variety of objects and as-
semblies easier than ever. However, despite the rising popularity of
FDM 3D printers and wide availability of open source 3D printing
designs in popular, online repositories [2, 3], the creation of 3D-
printable designs with moving parts is still challenging [6, 15]. The
high dimensional search space for the control parameters of design-
ing and 3D printing functional assemblies is the primary reason for
such challenges. Additionally, the resolution of 3D-printed objects
is greatly limited by the software that prepares the 3D printing
instructions for the 3D printer and the nature of the 3D-printing
hardware (see Fig. 1) [12].

Previously, the design of functional mechanisms has heavily re-
lied on the use of pre-existing design rules, analytical equations, or
user input, thus limiting automation and creativity in the design
process. Some recent studies have explored the ability of cogni-
tive models to create functional mechanisms, such as wind-up toys
and robots, that are able to accomplish functional tasks. In [5], re-
searchers proposed a semi-automated method for the creation of
animated, mechanical characters by non-expert designers using
user-provided sketches of the characters’ motion. Another inter-
active design method was developed in [16], which enables users
to rearrange an existing mechanism to fit within a desired space.
However, this method requires previous experience in mechani-
cal design. In [11], a computational system was developed that
constructs compact, internal mechanisms for wind-up toys that

https://doi.org/10.1145/3321707.3321785
https://doi.org/10.1145/3321707.3321785

GECCO ’19, July 13–17, 2019, Prague, Czech Republic C. R. Wolfe et. al.

produce user-requested part motions using a database of known
mechanism elements.

Recently, some studies have focused on the design and optimiza-
tion of gear mechanisms in particular. For example, multiobjective
genetic algorithms were used together with a set of analytical equa-
tions to simultaneously optimize the efficiency and volume of a pair
of gears in [9]. A similar approach was performed by [4] for the
optimization of a larger system of gears. Additionally, Gologlu and
Zeyveli [7] automated the preliminary stages of designing a gear
system by using GAs to evolve a set of possible gear mechanisms
as a means of support in the design process, wheras Savsani et.al.
[10] utilized a particle swarm optimization algorithm to achieve a
similar goal. These approaches for automating the design of gear
mechanisms all utilize known analytical or emprical equations and
design constraints, thus limiting the production of less intuitive,
novel gear mechanisms.

On the other hand, recent advances in generative models have
shown promising results in the field of generative design. For ex-
ample, electromechanical robots, comprised of elementary building
blocks (rods and joints), were autonomously designed and opti-
mized in a study performed by Lipson and Pollack [8]. In [14], a
Generative Adversarial Network (GAN) model was used to learn
an efficient representation of a 3D shape data set and generate
novel shapes that did not exist within the training set. Although
these shapes were not physically fabricated, the 3D-GAN was suc-
cessful in generating novel, high-resolution designs. Additionally,
although the use of generative models has been mostly limited to
static designs, Tutum et.al. [13] recently integrated a Variational
Autoencoder (VAE) with a surrogate-based optimization method
to generate 3D-printable springs, which were then fabricated and
physically evaluated.

In this paper, the design of 3D-printable, functional gear mecha-
nisms is automated using an indirect encoding based on a Recurrent
Neural Network (RNN) and the Novelty Search criterion, thus lay-
ing a foundation for the use of generative models in automating the
design of functional mechanisms. During evolution, the elite solu-
tions of each generation are 3D printed and functionally evaluated
with a physical test platform. The paper is organized as follows:
First, the methodology is introduced, followed by details regarding
the implementation of evolution with the Novelty Search criterion.
Next, the physical evaluation setup for mechanism testing is de-
scribed. The quantitative results of gear mechanisms generated by
RNNs are then given and compared with those produced by a base-
line GA model. Finally, a brief discussion regarding the outcomes
of this methodology and future work is presented.

2 METHODOLOGY
The overall methodology (see Fig.2) involves a Recurrent Neural
Network (RNN), the Novelty Search algorithm, and a 3D printer to
fabricate mechanism designs for functional testing (see Sec. 2.6).
Evolution begins with a population of 150 randomly initialized
RNNs, each of which encodes a single gear mechanism, and contin-
ues for 40 generations. Evolution is driven by Novelty Search, which
assigns high fitness to RNNs that produce unique mechanisms. The
generative RNN model used in this experiment designs gear mech-
anisms by sequentially adding gears into an empty system until

Figure 2: Overall methodology for evolving RNNs that indi-
rectly encode gear mechanisms. Evolution is driven by Nov-
elty Search. The mechanism with highest novelty score is
fabricated for physical evaluation during each generation.

a full mechanism is produced. The mechanisms with the highest
novelty score after each generation are fabricated with a 3D printer
and placed into an archive of elite solutions. Each mechanism that
is fabricated is evaluated using a physical experiment (see Sec. 2.6)
and assigned a distance score based on this physical experiment to
better understand its functional capabilities.

Additionally, direct encodings of gear mechanisms are evolved
for comparison with the gear mechanisms evolved using generative
RNN models. All aspects of the two experiments, aside from the
way in which mechanisms are represented, are identical.

2.1 Constraint Handling for Mechanisms
In order to generate valid gearmechanisms, some design constraints
must be satisfied, such as limiting the size of the mechanism and
avoiding collisions of gears within the mechanism. During evo-
lution, the fitness of infeasible solutions (i.e., those that violate
constraints) is assigned to be worse than all feasible solutions and
is further penalized by the severity of the constraint violation (e.g.,
the size of the mechanism is significantly over the limit, several
gears are colliding within the mechanism, etc.). Therefore, the evo-
lutionary process favors not only unique mechanisms, but also
feasible mechanisms that can be fabricated with a 3D printer.

Functional Generative Design of Mechanisms with RNNs and NS GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Figure 3: The RNN model encodes a gear mechanism by
sequentially placing gears into an empty design area. Red
output nodes have high activation values, while grey nodes
have low activation values. Labels 1-6 represent gear size,
L/C represents linear vs. coaxial placement and A/S repre-
sents continue adding gears vs. stop adding gears.

2.2 Method-I: Generative RNN Model
This section outlines the architecture of the generative RNN model
used for the encoding of gear mechanisms. The term RNN refers to
a fully-connected neural network that contains a recurrent connec-
tion. This recurrent connection connects the hidden layer of the
RNN to itself and creates a "loop" inside of the network’s architec-
ture that allows the RNN to be activated many times sequentially.
These sequential activations, or time steps, each yield a separate
output, thus allowing the RNN to output different values over time.

The RNN architecture used in this study, illustrated in Fig. 3,
contains one hidden layer and two weight matrices (including bias),
which connect the input and previous hidden layer to the hidden
layer and the hidden layer to the output layer, respectively. The size
of the generative RNN’s hidden layer was chosen by qualitatively
evaluating the output of RNNs with hidden layers of various sizes,
ranging from 1 to 15 hidden nodes. After these network architec-
tures were evaluated based on the diversity of the outputs they
produce, a hidden layer of size 8 was determined to yield the most
diverse set of outputs. Additionally, the input and output layers
each consist of eight nodes.

Within the network, the hidden layer contains a recursive con-
nection, which allows the RNN to be activated over multiple time
steps. During each time step, the previous output layer is used as
input to the RNN. The hidden layer is obtained by concatenating
the input layer with the hidden layer from the previous time step
and passing this vector through a weight matrix. The hidden layer
is then activated with an element-wise hyperbolic tangent activa-
tion function and passed through another weight matrix to yield
the output. For the first time step, the previous hidden and output
layers, which are both used as input into the RNN’s hidden layer,
are initialized to vectors of ones because there is no previous hidden
or output state. The RNN is executed recursively to individually
place each gear into a mechanism until the mechanism is fully
constructed, as can be seen in Fig. 3. At each time step of the RNN,
a single gear is added into the mechanism. This gear may be placed
linear (i.e., side-by-side) or coaxial (i.e., along the same center of
axis) with respect to the previous gear added into the system by

Figure 4: RNNmay choose to place one of these six different
sizes of gears into the system at every time step.

the RNN. A mechanism can contain a maximum of six gears and
no fewer than two gears.

At each time step, the first six RNN output nodes are activated
with a softmax activation function and represent the size of the gear
to be placed into the mechanism. There are a total of six different
gear sizes that can be added into a mechanism, as seen in Fig. 4.
The first six RNN outputs are chosen to utilize a softmax activation
function because a single gear must be placed into the system at
each time step, and the size of this gear is represented by the index of
the output node having the highest value. Therefore, after softmax
is applied to these six outputs, the index of the output node with
the highest probability is used to determine the size of the gear to
be placed into the system at that time step (e.g., if the 2nd output
node has the highest value after softmax is applied, then gear size 2
is chosen). The same gear can be added into a mechanism multiple
times.

The other two output nodes are activated with a hyperbolic
tangent activation function. These final two outputs determine
how to place the current gear into the mechanism with respect
to the previous gear (linear vs. coaxial) and whether RNN should
continue adding gears into the mechanism, respectively. For these
outputs, the hyperbolic tangent activation function is chosen so
that thresholds can be easily placed on the output values and used
to interpret how the mechanism should be constructed. For the
output representing the gear’s placement, a value below -0.5 repre-
sents a forwards coaxial connection, a value above 0.5 represents a
backwards coaxial connection, and any intermediate value repre-
sents a linear connection. For the second output, a value above 0.9
causes the RNN to stop inserting gears into the mechanism, while
any value below 0.9 allows the RNN to insert another gear into the
mechanism, assuming that the maximum of six gears within the
mechanism has not yet been reached.

All output nodes, eight in total, are used as input for the following
time step. The equations for the activation of the generative RNN
model are as follows:

ht = α(Wxt + Rht−1 + bw)

ot = α(Zht + bz)
⋃

σ (Yht + by)
(1)

where x is the input vector at time t, h is the hidden layer at
time t, b is the bias vector,W is the input to hidden layer weight
matrix, R is the hidden layer to hidden layer weight matrix, Z and
Y are the hidden layer to output layer weight matrix (separated to
emphasize the use of two different output activation functions), α

GECCO ’19, July 13–17, 2019, Prague, Czech Republic C. R. Wolfe et. al.

Figure 5: Demonstrates how a novelty vector is created from
a gear mechanism.

is the element-wise hyperbolic tangent activation function, and σ
is the softmax activation function.

The generative RNNmodels are evolved for 40 generations using
GA and the Novelty Search objective. The details of evolution are
outlined in section 2.5.

2.3 Method II: Direct Representation
In order to have a baseline model to compare with generative RNNs,
a direct representation of gear mechanisms is created and evolved.
This representation is comprised of an ordered list of gears that
lists the size of each gear within a mechanism. This list of gears is
then combined with a list of placements for each gear with respect
to the previous gear. A gear and placement list together encode
a single mechanism, which contains between two and six total
gears. Similar to RNN evolution, these direct representations are
evolved for 40 generations using GA and Novelty Search. Aside
from the way in which mechanisms are represented and created,
the evolutionary process for each of these methods is identical.

2.4 Novelty Search
Novelty Search is chosen as the objective function: i) to allow evolu-
tion to perform well in deceptive domains, ii) to handle the limited
number of fitness evaluations due to the expense of fabricating each
mechanism design. The number of feasible solutions that satisfy the
various design constraints is low. Therefore, searching for an effec-
tive gear mechanism would be more difficult if a specific objective
was chosen (e.g., maximizing the distance the car is pulled along
the track). Novelty Search discovers innovative designs by aiming
to maximize the diversity of mechanisms within the population
and minimize the violation of constraints, which allows a more
productive region of the large search space to be explored.

In order to assess novelty, a distance metric is created between
mechanisms. For every mechanism, a vector, called the novelty
vector, can be created that describes the mechanism’s structural
properties. The values within this novelty vector include various
characteristics of the mechanism, such as the ratios between gears

(i.e., the quotient of radii between two adjacent gears). The novelty
vector for each mechanism includes the following values:

• variance(X): Variance of x-axis position values of the gears
(gears are placed from the front to the back of the gear box),

• mean(ratios): Mean of gear ratios (quotient of adjacent gear
radii),

• variance(ratios): Variance in gear ratios (quotient of adjacent
gear radii),

• mean(radii): Mean of radii for all gears put into the mecha-
nism,

• variance(radii): Variance in radii for all gears put into the
mechanism,

• Total Number of Gears

The process of creating a novelty vector is illustrated in Fig. 5.
Using this vector, each mechanism’s novelty score is determined by
finding the minimum Euclidean distance between its novelty vector
and all novelty vectors within an archive of vectors from previous
generations. After each generation, the vector corresponding to
the most novel mechanism in the population is added into the
archive. This method of evaluating mechanisms allowed for fitness
to be determined without fabricating and testing every possible
solution, which is expensive due to the time it takes to 3D print
and physically test a mechanism. Instead, only the individual with
the maximum novelty score after each generation is fabricated for
more detailed physical evaluation, thus allowing innovative, high-
performing designs to be discovered without significant testing
overhead.

Algorithm 1 Evolution of RNNs

1: procedure evolve(rnn_pop)
2: pop_size := 150
3: nдen := 40
4: archive := ∅

5: pop := random_init_RNN_pop(pop_size) STEP1
6: дeneration := 0
7: while дeneration < nдen do
8: vectors := ∅

9: for i from 0 to pop_size do
10: output = RNN . f orward(pop[i]) STEP2
11: vectors .append(дet_vector (output)) STEP3
12: best_individual := null
13: best_novelty := 0
14: for i from 0 to pop_size do
15: f itness := distance(vectors[i],archive) STEP4
16: pop[i]. f itness := f itness
17: if f itness > best_novelty then
18: best_individual := pop[i]
19: best_novelty := f itness

20: archive .append(best_individual)
21: pop := select_tourn(pop)
22: pop :=mutation_and_crossover (pop) STEP5
23: дeneration := дeneration + 1

Functional Generative Design of Mechanisms with RNNs and NS GECCO ’19, July 13–17, 2019, Prague, Czech Republic

2.5 Evolution Process
The evolution process for generative RNNs is illustrated in Fig. 2
and outlined in more detail in Algorithm 1. Evolution begins by
randomly initializing a population of 150 generative RNNs, each
of which encodes a single mechanism. During every generation,
the mechanism encoded by each RNN is generated as described in
Sec. 2.2. For every mechanism, the novelty vector is found and used
to determine the mechanism’s novelty score, which is assigned as
the mechanism’s fitness. After fitness is assigned using the Novelty
Search criterion, tournament selection, with a tournament size of
three individuals, is used to select individuals for the next gen-
eration and mutation and crossover are applied to the resulting
population. These experiments utilize Gaussian weight mutation,
where the probability of mutation is 0.8, and uniform crossover,
where the probability of crossing over two networks is 0.4. However,
crossover is applied separately for first and second layer weight
matrices, such that first-layer weight matrices are always crossed
over with other first-layer weight matrices and vice versa. The
probabilities of mutation and crossover are set relatively high to
encourage exploration of the mechanism design space and allow a
diverse set of mechanisms to be found and evolved. The evolution
process continues for 40 generations.

The novelty score for each mechanism, which is used to assign
fitness, is calculated by finding the minimum Euclidean distance
between a candidate mechanism’s novelty vector and all novelty
vectors within the archive of elite solutions from previous gen-
erations. However, infeasible mechanisms (i.e., those that violate
constraints) are always assigned fitness values lower than that of
any feasible mechanism in the current population. For infeasible
mechanisms, fitness is obtained by subtracting the magnitude of the
mechanism’s constraint violation from the lowest feasible novelty
score in the population. Each mechanism that is added into the
archive of elite solutions is fabricated and evaluated using the phys-
ical experiment setup (see Sec. 2.6) to determine its distance score.
It should be noted, however, that this distance score is unrelated to
the evolution process and is rather used to evaluate the functional
effectiveness of the mechanisms produced during evolution.

The process for evolving direct mechanism representations was
identical to the evolution of RNNs, aside from the way in which
mechanisms were represented.

2.6 Evaluation Setup
The overall physical test setup can be seen in Fig. 6. The rail tracks,
car being pulled and gear box are all 3D printed. A rope, which
wraps around the car, is connected to the output axle of the gear
mechanism, located inside of the gear box. Torque is applied to the
input axle of the gear mechanism by a rubber band that is twisted
once around the axle. The axle is then released and spun by the
rubber band, which causes the rest of the mechanism to be set in
motion. The rotation of the output axle then wraps the rope around
the pulleys on both ends of the output axle and causes the car to
be pulled. The rail track is 35 inches long. The distance that the car
travels along the track is recorded for each archived mechanism
using the ruler located next to the rail track. The sail that is attached
to the car is used to keep the rope out of the track so that it does

Figure 6: (a) A top-view of the setup for physical experi-
ments. The small car is pulled towards the gear box by the
rope attached to the output axle and the traveled distance
is recorded. (b) A closer visualization of the pulling mecha-
nism.

Figure 7: Visualization of the pulling mechanism. The in-
serts (red parts, used to hold gears in place) are modified
and re-printed for every design that is physically tested. All
other components (gears, axles, and main body) are reused
for each design.

not affect the car’s movement. A video of the working mechanism
can be seen at [1].

On the other end of the track, the gear box is taped to the surface
of the table. This gear box, seen in Fig. 6, was designed to be modu-
lar, such that the box and gears do not have to be 3D printed with
each evaluation. Instead, only the inserts that hold the gear axles in
place are unique to each mechanism (see Fig. 7). Therefore, these
inserts are the only parts that must be 3D printed for the physical
evaluation of each mechanism. The location of the holes within
the inserts that hold the gear mechanism’s axles in place are auto-
matically computed for each archived solution such that the gears
within the mechanism mesh perfectly. This modular design greatly
reduces the time required for testing each mechanism within the
archive of novel mechanisms.

Designing mechanisms that perform well in this environment is
a difficult task. While a certain mechanism may have high output
speed, its torque may not be enough to pull the car along the track
because theweight of the car is not negligible. Because of the inverse
correlation between the output speed and torque, each mechanism
must find an effective balance between these two objectives to pull
the car longer distances. In fact, many mechanisms having a high

GECCO ’19, July 13–17, 2019, Prague, Czech Republic C. R. Wolfe et. al.

Figure 8: Combined distance score results for all archived mechanisms generated by RNN and Direct Representation exper-
iments. The error bars represent the maximum and minimum distances for the three tests that were performed for each
mechanism, while the actual value reflects the average of the three trials.

output speed and low torque, or vice versa, are only able to pull
the car a few inches along the track. Because of such challenges,
designing a gear mechanism to properly accomplish this task is not
trivial.

3 RESULTS
In this section, the results for the evolution of RNN and direct
representation models are presented. Two different experiments
were performed to test the ability of the proposed generative RNN
model and direct encodings to produce a diverse and functionally
effective set of mechanisms. The direct representation experiment
is used as a baseline to determine the effectiveness of the generative
RNN model. For both experiments, at each generation of evolution,
the mechanism with the highest novelty score was fabricated and
physically tested to determine its distance score. Moreover, each
physical test consisted of three separate trials to ensure the consis-
tency of the results. Distance scores were collected separately for
RNN and direct representation experiments. The results for both
methods are shown in Fig. 8 and discussed in more detail in the
next two subsections.

3.1 Results of RNN Evolution
As seen in Fig. 8, the generative RNN model managed to produce
a diverse set of mechanisms that pulled the car varying distances.
Among all mechanisms generated by RNN, the standard deviation
of distance scores was 6.14 inches. The three highest-performing
mechanisms, each of which utilized a complex coaxial structure,
pulled the car 27.5, 25.2, and 23.3 inches (mechanisms 18, 1, and 22,
respectively). The design patterns of these mechanisms can be seen

Figure 9: Mechanism 1 (a), 18 (b), and 22 (c) produced by evo-
lution of RNNs. Gears of the same color exist within the
same plane and are connected linearly, while gears of differ-
ent colors are coaxial. The numbers on each gear represent
the gear type.

in Fig. 9. Additionally, out of the 40 archived mechanisms, eight of
the mechanisms contained coaxial structure. Typically, such coaxial
designs are difficult to successfully create because they contain a
larger number of gears, which increases the probability of violating
design constraints. However, the generative RNN model was able
to efficiently place gears into the system by learning repeating,
coaxial design patterns that avoided collisions between gears and
minimized the overall size of the mechanism.

When examining the mechanism structures in Fig. 9, it is clear
that the generated mechanisms follow sequential, repetitive design
patterns. For example, in mechanism (a), the pattern of placing
a small gear adjacent to a large gear is repeated several times in
the mechanism’s structure. Such patterns are quite common in
mechanisms resulting from the evolution of RNNs. In Fig. 10, the

Functional Generative Design of Mechanisms with RNNs and NS GECCO ’19, July 13–17, 2019, Prague, Czech Republic

composition of the RNN network that encodes mechanism (a) from
Fig. 9 is displayed. In this figure, it can be observed that the RNN’s
hidden state follows a distinct patternwhile outputting gears at each
time step. When a smaller gear is placed into the system, the hidden
layer values contain a pattern that causes the next gear outputted
by the RNN to be large. Similarly, when a larger gear is placed into
the system, the hidden layer values contain a pattern that causes
the next gear outputted to be small. This pattern is repeated in
every time step of the RNN’s activation, thus revealing that the
RNN utilizes the history of previously chosen gears to design the
mechanism. In this case, it is clear that the RNN, through evolution,
has learned a design rule for creating complex mechanisms, which
causes it to always pair large gears with small gears. By following
this design rule, the RNN creates an output mechanism that has a
repeating, coaxial structure, which allows the mechanism, despite
being complex, to be packed into a smaller area and satisfy design
constraints.

Such patterns were common to many of the RNNs that outputted
complex mechanism structures, thus revealing the RNN’s ability to
learn successful design patterns and use the history of previously
chosen gears to produce unique mechanisms. Moreover, such an
ability to learn useful design techniques allowed the generative
RNN models to avoid constraint violations without compromising
the complexity of resulting mechanisms, thus focusing evolution
on a more efficient region of the search space. Because RNN is able
produce unique mechanisms within the constraints of the design
space, such mechanisms achieve relatively high novelty scores,
which allow these unique mechanisms to be explored, evolved, and
physically tested.

3.2 Results of Direct Representation Evolution
The evolution of direct representations also produced a set of feasi-
ble mechanisms. The overall standard deviation of distance scores
is 4.6 inches. The three highest-performing mechanisms pulled
the car 19.8, 19.5 and 19.3 inches (mechanisms 32, 12, and 31, re-
spectively). These mechanisms are shown in Fig. 11. Out of all 40
archived mechanisms, only three of them utilized coaxial gears.
None of these coaxial mechanisms achieved distance scores as high
as those discovered by generative RNN models, which indicates
that the evolution of direct representations was unsuccessful in
finding effective coaxial design patterns. The rest of the archived
mechanisms contained no coaxial gears in their structure.

The infeasible mechanisms generated by evolving direct repre-
sentations of gear mechanisms can be examined to better under-
stand the model’s difficulties with evolving complex and effective
mechanisms, such as those discovered in the generative RNN exper-
iment. As can be seen in Fig. 12, coaxial design patterns produced
by the evolution of direct representations are comprised of random
sets of gears, having no distinct design patterns. Because these
gears are not packed efficiently into the system, they cannot fit
into the available design space and, as a result, violate constraints,
thus giving these mechanisms a low novelty score and preventing
them from being explored during evolution. Additionally, the direct
representation does not utilize the history of previously selected
gears in the mechanism or learn any useful design patterns, which
means themodel must find efficiently-packed, complexmechanisms

through random search. Therefore, the direct representation model
is less efficient in learning the feasible design space for coaxial
mechanisms and struggles to evolve complex structures due to a
lack of feasible, complex designs.

4 DISCUSSION AND FUTUREWORK
The proposed generative RNN model is shown to be effective in
evolving complex and feasible gear mechanisms despite the limited
number of evaluations. Application of various genetic operators
(tournament selection, uniform crossover and Gaussian weight mu-
tation) enabled RNNs to find a balance between complexity and
lack of constraint violation, thus creating mechanisms that are
more diverse and effective than those produced by the direct en-
coding. Despite the success of the proposed methodology, there
are a couple of promising improvements to consider. First of all,
automating the generative procedure with a realistic physics sim-
ulator would enable a more detailed sampling of mechanisms in
the design space and automate the process of physically fabricating
and testing mechanisms. However, the use of such simulators with
3D-printable object models is limited by the need for computational
resources and the complexity of properly capturing the physical
interaction between the parts of a mechanism (e.g., surface friction,
nonlinear material properties, etc.). Additionally, the generation of
gear mechanisms with continuous design parameters (e.g., radii of
gears, size of gear teeth, shape of gear teeth, etc.) with RNN could
be explored.

5 CONCLUSIONS
This paper proposes a novel generative RNN model for producing a
variety of functional, 3D-printed gear mechanisms. The methodol-
ogy consists of two main components: an RNN to indirectly encode
gear mechanisms and Novelty Search to evolve a diverse set of fea-
sible mechanism designs that can be 3D printed and function well
in a physical environment. When compared to a direct encoding
of such gear mechanisms, the RNN model managed to produce a
more structurally and functionally diverse set of mechanism de-
signs given a limited number of design evaluations. Furthermore,
the RNNwas able to learn sequential design rules through evolution
and was proven to consistently utilize such design rules to create
more efficient mechanism structures.

6 ACKNOWLEDGMENTS
The authors wish to acknowledge the funding and support provided
by the BEACON Research Center at Michigan State University.

REFERENCES
[1] [n. d.]. The link to the video showing how the gear mechanism works.

https://drive.google.com/file/d/1XCMk8Oer9jWAL26kb3PKmFFdGs2vI-id/
view?usp=sharing. (Online; accessed 2-February-2019).

[2] [n. d.]. PLA Spring Motor Demonstrator. https://www.thingiverse.com/thing:
402412. (Online; accessed 2-February-2019).

[3] [n. d.]. PLA Spring Motor, Rolling Chassis. https://www.thingiverse.com/thing:
430050. (Online; accessed 2-February-2019).

[4] Harrison L Bartlett, Brian E Lawson, and Michael Goldfarb. 2018. On the design
of power gear trains: Insight regarding number of stages and their respective
ratios. PloS one 13, 6 (2018), e0198048.

[5] Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira
Forberg, Robert W Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Compu-
tational design of mechanical characters. ACM Transactions on Graphics (TOG)
32, 4 (2013), 83.

https://drive.google.com/file/d/1XCMk8Oer9jWAL26kb3PKmFFdGs2vI-id/view?usp=sharing
https://drive.google.com/file/d/1XCMk8Oer9jWAL26kb3PKmFFdGs2vI-id/view?usp=sharing
https://www.thingiverse.com/thing:402412
https://www.thingiverse.com/thing:402412
https://www.thingiverse.com/thing:430050
https://www.thingiverse.com/thing:430050

GECCO ’19, July 13–17, 2019, Prague, Czech Republic C. R. Wolfe et. al.

Figure 10: Visualization for design patterns found in the network structure for mechanism 1 from RNN evolution. The RNN
memorizes the use of previous gears in the system to create sequential patterns in the output mechanism.

Figure 11: Mechanisms 32 (a), 31 (b), and 10 (c) generated by
evolution of direct representations. Gears of the same color
are connected linearly.

Figure 12: Example of infeasible coaxial mechanisms gener-
ated by evolution of direct representations. The randomness
and inefficiency of the designs can be observed. The num-
bers on each gear represent the gear type.

[6] EngineerDog.com. 2017. A Practical Guide to FDM 3D Printing Gears.
Retrieved January 25, 2019 from https://engineerdog.com/2017/01/07/
a-practical-guide-to-fdm-3d-printing-gears/

[7] Cevdet Gologlu and Metin Zeyveli. 2009. A genetic approach to automate pre-
liminary design of gear drives. Computers & Industrial Engineering 57, 3 (2009),
1043–1051.

[8] Hod Lipson and Jordan B Pollack. 2000. Automatic design and manufacture of
robotic lifeforms. Nature 406, 6799 (2000), 974.

[9] Daniel Miler, Dragan Žeželj, Antonio Lončar, and Krešimir Vučković. 2018. Multi-
objective spur gear pair optimization focused on volume and efficiency. Mecha-
nism and Machine Theory 125 (2018), 185–195.

[10] V Savsani, RV Rao, and DP Vakharia. 2010. Optimal weight design of a gear
train using particle swarm optimization and simulated annealing algorithms.

Mechanism and machine theory 45, 3 (2010), 531–541.
[11] Peng Song, Xiaofei Wang, Xiao Tang, Chi-Wing Fu, Hongfei Xu, Ligang Liu, and

Niloy J Mitra. 2017. Computational design of wind-up toys. ACM Transactions
on Graphics (TOG) 36, 6 (2017), 238.

[12] Y. Tlegenov, K. Telegenov, and A. Shintemirov. 2014. An open-source 3D printed
underactuated robotic gripper. In 2014 IEEE/ASME 10th International Conference
on Mechatronic and Embedded Systems and Applications (MESA). 1–6. https:
//doi.org/10.1109/MESA.2014.6935605

[13] Cem C. Tutum, Supawit Chockchowwat, Etienne Vouga, and Risto Miikkulainen.
2018. Functional Generative Design: An Evolutionary Approach to 3D-Printing.
CoRR abs/1804.07284 (2018). arXiv:1804.07284 http://arxiv.org/abs/1804.07284

[14] Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T. Freeman, and Joshua B.
Tenenbaum. 2016. Learning a Probabilistic Latent Space of Object Shapes via
3D Generative-Adversarial Modeling. In Proceedings of the Conference on Neural
Information Processing Systems (NIPS 2016). Barcelona, Spain.

[15] Eric A. Yu, Jin Yeom, Cem C. Tutum, Etienne Vouga, and Risto Miikkulainen.
2017. Evolutionary Decomposition for 3D Printing. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO ’17). ACM, New York, NY,
USA, 1272–1279. https://doi.org/10.1145/3071178.3071310

[16] Ran Zhang, Thomas Auzinger, Duygu Ceylan, Wilmot Li, and Bernd Bickel. 2017.
Functionality-aware retargeting of mechanisms to 3D shapes. ACM Transactions
on Graphics (TOG) 36, 4 (2017), 81.

https://engineerdog.com/2017/01/07/a-practical-guide-to-fdm-3d-printing-gears/
https://engineerdog.com/2017/01/07/a-practical-guide-to-fdm-3d-printing-gears/
https://doi.org/10.1109/MESA.2014.6935605
https://doi.org/10.1109/MESA.2014.6935605
http://arxiv.org/abs/1804.07284
http://arxiv.org/abs/1804.07284
https://doi.org/10.1145/3071178.3071310

	Abstract
	1 Introduction
	2 Methodology
	2.1 Constraint Handling for Mechanisms
	2.2 Method-I: Generative RNN Model
	2.3 Method II: Direct Representation
	2.4 Novelty Search
	2.5 Evolution Process
	2.6 Evaluation Setup

	3 Results
	3.1 Results of RNN Evolution
	3.2 Results of Direct Representation Evolution

	4 Discussion and Future Work
	5 Conclusions
	6 Acknowledgments
	References

