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SYNOPSIS 
 

A Neurocontrol Paradigm for Intelligent Process Control using Evolutionary 
Reinforcement Learning 

 
Balancing multiple business and operational objectives within a comprehensive 
control strategy is a complex configuration task. Non-linearities and complex multiple 
process interactions combine as formidable cause-effect interrelationships. A clear 
understanding of these relationships is often instrumental to meeting the process 
control objectives. However, such control system configurations are generally 
conceived in a qualitative manner and with pronounced reliance on past effective 
configurations (Foss, 1973). Thirty years after Foss' critique, control system 
configuration remains a largely heuristic affair. 
 
Biological methods of processing information are fundamentally different from the 
methods used in conventional control techniques. Biological neural mechanisms (i.e., 
intelligent systems) are based on partial models, largely devoid of the system's 
underlying natural laws. Neural control strategies are carried out without a pure 
mathematical formulation of the task or the environment. Rather, biological systems 
rely on knowledge of cause-effect interactions, creating robust control strategies from 
ill-defined dynamic systems. 
 
Dynamic modelling may be either phenomenological or empirical. Phenomenological 
models are derived from first principles and typically consist of algebraic and 
differential equations. First principles modelling is both time consuming and 
expensive. Vast data warehouses of historical plant data make empirical modelling 
attractive. Singular spectrum analysis (SSA) is a rapid model development technique 
for identifying dominant state variables from historical plant time series data. Since 
time series data invariably covers a limited region of the state space, SSA models are 
almost necessarily partial models. 
 
Interpreting and learning causal relationships from dynamic models requires sufficient 
feedback of the environment's state. Systemisation of the learning task is imperative. 
Reinforcement learning is a computational approach to understanding and automating 
goal-directed learning. This thesis aimed to establish a neurocontrol paradigm for 
non-linear, high dimensional processes within an evolutionary reinforcement learning 
(ERL) framework. Symbiotic memetic neuro-evolution (SMNE) is an ERL algorithm 
developed for global tuning of neurocontroller weights. SMNE is comprised of a 
symbiotic evolutionary algorithm and local particle swarm optimisation. Implicit 
fitness sharing ensures a global search and the synergy between global and local 
search speeds convergence. 
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Several simulation studies have been undertaken, viz. a highly non-linear bioreactor, a 
rigorous ball mill grinding circuit and the Tennessee Eastman control challenge. 
Pseudo-empirical modelling of an industrial fed-batch fermentation shows the 
application of SSA for developing partial models. Using SSA, state estimation is 
forthcoming without resorting to fundamental models. A dynamic model of a multi-
effect batch distillation (MEBAD) pilot plant was fashioned using SSA. Thereafter, 
SMNE developed a neurocontroller for on-line implementation using the SSA model 
of the MEBAD pilot plant.  
 
Both simulated and experimental studies confirmed the robust performance of ERL 
neurocontrollers. Coordinated flow sheet design, steady state optimisation and non-
linear controller development encompass a comprehensive methodology. Effective 
selection of controlled variables and pairing of process and manipulated variables 
were implicit to the SMNE methodology. High economic performance was attained in 
highly non-linear regions of the state space. SMNE imparted significant generalisation 
in the face of process uncertainty. Nevertheless, changing process conditions may 
necessitate neurocontroller adaptation. Adaptive neural swarming (ANS) allows for 
adaptation to drifting process conditions and tracking of the economic optimum on-
line. Additionally, SMNE allows for control strategy design beyond single unit 
operations. SMNE is equally applicable to processes with high dimensionality, 
developing plant-wide control strategies. Many of the difficulties in conventional 
plant-wide control may be circumvented in the biologically motivated approach of the 
SMNE algorithm. Future work will focus on refinements to both SMNE and SSA. 
 
SMNE and SSA thus offer a non-heuristic, quantitative approach that requires 
minimal engineering judgement or knowledge, making the methodology free of 
subjective design input. Evolutionary reinforcement learning offers significant 
advantages for developing high performance control strategies for the chemical, 
mineral and metallurgical industries. Symbiotic memetic neuro-evolution (SMNE), 
adaptive neural swarming (ANS) and singular spectrum analysis (SSA) present a 
response to Foss' critique.  
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OPSOMMING 
 

'n Neurobeheer paradigma vir intelligente prosesbeheer deur die gebruik van 
evolusionêre versterkingsleer 

 
Dit is 'n komplekse ontwikkelingstaak om menigte besigheids en operasionele 
doelwitte in 'n omvattende beheerstrategie te vereenselwig. Nie-liniêriteite en menigte 
komplekse prosesinteraksies verenig as gedugte aksie-reaksie verhoudings. Dit is 
dikwels noodsaaklik om hierdie interaksies omvattend te verstaan, voodat 
prosesbeheer doelwitte doeltreffend bereik kan word. Tog word sulke beheerstelsels 
dikwels saamgestel op grond van kwalitatiewe kriteria en word ook dikwels 
staatgemaak op historiese benaderings wat voorheen effektief was (Foss, 1973). 
Dertig jaar na Foss se kritiek, bly prosesbeheer stelsel ontwerp 'n heuristiese affere.   
 
Die biologiese prosesering van informasie is fundamenteel verskillend van methodes 
wat gebruik word in konvensionele beheertegnieke. Biologiese neurale meganismes 
(d.i., intelligente stelsels) word gebaseer op gedeeltelike modelle, wat grootendeels 
verwyderd is van die onderskrywende natuur wette. Neurobeheer strategieë word 
toegepas sonder suiwer wiskundige formulering van die taak of die omgewing. 
Biologiese stelsels maak eerder staat op kennis van aksie-reaksie verhoudings en skep 
robuuste beheerstrategieë van swak gedefineerde dinamiese stelsels. 
 
Dinamiese modelle is of fundamenteel of empiries. Fundamentele modelle word 
saamgestel vanaf eerste beginsels en word tipies uit algebraïese en differentiële 
vergelykings saamgestel. Modelering vanaf eerste beginsels is beide tydrowend en 
duur. Groot databasisse van historiese aanlegdata maak empiriese modelering 
aantreklik. Singulêre spektrum analiese (SSA) maak die spoedige ontwerp van 
empiriese modelle moontlik, waardeur dominante veranderlikes vanaf historiese 
aanleg tydreekse onttrek word. Aangesien tydreeks data slegs 'n gedeelte van die 
prosesomgewing verteenwoordig, is SSA modelle noodwendig gedeeltelike modelle. 
 
Die interpretasie en aanleer van kousale verhoudings vanaf dinamiese modele vereis 
voldoende terugvoer van die omgewingstoestand. Die leer taak moet sistimaties 
uitgevoer word. Versterkingsleer is 'n raamingsbenadering tot 'n doelwit-gedrewe 
leerproses. Hierdie tesis bewerkstellig 'n neurobeheer paradigma vir nie-liniêre 
prosesse met hoë dimensies binne 'n evolusionêre versterkingsleer (EVL) raamwerk. 
Simbiotiese, memetiese neuro-evolusie (SMNE) is 'n EVL algoritme wat ontwikkel is 
vir globale verstelling van neurobeheerder gewigte. SMNE is saamgestel uit 'n 
simbiotiese evolusionêre algorithme en 'n lokale partikel swerm algoritme. Implisiete 
fiksheidsdeling verseker 'n globale soektog en die sinergie tussen globale en lokale 
soektogte bespoedig konvergensie.  
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Verskeie simulasie studies is onderneem, o.a. 'n hoogs nie-liniêre bioreactor, 'n 
balmeul aanleg en die Tennessee Eastman beheer uitdaging. Empiriese modelering 
van 'n industriële enkelladings fermentasie demonstreer die aanwending van SSA vir 
die ontwikkeling van gedeeltelike modelle. SSA benader die toestand van 'n 
dinamiese stelsel sonder die aanwending van fundamentele modelering. 'n Dinamiese 
model van 'n multi-effek enkelladings distillasie (MEBAD) proefaanleg is 
bewerkstellig deur die gebruik van SSA. Daarna is SMNE gebruik om 'n 
neurobeheerder te skep vanaf die SSA model vir die beheer van die MEBAD 
proefaanleg. 
 
Beide simulasie en experimentele studies het die robuuste aanwending van EVL 
neurobeheerders bevestig. Gekoordineerde vloeidiagram ontwerp, gestadigde toestand 
optimering en nie-liniêre beheerder ontwikkeling bewerkstellig 'n omvattende 
metodologie. Beheer veranderlikes en die paar van proses en uitvoer veranderlikes is 
implisiet en effektief. Maksimale ekonomies aanwins was moontlik in hoogs nie-
liniêre dele van die toestandsruimte. SMNE het besondere veralgemening toegevoeg 
tot neurobeheerder strategieë ten spyte van proses onsekerhede. Nie te min, 
veranderende proses toestande mag neurobeheerder aanpassing genoodsaak. 
Aanpasbare neurale swerm (ANS) pas neurobeheerders aan tydens veranderende 
proses kondisies en volg die ekonomiese optimum terwyl die beheerder die proses 
beheer. SMNE bewerkstellig ook die ontwikkeling van beheerstrategieë vir prosesse 
met meer as een eenheidsoperasie. SMNE skaal na prosesse met hoë dimensionaliteit 
vir die ontwikkeling van aanleg-wye beheerstrategieë. Talle kwelvrae in 
konvensionele aanleg-wye prosesbeheer word deur die biologies-gemotiveerde 
benadering van die SMNE algorithme uit die weg geruim. Toekomstige werk sal 
fokus op die refyning van beide SMNE en SSA. 
 
SMNE en SSA bied 'n nie-heuristiese, kwantitatiewe benadering wat minimale 
ingenieurskennis of oordeel vereis. Die metodologie is dus vry van subjektiewe 
ontwerpsoordeel. Evolusionêre versterkingsleer bied talle voordele vir 'n ontwikkeling 
van effektiewe beheerstrategieë vir die chemiese, mineraal en metallurgiese 
industrieë. Simbiotiese memetiese neuro-evolusie (SMNE), aanpasbare neurale swerm 
(ANS) en singulêre spektrum analiese (SSA) gee antwoord op Foss se kritiek. 
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1 INTRODUCTION 
 
OBJECTIVES OF CHAPTER 1 
• Highlight the challenges of process control. 
• Contrast an algorithmic and biologically motivated approach to controller design. 
• Motivate the need for non-linear process control. 
• Causality in process control. 
 

1.1 FOSS' CHALLENGE 
 
Simplistically, chemical process control challenges entail the regulation of complex, 
frequently poorly understood physico-chemical phenomena in response to numerous 
unknown and uncharacterised disturbances. Regulatory control typically implies 
maintaining certain process states (or time-averages thereof) at optimal (mostly 
constant) conditions. The dynamic characteristics of a process may complicate or 
facilitate such regulatory control. The process' dynamic responses are an inherent 
function of the plant design, extending the realm of the control engineer to process 
design. Foss (1973) emphasised that a plant's control may be enhanced significantly 
through modification to existing process equipment or plant layout. Even though a 
process is well understood, the dynamic cause-effect relationships are typically 
difficult to unravel. The behaviour of a single state variable is governed by many 
other state and physical property variables through countless physical and chemical 
interactions. For example, the extent of catalyst deactivation is likely unknown and 
drifting. Clearly, no modelling exercise, regardless of its rigour, may account for all 
process uncertainties. Nevertheless, the control engineer needs a robust control system 
able to accommodate a variety of uncharacterised disturbances (Foss, 1973). 
 
Foss (1973) cited the coupling between process variables as the primary reason for 
"the near inscrutable complexity of dynamic processes". Foss (1973) recognised that 
the coupling between most process variables is non-linear, affirming that an effective 
control system design often requires explicit treatment of non-linear dependencies. 
Non-linearities and complex multiple process interactions combine as formidable 
cause-effect interrelationships. A clear understanding of these relationships is often 
instrumental to meeting the process control objectives. Such objectives must relate to 
a quantitative performance measure. A single performance index may not be 
sufficient, with each criterion matching a different control strategy design. Balancing 
multiple business and operational objectives within a comprehensive control strategy 
remains a complex configuration task. 
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The crucial steps in control system configuration involve selecting a subset of the 
available process variables as controlled variables, pairing these controlled variables 
with suitable manipulated variables and determining the governing control laws. 
Generally, such control system configurations are conceived in a qualitative manner 
and with pronounced reliance on past effective configurations (Foss, 1973). Thirty 
years after Foss' critique, control system configuration remains a largely heuristic 
affair. Control system design requires a combination of steady state and dynamic 
process information. Designs based solely on steady state information prove 
inadequate, as dynamic information is necessary for proper pairing and tuning. 
Fortunately, a complete dynamic description of the process proves unnecessary. Only 
dominant dynamic elements need to be accounted for in process models. Dynamic 
models may range from rigorous non-linear differential equations to linear transfer 
functions derived from plant step change data. However, conventional control design 
methodologies require that dynamic models adhere to a particular model structure 
(e.g., linear state space or Laplace transform), though process dynamics are confined 
rarely to parameterisation within these model structures. To avoid trial-and-error 
control system configuration, dynamic modelling (in one form or another) remains a 
critical component of control system configuration (Foss, 1973). 
 
As opposed to control design considerations, control system operation presents its 
own set of challenges. Drifting process conditions affect a fixed control system 
adversely, demanding adaptation of the control system parameters in lieu of the 
current process conditions. The high cost of maintaining an adequate dynamic model 
also proves challenging and on-line adaptation may prove unreliable. High 
dimensionality, interactive behaviour, poorly understood dynamics, limited 
measurement of the underlying state variables and undetermined control structures 
present unique challenges (Foss, 1973).    
 
No single process control theory is able to deal with the wide range of challenges 
posed by process control design. However, complementary theories that address key 
issues in process design, dynamic modelling and control system configuration should 
be sought. Chemical engineers have produced scores of journal articles of simulated 
control studies, which assume that the controller has access to all the state variables 
without measurement error. Control configuration synthesis using only sparse 
measurements and limited process knowledge remains elusive though "desperately 
needed in the process industries" (Foss, 1973). A practical method of state estimation, 
using available measurements or historical process data, is a key to process control 
progress. The inadequacies of conventional control methods insist on an extension of 
existing methods. Particularly, the synthesis of control systems in plants with high 
dimensionality remains a central issue. Heuristic methods to this problem are prone to 
flounder once confronted by the curse of dimensionality.  
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A broadly applicable solution to control structure design cannot be based on heuristic 
approaches that rely primarily on engineering judgement and personal preference. The 
method that addresses a wide scope of process control challenges, should be founded 
on broadly applicable dynamic modelling techniques and relate economic objectives 
to process control objectives directly within the realm of controllability (i.e., highly 
non-linear process may prevent effective control at the economic optimum). Such a 
method should cope with sparse and poor measurements and imprecise process 
knowledge. The control structure design task should thus involve an optimisation task, 
free from subjective design input (Foss, 1973). 
 
The representation of process dynamics remains a major task. Phenomenological 
modelling allows for a consistent model structure that requires identification of 
several model parameters. However, it is not sensible to construct accurate non-linear 
models, when these non-linearities must be excluded from the control structure 
design. Conventional control design methods frequently require that the process' 
dynamics conform to a suitable model structure (e.g. linear), resulting in poor 
utilisation of existing non-linear models. Rigorous simulation with powerful 
simulation tools, such as ASPEN and HYSYS, offers limited benefit to conventional 
control theory for codifying process knowledge into the control law (Foss, 1973). 
Non-linear model predictive control is one exception.  
 
Though published in 1973, Foss' article serves as a distant mirror in which the current 
state of process control may still be recognised. Finally, Foss (1973) closed his 
critique on classical control theory, "There is more than a suspicion that a work of 
genius is needed here, for without it the control configuration problem will likely 
remain in a primitive, hazily stated, and wholly unmanageable form". Though 
melodramatic, these words are echoed in a publication by Hecht-Nielsen (1988), who 
suggested a different approach.    
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1.2 CONVENTIONAL AND NEURAL DESIGN METHODOLOGIES 
 

1.2.1 Algorithmic and biological approaches to information processing 
 
To program a computer to perform a given control task, a person needs to first 
comprehend the control task, and second develop an algorithm for executing the 
automated task. For complex functions, such as computed axial tomography, devising 
an algorithm awaits the birth of geniuses. Likewise, many real world applications 
exist for which it is difficult or virtually impossible to communicate in an algorithmic 
format, a logical sequence that will lead to the successful execution of the task. 
Although an effective algorithm may be difficult to establish or may not exist, in 
several cases, the task may be specified exactly by means of a problem statement. 
Many such tasks exist, for example, robust algorithmic software that allows a robot 
arm to "pick-up-an-object" in a changing environment is difficult to develop; yet the 
problem statement is simplistic (Hecht-Nielsen, 1988). 
 
The design of controllers that allow increased independence from human interaction is 
desirable. However, autonomous operation is dependent on the controller's ability to 
maintain robust performance, despite a variety of unexpected occurrences in an 
unstructured or uncertain operating environment. The success of biological systems at 
performing numerous such complex tasks, may be regarded as a significant motivator 
and framework for the design of adaptation algorithms and robust learning techniques 
(Gupta & Rao, 1994). 
 
Biological methods of processing information are fundamentally different from the 
methods used in conventional control techniques. In biological systems, the plan to 
execute a task is formulated on the conscious level. In order to “pick-up-an-object”, it 
is necessary to gauge the relative position of the hand to the object, and compute 
directional vectors. In biological systems, these computations are entirely performed 
at the subconscious level - the control task is not evaluated consciously in terms of 
muscle coordination or joint angles. In contrast, an algorithmic design technique for 
the control of a robot arm needs to explicitly compute and coordinate the angles of 
different robot joints to produce a desired trajectory. Such an algorithmic control law 
may fail completely should the desired task or the environment change. Even though 
seemingly complex to describe such a task mathematically, biological systems are 
able to learn new tasks and adapt to a changing environment with relative ease (Gupta 
& Rao, 1994). 
 
Procedures for designing conventional controllers, such as PID controllers and model 
reference adaptive controllers, are model based. These design methods generally 
involve constructing an explicit fundamental model using physical and chemical laws 
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that govern the dynamic system (Gupta & Rao, 1994). Biological neuronal control 
mechanisms (i.e., intelligent systems) are based on partial models, largely devoid of 
the underlying natural laws of the system. For example, swallows have no 
understanding of the complex mathematics that describe aerodynamics, yet are 
capable of extraordinary aerobatics. Biological systems are able to determine the 
major cause-effect relationships from partial models, giving rise to robust control 
strategies successful at dealing with uncertainty and unstructured environments. 
Neural control mechanisms are carried out without a pure mathematical formulation 
of the task and the environment. A task is executed without solving integral, 
differential or other mathematical equations. Biological systems rather rely on 
knowledge of cause-effect interactions. Interpreting and learning such causal 
relationships requires sufficient feedback of the state of the environment (Gupta & 
Rao, 1994). 
 
The differences between algorithmic control and neural control (i.e., as a sub-class of 
intelligent control) are highlighted in the following two sections. 
 

1.2.2 Algorithmic Control System Design 
 
The conventional design methods for control systems involve constructing a 
mathematical model of the system’s dynamics and the utilisation of analytical 
techniques (classical or modern) for the derivation of a control law. Such 
mathematical models comprise sets of linear/non-linear differential equations, which 
are usually derived with a degree of simplification or approximation. The modelling 
of physical systems for feedback control generally involves a balance between model 
accuracy and model simplicity (Gupta & Rao, 1994). 
 
Conventional controller development techniques are less useful, should a 
representative mathematical model be difficult to obtain. Also, even though an 
accurate model may be produced, the underlying nature of the model may make its 
utilisation using conventional control design difficult (Gupta & Rao, 1994). In order 
to achieve satisfactory controller performance in the event of poorly understood 
dynamics, adaptive control or robust control approaches are typically employed.  
 
Adaptive control may be utilised as a solution to the control of complex plants and in 
the presence of greater uncertainty. The controller parameters in the fixed control 
structure are adapted by an adaptive algorithm that ensures that the desired 
performance level is maintained. An adaptive control system monitors a performance 
index using the current dynamic state of the plant under control. By comparing the 
actual performance to the desired performance index, the adaptation algorithm 
modifies the parameters of the controller to track the desired plant performance. 
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Although techniques such as model reference adaptive control (MRAC) and 
automatic tuning regulators have been used widely, the application of these 
techniques to many realistic problems has proven problematic (Gupta & Rao, 1994). 
 
The theoretical basis of linear system theory is a mature science. Should it be possible 
to approximate the actual physical plant as a member of a class of systems (e.g. 
having first or second order linear dynamics), the use of robust controllers has general 
application. The implementation of robust controllers is relatively simple when 
system stability and reasonable performance is the only concern.  
 
Further, the use of robust linear and adaptive controllers may prove effective, should a 
non-linear plant be operated in a narrow range of process conditions (i.e., locally 
linearised models are appropriate); but frequently prove inadequate for controlling 
operations over a broad range of operating conditions (Gupta & Rao, 1994).  
 
In addressing the shortcomings of robust and adaptive control techniques, the design 
of general, practical non-linear controllers remains largely outside the reach of the 
available algorithmic theories. Between robust and adaptive linear control and non-
linear control development, linear multi-input multi-output techniques have found 
niche applications, such as Dynamic Matrix Control (DMC) in the petroleum industry. 
Likewise, a number of conventional methods exist for developing non-linear 
controllers for specific classes of non-linear systems. These methods are system 
specific. A given design methodology may not be universally applied to all classes of 
non-linear systems. The wide inappropriate use of multi-loop linear controllers or 
adaptive linear controllers in non-linear systems, simply emphasises the need for 
effective methodologies for non-linear controller design (Stephanopoulos & Han, 
1996). 

1.2.3 Neural Controller Design 
 
Stephanopoulos & Han (1996) claimed that the growth in "intelligent" control has 
been a reaction to the realisation that non-linear control theory is not able to offer 
practical solutions to today's control challenges. The evolution in the control paradigm 
has been fuelled by the need to deal with increasingly complex systems, and the need 
to accomplish increasingly demanding design requirements (i.e., operation closer to 
the economic optimum) with less precise knowledge of the dynamic system (Gupta & 
Rao, 1994). 
 
In order to deal with uncertain plant dynamics a controller needs to estimate or allow 
for the existence of unmeasured information during operation. Should the strategy for 
dealing with unmeasured states be effective, the controller may be considered optimal 
(Gupta & Rao, 1994). 
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A control system is deemed a learning control system, as opposed to an adaptive 
system, when a control strategy has been developed based on past experience or 
performance. Adaptive systems differ from learning systems in that adaptive systems 
regard the current plant state as novel, whereas learning systems reconcile past 
learned plant operating regimes with the current state and act accordingly. Adaptive 
systems typically only adjust the parameters in a particular control structure. Learning 
systems may change the type and structure of a controller, or vary the parameters of 
the controller, after observing that the current controller is not performing 
satisfactorily (Gupta & Rao, 1994). 
 
By endowing the controller with learning ability, the operating regime of the 
controller may be effectively increased. Learning occurs typically through the 
evaluation of examples or trials. The learning feature precludes the existence of a 
fundamental plant model, as plant history is utilised to develop empirical dynamic 
models used during learning. The control system is consequently able to compensate 
for a greater variety of changes in the plant conditions. Also, a learning system may 
have the desired ability for ever-improving future performance, based on information 
the controller has gained in the past through dynamic learning. Learning 
methodologies may be implemented in either on-line or off-line paradigms (Gupta & 
Rao, 1994). 
 
Neural networks, with their ability to learn and their inherent massive parallel 
processing, introduce numerous opportunities for developing superior control 
structures for complex systems. A neurocontroller generally takes the form of a multi-
layer neural network, where the neuron weights are the adaptable parameters during 
learning. Neural networks are able to arbitrarily approximate non-linear functions, 
which allows for the effective synthesis of non-linear controllers (Hornik et al., 1989). 
Neurocontrollers solve control problems by mapping process variables sensor 
readings into calculated actions for manipulated variable outputs. A neural network’s 
parallel processing capability also makes its use for multivariate control systems 
attractive. The ability of a neural network, inherent to its structure, to robustly 
generalise to regions of the state space not encountered during learning or training, is 
of particular value in controller implementation to real world problems (Gupta & Rao, 
1994). Such non-linear control would prove highly effective in controlling highly 
non-linear process plants. 
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1.3 MOTIVATION FOR NON-LINEAR CHEMICAL PROCESS CONTROL 
 
In spite of the extensive research in adaptive (i.e., self-tuning) controllers and model 
reference control, there are many control problems in the chemical processing 
industries for which current control design techniques are inadequate. Many of the 
limitations of current adaptive controllers arise when controlling poorly modelled 
non-linear systems (Ungar, 1991). 
 
Many chemical processes are highly non-linear. Non-linearities may be intrinsic to the 
physics or chemistry of a process such as in supercritical extraction, in which complex 
phase behaviour leads to a sensitive dependence on operating conditions. Non-
linearities may also arise through the close coupling of simpler processes. For 
example, when heat integration is used to save energy, the process becomes tightly 
coupled, more multivariate and more difficult to control (Ungar, 1991). 
 
Well-established process technologies also present challenges. Distillation is a highly 
non-linear process, and therefore remains one of the most widely studied control 
problems. In aluminium casting, different rates of cooling lead to different regimes of 
operation and produce aluminium with different properties. Such processes offer 
challenges in that no satisfactory first-principles model of the process exists and there 
are too many control parameters to experiment with randomly (Ungar, 1991).  
 
Extensive theoretical and experimental studies have likewise been made of both batch 
and continuous stirred tank reactors (CSTRs). Although such reactors may be 
described (approximately) by simple equations, they often exhibit complex behaviour 
such as multiple steady states, periodic and chaotic behaviour. Bioreactors also pose a 
complex control problem in that the dynamics of the system may vary significantly 
depending on the current process conditions. Model-based control techniques for such 
reactors require the derivation of effective control laws, despite incomplete process 
models (Ungar, 1991).  
 
Currently, new process routes are designed with an increasing number of non-linear 
elements. Despite greater non-linearity, methodologies for process design analysis and 
control system synthesis typically disregard the inherent non-linearities (Seider et al., 
1990). Although the percentage of units requiring some form of advanced control is 
small, such key process units (as described above), may account for up to 40% of the 
gross revenue generated in the USA process industries (Harris & Palazoglu, 1998). 
 
The need for non-linear control methodologies has been driven by a number of 
factors.  The process industries' greater emphasis on optimal process design, safe plant 
operation, increased product quality and higher profitability call for improvements to 
existing control systems. Over wide operating regions, a linear controller, designed 
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through local linearisation of the non-linear model equations, may not compensate 
effectively for the system non-linearities. Non-linear controllers deal effectively with 
operation over a wide operating region. Numerous non-linear processes exhibit 
complex dynamic behaviour, such as non-minimum phase behaviour, dead time and 
hysteresis, resulting in poor responses by linear controllers. Non-linear controllers are 
expected to deal more effectively with process model uncertainties (i.e., plant/model 
mismatch), owing to more efficient generalisation. Increased product specifications 
and environmental regulations also make linear controllers less feasible.  
 
The increased availability of computer processing power has aided a shift to non-
linear control techniques, which are more computationally intensive than linear 
control algorithms (Kuttisupakorn et al., 2001). Increased computer processing power 
has also aided data mining techniques, whereby causal relationships may be learned 
from historical plant data.  
 

1.4 CAUSALITY - THE LANGUAGE OF EVOLUTION AND LIFETIME 
LEARNING 

 
A biological system (i.e., an organism) responds to its environment by adapting on 
both genetic and lifetime learning time scales. Central to this adaptation is causality, 
i.e. cause-effect relationships, that is vital to develop human and animal understanding 
of any given environmental occurrence. Causality is essential in decision-making, 
providing a foundation for selecting actions that are likely to have a desired result. 
Life depends on information. More importantly, causal knowledge must be generated 
from such informational input. The basic blueprint of an organism's behaviour is 
encoded in DNA. This blueprint is like a fixed set of good ideas and sensible 
expectations. On the phenotypical level, the types of sensory organs and output 
structures that an organism is born with, is a kind of genetically encoded knowledge. 
For example; being born with hooves, hands, or flippers is an explicit prediction of 
the kind of world that an organism will need to survive in. Also, DNA builds a 
network of neural or nervous system connections that are aimed in a general manner 
to basic tasks like eating, reproducing, resting and surviving which may be improved 
upon during lifetime learning. Should a human being be born to live underwater, no 
degree of evolutionary or lifetime learning will prevent the death of the infant. This 
genetic legacy has been determined by evolution on a time scale of possibly thousands 
of generations (McCrone, 2002). 
 
Once an organism is born in an expected environment, the organism learns from 
cause-effect relationships. A prehistoric human became more efficient at evading 
predators during a lifetime of causal interaction with predators. Similarly, all lifetime 
response pathways reflect the threats and opportunities that an individual organism 
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has learnt to deal with during its lifetime. Every environmental occurrence presents a 
set of challenges and the brain's neural pathways must present an equally precise 
mental response. The general understanding and reactions coded by the genes and a 
lifetime of experiences must be focused to zero in on the meaning of each moment in 
time, following an ever-narrowing cone of adaptive activity. The neural landscape is 
continuously sculpted by cause-effect experience, though the brain draws significantly 
from past causal understanding. The massive, parallel structure of the millions of 
neurons in the brain allows for an untold ability to generalise behaviour to novel 
environmental circumstances. The brain is able to anticipate future events by 
predicting that whatever it knew to be true about the world a moment ago, remains 
true in the current moment, creating a state of expectancy. Even though a completely 
unexpected event may occur, the brain assumes that numerous expectancies remain 
valid (e.g., the Earth's gravitation remains the same) (McCrone, 2002).  
 
Although a great deal may be learnt from correlated circumstances and there are 
similarities between correlation and causality, causality is far more difficult to 
underpin than correlation. Correlation may be determined directly from a single 
uncontrolled experiment. Causal conclusions require controlled experiments or causal 
assumptions that are difficult to assess in a single study. However, children somehow 
learn cause-effect relationships without performing controlled experiments. Pearl 
(1997) stated that the word "cause" is not in the language of probability theory and 
used the following example. Probability theory cannot produce a conclusion such as 
"mud causes rain". Probability theory only proves that the two states (i.e., mud and 
rain) are mutually correlated or dependent, implying that if one appears, the other may 
also be expected to appear. Formally, the more logical statement "rain causes mud" 
also presents difficulty, as probability theory cannot exclude the reverse. Ignoring the 
fact that the appearance of mud could be caused by almost limitless other possibilities, 
correlation clearly does not imply causality. Correlation may thus also represent a 
non-causal relationship. 
 
The fundamental difference between correlation and causality is illustrated by the 
inclusion of covariates to a regression equation. The effect of one variable X on 
another Y may be adjusted by including variations of another variable Z in the 
regression analysis. The variable Z partitions the elements in X and Y into 
homogenous groups relative to Z. The relationship between X and Y is assessed in 
each Z-group and the results are averaged. Frequently, this brings about Simpson's 
paradox, which states that any statistical relationship between two variables may be 
negated or reversed by including additional variables in the analysis. For example, 
data may reveal that students who smoke obtain higher marks than those who do not 
smoke, but including age as a covariate the result reveals that smokers obtain lower 
marks than non-smokers in every age group. Covariate selection remains difficult and 
based on intuition (Pearl, 1997). In the processing industries controlled plant tests 
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(i.e., with Z fixed) are difficult to obtain since process conditions vary, making true 
causal relationships, used for control structure design, difficult to assess through 
standard statistical techniques.  
 
Causality also presents many other challenges. Chaining refers to a temporal chain of 
events that are described by the sequential events [A1, A2, ..., An-1], which terminates in 
An. The question remains as to which event from A1 to An-1 caused An. For example, a 
man phones his friend, A1, for help. The friend jumps in his car and speeds to the 
man's house, A2. At an intersection, the friend is struck by a car, An-1. The friend dies 
(An). Who caused the friend's death? Was it the man who phoned, the friend himself 
or the driver of the car? Conjunction refers to a confluence of events, [A1, A2, ..., An] 
with the resulting event, B. For example, a raincoat manufacturer wished to increase 
sales, A1. She motivates her sales staff, A2. She increases the advertising budget by 
100%, An-1. Rainfall during the month is slightly higher than normal, An. Sales 
increase by 20%, B. The extent to which the increase in advertising budget, An-1, 
contributed to the increase in sales is uncertain. A collection of events culminated in 
the increase in sales (Zadeh, 2001). 
 
Pearl (1997) suggested a graphical language for determining the validity of causal 
relationships. Similarly, Johansson and Hägglund (2000) used a graphical technique 
for determining the control structure of single-input single-output (SISO) controllers 
with additional measurements. The graphical technique suggested improvements to 
the basic single-input single-output (SISO) feedback controller by incorporating 
relevant additional measurements in a cascade or feedforward control scheme.  
 
In contrast, evolutionary reinforcement learning is a probabilistic method that initially 
assumes arbitrary cause-effect relationships between measured variables and 
manipulated variables. True causal relationships are confirmed by propagation of 
particular relationships (i.e., interactions) into subsequent generations. The efficiency 
of evolutionary reinforcement learning in exploiting causal relationships in a dynamic 
environment suggests that the language of evolution and lifetime learning contributes 
to an understanding of causality.   
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1.5 OBJECTIVES OF THIS STUDY 

 
The objectives of this study have been to establish a neurocontrol design paradigm for 
the process industries within an evolutionary reinforcement learning framework. The 
neurocontrol design methodology needed to address the following shortcomings in 
conventional control design methodologies by having the following characteristics: 
 
• Non-linear control structure thereby offering superior control for highly non-linear 

processes (Economou & Morari, 1986). 
• Multi-input multi-output (MIMO) control structure and able to deal with severe 

process interaction through optimal pairing of process variables with manipulated 
variables. 

• The design methodology must be able to use all possible process model structures 
for controller development. 

• Robust non-linear model development must be possible from historical and 
experimental plant data. State estimation must be forthcoming without resorting to 
fundamental models. Controller development must be possible from partial 
models. 

• Non-heuristic approach that requires no engineering judgement or knowledge, 
making the methodology free of subjective design input. 

• The methodology must not be confined to set point regulation, but incorporate any 
control objective such as economic objectives. 

• Allow the development of plant-wide control structures for processes with high 
dimensionality. 

• The control structure must be able to adapt to process changes or shifting process 
objectives on-line, providing robust performance in the face of significant process 
uncertainty and unmeasured disturbances. 

 
A novel evolutionary reinforcement learning algorithm, Symbiotic Memetic Neuro-
Evolution (SMNE), has been developed to achieve these objectives within an 
evolutionary reinforcement learning framework. Adaptive Neural Swarming (ANS) is 
an add-on to SMNE, allowing on-line adaptation of neurocontrol structures. 
Simulation studies verified the methodology using several simulated processes 
obtained from the biotechnology, mineral processing and chemical industries. A pilot 
plant of a novel batch distillation configuration, Multi-Effect Batch Distillation 
(MEBAD), verified the neurocontrol methodology in a real-world application. Plant-
wide control was established for the Tennessee Eastman control challenge. 
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Finally, Gupta and Rao (1994) paraphrase the goals of this thesis: 
 
“It is our hypothesis that if the fundamental principles of neural computation used by 
biological control systems are understood, it seems likely that an entirely new 
generation of control methodologies can be developed that are more robust and 
intelligent, far beyond the capabilities of the present techniques based on explicit 
mathematical modelling.”  
 

1.6 CONCLUDING REMARKS 

 
Intelligent control techniques offer a competitive edge in an ever-competitive 
economic environment. Although numerous applications of intelligent process control 
have been reported, few progress past simulation studies and only a small percentage 
progress to laboratory prototypes. Even fewer become products in the process control 
marketplace (Chiu, 1997). Narenda (1996) surveyed the literature published from 
1990 to 1995 and found that 9955 articles were published in the engineering literature 
with "neural networks" in the title. Of these, more than 8000 related to function 
approximation and pattern recognition (i.e., static systems). One thousand nine 
hundred and sixty papers dealt with control using neural networks, of which only 353 
represented applications. Of these 353 articles, 45% pertained to theory, with 28% 
dedicated to simulation studies and 23% represented laboratory experiments. A mere 
4% were dedicated to real-world application, though this low percentage could be 
ascribed to industrial proprietary considerations (Narenda, 1996).  
 
Despite the enormous potential of intelligent control systems, there is minimal 
incentive to switch from cost-effective PID control, unless the application truly 
demands non-linear control. PID control has proven satisfactory performance in set 
point regulation for a vast number of applications. Other than providing non-linear 
control through state feed back, intelligent control provides solutions that analytical 
control methodologies do not address. These include tracking changing economics 
brought on by changing raw material prices, energy costs and disturbances. The return 
on investment for intelligent control over conventional techniques must be justified, 
also taking into account the greater risk of implementing largely unproven 
technologies (Chiu, 1997). 
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2 PROCESS DESIGN AND PLANT-WIDE CONTROL 
  
OBJECTIVES OF CHAPTER 2  
• Emphasise the link between process control and process design. 
• Describe the prevailing approach to plant-wide control both mathematical and 

heuristic, thereby providing a platform from which to highlight the differences and 
similarities to the evolutionary reinforcement learning approach in this thesis. 

 

2.1 COORDINATED PROCESS DESIGN AND CONTROL OPTIMISATION 

 
Before the 1970's, process designs relied on minimal heat integration and large 
inventories (i.e., extensive storage of intermediate products) that dampen process 
upsets between unit operations. Also, recycle streams were avoided to prevent 
disturbances in downstream unit operations from propagating to upstream unit 
operations. Isolating unit operations, by avoiding energy and material feedback, 
simplified the control system design, albeit at higher operating and capital costs. 
Control strategies evolved into a unit operation approach, which over several decades 
culminated into highly effective control strategies for individual unit operations 
(Luyben et al., 1997).     
 
However, the 1970's energy crisis necessitated energy integration. Pressure increased 
to reduce capital and operating costs, to improve plant safety and to address 
environmental issues. Process design engineers responded by introducing heat 
integration (e.g., pinch technology), reducing surge vessel installations and relying on 
recycle streams. Improved heat integration and higher product yields through recycle, 
are economically viable on the steady-state flow sheet, but present process control 
challenges (Luyben et al., 1997). 
 
Also, new process routes amplify the challenges to process control, as new process 
technologies are frequently complex with poorly understood dynamics. Despite a lack 
of adequate process information, new process routes need to be exploited sooner to 
ensure a positive net present value. Thereby, the extensive use of process specific 
operating experience and expert knowledge is not possible. Furthermore, process 
designs continue to become more non-linear, more interactive and consequently more 
difficult to control. A plant-wide control perspective is imperative, which looks 
beyond individual operating units. 
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Considering that numerous processing routes may exist to produce a given product, 
the design degrees of freedom approach the order of thousands. The production of 
penicillin has taken both chemical and biotechnology routes. The recovery of metals 
(e.g. copper) may take either a pyrometallurgical or hydrometallurgical route. 
Likewise, the delivery of pure oxygen may be via air separation units, pressure swing 
adsorption and membrane technology. The choice of process route may be a complex 
one, dictated to by production volumes, raw material quality and quantity and access 
to patented processes that may provide significant technology leverage. Economic 
considerations include not only the capital and operating costs, but also market 
forecasts, project life, stability of governments, currency fluctuations and the 
availability of trained human resources. Several of these considerations are difficult to 
quantify mathematically and rely on engineering and business judgment. 
 
Typically, the design degrees of freedom are therefore limited to the capital cost of an 
installation and the unit cost or contribution for producing the product, which are 
easier to quantify mathematically. The process equipment largely determines the 
capital cost, while the operating region dictates the operating cost. The design degrees 
of freedom include all parameters related to the size of the equipment. For example, 
design degrees of freedom pertain to reactor volumes, heat exchange area and the 
number of stages in mass transfer contacting equipment. Once a short-list of process 
routes has been selected, each one is subjected to a capital and operating cost analysis.  
 
Process design tasks are formulated with one or several objectives that require steady 
state optimisation of the non-linear programming definition, so that: 

( )upxf
upx

,,min
,,

        (2-1) 

( ) 0,,, =upxxg &        (2-2) 

( ) 0,, ≤upxh         (2-3) 

 
where f is the objective function, g is the system of differential and algebraic 
equations and h is the set of design constraints. In equations 2-1 to 2-3 x  is the state 

variable vector, p is the vector of design parameters and u is the manipulated variable 
vector.  Seider et al. (1990) indicated that when the steady state equations (Equation 
2-2) have multiple solutions and are highly non-linear, conventional optimisation 
routines (e.g., successive quadratic programming) frequently do not converge to the 
global optimum. Steady state flow sheet design tools (e.g., Pro II) are typically not 
equipped with suitable optimisation algorithms to locate economic optima in complex 
operating regions. For design optimisation tasks, high dimensional state spaces also 
limit the viability of generalised design optimisation tools (Seider et al., 1990). 
Operation at the global economic optimum is critical.    
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2.1.1 Process design and plant-wide control 
 
Process design and controller development are typically matched discontinuously as 
shown in Figure 2-1. Once the optimal economic set points have been determined, 
these set points are carried forward to the control development phase. An appropriate 
control structure and set of tuning parameters are devised for the steady state 
optimum, fixed with little regard for changing economic factors and disturbances. For 
example, the current market conditions (e.g., the cost of a raw material) or a 
disturbance (e.g., catalyst decay) may require a change in the plant's operating point to 
maintain operation at the economic optimum. Plant-wide control addresses this 
decoupling between the steady-state economic optimum and the control structure of 
the plant as shown in Figure 2-2.  
 
Generally, the concept of plant-wide control refers to the control strategy, with an 
emphasis on structural design, rather than on the tuning of the control law parameters. 
At the highest level, plant-wide control is only concerned with the interactions 
between a process and the forces (i.e. controllers, external disturbances) that care to 
impact upon it. A plant-wide control system is typically divided into an economic 
objective, supervisory/predictive and a regulatory layer. The economic objectives 
based on current market condition may be updated as frequently as on an hourly basis 
(Larsson & Skogestad, 2000). For example, real-time pricing of electrical power 
benefits both the electricity supplier and the consumer, provided the consumer is in a 
position to react to periods of high overall electrical demand. Should the consumer 
turn down the plant's electrical demand during peak overall electrical demand (i.e., 
high unit cost of electricity), the electricity supplier may have no need to start-up an 
additional power plant. The consumer benefits by being able to take advantage of low 
demand periods, when the cost of electricity is extremely low. The supervisory 
(predictive) layer re-computes the steady state economic optimum based on the 
current market conditions (i.e., an updated cost function) and the current disturbances, 
given a steady state model of the process. The new steady state optimum propagates 
to the regulatory layer as set points, where feedback control stabilises the plant at the 
new operating condition. The regulatory control layer is typically incorporated with a 
decentralised control system using multi-loop PID controllers. 
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Figure 2-1 -  Typical design & control 
hierarchy. 

Figure 2-2 - Ideal conventional control 
hierarchy 

 
Conversely, Figure 2-3 illustrates a single optimising controller, which stabilises the 
process and provides optimal control responses (i.e., control actions) in lieu of the 
process' production objectives. Larsson and Skogestad (2000) considered the 
integration of the optimisation and control into a single optimising controller as an 
unrealistic goal, due to the cost of detailed dynamic modelling that such a scheme 
would require. The good local control performance of standard feedback controllers, 
without much need for modelling, is cited as another reason for not pursuing a scheme 
as in Figure 2-3. Further, Larsson and Skogestad (2000) claimed that a decentralised 
control system is less sensitive to model uncertainty (no explicit model is typically 
used). By designing a rational and systematic control configuration with engineering 
judgement, the necessary process information is included in the control system. A 
centralised controller would need to determine this process information from a 
dynamic process model. Hereby, Larsson and Skogestad (2000) ignore the advances 
in empirical modelling techniques that allow rapid, automated data mining of 
historical plant databases for determining system dynamics. In contrast, 
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Stephanopolous and Ng (2000) expect advancement by the explicit consideration of 
the non-linear nature of chemical processes in model-based MIMO control systems. 
Particularly, process controllability should be addressed from a non-linear 
perspective.  

 

Optimising,  adaptive
controller

Dynamic process
Sensor measurements

Control actions

Cost function

Plant-wide
optimisation of

economic objectives
(hours)

 
Figure 2-3 - Integrated optimisation and control for control layer. 

 
The process design determines the process' controllability and flexibility. 
Controllability is inherent to the process (i.e., the open loop response) and is 
independent of the particular control structure or parameters. Controllability reflects 
the process' ability to reject disturbances and negate the severity of multi-variable 
interactions. Flexibility is the ease with which the process may be shifted from one 
operating region to another. Deviations from the optimal operating conditions, owing 
to poor controllability, could have severe economic implications (Mohideen et al., 
1997). In an increasingly competitive economic climate, chemical plants need to 
reduce inventories (i.e., operating capital used ineffectively) and must be capable of 
delivering product on specification, at the required rate, on demand. A responsive 
process facility should track customer demands on both quality and quantity of 
product, making frequent feasible transitions between operating points necessary 
(Rowe et al., 1997). This suggests that interaction between process design and control 
in terms of operability should be addressed at the earliest stages of the process design 
(Luyben and Floudas, 1994a).  
 
Contrarily, process flexibility and stability (i.e., controllability analysis of the open-
loop response at the operating conditions via bifurcation analysis) are rarely 
considered in the process design. Most process design approaches concentrate only on 
obtaining the optimal economic process design, selected from a practical number of 
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alternate designs that satisfy the operational constraints. Controllability is generally 
omitted from consideration in the process design, even though poor control could 
impact severely on the process operating cost. Conversely, traditional process control 
approaches consider a fixed process design configuration when selecting the pairing 
and tuning parameters between controlled and manipulated variables. However, small 
changes to the process flow sheet could simplify reaching the control objectives 
profoundly (Stephanopoulos, 1983). Conventional methodologies only determined the 
controllability after the process design has been fixed (Luyben and Floudas, 1994a). 
Thereby, the process design and controller development progress in a sequential 
manner. This sequential approach may lead to economically sub-optimal and 
inefficient designs. The ability of a control system to reject disturbances and remain 
robust, despite model uncertainty, is highly dependent on both process design and the 
operating region.  Most integrated design and control research has focused on analysis 
tools that provide a comparable measure of controllability for alternate process 
designs (Bansal et al., 2002). However, controllability analyses provide minimal 
insight into how the process design should be augmented to meet the economic 
objectives and operating constraints. Revised control system development and retrofit 
solutions become a common occurrence to address operability bottlenecks, should the 
steady state economics and control not be considered simultaneously. The long-term 
economic viability of a production facility is highly dependent on the flexibility and 
stability of the process.   
 

2.1.2 Over-design in the process industries 
 
The chemical industry in the United States may be cited for numerous instances of 
over-design. Over-design usually compensates for model and design uncertainties, 
allowing for increases in capacity and for margins of safe operation. However, over-
design also results in order to avoid operation near or within complex operating 
regimes. Such operating regimes may be characterised by hysteresis and periodic or 
chaotic behaviour. Designs that avoid these operating regions are frequently deemed 
prudent (i.e., if these regions were known or suspected to exist) as safeguard against 
unreliable operation. However, designs that constrain key design parameters, p, to 
avoid these regions of operation, may prevent operation near steady-state economic 
optima. Common process characteristics (Table 2-1) that cause control difficulties for 
non-linear and linear controllers alike, are more pronounced in more complex 
operating regions. Despite the possible greater economic benefit of operating at 
process conditions with complex dynamics, this over-design approach prevails (Seider 
et al., 1990). Unit operations that exhibit complex dynamic and steady state 
behaviours include exothermic reactors, aerobic fermentation, heterogeneous 
azeotropic distillation columns and supercritical extraction. 
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Table 2-1 - Common Process Control Design Complications (Bequette, 1991)  

Common Process Characteristics 
• Multivariable interactions between manipulated and controlled variables 
• Unmeasured state variables 
• Unmeasured and frequent disturbances 
• High-order and distributed processes 
• Uncertain and time-varying parameters 
• Constraints on manipulated and state variables 
• Dead-time on inputs and measurements 
• Sensor noise and inaccurate measurement 
 
Brengel & Seider (1992) regarded this over-design phenomenon as an important 
opportunity and challenge facing design engineers. Design, modelling and particularly 
control techniques that allow closer operation to more complex regimes should reduce 
the instances of over-design in the process industries sharply. The process design and 
control system synthesis should be coordinated, thereby maximising a profitability 
objective function penalised for poor controllability. Maximising the process' 
flexibility is a key requirement.  
 
Luyben and Floudas (1994a) stated that the goal of coordinated process design and 
controller development is to determine the best-compromise process configuration 
among the competing economic and open-loop controllability objectives. This best 
compromise solution may include minimising the cost of the process equipment and 
optimising any measure of controllability (e.g., relative gain array) and flexibility. 
Coordinated process design and controller development thus becomes a multi-
objective optimisation (Luyben and Floudas, 1994a). 
 
Luyben and Floudas (1994b) used Bristol's relative gain array (RGA) in assessing 
controllability. RGA was developed for use in control pairing of linear systems. This 
controllability objective was incorporated with the steady state economic optimisation 
in a multi-objective design of a reactor-separator-recycle system. The usefulness of 
linear analytical tools for multi-loop SISO pairing may be limited for non-linear 
systems, since the process gain matrix is calculated at the steady state economic 
operating point. For non-linear systems, small deviations from the desired steady state 
operating point could change the magnitude and sign of process gains significantly. 
For the reactor-separator-recycle system the optimal design cost was $511 600 per 
annum and had an RGA of 3.5 (i.e., RGA analysis of 1.0 considered optimal). Though 
highly process dependent, Luyben and Floudas (1994b) demonstrated that the RGA 
could be reduced from 3.5 to 1.8 by augmenting the process design without increasing 
costs significantly. However, further improving the controllability to an RGA of 1.1, 
increased the cost to $1 046 300 per annum. For this specific case study, an 
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improvement in controllability to an RGA of 1.8 lightens the complexity of the 
control task, though controller design techniques that would allow comfortable 
operation at a RGA of 3.5 are desirable. 
 
Naturally, the most desired coordinated design approach is one in which the problem 
statement requires less trade-off between controllability and economic return. Only 
economic considerations should ideally play a role in the design task. Although 
controllability is defined by the open-loop response of the process, controller 
development techniques (i.e., design tools) determine whether the process can be 
maintained reliably at the economic optimum. Clearly, there are two ways of 
enhancing the operability at the steady state economic conditions, viz. enhance the 
process design and improve controller development techniques. 
 
Consider a continuous fermentation process as illustrated in Figure 2-4. The economic 
objective is to minimise the capital and operating costs. The most economic design 
must optimise bioreactor volume (i.e., height and diameter), filter duty, valve sizes 
and piping from both an equipment cost and an operating cost perspective. The raw 
material cost of the nominal, SF, and concentrated, SC, substrate feed and the filtration 
costs must be included for evaluation. The operating constraints may include cell 
mass concentration (i.e., oxygen transfer limitations), substrate limiting cell growth, 
vessel hold-up limits and maximum flow rates of nominal and concentrated substrate 
feeds. Discrete design decisions may include deciding to use a recycle stream or not. 
Continuous design decisions relate to bioreactor vessel height and diameter. Random 
disturbances are expected to exist in the feed rate, feed composition and cell growth 
kinetics and need to be considered in the process design. Also, a number of 
parameters in the process model may drift with time, such as the growth kinetics and 
cost of substrate feeds (i.e., varying economic climate). The coordinated process 
design and control development is complicated by the open-loop response of the 
bioreactor at various residence times, dictated by the inherent dynamics of the micro-
organisms. As the residence time is decreased the open-loop response changes from 
open-loop stable, to open-loop unstable eventually exhibiting both hysteresis and 
chaotic dynamics. A bifurcation analysis revealed that the economic optimal operating 
point has the most complex dynamics. Multiplicity, i.e. the existence of more than one 
steady state at the same residence time, destroys the global stability of the set point; 
thereby much of the power of linear theories. In fact, controllers with integral action 
may create additional steady state attractors that introduce elements of instability, not 
originating from the open-loop dynamics of the system (Chang & Chen, 1984). 
Conceivably, genetic engineering could be used to develop a different micro-organism 
that did not have such complex dynamic behaviour, but this is clearly outside the 
scope of conventional chemical engineering process design. For the bioreactor, 
improvements in controllability necessitate a loss in economic return regardless of the 
process design parameters such as reactor volume and recycle. While linear control 
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may be effective in open-loop stable operating regions, the economic return is 30 [%] 
less than at the steady state economic optimum.  
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Figure 2-4 - Bioreactor flow sheet (Brengel & Seider, 1992). 

 
Clearly, different process designs result in different control structure designs, related 
to both the pairing of controlled and manipulated variables and the tuning of 
controller parameters. Any methodology that solves this integrated process design and 
controller development task must, (1) be capable of optimising non-linear dynamic 
systems, (2) ensure robust operation despite unmeasured disturbances and time 
invariant process uncertainties, (3) select the optimal process design from an 
economic standpoint and (4) select the optimal control strategy. Both structural (i.e., 
discrete) and continuous decisions are involved in this optimisation.  
 
A comprehensive algorithmic approach to such an optimisation problem has been 
demonstrated by Bansal et al. (2002), using Mohideen et al.'s (1996) mixed-integer 
dynamic optimisation (MIDO) approach. The dynamic distillation model has realistic 
complexity, comprised of hundreds of differential-algebraic equations. However, the 
5x5 control structure design is limited to seven possible alternatives using linear PID 
controllers in the MIDO analysis. Though PID controllers are the industry standard, 
linear controllers are likely to have sub-optimal performance when controlling such a 
non-linear process. The controllability of the process is a function of the plant design, 
but the type of controller determines feasible operation over a range of disturbances 
(Bahri et al., 1997). Also, limiting the MIDO optimisation to only seven discrete 
possibilities for control structure does not assure a global optimal solution. Numerous 



 Copyright University of Stellenbosch, 2004 23

pairing possibilities exist for a 5x5 dynamic system. Although engineering judgement 
may reduce the number of feasible control structures, the interface to and from a 
chemical plant may be via hundreds of sensor measurements and numerous final 
control elements (i.e. valves, heat duty etc.). The control structure is not a discrete (or 
integer) optimisation variable and is an important component in a plant-wide control 
methodology.  
 

2.2 ELEMENTS OF PLANT-WIDE CONTROL 

 
As discussed in section 2.1, the need for a plant-wide approach to process control is 
chiefly due to the manner in which plants are designed with greater heat integration, 
recycle and less inventory. However, even without recycle and heat integration, 
disturbances in upstream units impact on downstream units as all units need to have 
the same steady state throughput (Larsson and Skogestad, 2000). Luyben et al. (1997) 
stressed the extreme complexity and open-ended nature of the plant-wide control 
problem. The problem constitutes a combinatorial number of possible decisions and 
alternate strategies with no unique "correct" solution. Stephanopoulos (1983) noted 
that the complex flow of information from the measurements to the manipulated 
variables may escape systemization.  
 
Systemisation is imperative, since a process facility's control strategy links the plant 
operation to the business-decision processes, making plant-wide control a key 
component of business optimisation. The plant-wide control strategy includes 
increasingly higher layers of business objectives dictated to by market supply-demand 
cycles. Process down-time due to failures, poor flexibility in moving from one 
operating mode to another, prolonged operation at sub-optimum conditions, long 
periods of off-spec production and mismatch between business production 
requirements and actual production, lead to a reduction in contributed (i.e., added) 
value. Uncertainties such as unknown disturbances and process/model mismatch 
require a solution that relies on feedback control structures that are provided with 
error information for corrective action (Stephanopoulos and Ng, 2000). A perspective 
beyond single unit operations has been lacking, wherein the plant-wide control 
problem constitutes a large dynamic optimisation task.  
 
The plant-wide control problem has characteristics, as listed in Table 2-2, not present 
in the control of individual unit operations. The problem is multi-objective, 
combinatorial with large numbers of variables and needs to be solved without precise 
models of the process. The set of controlled variables are not as intuitive as for 
individual unit operations. Also, local control decisions may have far-reaching 
consequences on downstream unit operations. Finally, the large number of variables 
makes finding the global solution difficult. 
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Table 2-2 - Character of the plant-wide control problem (Stephanopoulos and Ng, 2000). 

1. Multi-objective problem that may entail trade-offs. 
2. Combinatorial nature in selecting appropriate sub-sets of measured and 

manipulated variables. 
3. Imperative information for synthesis may be unavailable or costly to obtain. 
4. Multi-variable problem of high dimensionality. 
5. Number of degrees of freedom may be too few to satisfy all operating 

objectives. 
 
The difficulties in pairing controlled and manipulated variables and the complexity of 
the combinatorial problem make multi-loop SISO approaches intractable 
(Stephanopoulos & Ng, 2000). Robinson et al. (2001) proposed using an optimal 
control approach to assess whether a decentralised architecture, a MPC architecture or 
a combination is required for a given plant-wide control problem. Unfortunately, 
Robinson et al.'s (2001) approach relies on a linear dynamic model that may poorly 
represent highly non-linear plants. Multivariate control theory seems most suitable to 
plant-wide control problems. Despite advances in multivariate control system theory, 
plant-wide control research has remained fixated on classical, multi-loop PID 
controllers. No regard is given to the poor suitability of such control structures to 
numerous non-linear, highly interactive processes. Contrary to Skogestad & Larsson 
(2000), Stephanopoulos and Ng (2000) noted that the use of multi-loop SISO control 
systems in plant-wide control "lack any significant merit". Robust control (i.e., 
dealing with model uncertainty), large-scale multivariate controllers such as model 
predictive control and real-time process optimisation stand to have a profound impact 
on the design of effective plant-wide control strategies.  
 
Advances in the analysis of controllability have been forthcoming for screening 
predetermined control structures, but a systematic approach for generating promising 
control structures remains elusive. In the majority of controller development tasks, the 
configuration is determined without the use of existing theoretical tools.  
 
Several criteria exist for evaluating control structure design methods. These are (1) 
generality, (2) applicability to non-linear systems, (3) controller autonomy, (4) 
quantitative, (5) method simplicity, effectiveness and efficiency and (6) the degree of 
theoretical development. Few methods could meet even a subset of these requirements 
(Larsson & Skogestad, 2000).  
 
Conventionally, a unit-based approach is still followed despite greater material and 
heat integration. A unit-based approach decomposes the plant into individual unit 
operations. The best control structure for each unit is developed individually. 
Thereafter, these control structures are combined to complete the plant's control 
system. Process interactions between individual control structures are eliminated by 
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mutual trial-and-error tuning. Based on the criteria in the preceding paragraph, the 
unit-based approach lacks general applicability to non-linear systems, is mostly 
limited to linear multi-loop SISO control structures, lacks efficiency and rests heavily 
on subjective engineering judgement.   
 
The unit-based approach has largely been replaced by approaches to plant-wide 
control structure synthesis, typically categorised as mathematically orientated 
approaches (i.e., optimisation based) or process orientated approaches (i.e. heuristic 
based) (Larsson & Skogestad, 2000; Robinson et al., 2001). Control structure 
synthesis is complex to define mathematically (i.e., algorithmically). The number of 
possible control structures grows exponentially as the degrees of freedom increase. 
Also, the cost and synthesis of detailed fundamental dynamic and steady state models 
for evaluation purposes may be prohibitive. Heuristic approaches, based on 
experience and process knowledge, constitute the norm (Larsson and Skogestad, 
2000). Seider et al. (1990) concluded that applying heuristic decision-making should 
be undertaken with caution for processes with complex physical and chemical 
behaviours. Morari et al. (1980) affirmed that steady state and dynamic models are 
required to evaluate interactions and the effects of non-linearities. Therefore, most 
plant-wide control methodologies include elements of both approaches. Table 2-3 
summarises typical strategies to plant-wide control. 
 

Table 2-3 - Typically strategies applied to plant-wide control (Larsson & Skogestad, 2000) 

1. Decentralised control structures based on unit operations. 
2. Temporal classification by control loop speed, i.e. fast inner loops are closed 

first, followed by slow outer control loops. 
3. Hierarchical methods that formalise the synthesis in a top-down manner based 

on control objectives such as economics, throughput and product purity 
(active constraints). 

4. Hierarchical methods based on process structure, i.e. input-output structure, 
recycle structure, general separation system structure and material/energy 
interaction.  

5. Empirical rules. 
 
The regulatory control tasks are categorised into material balance control and product 
quality control. Major control concerns relate to: (1) which variables should be 
controlled (i.e. measured or inferred), (2) which measurements should be paired with 
which manipulated variables and (3) the nature of the control law (Stephanopoulos, 
1983). 
 
Larsson and Skogestad (2000) advocated a mathematical approach to the control 
structure design task as in Table 2-4 and proposed a top-down design of control 
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objectives (i.e., task 1 to 2) and a bottom-up design of the control system (i.e., tasks 3 
to 5). The top-down analysis involves finding a set of controlled variables that 
maximise the economic return of the process, based on the anticipated disturbances to 
the process. In this mathematical approach, a degree of freedom analysis is 
accompanied by economic evaluations using a steady state process model. The 
bottom-up design may entail a controllability analysis, stabilising control and 
disturbance rejection through regulatory control. A controllability analysis typically 
involves linear tools such as the relative gain array, although for non-linear systems 
bifurcation analyses may provide more process insight. Stabilising control may be 
established through pole vector analysis. Local disturbance rejection (i.e., partial 
control techniques) may be accomplished by controlling secondary measurements 
(i.e., inner control loops) that minimise the effect of disturbances on the primary 
controlled variables. Decentralised control may be considered should the process be 
non-interacting and the constraints invariable. For such decentralised control, 
interactions are minimised by pairing of the primary controlled variables and the 
manipulated variables using the linear RGA. Multivariate control, such as MPC, 
improves the performance of interacting processes and for tracking changing active 
constraints.  The supervisory control layer is designed to keep the primary controlled 
variables at optimal set points using real time optimisation of the operational objective 
through a steady state model. The industrial approach typically follows the systematic 
outline in Table 2-4 without using mathematical tools that may be (e.g., Bristol's gain 
array) available for each task.  
 

Table 2-4 - Control structure design tasks (Morari et al. ,1980) 

Control structure elements 
1. Select a set of controlled variables to attain a number of specified objectives. 
2. Select a set of final control elements (e.g., control valves) that manipulate the 

selected controlled variables. 
3. Select a set of process variables that measure directly the controlled variables 

or from which the controlled variables may be inferred. 
4. Select a control structure connecting measured and manipulated variables for 

informational flow, i.e. pairing of controlled and manipulated variables. 
5. Tune the parameters in the selected control structure, ensuring minimal 

process interaction between controlled variables.  
 
A heuristic approach sub-divides or decomposes the complexities of plant-wide 
control synthesis, creating a step-by-step approach that makes the synthesis task 
manageable. Luyben et al. (1997) proposed nine steps for plant-wide control synthesis 
listed in Table 2-5.  
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Table 2-5 - Plant-wide synthesis procedure (Luyben et al., 1997)  

1. Establish control objectives. 
2. Determine control degrees of freedom by summing the number of independent 

final control elements (i.e. control valves, electrical heating coils). 
3. Establish energy management by removing heats of reaction and preventing 

propagation of thermal disturbances. 
4. Select control element to control production rate (i.e. throughput). The final 

control element should have minimal impact on the separation processes, but 
have a pronounced effect on the reaction rate in the reactor. Reaction rate 
may be controlled through the reaction temperature, reagent concentrations, 
reactor hold-up for liquid phase reactions and the reactor pressure in vapour 
phase reactors. The choice of throughput determines the remaining inventory 
control system. 

5. Control product quality, safety, operational, and environmental constraints. 
For these constraints dynamic relationships between the controlled and 
manipulated variables should have small time constants, minimal time delay 
and large steady state gains. 

6. Control inventories (pressures and levels) and fix a recycle stream flow rate. 
Inventories should be controlled by final control elements that establish the 
greatest changes. Liquid recycle flows should be controlled at constant rates 
to reduce large load disturbances to the separation units and prevent 
recycling of disturbances. Gas recycle rates should normally be set at 
maximum circulation rate to attain the highest yields.   

7. Check component balances by considering a component's steady state 
composition at a given point in the process. No accumulation is tolerable with 
purge streams venting inert or undesirable components.   

8. Control individual unit operations. Effective control strategies have been 
established for most common unit operations. These historic strategies should 
be exploited.  

9. Optimise economics or improve dynamic controllability. After utilising some 
degrees of freedom to establish the above regulatory control, the remaining 
degrees of freedom should be used for improving steady state economic return 
or dynamic control responses.  

 
Step 3 and 4 in Table 2-5 related to the throughput manipulator, as the reactor is 
typically the production bottleneck. Price et al. (1994) emphasised the throughput 
manipulator as the critical element in plant-wide control design. Larsson and 
Skogestad (2000) recommended careful analysis of the throughput manipulator, as the 
optimal choice may change depending on the prevailing disturbances. MPC could 
accommodate such a change in throughput manipulator without using logic 
configurations as would be necessary for multi-loop SISO. It should also be noted that 
when using an optimising layer (e.g., NLMPC) that determines the set points of the 
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multi-loop SISO regulatory control, more degrees of freedom are left for economic 
optimisation (Ricker et al., 1995). From this perspective, though the mathematical and 
heuristic methodologies deal primarily with the regulatory layer, an optimisation layer 
is critical to any plant-wide control strategy.  
 

2.3 ECONOMIC AND PROCESS CONTROL OBJECTIVES  

 
Morari et al. (1980) stated that the principal objective of a control system is to 
translate economic objectives into process control objectives. Likewise, the objective 
of a chemical plant is the "maximisation of the generated business-wide economic 
value via plant operation" (Stephanopoulos and Ng, 2000). This generated value is 
therefore reduced by process upsets owing to sustained operation at sub-optimal 
conditions or off-spec production, down-time owing to failures, long transition 
periods from one operating mode to another. The mismatch between the optimal 
business production strategy and the true plant output must thus be minimised 
(Stephanopoulos and Ng, 2000). For example, a polyethylene reactor must be capable 
of producing different polymer grades. A transition from one grade to another may 
require several hours, which corresponds to a loss in prime production. Though a 
scheduling concern, transition may be necessary up to twice a week, resulting in 
financial losses between $10 000 to $50 000. Minimising transition losses is 
compounded by the process non-linearities (Piché et al., 2000). 
 
Optimal operation is defined as the continuous, dynamic optimisation of plant 
operation using a perfect plant model (i.e., no process/model mismatch), thereby 
minimising a cost function, J, by adjusting the degrees of freedom. The scalar 
objective function, J, typically reflects the operating cost. Owing to process model 
uncertainty and inaccurate sensor inputs, optimal operation is generally not attainable. 
The discrepancy between the actual value for the cost function J and the global 
optimum for J, is defined as the process loss (Larsson & Skogestad, 2000). Larsson 
and Skogestad (2000) defined the concept of an acceptable loss as a process loss 
resulting from using a fixed vector of set points, without re-optimising in response to 
process disturbances (or the prevailing market conditions) within a specified time 
frame. Ideally, process loss should not result due to a trade-off between optimal 
economic operation and controllability, but only due to model and state information 
uncertainty. However, separating the optimisation and control layer is frequently 
necessary, particularly since the time constant of the regulatory control system is 
usually smaller than the minimum re-optimisation time frame. Provided the control 
response to the newly re-optimised steady state carries no cost penalty due to a poor 
response, the economic operation of the plant is determined by the newly calculated 
steady state operating point (Larsson & Skogestad, 2000). 
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Zheng et al. (1999) also emphasised the use of economic considerations when making 
plant-wide control structure decisions. Zheng et al. (1999) noted that the RGA for 
single unit operations differed significantly from the same unit operations in a plant-
wide control scenario. Configurations that worked well for unit operations alone, did 
not necessary work well in the entire system. In addition, the multiple objectives of 
plant-wide control problem may not be weighted equally. When there is more than 
one objective function to be optimised, solutions exists where one objective cannot be 
further improved without sacrificing performance in other objectives. Such solutions 
are defined Pareto optimal and the set of all Pareto optimal solutions form the Pareto 
front. Generating a Pareto front based on varying weighted objectives may prove 
valuable, though computationally intensive. For example, most plant-wide control 
challenges require that a cost function, f, be minimised within a product purity 
equality constraint, h, as in equation 2-4: 
 

( ) ( )uxhuxf
upx

,,min 21,,
⋅+⋅= ωωφ        (2-4) 

 
Within the specified range for product purity, the unit cost or added value may vary 
dramatically for highly non-linear processes. Successively relaxing the weight, ω2, on 
the product purity, generates a Pareto front. Without a full Pareto analysis, operating 
objectives must be ranked based on their total economic impact and thereby weighted 
accordingly to allow for calculation of a single scalar cost function (Stephanopoulos 
and Ng, 2000). 
 
The production objectives of any process may vary significantly between two classes 
of economic objectives, viz. maximum production (seller's market) and lowest 
possible unit cost (buyer's market). Translating economic objectives into process 
control objectives entails finding a function of the process variables (i.e., state 
variable representations) in terms of the manipulated variables, which moves the state 
trajectory along an optimal path. Each possible operating region in the state space has 
an innate economic value. This may entail keeping a set of process variables constant 
in the absence of disturbances. However, during disturbances the control system 
should attempt to track the optimal economic trajectory as it relates to the state space. 
The overall operational (i.e., the economic objective) may be the minimisation of a 
scalar cost function, subject to operational constraints such as product purity, safety 
(e.g., maximum vessel pressures before mechanical failure) and controllability. A 
control system's robustness is determined by the controllability in the operating region 
of highest economic return (Morari et al., 1980).  
 
Morari et al.'s (1980) "Optimising Feedback Control Structure" provides the essential 
framework in response to Foss' (1973) process control critique. The absence of 



 Copyright University of Stellenbosch, 2004 30

applicable techniques for solving the plant-wide control problem has been attributed 
to the absence of a mathematical formulation and a clear statement of the objectives 
(Morari et al., 1980). The main goal of a control system design is to create a dynamic 
structure of process (i.e., measured) and manipulated variables, which meet 
production objectives continuously. Several process variables must be guided from an 
undesired state to a desired state, with an appropriate response during plant 
disturbances. Operational objectives vary based on management strategies determined 
by present and future economic outlooks. The optimal operating conditions change 
with the external disturbances and drifting process kinetics. Industrial practice shows 
that a changing production policy is feasible, though shifting the operation from one 
set of process conditions to another may require a change in the control structure. A 
fixed control structure may not assure a smooth transition from one operating region 
to another for better economic return (Morari et al., 1980). 
 
In modern day real-time optimisation systems, the control system should be selected 
that yields the highest profit for a range of disturbances that may occur between each 
optimisation of the set point values (Skogestad, 2000a). In conventional control 
system development this implies finding a fixed control structure that is robust for a 
variety of disturbances, with only the set points and controller parameters changing 
with successive optimisations and adaptive control adjustments. A fluid control 
structure that changes along with the changes in the process and market conditions is 
more desirable. 
 

2.4 SELECTION OF CONTROLLED VARIABLES 

 
Skogestad (2000a) presented a hierarchical six-step method for selecting candidate 
control variables. The first five steps encompass the problem definition, while the 
sixth step entails optimising the control structure based on the problem scope outlined 
in the first five steps. The problem definition involves a degrees of freedom analysis, 
cost function specification, defining operating constraints, steady state optimisation, 
identifying disturbances, and identifying candidate controlled variables. Thereafter, 
the economic loss is evaluated for the alternate sets of controlled variables in the 
presence of the identified disturbances. Sections 2.4.1 to 2.4.4 outline the problem 
definition, while section 2.4.5 pertains to the solution methodology.    
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2.4.1 Degrees of freedom analysis 
 
In order to keep the plant operating at the desired steady state, the available degrees of 
freedom must be specified. With all the degrees of freedom fixed and provided the 
process does not have multiple steady states (i.e., exhibit multiplicity), the remaining 
process variables are uniquely determined. Any sub-set of the available process 
variables could conceivably be selected as controlled variables. However, 
disturbances and sensor noise introduce uncertainty. Certain process variables respond 
more readily to disturbances that shift the operating point away from the economic 
optimum. The final control elements must be used effectively to drive the process 
back to the optimal steady state in the presence of disturbances, sensor noise and 
model uncertainty. The control system's response to these process uncertainties 
depends on the set of controlled variables. Hence an optimal set of controlled 
variables exists, depending on the prevailing disturbances and process conditions 
(Larsson & Skogestad, 2000). The selection of controlled variables should be made 
based on the overall operational objective; thereby the economic objectives must be 
translated into process control objectives.  
 
The number of degrees of freedom for control, Nm, is apparent from the number of 
available manipulated variables (i.e., valves, electrical and mechanical final control 
elements). The number of manipulated variables for maintaining the optimum 
operating condition is typically less than Nm. Nopt is equal to the number of 
manipulated variables, Nm, less the number of manipulated variables, Nm0, that have 
no effect on the cost function, J. For example, the minimum agitation speed may 
provide uniform mixing and further increasing the agitation speed has no effect on the 
mixing performance or unit cost. Furthermore, a sub-set of the Nopt manipulated 
variables must be used to satisfy all active constraints (e.g., product purity) with the 
remainder providing for optimal operation of the unconstrained process variables. 
Therefore, a degrees of freedom analysis determines the minimum number of 
controlled variables that need to be selected for the control system structure.  
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2.4.2 Cost function, constraints and optimisation 
 
A mathematical formulation of the plant-wide control problem allows for quantitative 
analysis while resorting to minimal engineering judgement. The plant-wide control 
problem may be expressed as a scalar objective function formulated on the economics 
of the process, as the economics relate to the process' state space. This cost function is 
typically subject to operational constraints that complete the non-linear programming 
definition as in equations 2.1 - 2.3.  
 
As in Ricker (1995), the steady state economic optimum needs to be found based on 
this scalar objective function. From 1970 to 1990, two approaches have been used, 
almost exclusively, to locate the optimal process steady state; viz. a reduced gradient 
algorithm as implemented in the MINOS program (later versions included a projected 
augmented Lagrangian strategy) and successive quadratic programming (SQP) as 
implemented in the OPT program. For highly non-linear systems, these optimisation 
algorithms have difficulty in converging to the global optimum (Seider et al., 1990). 
More effective optimisation strategies are based on the Newton homotopy-
continuation algorithm for solving non-linear equations (Brengel & Seider, 1992). 
Particularly, evolutionary algorithms such a genetic algorithms offer unique 
opportunities to finding the global optimum for highly non-linear processes.   
 
The open loop dynamics of a non-linear process may vary considerably depending on 
the operating conditions. Even though the optimisation routine may have located the 
global optimum, complex open loop dynamics may prevent linear controllers from 
providing robust control during disturbances. A sub-optimal steady state may need to 
be selected as the operating point to accommodate the limitations of available 
controller development techniques. Analysing the impact of disturbances at the 
operating point using the cost function, provides a quantitative measure for selecting 
controlled variables, though disturbance identification remains a difficult task. 
 

2.4.3 Disturbance classification 
 
Disturbance classification is an important step in developing a control structure, as 
disturbances carry economic implications and therefore require appropriate control 
action (Morari et al., 1980). Disturbances may include (1) mismatch between the 
actual process and the model used for optimisation, (2) operational disturbances 
caused by process upsets and (3) implementation errors owing to measurement noise 
or poor control (Skogestad, 2000a). Although the global optimum of the process 
model may have been found, process/model mismatch introduces a set point error 
akin to an operational disturbance. Operational disturbances are common, since feed 
compositions, physical properties and feed supply rates may vary significantly. Sensor 
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noise (particularly complex sensor technologies such as biosensors) and poorly tuned 
controllers introduce artificial disturbances that may affect the economic return 
adversely. 
 
Typically a disturbance is defined as any process occurrence that causes a deviation 
from set point. However, a deviation from set point does not necessarily imply 
reduced economic return. For example, the substrate feed concentration to a 
bioreactor may vary considerably, but substrate feed concentrations above the 
nominal concentration may allow for greater economic return, provided the control 
system takes advantage of such a disturbance (Brengel & Seider, 1992). The 
definition of a disturbance needs to be broadened.  
 
Skogestad (2000a) distinguished between a set point error and an implementation 
error in a closed loop where the process variable, C, is maintained at Cs. The set point 
error, ecs, is the difference between the optimal value, Copt, and the set point, Cs. The 
implementation error, dc, is the difference between C and Cs. Disturbances and 
changes in raw material costs induce set point error, while poor control and sensor 
noise bring about implementation error. Using these two definitions, the overall error, 
ec, is defined as the sum of ecs and dc.     
 
Frequently, chemical plants are exposed to disturbances of unknown origin, which 
may not be identifiable or easily measured (Stephanopoulos, 1983). Disturbance 
identification is further complicated by uncertainty related to the frequency, 
magnitude or type (i.e., gaussian, step, ramp or white noise) of a given disturbance. 
However, identified or expected disturbances should be classified as non-stationary 
and stationary. Non-stationary disturbances are those that vary slowly with time, such 
as catalyst deactivation. Stationary disturbances are classified as those having a fast 
and local effect on the economic objective function. The disturbance classification 
introduces a temporal control hierarchy with two time scales. Economically 
significant non-stationary disturbances are candidates for optimising control, while 
most stationary disturbances are rejected by regulatory control. The time horizon for 
regulation is thus shorter than for optimisation. The regulation task maintains the 
process around a set of controlled variables, while the higher layer determines the 
optimal set points for those controlled variables in response to non-stationary process 
disturbances (Morari et al., 1980).  
 
Once the expected disturbances to the process have been identified and classified, the 
impact of these disturbances on the cost function needs to be assessed for alternate 
sets of candidate controlled variables (Skogestad, 2000a).  
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2.4.4 Determine alternate sets of candidate controlled variables 
 
Skogestad (2000a) proposed a largely qualitative approach to selecting alternate sets 
of candidate controlled variables from the large number of possible combinations. 
This approach entails satisfying the active constraints (section 2.4.4.1), heuristic 
dominant variables (section 2.4.4.2), and process insight and guidelines as proposed 
by Luyben et al. (1997) in Table 2-5. These alternate sets are evaluated in more detail 
using an evaluation of loss analysis as discussed in section 2.4.5. 
 

2.4.4.1 Operating constraints  
 
As discussed in section 2.4.1, a minimum number of controlled variables need to be 
selected from the total number of process variables to fulfil operational constraints. 
Figure 2-5 illustrates the concepts of an active constraint, an unconstrained flat 
optimum and an unconstrained sharp optimum at steady state conditions. Figure 2-5a 
shows the cost function at the minimum when the controlled variable is at its high 
constraint (e.g, owing to safety considerations). Frequent set point changes are 
typically unnecessary for such constrained controlled variables, since disturbances 
and changing market conditions rarely shift the optimal value away from the active 
constraint. For example, the conversion in a chemical reactor may continually 
increase as the pressure is increased (function of the reaction kinetics). Regardless of 
disturbances or changes in the cost of raw materials, the optimum reactor pressure 
remains at the highest safe operating pressure. However, operation near such safety 
constraints may be complicated by poor control. Although operation just below the 
safety valve lifting pressure may be more profitable, poor control may require a large 
safe operating margin, carrying a large economic penalty. However, product purity 
constraints are also active constraints and may require frequent set point changes 
based on market demands. 
 
Figure 2-5b shows an unconstrained controlled variable where the cost is insensitive 
to the steady state value of the controlled variable. Such controlled variables may be 
vessel levels (i.e., hold-up), which have minimal steady state effect on the operating 
cost. Such vessel levels may be allowed to float above a minimum level, alternately 
the level becomes a controlled variable to maintain material inventory control. Figure 
2-5c shows a sharp unconstrained controlled variable, such as the reaction 
temperature in a chemical reactor, where any deviation to a steady state other than the 
optimal temperature dramatically increases the operating cost.  
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Figure 2-5 - Cost function relationship with controlled variable (Skogestad, 2000a).  

 
The viable controlled variable candidates from the set of process variables need to be 
chosen for the manipulated variables, Nopt. Skogestad (2000a) considered square 
closed loop systems where Nc = Nopt. However, particularly for disturbance rejection, 
selecting more control inputs than strictly necessary provides some feedforward 
control in the control structure. Constrained variables are mostly automatic candidates 
as controlled variables. Constraints may be product specifications (e.g. minimum 
purity), manipulated variable constraints (e.g., non-zero flows) and operational (e.g., 
equipment limits to throughput) or safety limits (e.g., maximum pressure). A 
minimum purity constraint (i.e., active constraint) makes the composition a clear 
controlled variable. Similarly, should pressure constraints exist for safety reasons, 
such a process variable should be controlled. Thereafter, the remaining unconstrained 
process variables are subjected to the engineering insight and experience criteria in 
Table 2-6, which determines their suitability for inclusion as controlled variables 
(Skogestad, 2000a & 2000b).       
 

Table 2-6 - Controlled variable requirements. 

Controlled variable requirements 
1. The optimal values of the controlled variables should be insensitive to 

disturbances, ensuring that the set point error, as defined by Skogestad 
(2000a), is small.   

2. Measurement ease and control accuracy. Unreliable and infrequent 
measurement complicates the control task. 

3. A controlled variable should be sensitive to manipulated variable changes. The 
gain between the manipulated variable and the controlled variable should be 
large. 

4. For multivariable systems, the selected variables should not be highly 
correlated. In other words, the controlled variables should be the state 
variables of the process. 
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Requirement 1 in Table 2-6 ensures that operation remains near-optimal between 
successive optimisations of the controlled variable set points. Requirement 1 also 
prevents significant changes to set points that cater for linear controller 
implementation. The implementation error is not exasperated by continually changing 
set points. For PID control, small implementation errors from set point prevent 
saturation of the manipulated variables. Also, the linearisation of non-linear process 
models around the set point of the controlled variable should remain more valid for 
small implementation errors. Nonetheless, process disturbances need to be detected 
through the controlled variables as early as possible, thereby allowing timely 
corrective (feedback) control actions (Skogestad, 2000a). Stephanopoulos and Ng 
(2000) advocated a departure from linear control structures and therefore proposed 
that controlled variables be selected based on their high sensitivity to disturbances that 
have a significant impact on the operating profit. Furthermore, where L is the 
opportunity cost or loss due to set point errors, ( )cdL ∂∂ /  should clearly not be 
minimised at the cost of a higher L. Operation at the global economic optimum must 
be assured.  
 
Ideally, criteria 1 and 2 in Table 2-6 should not be achieved at the expense of 
operating at the global economic optimal. For example, the global optimum for the 
bioreactor state variables in Figure 2-4 is highly sensitive to disturbances and control 
is complicated by chaotic dynamics. Less sensitivity to disturbances and greater 
control accuracy is possible at local optimum operating points, but at a significant 
economic cost. In other words, a small implementation error should not be 
accompanied by a large set point error, where the set point error is always defined 
from the global optimum. For highly non-linear systems with linear control systems, 
adhering to criteria 1 and 2 may necessitate a large overall error, though the overall 
error has been minimised within the performance limits of the linear control system.  
Criteria 3 and 4 in Table 2-6 relate to the appropriate pairing of controlled variables 
and manipulated variables, thereby avoiding large changes in final control elements to 
disturbances and avoiding process interaction. Both criteria 3 and 4 are more 
important to multi-loop PID systems than to MIMO control systems. 
 
Adhering to the four criteria in Table 2-6, requires drawing enormously from 
engineering insight and experience. In addition, the concept of dominant variables 
may prove useful in selecting alternate candidate sets of controlled variables. 
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2.4.4.2 Process insight and dominant process variables 
 
As discussed in section 2.3, the search for the optimal set of controlled variables may 
be a large combinatorial problem. A candidate set of controlled variables is selected 
from the total number of process variables. The economic performance of a process 
facility is determined primarily by the steady state condition. Process variables that 
have no steady state effect (i.e., no economic consequence) are removed from the total 
set of process variables that may be selected as candidate controlled variables. 
Consequently, the dimension of the combinatorial problem is reduced by eliminating 
the liquid levels in separator or buffer tanks that typically have no steady state effect 
(Skogestad, 2000a). The level in a vessel may have a steady state effect, should the 
level determine the available heat transfer area. The residence time, determined by the 
liquid level, in reaction vessels may also have a profound effect on the control 
strategy at steady state. Some process variables may thus be eliminated from 
contention as possible candidate controlled variables based on engineering judgement 
and heuristics.  
 
The vector of primary or economic performance variables, YP, defines the product 
specifications and the process conditions (Larsson & Skogestad, 2000). Equation 2-5 
describes a linear dynamic system with three state variables and one input variable:  
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where, xn is a state variable, Amn are the elements of the state matrix, Bm are the 
elements of the input matrix and um is the input. In other words, the primary process 
variables are the state variables, i.e. the smallest set of variables that together with the 
input (i.e., manipulated) variables uniquely determine the steady state and dynamic 
behaviour of the process. The state variables are often not measured directly, owing to 
unavailable sensor technology, a lack reliable sensor technology or sensor expense. 
For example, the temperature in a binary distillation column is an inexpensive, 
reliable means of inferring the concentration in the product. The state variables are 
related to the measured variables so that: 
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where, ym are the measured process variables and Cmn is the input matrix. Note that 
the total number of measured variables, Yd, may be greater or less than the number of 
state variables. Typically, a control system only utilises a sub-vector, Ycd, of the total 
available process variables. The control objective is thus to maintain Yp at the optimal 
operating conditions by keeping Ycd at fixed values by manipulating the input vector 
Ud. A process variable vector Ycd thus needs to be matched with Ud, ensuring 
maximum compensating effect on Yp. 
 
The dominant variables are those process variables that have the greatest influence on 
the dynamics of the process, e.g. the reaction temperature in a chemical reactor. 
Dominant process variables are invariably those process measurements that most 
accurately represent the dominant state variables. For example, in equation 2-6, y1 and 
y2 may be dominant process variables with the state variables xi having lesser 
representation in y3 - y5.  
 
Conceptually, dominant state variables may be explained by considering dynamic 
model reduction and state estimation studies. The Tennessee Eastman challenge 
process is a rigorous dynamic model of a plant-wide industial process. The process 
dynamics is described completely by 50 state variables and 12 manipulated variables. 
However, Ricker & Lee (1995b) showed that 26 state variables and 10 manipulated 
variables are sufficient for estimation of the dominant dynamic and steady state 
responses. Assumably, a large number of the 50 state variables in the complete model 
are required for describing minor transient and steady state behaviour.  
 
Partial control implies the use of only process variables that represent the dominant 
state variables, thereby obtaining acceptable control of the other state variables that 
may be unknown or immeasurable. Larsson & Skogestad (2000) doubted the 
mathematical usefulness of this concept, since no explicit mathematical procedure 
exists for identifying such dominant variables. Partial control has historically been 
approached in a heuristic manner. Clearly, biological control systems (i.e., organisms) 
are highly reliant on identifying sensori-input variables (e.g., shape, colour, sound, 
smell etc.) that represent the dominant state variables on a given moment or situation, 
using these sensori-input variables to constructing cause-effect models of their 
environment and act accordingly. 
  
Nevertheless, Skogestad (2000a) emphasised that insight and experience of dominant 
process variables remains vital, since the number of candidate process variables may 
be large and the possible combinations prohibitive for timely analysis. For systems 
with many process variables, selecting alternate sets of candidate controlled variables 
is non-trivial. Though the guidelines by Skogestad (2000a) are useful, Table 2-6 and 
the heuristic approach of assessing dominant process variables offer no systematic 
means of selecting a number of alternate sets of candidate controlled variables. 
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Ideally, each possible set of candidate controlled variables should undergo a loss 
evaluation, which assesses the penalty (economic loss) for fixing their set points 
during known disturbances. It is conceivable that the even after meticulous loss 
analyses of a few alternate sets selected on engineering judgement, the optimal set of 
controlled variables may not have been considered.  
 
Also, process dynamics have not been considered, such as controllability. Instead, 
Skogestad (2000a) proposed using only a steady state model to assess the economic 
loss associated with identified or known disturbances. However, most disturbances in 
chemical processes remain unmeasured and unidentified, owing to complex causal 
relationships; otherwise feedforward control could be used to improve disturbance 
rejection. 
 
Stephanopoulos and Ng (2000) emphasised that the selection of controlled variables 
cannot be determined without considering the impact of disturbances and model 
uncertainties with the optimal controller design simultaneously. Stephanopoulos and 
Ng (2000) concluded that a plant-wide control configuration entails essentially a 
design of a large multi-variable controller, assumably using a large number or all of 
the available process variables, in the presence of uncertainty. Stephanopoulos and Ng 
(2000) further concluded that process non-linearities and high dimensionality require 
sophisticated methods outside the realm of linear control theory. Separating the 
control structure selection, i.e. the controlled and manipulated variable selection, from 
the controller design necessitates an approach with numerous iterations.  
 
Following the hierarchical procedure by Skogestad (2000a), once the alternate sets of 
candidate controlled variables have been determined, these sets of controlled variables 
are subjected to an evaluation of loss. 
 

2.4.5 Compile the evaluation of loss 
 
Although existing control theories, particularly linear control theory, are mature in 
devising control laws from linear models, these theories offer minimal assistance to 
selecting the optimal vector of controlled variables for such control law specification. 
The primary difference between the mathematically orientated approach and the 
heuristic approach rests in the selection of the controlled variables. The mathematical 
approach relies on formalised optimisation of the control objectives as these 
objectives relate to process economics and the impact that disturbances have on the 
process' economic return. The heuristic approach relies primarily on engineering 
judgement and guidelines related to process structure (see Table 2-5) for determining 
the set of controlled variables. 
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Morari et al. (1980) and Larsson & Skogestad (2000) stressed an economic approach 
so that the steady state sensitivity of the economic loss, L, to disturbances is 
minimised ( )cdL ∂∂ / . The set of controlled variables that yields the lowest profit loss 
for a range of prevailing disturbances should be selected.  
 
The loss, L, is the difference between the actual operating cost using a specified 
control strategy and the true minimum operating cost, i.e. L = J - Jopt. For multi-loop 
PID control, the least complex control strategy involves maintaining all controlled 
variables at constant set points. Thereby, the complex on-line dynamic optimisation is 
reduced to a more straightforward feedback problem. Self-optimisation control is 
achieved should such a constant set point strategy result in acceptable operation or 
loss, without re-optimisation during disturbances (Skogestad, 2000a).  
 
 

Constant C2,s

Constant C1,s

Loss

Re-optimised Jopt(d,t+1)

d(t)

Jopt(d,t)

Cost J

Disturbance, d d(t+1)
 

Figure 2-6 - Economic loss induced by not re-optimising the set point vector for the controlled 
variables in response to a change in a particular disturbance d. Using the set of controlled 
variables, C2,s, results in a large economic penalty as compared to the more economic loss of 
keeping C1,s constant (Skogestad, 2000a). 

  
For each evaluation, the set points are typically fixed at the nominal optimum and the 
effect of each identified disturbances is recorded. In Figure 2-6, assume that the 
nominal optimum has the operating cost, Jopt(d,t) with no disturbances at d(t). 
Introducing a single disturbance at d(t+1), while keeping C1,s constant has an 
associated self-optimising loss. Note that keeping an alternate set C2,s constant has a 
far larger self-optimising loss than C1,s for this individual disturbance. The mean loss, 
Lmean, is computed for alternate sets of controlled variables, Ci,s, by averaging the loss  
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for each identified disturbance. Based on the number of identified disturbances, the 
evaluation of loss is weighted in the average.   
 
As noted in section 2.4.3, disturbances should not always be classified as detrimental 
to the process economics. Averaging the effect of disturbances could mask the 
negative effect of individual disturbances. In addition, disturbances may have 
interacting dynamics, whereby two simultaneous disturbances result in far greater 
economic loss than the sum of the economic loss associated with each individual 
disturbance. In this regard, even a finite set of disturbance combinations may not be 
sufficient to gauge the full impact of the identified disturbances. Also, this loss 
analysis assumes that the process engineer has knowledge of all possible prevailing 
disturbances. In the wider process design framework, weighting the effect of 
disturbances gives no hint as to how the process may be changed to better reject a 
particular disturbance. Also, it remains unclear as to how the above evaluation of loss 
is calculated should the process be open-loop unstable at the economic optimum. 
 
In general, as is apparent from the discussion in section 2.4, the controlled variable 
selection process relies on critical decisions that are frequently made with no 
quantitative justification, resorting to subjective decision-making. Operational 
objectives are translated into a set of desired control variables by a guiding set of 
principles that has no assurance of finding the global optimum.  
 

2.5 SELECTION OF MEASURED AND MANIPULATED VARIABLES 

 
Typically, only a sub-set of the available process measurements and manipulated 
variables are used in feedback control synthesis. As in section 2.4, the vectors of 
potential measurements and manipulated variables are largely determined by the 
impact of disturbances on the operational objectives. The set of manipulated variables 
dictates the ability of the control system to maintain the control objectives (Morari et 
al., 1980).  
 
Measurements aim to monitor the selected controlled variables either directly or 
inferentially. The key criterion for measurement selection pertains to observability of 
all controlled variables. An uncertainty analysis should also accompany the 
measurement selection, viz. sensor noise, measurement delay and incorrect inference 
of the actual controlled variables (Stephanopoulos and Ng, 2000). 
 
Stephanopoulos and Ng (2000) contented that all available manipulated variables 
should be included in the control of the process in a large model predictive control 
implementation. Exceptions are listed in Table 2-7. Also, a number of manipulated 
variables may have no economic impact regardless of being varied. For example, an 
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agitation system may provide uniform mixing at the lowest agitation speed, meaning 
that the system has been over-designed by including a variable speed drive.  
 

Table 2-7 - Exceptions to using all the manipulated variables (Skogestad & Ng, 2000) 

1. A large multi-variable controller is infeasible due to high dimensionality or 
significant modelling uncertainties. 

2. A decentralised or hierarchical approach with PID controllers is preferred, 
requiring appropriate pairing of the measured and manipulated variables. 

3. Sensor failure is likely or possesses a significant risk to the control strategy. 
 
Naturally, the chosen set of measurements and manipulated variables is highly 
correlated with the control system's performance. Therefore, the selection of the 
optimal measurement-manipulated variable structure must be considered in unison 
with the quantitative evaluation of the control system. . For multi-loop SISO systems, 
process interactions determine feasible sets of manipulated variables for maintaining 
the controlled variables. Process controllability, which implies an analysis of 
interactions between variables, may be assessed with linear techniques such as the 
RGA, singular values and singular vectors (Larsson & Skogestad, 2000). These 
techniques may have limited application to structuring a large multi-variable control 
task (Ricker, 1995).  
 

2.6 CONTROLLER CONFIGURATION AND CONTROL LAW 

 
Once the controlled variables that best translate the economic objectives to control 
objectives have been identified, the synthesis of information flow from measured to 
manipulated variables follows. This may be a non-trivial task should significant 
overlapping interdependencies exist between measured and manipulated variables. It 
is important to understand that the methodology in section 2.4 only selects a possible 
optimal set of controlled variables, but does not suggest how these controlled 
variables should be paired with the available manipulated variables. Incomplete 
information compounds the synthesis process requiring robust solutions to 
uncertainties. A sensitivity analysis is paramount to ensure robust performance 
(Stephanopoulos, 1983). Morari et al. (1980) stated that it is desirable to define a 
control structure with the lowest degree of complexity necessary to accomplish the 
control task. Given the unavoidable mismatch between the actual process and the 
process model, the "lowest control structure complexity" should rather be substituted 
with the most pliable structure (i.e., affording plasticity) to account for uncertainty.  
 
Plant-wide control structures have ranged from decentralised PID to MPC strategies. 
Should the performance of a decentralised PID strategy compare to a MPC 
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implementation, industry will necessarily adopt the decentralised PID strategy. 
Structural simplicity and operator acceptance favour a decentralised PID strategy. 
Conversely, should the MPC control offer substantial performance improvements, 
economic considerations outweigh historic preference (Robinson et al., 2001). PID 
strategies serve as a reduced model to a plant-wide control problem, owing to the 
perceived simplicity of design and reduced engineering time.   
 
Decentralised control is motivated by a decomposed control systems that may be less 
prone to model uncertainty. Process judgement imposes a certain control 
configuration, which explicitly provides process information. A centralised controller 
(e.g., MPC) would need to obtain such process information from a dynamic process 
model. However, process judgement is frequently subjective and non-intuitive process 
behaviour may result in incorrect control configurations, which impact the rest of the 
control design. Furthermore, efficient decoupling of decentralised SISO controllers 
requires a dynamic model, otherwise decoupling is also based on trial-and-error 
tuning. Decentralised control is naturally preferred for non-interacting processes, but 
few chemical plants are non-interacting. Multivariable control (e.g., MPC) improves 
the control performance of interacting processes dramatically and provide robust 
tracking of moving constraints (Larsson & Skogestad, 2000). 
 
Despite the clear benefit of a non-linear, multivariate approach to plant-wide control, 
research on plant-wide control has remained confined to linear multi-loop SISO 
control structures (e.g. simple PID control, cascade control and ratio control). 
Nevertheless, considerable advances in the industrial implementation of large model 
predictive and other multivariable control systems have been made. Simple 
multivariable model predictive control structures overcome the pairing and tuning 
complexities arising from multi-loop SISO control implementations. Control 
methodologies such as model predictive control, robust control and real-time process 
optimisation reduce the dependency on multi-loop SISO controllers.  
 
Once the controlled variables and manipulated variables have been selected, the 
regulatory and supervisory control layers are designed. The regulatory layer has a 
stabilising and disturbance rejection function. The regulatory design addresses 
controllability such as the pairing of controlled and manipulated variables. Bristol's 
relative gain array may have limited use for highly non-linear processes. Most control 
configurations are comprised of nested control loops, which make use of secondary 
measurements. Secondary measurements are used in fast inner control loops, where 
local disturbances are rejected before these disturbances impact on the slower outer 
control loop. Secondary measurements should be selected so that updates to their set 
points by the outer loops are minimal.  (Larsson & Skogestad, 2000). 
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Table 2-8 - Methodology proposed by Price et al. (1994) 

Hierarchical decomposition on control objectives (Price et al. (1994) 
1. Inventory and production rate control 
2. Product purity control 
3. Operating and equipment constraints 
4. Improved economic performance 

 
Selecting the controlled variables in section 2.4 involved a top-down approach, 
whereas the control system design is a bottom-up approach. Plant-wide control 
departs from the unit operation based approach, which has proven unsuccessful for 
plants with significant material recycle and heat integration. Plant-wide control 
follows a hierarchical decomposition based on either process structure or throughput, 
control objectives or time scales. Luyben et al. (1997) proposed the approach in Table 
2-5. 
 
Price et al. (1994) proposed the methodology as outlined in Table 2-8, which first 
stabilises the process and determines the throughput manipulator, after which the 
production specifications are addressed. McAvoy and Ye (1994) based their 
decomposition on time scales. McAvoy and Ye (1994) proposed a four stage method 
as described in Table 2-9. Steps 1-3 are based on control loop speeds. Step 1 rejects 
local disturbances, while step 2 involves screening with controllability tools such as 
RGA.  
 
The selection of the sets of controlled and manipulated variables is unavoidably 
related to the performance of the final control system. The selection of the input-
output connections, that form the control loops, must be considered simultaneously 
with the quantitative evaluation of the developed control system. Zheng et al. (1999) 
evaluated a large number of different control structures, control laws and tuning 
parameters based on the integral absolute error of the product purity during process 
disturbances. Owing to this combinatorial problem, Zheng et al. (1999) highlighted 
the difficulty in selecting a set of controlled variables and emphasised the lack of an 
efficient method. 
  
Theoretical considerations in pairing controlled and manipulated variables rest on 
controllability measures such as the relative gain array (RGA), singular values and the 
condition number along with singular vectors. The benefit of these controllability 
techniques has been evident for unit operations, but less so for effective structuring of 
plant-wide control systems (Stephanopoulos & Ng, 2000). Stephanopoulos & Ng 
(2000) proposed using the modular multivariable controller design that selects the best 
set of controlled variables based on (1) each manipulated variable's effect on the 
controlled variable (i.e., analysis of the open-loop gain), (2) the model uncertainty and 
(3) the non-minimum phase behaviour of the input-output relationships.  
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Table 2-9 - Hierarchical decomposition based on time scales. 

Hierarchical decomposition based on time scales (McAvoy & Ye, 1994) 
1. Design inner cascade loops 
2. Design basic decentralised loops, other than the control loops associated with 

purity and production rate. 
3. Production and purity control loops. 
4. Higher layer controls. 

   
Once a control structure has been designed, real-time optimisation, using steady state 
models and operational objectives, should update the set points for the controlled 
variables (Larsson and Skogestad, 2000). Particularly for large disturbances and 
shifting market conditions, the new set points may be located far from the original 
operating region. The PID tuning parameters in this new operating region may also 
need revision for highly non-linear processes. The final process control system must 
be validated as an important final step through non-linear dynamic simulation 
(Larsson and Skogestad, 2000).  
 

2.7 CONCLUDING REMARKS 

 
As discussed in the following two chapters, evolutionary reinforcement learning 
(ERL) circumvents the use of heuristic methods in plant-wide control designs. 
Though not algorithmic, or strictly mathematical in nature, evolutionary 
reinforcement learning offers real opportunities. ERL does not require identification 
of major disturbances or a throughput manipulator, which may be non-trivial tasks. 
ERL implicitly identifies the necessary controlled variables and implicitly pairs the 
controlled variables with the available manipulated variables in a non-linear 
multivariate controller.  
 
Self-optimisation, as defined by Skogestad (2000a), appears plagued by heuristic 
considerations that may not produce the desired result. ERL methods, such as 
symbiotic memetic neuro-evolution (SMNE) also seek self-optimising control but aim 
to achieve this via neural network generalisation, which requires no explicit 
disturbance identification. The efficient generalisation of neural networks to novel 
process conditions, typically allows robust performance despite significant 
disturbances. Where robust generalisation is not achievable, adaptive control via 
adaptive neural swarming (ANS) provides for on-line adaptation of neural network 
weights to track a changing economic optimum.  
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Chapter 3 introduces introductory concepts for efficient reinforcement learning. 
Chapter 4 presents the neurocontrol algorithms SMNE and ANS that form the 
cornerstone of a plant-wide neurocontrol strategy.  
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3 EVOLUTIONARY REINFORCEMENT LEARNING 
 
OBJECTIVES OF CHAPTER 3 
• Highlight the complexities that need to be addressed for effective reinforcement 

learning in a dynamic environment. These elements of reinforcement learning are 
discussed in the following sections. 

 

3.1 AVAILABLE SOURCES OF INFORMATION FOR CONTROL 

SYSTEM DESIGN  

 
In some control tasks a human operator provides the feedback control action, 
especially where it has been difficult to design an automatic controller using standard 
control techniques. It may have been impractical to obtain an analytical model of the 
controlled system. For example, industrial flotation control is typically operated in the 
open-loop, where experienced human operators make control decisions based on 
visual input such as froth colour and froth bubble size. Given an experienced human 
operator, supervisory control, where an automatic controller mimics the actions of a 
human operator, becomes possible. A neural network or an expert system may 
provide the knowledge representation and required control formalism. Training such a 
neural network involves providing the network with the same sensory input 
information that a human operator may receive. During training, the neural network 
targets outputs that correspond to a human's control input to the process. Similarly, 
expert systems rely on gathering process knowledge from plant operators and 
formalising this knowledge in fuzzy rules. Such training techniques are deemed 
supervised learning, where the error information from a desired target output is used 
to adjust the neural network weights.  
 
Obtaining the set of input vectors that correspond to desired target output vectors 
becomes a major control challenge. The ability to obtain supervisory information 
from operators is limited by the operator's ability to communicate such information. 
For example, a flotation operator (regardless of articulation) may not be consciously 
aware of what visual state information he extracts from the froth surface. He may 
agree with an interviewer that bubble shape, size and froth colour are important 
considerations, not being consciously aware that he also considers bubble surface 
velocity in determining the control action. Also, the accuracy of such information may 
be questionable. Information from one operator to another may be contradictory, 
requiring reconciliation of expert knowledge. As knowledge acquisition in the design 
of control expert systems has proven to be a bottleneck, research in machine learning 
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has attempted to compensate by broadening the base of accessible sources of 
knowledge (Greffenstette et al., 1990).  
 
In rare instances a detailed fundamental non-linear dynamic model is available. 
Uncertainty regarding the applicability of the linearisation for formal linear control 
design may require a more robust control approach. As described in chapter 2, the 
appropriate plant-wide control configuration using multi-loop PID controllers may not 
be determined easily. Alternately, process information for control purposes may also 
be obtained by inverting such rigorous process models. This approach also fits into a 
supervised learning guise. This approach relies significantly on the fidelity of the 
inverse model used as the controller. The robustness provided by the training 
algorithm is paramount. A lack of robustness has primarily been attributed to a lack of 
error feedback to the controller. Static inverse neural networks have been prone to 
steady-state off-set. On-line learning may alleviate this robustness concern, by 
adjusting the inverse of the model on-line (Hunt et al., 1992). In addition, although a 
causal relationship exists been the input and output plant data, there is no assurance 
that the inverse dynamics has a corresponding unique relationship (Krishnapura and 
Jutan, 2000). 
 
 Kim et al. (1997) also alluded to learning stability difficulties and a lack of 
robustness that arises in the inverse control scheme. Chemical plants may be operated 
at high pressure and/or temperature, thus the control scheme must guarantee closed-
loop stability. To improve robustness, a feedback controller may be included in the 
direct inverse control scheme. Furthermore, Stephanopoulos & Han (1996) indicated 
that there is a growing body of evidence that the use of neural networks to map the 
process inverse directly from operating data is brittle and prone to failure. 
 
The most widely applied technique in multivariable controller design involves 
developing input-output empirical models from historical plant data for use in a model 
predictive control (MPC) framework. MPC extracts information for control purposes 
from a forward, dynamic model using optimisation algorithms, such as the Powell's 
algorithm (Powell, 1964), to minimise an objective function on-line. The success of 
MPC has been attributed partly to the ability of control engineers to construct 
empirical input-output models from plant test data (Morari & Lee, 1999). Such input-
output models are constructed in a supervised training guise, since large sets of 
training data are available from plant historical databases. However, the MPC 
framework is non-supervisory, since no examples of exemplary target data are used to 
devise the control action. Rather MPC is goal-directed using an objective function.  
 
The format of available knowledge dictates the selection of an appropriate learning 
technique or controller development method (Greffenstette et al., 1990). Many real 
world practical problems that may be subject to automated learning, do not fit well 
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into the supervised learning model (Yao, 1999). Process control is part of a class of 
problems described as sequential decision tasks, for which effective performance 
evaluation is only possible after a series of sequential actions have been executed. A 
goal-directed approach may be more applicable than a supervised learning approach. 
In this case, the development of effective decision tasks is subject to testing the 
developed controller against a simulated model of the task environment. The 
controller may subsequently be incrementally modified based on the simulation 
experience in a reinforcement learning framework (Greffenstette et al., 1990). Rather 
than optimising control performance over a limited horizon as for MPC 
implementations, reinforcement learning extracts control knowledge from a process 
model into a generalisation tool representation (e.g. neural networks, fuzzy logic) off-
line.   
 
The motivation for using simulation models to learn control strategies lies in that 
making mistakes on real systems may have costly or dangerous consequences. 
Learning may require experimenting with control strategies that occasionally produce 
unacceptable results in a real world environment. The use of simulation models has 
been instrumental in several reinforcement learning efforts (Greffenstette et al., 1990). 
 

3.2 ELEMENTS OF REINFORCEMENT LEARNING 
 
Reinforcement learning is a computational approach to understanding and automating 
goal-directed learning and decision-making. It is distinguished from other 
computational approaches by its emphasis on learning from direct interaction with a 
dynamic environment, without relying on exemplary supervision via target data or 
complete models of the environment. A learning agent consequently needs to sense 
the state of its environment and take actions that affect the current environmental 
state. Furthermore, the agent requires a clearly defined goal relating to a desired 
environmental state or what constitutes the successful completion of a task. 
Reinforcement learning provides a framework for explicitly defining the interaction 
between a learning agent and its environment in terms of states, actions and rewards 
in achieving a specified goal (Sutton & Barto, 1998). 
 
Evolutionary reinforcement learning (ERL) searches the solution space of possible 
control strategies to find a control strategy that encompasses effective performance in 
the dynamic environment. This approach has been taken utilising genetic algorithms 
and genetic programming, as well as other novel search techniques, such as simulated 
annealing and tabu search (Kaelbling et al., 1996).  
 
A decision making agent interacts with a dynamic process in an iterative fashion 
(Figure 3-1). In process control the process is generally deterministic and may be 
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stationary or non-stationary. In non-stationary processes the agent's evaluation phase 
must be long enough to allow for the non-stationary trend to emerge. The evaluation 
phase must be long enough for the neurocontroller to obtain useful experience from 
the simulated process. Initially the system may be at some state, st. The agent is 
connected to the dynamic process via perception (i.e., sensors) and actions (i.e., 
manipulated variables). At each interaction step, the agent receives sensory 
information that is either a full or partial state representation of the process. The agent 
observes the current state of its environment (or a representation thereof) and selects a 
control action, at. The action impacts the process that enters a new state, st+1. A 
reward, rt, is assigned based on the objective function value of the current state, st. 
The rewards, rt, over a defined evaluation period are accumulated and the objective is 
to determine a sequence of tasks that will maximise the expected total reward. The 
agent can learn to do this over time by systematic causal learning; mapping states to 
actions guided by a wide variety of algorithms through the reward signal (Kaelbling et 
al., 1996). The input signals to the agent only provides state information for the 
environment and do not explicitly direct the agent towards a control strategy. 
Learning is only based on the total reward during the evaluation period (Greffenstette 
et al., 1990). 
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Figure 3-1 - Agent-environment interaction in a reinforcement learning framework. A 
neurocontroller agent interacts with a dynamic process to learn an optimal control policy from 
cause-effect relationships. 

 
As reinforcement learning problem definitions become more complex, the number of 
possible states observations for the environment generally grows exponentially. 
Therefore, most practical reinforcement learning problems have a large number of 
possible state observations. For large state spaces, learning agents cannot possibly 
encounter every state and must apply action decisions, learned from previously 
observed states, to states not observed during learning.  
 
Real world applications preclude storing the rewards associated with all possible 
states and actions. Except in very small environments, storage of reward 
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representations presents an impractical memory requirement. It also makes inefficient 
use of experience. In a large, smooth state space it is generally expected that similar 
states will have similar reward values and similar optimal actions. A more compact 
representation than a simple look-up table is thus required. The difficulty in learning 
in large state spaces is addressed through generalisation techniques, which allow for 
compact storage of learned information and sharing of knowledge between "similar" 
states and actions. The reinforcement-learning model requires the storage of a variety 
of mappings; including state to action policy transitions (S → A) and deterministic 
state transitions (St x A → St+1). Generalisation tools such as artificial neural 
networks, fuzzy logic and genetic programming may be utilised to compactly 
represent these mappings (Kaelbling et al., 1996). 
 
The learning process is impacted largely by the observability of the state (i.e., the 
Markov property), the balance between exploration and exploitation of the 
environment, how reward is allocated (i.e., credit assignment problem) and how the 
future is taken into account (i.e., behaviours of optimality).   
 

3.2.1 The Markov Assumption 
 

3.2.1.1 The Markov Property 
 
The greater majority of learning algorithms for reinforcement learning application 
focus on decision tasks that are described as Markov decision processes (MDP). A 
Markov control task implies that for each moment in time the agent, (1) directly 
observes the full state of the environment and (2) the outcome of the action, st+1 and 
rt, depend only upon the action taken, at, and the current state, st. 
 
An agent may have access to all state information either through external sensors or 
internal representation. Process systems of this type are said to be memoryless and to 
satisfy the Markov property. The Markov property implies that knowledge of the full 
state is always sufficient for optimal control. Thus, even though control strategies may 
incorporate additional information (e.g. a history trace), these strategies cannot 
outperform the best control strategy based upon full state information. Formally, a 
decision task is non-Markov, if additional information other than the observed state 
can be used to better model the process dynamics and improve control (Whitehead & 
Lin, 1995). 
 
Although the Markov assumption holds for a wide variety of control problems, 
numerous tasks are inherently non-Markov. These tasks are referred to as hidden state 
tasks, since information for representing the full state of the environment is omitted 
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from the agent's input. Two significant control problems that are not naturally 
formulated as Markov decision processes, are (1) where the system has a significant 
degree of control over the information collected by its sensors (e.g., in active vision) 
and (2) where the system has a limited set of sensors that are not able to provide 
adequate information regarding the present state of the environment (Whitehead & 
Lin, 1995). 
 

3.2.1.2 The ubiquity of non-Markov tasks 
 
Markov tasks are an ideal. Non-Markov tasks are the norm. An agent that is uncertain 
of the full environmental state necessarily faces an internal decision problem that is 
non-Markov. Sources of uncertainty abound. Sensors have physical limitations and 
are often matched imperfectly to a given task. Sensor data is typically noisy, 
sometimes unreliable, and full of spurious information. Sensors also have limited 
range. State information may also be hidden in time, that is, the agent requires past 
and current sensor information in order to take appropriate action (Whitehead & Lin, 
1995). 
 
Such hidden state tasks thus arise when temporal features (such as velocity and 
acceleration) are important for optimal control, but not included in the system's 
primitive sensor set. Even if perfect sensors were available, many control problems 
are too ambiguous or ill-posed to specify the full state space in advance. Indeed, part 
of the agent's task may be to discover a useful set of state variables for solving the 
problem. Integrating the learning and active perception tasks invariably leads to non-
Markov decision tasks. Active perception requires an intelligent agent to actively 
control its sensors in order to sense and represent information that is relevant to its 
ongoing activity. If an agent must, as part of the task, learn to control or select 
appropriate sensors, its internal control problem will necessarily be non-Markov. 
During learning there will be periods of time when the agent will improperly control 
or utilise the available sensors, fail to attend to a relevant piece of information, and 
fail to unambiguously identify the state of the external task (Whitehead & Lin, 1995). 
 

3.2.1.3 Difficulties for reinforcement learning 
 
Intelligent control systems must deal with informational limitations posed by their 
sensors. The straightforward application of traditional reinforcement learning methods 
to non-Markov decision problems in many cases yields sub-optimal results and in 
some cases severely degraded performance. These difficulties stem from the agent's 
inability to obtain accurate estimates of the environment's state variables from the 
sensor inputs. Without accurate estimates the agent cannot accurately gauge the 
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applicability of the control strategy. Also, relevant states (hidden states) may be 
omitted as sensory input to the agent. Due to poor sensor information two actual states 
in the environment may be misperceived as a single state in the agent's internal 
representation, viz. perceptual aliasing (Whitehead & Lin, 1995). Evolutionary 
methods are suited to problems where the state of the process cannot be easily 
determined (Sutton & Barto, 1998). 
 

3.2.2 Exploration and Exploitation 
 
Even with full state representation from the agent's sensor inputs, a balance must be 
maintained between exploration and exploitation in the agent's search for an effective 
control strategy. In order to gain a greater reward, an agent must prefer actions that it 
has tried in the past and found to be effective in producing rewards. However, in order 
to discover such actions, it needs to perform actions that it has not attempted in the 
past. The agent has to exploit what it has learned in order to obtain reward, but it also 
has to explore to pursue more effective actions in the future. Neither exploration nor 
exploitation may be pursued exclusively, without failing to learn the task. The agent 
must try a variety of actions and progressively favour those that produce improved 
rewards (Sutton & Barto, 1998). A greedy strategy prefers exploitation over 
exploration, which could lead to discovering local optima rather than the global 
optimum (Kaelbling et al., 1996). For neural network applications, the available 
neurons thus map regions of the sub-optimal regions of the state space, starving the 
true optimal regions of representation. Exclusive exploitation thus reflects a 
convergence method prone to finding a local optimum. 
 
Evolutionary reinforcement learning methods effectively balance exploration and 
exploitation of the solution space by maintaining a population of agents that execute 
different control strategies. As multiple strategies are represented in the population, 
evolutionary techniques sample various control decisions. Evolutionary search 
methods progress non-randomly by probabilistically assigning a greater number of 
evaluations to strategies that display more effective behaviour than an average 
strategy. This may be regarded as an exploitation step. The evolutionary operators 
(e.g., crossover) produce offspring that represent an exploration step into the solution 
space. Other than in the case of random exploration strategies, this exploration step is 
directed towards solutions that have a greater probability for producing greater 
rewards. Offspring of effective parents will probabilistically have a similar or 
improved performance in comparison with their parents. Exploitation is also 
maintained as parents with high fitness values are often transferred unchanged to the 
next generation for evaluation. Maintaining genetic diversity ensures that the learning 
algorithm is also able to adapt to non-stationary environments.   
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Learning from causal interactions implies that the current best control strategy needs 
to be updated to a new control strategy that produces greater reward. Consideration 
needs to be given to how much greater the reward must be, before it is considered 
prudent to update the current control strategy (Moriarty, 1997). Evolutionary 
strategies make revisions by applying genetic operators to the population, only once 
several agents in the population, each over a sequence of actions, have been 
evaluated. Revisions are thus based on a wide pool of global information. Updating 
using information gathered from several states and actions, reduces the probability of 
error owing to reward biasing as a result of occurrences in the environment (Moriarty, 
1997).  
 
An attractive feature in maintaining a population of agents lies in that even though a 
single agent's reward may not reflect the agent's intrinsic value, evolutionary 
algorithms tend to maintain a degree of robustness. A genetic algorithm's replacement 
policy typically replaces the weakest individuals in the population. Provided that the 
agent's biased reward (fitness) is not significantly lower than its actual intrinsic 
reward, the agent may survive without change into the next generation. Another 
evaluation opportunity is thus afforded.    
 

3.2.3 Credit Assignment and Behaviours of Optimality 
 
An agent's actions not only determine the reward at the current time step, but also the 
next state of the process. The agent must take into account the possible reward value 
of the next state in completing the task, along with the state's current reward when it 
decides which action to select. The model of long-run optimality determines exactly 
how the agent should take the value of the future into account. The agent needs to 
learn from delayed reinforcement. It may take a long sequence of actions, receiving 
insignificant reinforcement to finally arrive at a state with high reinforcement. The 
agent must learn which actions are correct based on reward that is likely to be 
obtained arbitrarily far into the future (Kaelbling et al., 1996). 
 
To provide effective reinforcement to an agent, a specification is required regarding 
how the agent should take the future into account, when taking control actions in the 
present. Many models of optimal behaviour exist. Recall that each state, st, has an 
associate reward value, rt. The finite horizon model maximises an expected reward for 
a limited number of time steps into the future. The infinite-horizon discounted model 
takes a large time horizon into account, but requires the agent to increase performance 
from one time step to the next by discounting (i.e., reducing) the value of future 
rewards. The infinite-horizon discounted model thus requires an agent to reach states 
with high rewards in less time, as such states have reduced reward farther into the 
future. The average-reward model requires the agent to take actions that optimise its 
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long-run average reward. No distinction is made between a control policy that gains 
significant reward in the initial execution phase and a control policy that garners 
significant reward in the latter execution phase. However, an average credit 
assignment makes comparisons between two agents with the same total reward 
difficult (Kaelbling et al., 1996).  
 
A given behaviour of optimality affects the control response of an agent, but does not 
provide information on how individual control actions contributed to the total reward.  
Control problems that rely exclusively on the comparatively uninformative failure 
signal for feedback, present a challenging problem to reinforcement learning 
techniques. Consider a sequence of discrete (binary 1 or 0) control actions followed 
by a failure signal (F). At any instance, the agent may thus select only between a high 
(1) or a low (0) output signal in response to its environment. In the following action 
sequence 100011110000F a classic credit assignment problem exists (Whitley et al., 
1993). 
 
 In such an action sequence, distributing credit (reward) for success or failure among 
the many control actions that produced success or failure becomes a difficult task. 
Each ultimate success (or failure) is thus associated with a vast number of internal 
decisions. For learning to occur from such sparse reinforcement information, the task 
must be divided into components. The measure of success lies in the completion of 
the entire goal. If a goal is achieved, its sub-goals (rather the transformation function 
that completed the sub-goal, i.e. st x at → st+1) are reinforced; if not such 
transformations are inhibited. Assigning 1/12 of the credit to each individual task for 
either success or failure, would only be feasible should each task have a sufficient 
degree of independence. Assigning reinforcement to any real world individual sub-
goal, would thus typically involve determining the relative contribution of interrelated 
sub-goals (Minski, 1961). 
 
Evolutionary algorithms, such as genetic algorithms, assign contribution effectively 
by only propagating genes that aided in achieving the control objective.   
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3.3 FOUNDATIONS OF GENETIC ALGORITHMS 
 
Genetic algorithms (GA) typically initialise by randomly generating a population of 
encodings or genotypes that represent possible solutions to a particular problem. 
These genotypes are evaluated to obtain a quantitative measure of performance based 
on an objective function. For a 16 bit binary encoding of the genotype, the total 
number of possible solutions (i.e., in the hyperspace) is 216. Consider the following 
binary genotype: 1101 0011 0010 1101. The genotype may represent, for example, a 
simple neural network with four links, where each connection weight is represented 
by four bits. The goal of genetic recombination is to find a set of parameters that yield 
an optimal or near optimal solution to the problem. Recombination requires two 
parents. Using two "break-point" recombination a second binary genotype yxyy xyxx 
yyyx yxxy (where x and y represent 0 and 1 respectively) may be recombined with 
1101 0011 0010 1101 to produce the following offspring - 
 

   1101 0yxx yyyx y101 
    yxyy x011 0010 1xxy 
 
Reproduction opportunities are allocated so that the best genotypes receive more 
reproduction opportunities than those having poor performance. Even a small bias in 
reproduction opportunities typically produces discriminatory pressure to allow 
"artificial selection". More trials are consequently allocated to genotypes containing 
pertinent fragments of solution information (regions in the hyperspace) that tend to 
contribute to above-average solutions (Whitley et al.,1990). 
 
To understand how recombination on binary genotypes can be related to hyperspace, 
consider a "genotype" that is encoded with just 3 bits. With three bits the resulting 
search space is three dimensional and can be represented by a simple cube (Figure 
3-2). Let points 000, 001, 010 and 011 be the front face of the cube. The front plane of 
the cube can be characterised as all the genotypes beginning with 0. If * is used as a 
wild card match symbol, then this plane can also be represented by the similarity 
template 0**. These similarity templates are referred to as schemata; each schemata 
corresponds to a hyperplane in the search space. All bit genotypes that match a 
schema lie in a particular hyperplane. In general, every binary encoding corresponds 
to a corner in a L-dimensional hypercube and is a member of 2L-1 different 
hyperplanes, where, L, is the length of the binary encoding. For example, the 
genotype 011 not only samples its own corner in the hyperplane (011) but also the 
hyperplanes represented by the schemata 0**, *1*, 01*, 0*1, *11 and *** (Whitley et 
al. ,1990). 



 Copyright University of Stellenbosch, 2004 57

000

001

011

010

110

101

100

111

 
Figure 3-2 - Hyperplane Cube. 

 
The characterisation of the search space as a hyperplane is not simply a way of 
describing the space. It relates directly to the theoretical foundations of genetic search. 
Each schema (chromosome) represents a different genetic "fragment", a different 
combination of "alleles" (genes). When recombination occurs, genotypes are 
exchanging hyperplane information. For example, if 10101100 and 11011110 are 
recombined, the offspring reside in the hyperplane 1***11*0. This represents an 
"order-4" hyperplane, as four bits are specified in the schema. This hyperplane 
contains 6 ¼  [%] of the all genotypes in the search space - all genotypes with 1 as 
first bit, 1 as fourth bit, 1 as fifth bit and 0 as eighth bit. The section of the search 
space that is in contention between the two genotypes, is -010--0- and -101--1-. That 
is, the bit positions not represented by a dash (-) may be either 0 or 1, depending on 
the result of the applied genetic operator (such as crossover) (Whitley et al. ,1990).   
 
The offspring resample (re-evaluate) those hyperplanes (gene combinations) inherited 
unchanged from the parents, but resample (re-evaluate) these gene combinations in a 
new context – evaluating from a new corner in the L-dimensional hypercube. By 
testing one new genotype, additional information is gained about the 2L-1 hyperplanes 
that intersect at a corner in the hypercube where that genotype resides (Whitley et al. 
,1990). 
 
After a genotype has been tested, it is probabilistically given the chance to reproduce 
at a rate that reflects its "fitness" relative to the remainder of the population. 
Recombining the "genetic material" from two parents by crossing the binary 
encodings, allows other hyperplanes in the search space to be sampled (resampled). 
However, these new probes will be biased towards hyperplanes that have displayed 
above-average performance. If a schema is common to genotypes that have above 
average performance, this indicates that the schema may represent a hyperplane that 
on average contributes to optimising the target problem. Credit assignment is thus 
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addressed by rewarding (i.e., propagating) effective schema in the population. These 
hyperplanes thus represent sections of the search space that also require greater 
exploration. Recombining allows for hyperplanes, which have displayed an above 
average performance, to increase their representation in the population. Genetic 
search thus proceeds by changing the sampling rate of hyperplanes in the population 
(Whitley et al. ,1990). 
 
Genetic algorithms are capable of performing a global search of a solution space as 
there is reliance on hyperplane sampling to guide the search, instead of searching 
along the gradient of a function as with other optimisation routines. The property of 
genetic search that allows efficient sampling of numerous hyperplanes in parallel, is 
referred to as implicit parallelism. This implicit parallelism property allows for a 
robust search method capable of effective directed search without using gradient 
information (Whitley et al., 1993). 
 

3.4 DIFFICULTIES IN EVOLVING NEURAL NETWORKS 
 
Genetic algorithms inherently do not scale up effectively. A bias exists against 
schemata that are highly separated in the binary encoding. As the genotype length 
increases, a greater proportion of the sampled hyperplanes will span more than half 
the genotype length, which will thus have a greater probability of being disrupted by 
crossover. This observation is assumed to contribute to scale-up (i.e., More complex 
solution representations require longer binary encodings) problems with binary 
encodings (Whitley et al. ,1990). 
 
The structure of the genotype encoding the phenotype may also present challenges. 
One difficulty in evolving neural networks with genetic algorithms is that multiple 
symmetric representations exist for any single neural network. Recombining two 
functionally effective, but structurally dissimilar networks, may result in offspring 
that are not viable solutions or present a considerable loss in functionality. Such 
inconsistent performance feedback to the genetic algorithm, present as high variance 
hyperplane sampling (section 3.3), may significantly retard the genetic search. For 
example, assume (Figure 3-3) that four hidden nodes perform tasks A, B, C and D as a 
solution to some problem. With the same connectivity pattern, the two networks in 
Figure 3-3 are functionally identical. The position of a functional hidden node in the 
feed-forward neural network has no effect on the neural networks performance. 
Recombining these two functionally similar neural networks, could result in children 
with functionality ABDB and CACD (one point crossover on a hidden node 
boundary). These two combinations do not represent a solution to the problem, as one 
functional hidden node is absent from each offspring network. The probability of 
different structural/functional mappings increases as the number of hidden nodes 
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increase, should the hidden nodes have identical connection patterns. Also, 
functionally similar hidden nodes may have sets of weights with a different scaling. 
Recombining networks with dissimilar weights may result in offspring with poor 
performance. This network recombination problem is referred to as the 
structural/functional mapping problem or competing conventions (Whitley et al. 
,1990). 
 

A B C D C A D B

 
Figure 3-3 - Structural / Functional Mapping problem. 

  
Hyperplane samples which show considerable variance in their fitness values make 
the search space more difficult to explore. Considerable sampling variance provides 
inconsistent and conflicting feedback about whether a hyperplane presents a good 
region in the search space or otherwise. The structural/functional mapping problem 
typically slows the rate of convergence and increases the number of objective function 
evaluations dramatically (Whitley et al. ,1990). 
 
By far the greatest challenge to solving complex optimisation problems with genetic 
algorithms, is avoiding convergence to a local optimum. Maintaining genetic diversity 
is the key to maintaining a search for the global optimum. 
 

3.5 MAINTAINING DIVERSITY 
 
Evolutionary algorithms operate by continually breeding the population’s best 
genotypes to find the best combination of the available genetic building blocks. This 
process typically leads to convergence around a single “type” of genotype. Should a 
genetic algorithm fail to find the global optimum, it is most frequently the result of 
premature convergence around a genotype that encodes a local optimum. By 
increasing the representation of high performance hyperplanes in the population, 
diversity is lost. Exploitation has thus reduced the potential for further exploration. 
Greater diversity in the population translates to more hyperplane information to drive 
a continued search (Whitley & Starkweather, 1990). 
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Local convergence has limited impact in function optimisation, but proves to be of 
great consequence during the evolution of complex decision strategies. The mutation 
operator typically aids the evolutionary algorithm from escaping a convergence to a 
local optimum. Mutation contributes to a more random search of the solution space, 
which is highly inefficient for large complex problems. A reliance on mutation slows 
the genetic search considerably. Maintaining a diverse population allows for the 
continued efficient use of recombination (crossover), allowing for more effective 
traversals of the solution space. In real world problems, timely solutions are 
paramount (Moriarty & Miikkulainen, 1998). 
 
Related to the difficulty of maintaining diversity is generalisation. In many settings, 
convergence by the GA to a single specialised genotype is not appropriate. In a 
classifier system, the GA needs to evolve a set of rules that are specialised to various 
tasks (or niches) rather than producing a homogeneous (converged) population of 
similar rules. A computational model of the immune system illustrates this principle. 
A population of antibodies needs to be evolved to recognise a set of antigens. Should 
the antibody population be sufficiently large, the evolution of different types of 
antibodies that specialise in recognising different classes of antigens, is desirable. The 
evolution of one generalist antibody, that weakly matches all antigens, is necessarily 
an inferior solution. Should the population be insufficiently large to evolve an 
antibody specialisation for each type of antigen, a reasonable response would be to 
evolve generalists that recognise subsets or specific classes of antigens. In traditional 
GA optimisation, the generalist usually does not emerge as the population typically 
specialises in optimising a single fitness peak. The evolution of generalists is 
imperative for real world applications, where a single genotype (antibody) must 
address a number of environmental circumstances. The degree of generality should 
emerge implicitly as a result of the characteristics of the environment and should not 
be explicitly specified in the search algorithm (Smith et al., 1993). 
 
Maintaining diversity for controlled convergence and ensured generalisation remains 
an elusive goal. The genetic operators, through their mutual interaction, should 
provide an optimal balance between exploration and exploitation. A high rate of 
mutation or less aggressive genetic selection strategies are most commonly employed 
to attempt diversity maintenance. Increasing the mutation rate only succeeds in 
artificially introducing noise into the population to promote diversity. Less aggressive 
selection strategies more often only delay convergence at the expense of a slower 
search. Despite these implications, such algorithms generally produce better results 
than aggressive convergent evolutionary algorithms (Moriarty & Miikkulainen, 1998). 
 
A simple method of sustaining genetic diversity is to use large population sizes. 
Empirical tests have shown that this has the desired effect, except that it is usually 
necessary to double population size for an incremental increase in performance. This 
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approach also tends to double the search time. The most successful approaches to 
maintaining diversity involve a mechanism that controls and prevents an unbalanced 
proliferation of genotypes (Davidor, 1991). The importance of promoting population 
diversity has lead to the development of several more advanced methods. These 
include crowding, distributed genetic algorithms, local mating and fitness sharing. 
These techniques rely on external genetic functions to maintain diversity in the 
genetic material. Diversity is thus assured through the use of computationally 
intensive operations (Moriarty & Miikkulainen, 1998). 
 

3.5.1 Restricting the selection process (preselection & crowding models) 
 
Preselection and crowding maintain diversity by limiting co-existence of similar 
genotypes in the population. Preselection schemes recognise that calculating a 
dissimilarity index for each genotype may be computationally prohibitive. 
Preselection assumes that parent genotypes share many similarities with offspring 
genotypes. Should one of the offspring have a higher fitness than the worst parent, it 
replaces the parent (MahFoud, 1992). 
 
Crowding is inspired by an ecological phenomenon. Similar genotypes in a natural 
population, often of the same specie, compete for limited resources. Dissimilar 
genotypes tend to occupy different niches, which limits competition between 
dissimilar members. At equilibrium in a fixed-size population, new members of a 
particular niche replace older members of that niche. The overall number of members 
of a particular niche should ideally remain constant (MahFoud, 1992). 
 
The traditional crowding scheme thus elaborates on the preselection mechanism. 
Crowding establishes niches by replacing genotypes that have a similar schema with 
new genotypes. A “steady-state” GA creates new genotypes one at a time and inserts 
these solutions into the population by replacing existing genotypes. A sub-set of the 
population is selected at random (equal to the crowding factor) and the genotype in 
that sub-set that shares the most schema (hamming distance) with the new genotype, 
is replaced. The more similar a genotype becomes to other genotypes in the 
population, the greater the selection pressure becomes against its continued survival in 
the population (MahFoud, 1992). 
 
While such a scheme appears plausible for maintaining diversity, though 
computationally intensive, this is not the case in practice. When genotypes are 
replaced, stochastic errors create significant genetic drift. Genetic drift causes a 
genetic algorithm to converge to one region of the search space, even though many 
different regions have equal fitness (MahFoud, 1992). 
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A similar approach to preselection and crowding involves a uniqueness operator. The 
uniqueness operator maintains diversity by incorporating a censorship premise. 
Offspring are inserted into the population only if such offspring are different from all 
genotypes at a specified number of loci (hamming distance) (Davidor, 1991). 
 

3.5.2 Dividing the population into subpopulations  
 
Several parallel GA approaches have been introduced that explicitly divide the total 
population into a number of subpopulations. A traditional genetic algorithm executes 
for each subpopulation separately. Each subpopulation, due to inherent sampling 
biases, exploits its genetic material in a slightly different manner and converges to a 
slightly different, but similarly competitive, solution. An attractive feature of this 
approach is that each subpopulation may have a different crossover and mutation rate, 
maintaining a balance between exploration and exploitation in a novel way. The 
concept stems from population genetics, in which random genetic drift allows each 
subpopulation to explore a different region of the solution space. This maintains a 
diverse search preventing premature convergence to local optima (Tanese, 1989). 
 
In the distributed genetic algorithm, each subpopulation is allowed to evolve in 
isolation with sporadic migration of genotypes between subpopulations. Migration 
intends to convey significant discoveries between subpopulations. The migration 
interval specifies the number of generations between migrations, while the migration 
rate specifies the number of migratory genotypes. Additional offspring are generated 
before migration, followed by random selection from the "overfull" subpopulation. As 
fitter genotypes are more likely to reproduce, the additional offspring contribute a 
higher proportion of above-average genotypes. Fitter genotypes are thus more likely 
to be chosen for migration. The migrants randomly replace genotypes in the 
destination subpopulation (Tanese, 1989). Such distributed algorithms are more adapt 
at discovering global optima, but it has been demonstrated that even limited migration 
eventually leads to convergence and subsequent loss of diversity (Smith et al., 1993). 
 
An alternative distributed GA involves parallel genetic algorithms without migration. 
Such implementations are termed partitioned genetic algorithms. Partitioned 
algorithms consistently find solutions closer to the global optimum than the traditional 
genetic algorithms. Tanese (1989), however, found that partitioned genetic algorithms 
are unable to maintain a high average fitness of the entire population, which slows the 
global population search. 
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3.5.3 Restricting the mating procedure (local mating) 
 
The traditional genetic algorithm incorporates panmictic selection and mating, that is, 
any genotype may potentially mate with any other in the population. Otherwise 
similar to crowding (which is panmictic), these methods prevent the population from 
becoming too homogeneous by largely disallowing the hybridisation effect of 
crossover.  
 
Local mating creates niches without explicitly subdividing the population. This 
approach avoids an explicit subdivision of the population, which implies a prior 
knowledge of the number of niches (and relative size) in the environment. The goal of 
local mating is to maintain a number of genotypes on more than one peak in the 
solution landscape simultaneously (Collins & Jefferson, 1991). The population is, for 
example, arranged geometrically in a two-dimensional plane with crossover only 
occurring between genotypes that are geographical neighbours. Random genetic 
variation between subgroups of genotypes allows for exploration of different regions 
of the solution space. These islands or geographical subpopulations gradually encode 
local optima as the subpopulations mature. As the evolution progresses certain islands 
of highly fit genotypes consume lower fitness islands which are in their vicinity. A 
stepwise island growth and controlled convergence is maintained until the entire grid 
is occupied by the genotype encoding the global optimum (Davidor, 1991). These 
methods slow convergence considerably, but stable subpopulations are not maintained 
(Smith et al., 1993). 
 

3.5.4 Explicit fitness sharing 
 
Explicit fitness sharing establishes subpopulations by penalising a genotype when 
other similar genotypes exist in the population. This establishes uncrowded productive 
niches. Explicit fitness sharing modifies a genotype’s fitness calculation, leaving the 
standard genetic algorithm unchanged.  
 
In ecological theory such strategies are called negative frequency-dependent selection. 
Explicit fitness sharing assumes that environmental niches have finite resources 
available to them. As the number of genotypes in a given niche increases, the 
availability of resources in this niche decreases. This decreases the viability of 
genotypes in the niche, and subsequently decreases the niche's members. To maintain 
a viable population in a niche, the population size must come into equilibrium with 
the availability of resources (Smith et al., 1993). 
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Explicit fitness sharing's mechanism causes genotypes to cluster around peaks in the 
search space. Hereby, the proximity of similar genotypes reduces a particular 
genotype's fitness. The shared fitness is calculated as follows: 
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where dij the distance between i and j under a given metric and Sh(dij) is the sharing 
fitness. The critical parameter in the fitness sharing technique is σs, which dictates a 
cut-off distance, beyond which no sharing occurs:  
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The method is robust, but has a number of limitations as presented in Table 3-1. 
Fitness sharing is, however, able to establish stable niches in contrast to other methods 
that simply slow the approach to convergence (Smith et al., 1993). 
 

Table 3-1 – Explicit fitness sharing limitations. 

Limitations of explicit fitness sharing 
• Involves a significant number of fitness comparisons, which is computationally 

intensive (N2 comparisons in a population of size N). 
• Requires an appropriate setting for σs based on prior knowledge of the number of 

optima in the solution space. 
• The efficacy of the parameter σs is dependent on the presence of uniformly 

distributed optima in the solution space. Less uniformly distributed optima may be 
ignored in the search. 
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3.5.5 Implicit fitness sharing 
 
Implicit fitness sharing entails the search for cooperative species which encode the 
optimal solution collectively, within a single population of competing and cooperating 
genotypes. Cooperative-competitive evolution isolates the most fundamental type of 
cooperation, which entails problem decomposition via niching. Cooperation between 
niches and competition between genotypes in the same niche occurs concurrently. 
This model of intertwined, multi-level cooperative and competitive interactions 
appears natural, based on real-world examples of ecologies, economies, and societies. 
However, its potential power for expressing complex concepts and behaviours is 
offset by the tremendous complexity of the population dynamics (Horn & Goldberg, 
1996). 
 
In this model various species solve different elements of the problem, earning 
separate, distinct rewards. Each genotype no longer represents a complete solution to 
the problem, but rather a partial solution that must cooperate with other partial 
solutions. Each genotype's role in the complete solution is thus limited, forming a co-
evolutionary search for different kinds of genotypes that make up the complete 
solution. Genotypes that perform the same task, compete for the same rewards, viz. 
weak cooperation. Genotypes that do not overlap in their tasks cooperate in an 
indirect manner, viz. strong cooperation. The goal of weak cooperation is to compete 
(i.e., exploit) for as much of a specific resource as possible. The natural mechanism 
for dealing with such competition is a search for uncontested resources. The 
population of genotypes thus divide the total available resources implicitly, sharing 
rewards (credit or fitness) among all genotypes. Successful weak cooperation thus 
leads directly to strong cooperation. Such induced speciation or niching is an 
emergent phenomenon that is a prerequisite to all other types of cooperation.  
 
Implicit fitness sharing is a powerful promoter towards cooperation. Even under 
constant and rigorous (i.e., aggressive) application of evolutionary operators, such as 
crossover, diversity is maintained in the population. The only way to maintain high-
quality diversity in the face of high selection pressure is to balance convergence with 
a restorative force, such as "niching pressure" (Horn & Goldberg, 1996). 
 
In a simple genetic algorithm each genotype is evaluated according to a single scalar 
fitness function, independent of other genotypes in the population. The simple GA's 
task may be viewed as an optimisation of the average population fitness. The 
optimum population thus consists entirely of copies of the best genotype. When 
genotypes influence each other's fitness evaluation, the task of the GA may no longer 
be modelled as an optimisation of the total population fitness (Horn et al., 1994). 
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Implicit niching reaches a dynamic equilibrium of diverse genotypes quickly (i.e., a 
fast convergence rate) and this equilibrium is maintained (i.e., high restorative 
pressure causes long niche extinction times). The ability to balance selection pressure 
with restorative force allows for the virtual indefinite maintenance of high quality, 
diverse niches (Horn & Goldberg, 1996). 
 
As the search entails the optimisation of the various elements of the problem, several 
parallel searches are performed in the decomposition of the solution space. This 
allows for the more aggressive application of the evolutionary algorithm, increasing 
markedly the rate of evolution (Moriarty & Miikkulainen, 1998). The evolutionary 
algorithm developed in this study, Symbiotic Memetic Neuro Evolution (SMNE), 
largely falls into this category of evolutionary algorithm, allowing for the evolution of 
neural networks via implicit fitness sharing.  
 

3.6 CONCLUDING REMARKS 
 
Heuristic rules and subjective engineering judgement play a significant role in current 
plant-wide control methodologies as described in chapter 2. However, other sources 
of process information are available, such as (1) expect knowledge formally extracted 
from experienced operators, (2) detailed fundamental models and (3) empirical input-
output models obtained from plant historical data. These sources may be exploited in 
either a supervised learning or a goal-directed learning approach. As a goal directed 
learning approach, reinforcement learning offers unique opportunities for developing 
control strategies, provided complex learning fundamentals are addressed efficiently. 
A learning algorithm needs to explicitly address the Markov property, balance 
exploration and exploitation and effectively assign credit to appropriate control 
actions. Evolutionary algorithms attend to these learning fundamentals, but also 
present method-specific challenges, viz. scale-up difficulties and the 
structural/functional mapping problem. A global search may only be ensured by 
maintaining genetic diversity, which is all-important for robust learning in complex 
control tasks. Implicit fitness sharing offers superior benefits over other diversity 
mechanisms. The learning algorithm in this work, symbiotic memetic neuro-evolution 
(SMNE), relies significantly on implicit fitness sharing. SMNE also facilitates a 
synergy between a global evolutionary and a local cultural search from neural 
network controllers as described in chapter 4.    
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4 EVOLVING NEURAL NETWORKS 
 
OBJECTIVES OF CHAPTER 4 

• Describe typical applications of neural networks in control systems. 
• Highlight different approaches to evolving neural networks within a generational 

context. 
• Describe the SANE algorithm, a second generation algorithm, predecessor to the 

SMNE algorithm. 
• Describe the SMNE algorithm, developed in this study, within the context of other 

third generation algorithms.  
• Describe ANS as a means of adapting neurocontrollers on-line. 
• Demonstrate the SMNE and ANS algorithms within a bioreactor case study. 

4.1 INTRODUCTION 

 
Linear controllers are often used in the process industries, frequently in non-linear 
applications, owing to ease of implementation. For non-linear processes, Economou & 
Morari (1986) contended that linear controllers are unable to match the autonomy of 
rationally designed non-linear controllers. Non-linear control methodologies have 
emerged to address the short-comings in linear control. Most chemical plants exhibit 
inherent non-linearity and frequently have a large operating region. A linear controller 
may be unable to compensate for non-linearities, resulting in poor performance or 
even instability. Many processes exhibit discontinuities, such as dead zones, 
saturation and hysteresis, making linear control solutions ineffective. Non-linear 
controllers generally also compensate better for model uncertainties (i.e., plant-model 
mismatch) than linear controllers. More stringent product and operating specifications 
have also necessitated non-linear control approaches. Linear controllers thus incur an 
economic opportunity cost, as a consequence of sub-optimal performance in non-
linear processes (Kuttisupakorn et al., 2001). 
 
Advances in computing power have also placed the greater computational 
requirements of non-linear control methods within the reach of industrial 
computation. However, conventional non-linear control design necessitates extensive 
mathematical analysis, a significant degree of engineering judgement and expert 
process knowledge. Prior to commencing a non-linear controller design, the process 
engineer needs to have a clear understanding of how the control strategy will be 
implemented. Conventional non-linear control design methods are difficult to 
automate, which hampers widespread implementation (Brengel & Seider, 1992).  
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These difficulties with conventional non-linear control can be surmounted by means 
of intelligent control techniques. Control systems using artificial intelligence methods 
have been designated 'intelligent control'. A control system is classified as intelligent, 
provided it has the ability to act robustly in uncertain environments. Intelligence is a 
property of the system, emerging from the generalisation tools and combinatorial 
search methods applied to input data, which produce an appropriate control action. 
Appropriate control actions are defined as those that increase the probability of 
success, where success pertains to achieving sub-goals that support the control 
system's overall control task. Machine learning or artificial intelligence methods 
include expert systems, fuzzy logic, neural networks, evolutionary computational or 
any other means by which data is analysed, organised and converted into knowledge 
(RayChaudhuri et al., 1996). RayChaudhuri et al. (1996) recognised that a 
combination of neural and evolutionary methods could emerge as efficient and robust 
tools for developing control systems that are self-designing and adaptive. 
 
The use of neural networks in any process application is motivated by a desire to 
achieve the non-linear information processing of the brain. Neural networks have 
been applied in process modelling, process control, inferential estimation (i.e., soft-
sensors) and supervisory applications (Wills et al., 1991). Process modelling may 
include predictive non-linear forecasting for controlled variables (Ydstie, 1990; Bhat 
& McAvoy, 1990; Foster et al., 1992; Willis et al., 1992)) and modelling of unknown 
model parameters (e.g., reaction kinetics) in ordinary differential equations forming 
hybrid models (Henson, 1998). Neural networks in process control may also provide 
gain scheduling to linear PID controllers, mapping the state space to a particular set of 
control parameters (Narendra & Parthasarathy, 1990). Also, a neural network may 
function as the control law, mapping the state space to control actions (Conradie et al., 
2000). Frequently, off-line analyses have long sampling periods. Neural networks 
have been trained on off-line analyses to serve as soft-sensors, providing an on-line, 
inferential estimate to an off-line analysis (Willis et al., 1992). The pattern-
classification of neural networks has been implemented in a supervisory capacity, 
suggesting re-calibration of instruments via fault detection and re-tuning of controllers 
based on closed-loop performance (Ungar et al., 1990).  
 
Neural networks possess characteristics advantageous to control as in Table 4-1. In 
process control applications neural networks may be incorporated into the control 
loop in either direct or indirect control methods. In the direct method, a neural 
network is trained with input-output data to represent the system's inverse dynamics. 
The resulting controller is used in a feedforward fashion. In the indirect method, the 
neural network is trained with input-output data to represent the forward dynamics. 
Given the current state and the current control action, the network learns to predict the 
next state of the system. This process model may consequently be used by a control 
algorithm to calculate the control action (Psichogios & Ungar, 1991). 
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Table 4-1 - Neural network characteristics relevant to control systems (Kim et al., 1997) 

Relevant control features of neural networks  
• Ability to represent arbitrary non-linear relations. 
• Capability of learning uncertain systems through both off-line and on-line weight 

adaptation. 
• Flexibility to handle input information that is transformed to internal 

representation allowing data fusion, with both quantitative and qualitative signals. 
• Parallel distributed processing architecture allowing fast processing for large scale 

dynamic systems. 
• Neural network architecture provides a degree of robustness through fault 

tolerance and graceful degradation. 
 
Despite possessing characteristics favourable to process control, the implementation 
of neural networks in control loops poses difficulties. When employing a control 
scheme using neural networks as the process model, there are numerous challenges in 
obtaining effective data to train the neural network. Generally, data is obtained by 
making various random changes in process inputs over the whole operation range. 
Perturbation of process inputs is, however, practically prohibited especially in 
chemical processes, due to economic loss and safety considerations. Additionally, as 
chemical processes consist of many sequential sub-units, the effects of such 
perturbations may be propagated to downstream units. Should large scale plants need 
to be disturbed significantly for neural network training, the economic loss may be 
significant (Kim et al., 1997). Training data may, however, also be obtained from 
historical plant data. Most industrial plants are operated by simple linear controllers.  
PID controllers operate in a region of the state space that may be too limited to allow 
for effective model development. Satisfactory neural models may not be obtainable 
from historical process data (Kim et al., 1997). 
 
The control literature presents a number of neural network control schemes or 
methodologies for use in industrial control applications (Agrawal et al., 1997). Hunt et 
al. (1992) focused on those structures that have a direct reliance on system forward 
and inverse models. These structures are, from a mainstream control theory 
viewpoint, well-established and their properties have been extensively analysed. Hunt 
et al. (1992) classified the control structures using neural networks as supervised 
control, direct inverse control, model reference control, internal model control, 
predictive control and gain scheduling. Of these, neural networks have found 
considerable application in direct inverse control and model predictive control 
structures. 
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4.1.1 Direct Inverse control 
 
Direct inverse control (Figure 4-1) utilises an inverse system model. The inverse 
model is cascaded with the process, so that the composed system results in an identity 
mapping between desired response (i.e. the network inputs) and the controlled system 
output. The network thus acts directly as the controller in such a configuration. 
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Figure 4-1 - Direct Inverse Control. 

 
Though direct inverse control is well-tested in simulation studies, few laboratory or 
pilot-scale experimental work has been reported. Real-time application typically 
involves first identifying the forward dynamics from open-loop perturbation 
experiments (e.g., step changes). This forward dynamic model may have the 
following general form as in equation 4-1:  
 

( )12111 ...,,..., −−−−−−+= nkkknkkkk uuuyyyfu      (4-1) 

 
where yk is the process variable and uk is the manipulated variable at time step k. The 
methodology for training direct inverse neural networks is illustrated in Figure 4-2. 
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Figure 4-2 - Framework for training direct inverse control neural network controllers. 

 
Khalid & Omatu (1992) trained a neural network to learn the inverse dynamics for 
temperature control of a 8 [dm3] water bath. The water bath was equipped with a 
stirrer and the single final control element was a 600 [W] electric heater. The control 
objective required stepping the temperature set point with minimal error. The 
neurocontroller performed better than conventional PID control and had effective 
disturbance rejection capabilities. Dirion et al. (1995) also used back-propagation to 
learn the inverse temperature dynamics of a jacketed water bath. Two heat exchangers 
in the cooling circuit allowed for both heating and cooling of the water bath. Although 
a single open-loop experiment was sufficient to determine the forward model, Dirion 
et al. (1995) stressed the importance of covering a wide range of possible input space 
data (i.e., domain).  
 
Savkovic-Stevanovic (1996) developed a conventional direct inverse neurocontroller 
for a pilot plant distillation process. The top product composition was the controlled 
variable with the reflux rate the single manipulated variable. Open loop training data 
were collected in the region of the desired set point. The inverse model included feed 
rate, pressure drop and bottoms flow rate as input nodes, thereby providing additional 
process information as feedforward control within the feedback neurocontrol 
structure. Savkovic-Stevanovic (1996) did not explain the selection criteria for the 
input layer's structure in terms of time delay inputs of the controlled variable nor the 
addition of other process variables as feedforward information. The control response 
proved to be oscillatory, possibly due to the identity mapping produced by direct 
inverse control.    
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Palancar et al. (1998) studied real-time direct inverse control for the neutralisation of 
aqueous solutions of acetic and propionic acids with NaOH in a laboratory scale 
CSTR. The controlled variable was the reactor's downstream pH with the NaOH flow 
rate as manipulated variable. A simplified fundamental model (i.e., the dynamics of 
pH sensor and the valve transients were not incorporated) was used to generate open-
loop data for training a forward neural network model of the neutralisation process. 
An inverse model was trained based on the forward neural network. The back-
propagation algorithm trained both the forward and inverse models. The forward 
neural network model was updated on-line and used in the control loop to adapt the 
inverse controller on-line. The control response was highly oscillatory and due to a 
lack of sufficient training data for typical operating conditions, the generalisation to 
disturbances was unsatisfactory.  
 
Hussain and Kershenbaum (2000) considered the real-time control of a 100 [L] 
exothermic CSTR fitted with an external heat exchanger. Forward and inverse neural 
network models were used in an internal model control (IMC) strategy. Owing to 
safety and cost considerations, the heat generation and product composition were 
computed using a simulated process model in tandem with the actual process. Steam 
was sparged into the reactor to generate the calculated heat generation, making only 
the composition a purely calculated variable. The control system had the calculated 
concentration and the measured reactor temperature as the process inputs, with the 
temperature set point of the cooling jacket as the single manipulated variable. The 
IMC controller thus served as a master controller to a temperature PID slave 
controller that manipulated cooling water flow into the external heat exchanger. The 
training data for the forward model was generated in the open-loop by perturbing the 
jacket temperature set point. Open-loop data collection was necessitated by the 
absence of an appropriate method to compute process dynamics from closed loop 
data. A real exothermic CSTR could never be operated safely in the open-loop. Back-
propagation was used to train both the forward and inverse neural network models. 
The controller proved sensitive to plant/model mismatch and the accuracy of the 
inverse model.  
 
These real-time applications all involve using back-propagation as the learning rule 
and their complexity is limited to SISO control applications. The back-propagation 
algorithm has a sensitive dependence on chosen initial conditions and hence finding 
the global optimum is not assured (Ydstie, 1990). Critically, these real-time 
applications emphasise the performance impact of choosing the correct input space 
(i.e., vectors) based on past process variable measurements, but do not present a 
systematic or theoretical approach to selecting the input space. The input vector in 
each case was selected using trial-and-error evaluation. Though model validation 
techniques have been proposed as guidelines to assess the appropriate number of past 
inputs and outputs, the final selection was determined on a case-specific basis 
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(Hussain and Kershenbaum, 2000). The number of delayed inputs to the neural 
network was frequently estimated from the order of the system and dead time of the 
process. Model development was always based on open-loop response data, limiting 
the application of these techniques to open-loop stable processes.  
 
Though these real-time applications typically involved conventional set point 
tracking, Nguyen and Widrow (1990) noted that neural networks may be trained to 
minimise cost functions instead of a performance error. This approach contrasts with 
direct inverse control in that the identity mapping is not sought as the objective 
function. The desired performance of the closed loop is specified by a reference 
model or cost function (Hunt et al. ,1992). Hunt et al. (1992) denote this variant of 
direct inverse control as model reference control (Figure 4-3). In general, this 
approach is more robust than direct inverse control that seeks perfect control (Seborg, 
1989).  
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Figure 4-3 - Direct model reference control. 

 

4.1.2 Model Predictive Control 
 
Model predictive control has been successfully extended to non-linear processes. The 
advantages of non-linear predictive control include explicit handling of process time-
delays, constraints, the ability to handle non-minimum phase systems and 
incorporating knowledge of future set point changes (Sistu et al., 1993).  
 
Model predictive control (MPC) is defined as a control scheme in which the controller 
repeatedly determines (optimises) a manipulated variable profile. An open-loop 
performance is optimised on a time interval extending from the current time to the 
current time plus a prediction horizon. Feedback is incorporated by using process 
measurement to update the optimisation problem for the next time step. The receding 
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horizon technique is introduced as a natural, computationally feasible feedback law. 
The method has proven to have desirable stability properties for non-linear systems. 
Also, the generality of the performance objective, as opposed to standard integral 
square error between measurement and set point, provides the opportunity to design 
MPC controllers for higher level functions such as energy or waste minimisation 
(Eaton & Rawlings, 1992). 
 
As a consequence of its structure (Figure 4-4), a MPC is a feedforward controller for 
known process changes and a feedback controller for unknown process changes. 
Thus, MPC can reject measured disturbances more rapidly than conventional 
controllers, by anticipating their impact on the process. Set point changes are achieved 
efficiently through their ability to predict an optimal sequence of manipulated variable 
outputs. The feedback element of a MPC compensates for the effects of unmeasured 
disturbances on the process outputs and deviations between model outputs and those 
measured (process/model mismatch) (Brengel & Seider, 1989). 
 
The prediction horizon allows the MPC controller to take control action at the current 
time in response to forecast error even though the error at the current time is zero. 
Also the predictive controller may be given information about future constraints and 
future inputs such as planned set point changes or forecasts of loads or disturbances. 
Eaton & Rawlings (1992) showed that it is precisely this property of the MPC 
controller that is beneficial for controlling  (scheduling) non-minimum phase plants.  
 
Implementing MPC with a neural network approach, involves utilising a neural 
network model to provide predictions of the future plant response over the specified 
horizon. The predictions supplied by the neural network model are passed to a 
numerical optimisation routine, which attempts to minimise a specified performance 
criterion in calculating a suitable control signal. The control signal may be chosen so 
as to minimise a quadratic performance criterion - 
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subject to the constraints of the dynamic model. The constants N1 and N2 define the 
horizons over which the tracking error and control increments are considered. The 
values of λ are the control weights. The remaining parameters are illustrated in Figure 
4-4 (Hunt et al., 1992). 
 
Another alternative, is to train a further neural network to mimic the action of the 
optimisation routine. The controller network is consequently trained to produce the 
same control output for a given plant input (Hunt et al., 1992).   
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Model predictive control's multi-step strategy has proven performance in controlling 
processes in unstable operating regimes. However, the MPC approach remains 
sensitive to modelling errors in these unstable regions. A disadvantage of the MPC 
approach is the computationally intensive execution of the optimisation algorithm, 
especially where linearisation of non-linear system is not applicable. Also, the 
solution of the optimisation problem - therefore the controller behaviour - depends on 
a number of tuning parameters. These tuning parameters include the weighting 
coefficients in the objective function, the convergence criterion, the scaling of the 
variables and the magnitude of the velocity bounds (Psichogios & Ungar, 1991). 
 
The costs and effort required to implement an advanced control algorithm, such as 
MPC, include (1) the development of models to describe the process dynamics, (2) the 
dedication of processing power, and the (3) tuning of more parameters relative to 
analogue controllers. An MPC implementation is normally only justified for processes 
that cannot be adequately controlled by using less complex algorithms. These 
processes typically include the production of chemicals in high purities, chemical 
reactors with multiple steady state and periodic attractors, extraction processes with 
narrow two- and three- phase regions (e.g. supercritical extraction), distillation towers 
with temperature and concentration fronts sensitively coupled to the reflux ratio 
(azeotropic distillation towers), and processes required to operate in the region of 
many design and operating constraints (Brengel & Seider, 1989). 
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Figure 4-4 - Model Predictive Control structure utilising neural networks 
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Model predictive control is the industry standard for advanced process control. The 
complexity of practical problems solved in MPC frameworks far outstrips those 
attempted with direct inverse control frameworks.  Temeng et al. (1995) implemented 
a non-linear MPC strategy for an industrial packed bed reactor for converting SO2 to 
SO3. The reaction is exothermic and requires interstage cooling after each catalyst 
pass. The process is characterised by significant process interaction, long time delays, 
slow dynamics and frequent disturbances. The process is normally operated in the 
open loop by human operators. Furthermore, the product composition constraints (i.e., 
environmental considerations) and minimum reaction temperatures pose hard 
operating constraints. The process has five process variables and five manipulated 
variables. Dynamic response tests in the open loop generated the training and 
validation data for MIMO neural network modelling of the process. The control task 
involved regulatory control of the three pass temperatures, manipulating the cooling 
water valves that supply the heat exchangers directly. The NMPC strategy was 
implemented and good disturbance rejection and set point tracking was evident. 
Temeng et al. (1995) concluded that owing to the significant process interaction, 
better regulator control was achieved than was possible with decentralised multi-loop 
controllers (Temeng et al., 1995). Clearly, the interactive, non-linear and MIMO 
nature of this control problem is far more challenging than those solved with direct 
inverse control in section 4.1.1. 
 
A different approach to non-linear control entails developing control strategies using 
evolutionary algorithms, more akin to model reference control (Figure 4-3) than direct 
inverse control or MPC. 
 

4.2 SINGLE CHROMOSOME AND CO-EVOLUTIONARY CONTROL 

POLICIES 

 
The use of artificial evolution has become a popular method for developing control 
strategies in complex problem domains. This requires an approach with marked 
differences from function optimisation with evolutionary algorithms. Particularly, in 
real world applications the number of available fitness evaluations is limited, as 
compared to the often limitless number of fitness evaluations allowed in function 
optimisation problems (Moriarty et al., 1999).  
 
In the common approach to neuro-evolution, each genotype represents a complete 
network that is evaluated independently from the other networks in the population 
(Whitley et al., 1993; Jarmulak et al., 1997). In the GENITOR II algorithm developed 
by Whitley et al. (1993), which has been implemented in a wide variety of 
applications, each genotype encodes a full neural network (i.e., complete solution). 
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GENITOR II incorporates adaptive mutation and a distributed genetic search (section 
3.5.2) to sustain genetic diversity. As the population becomes increasingly 
homogeneous due to convergence, the rate of mutation is increased to maintain 
diverse genetic material in the population. The population diversity is indirectly 
monitored throughout evolution by measuring the hamming distance between two 
parents during reproduction, which may be computationally intensive. The more alike 
the two genotypes are, the greater the probability of mutation being applied to the 
offspring. Also, a distributed scheme is incorporated to aggressively exploit 
subpopulations without exhausting the diversity in the entire population (Whitley et 
al., 1993). By treating each genotype as a separate, full solution GENITOR II focuses 
the search towards a single dominant genotype, despite attempts to maintain diversity. 
Co-evolutionary algorithms contain elements of co-adapting and cooperating niches.  
 
In the computational model of the immune system (Smith et al., 1993), each antibody 
must compete for survival with other antibodies to recognise a given set of antigens. 
The antibodies are not dependent on other antibodies for recognising an antigen and 
only interact implicitly through competition. In the immune system model the fitness 
of each genotype reflects how effectively it matches an antigen, not how effectively it 
cooperates with other genotypes. The maintenance of niches in the population is thus 
based on weak cooperation or co-adaptation. Similar to conventional evolutionary 
algorithms, genotypes of co-adapting algorithms encode the full solution. However, 
numerous unrelated optimal solutions exist within an unconverged genetic population.  
 
Cooperative co-evolutionary algorithms present a promising alternative for evolving 
complex dynamic control strategies. Symbiotic evolution may be defined as a type of 
evolution where genotypes explicitly cooperate in order to survive in the population. 
In this respect symbiotic evolution is distinct from co-adapting algorithms, in which 
genotypes compete rather that cooperate with each other for survival. In cooperative 
co-evolutionary algorithms each genotype only represents a partial solution to the 
problem as discussed in section 3.5.5. Complete solutions are compiled by grouping 
selections of these partial solutions together. This approach thus attempts to optimally 
combine solution building blocks (i.e., partial solutions) with other partial solutions to 
form a full solution. Selection pressure exists to form symbiotic relationships. 
Maintaining these partial solutions or niches in a single population avoids 
convergence of the population to a single genotype via strong cooperation. Diversity 
is thus maintained, though a single optimal solution is sought within an unconverged 
genetic population (Moriarty & Miikkulainen, 1998).  
 
Symbiotic, Adaptive Neuro-Evolution (SANE) was designed as an efficient method 
for developing neurocontrollers in dynamic environments. Whereas most neuro-
evolutionary techniques (e.g., GENITOR II) operate on a population of neural 
networks (i.e., full solutions), SANE evolves a population of neurons (i.e., partial 
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solutions). Each neuron’s task is to determine the appropriate connections and weights 
that together with other neurons form a robust neurocontroller. As no single neuron 
may represent a single solution, evolutionary pressure is introduced to evolve neuron 
specialisations maintaining diversity (Moriarty & Miikkulainen, 1998).  
 
The full and partial encoding schemes were empirically evaluated by Moriarty & 
Miikkulainen (1996a). SANE (i.e., implicit fitness sharing) was superior to 
GENITOR II (i.e. adaptive mutation & distributed algorithm) in performance. The 
different strategies for neurocontroller evolution are illustrated in Figure 4-5. Neuron 
speciation and more effective credit assignment to genetic material has proven 
decisive for improved performance. 
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Figure 4-5 - An illustration of the neuro-evolution performed in SANE (b) compared to the 
standard approach to neuro-evolution (a). 

 
Neuron speciation ensures diversity, which ensures a continued global search. A 
single neuron cannot dominate a population, since highest fitness may only be 
obtained in a population where other niches co-exist. Should a niche become too 
prevalent, its genotypes will not be combined effectively with genotypes in other  
niches. Consequently, redundant partial solutions are ineffectively combined with 
other niches and thus obtain lower fitness evaluations. This evolutionary pressure thus 
selects against numerous genotypes in dominant niches. Solutions are thus found in 
diverse unconverged populations (Moriarty & Miikkulainen, 1998). 
 
Evolution at the neuron level more accurately evaluates genetic building blocks. In the 
more prevalent network-level evolution (e.g., GENITOR II), each neuron is 
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implemented with other neurons encoded on a single chromosome. This type of 
genetic representation may lead to an effective neuron existing along with ineffective 
neurons. Owing to the resulting low fitness evaluation, knowledge contained in the 
effective neuron may be lost. In neuron level evolution, continual recombination of a 
neuron with many other neurons results in a more accurate evaluation of the neural 
genetic building blocks (Moriarty & Miikkulainen, 1998). Credit assignment is thus 
more efficient. 
 
Therefore, cooperative co-evolutionary approaches take advantage of a priori 
knowledge that neural networks are composed of individual neurons. Neuron-level 
evolution explicitly promotes genetic material in the population that may be useful in 
constructing complete neural networks. A network-level approach is implicit. Also, 
evolving at the neuron level, the evolutionary algorithm is no longer expected to 
identify neurons as the significant building blocks, as neurons are the focus of the 
evolution (Moriarty & Miikkulainen, 1998). 
 
Despite the advantages of neuron-level evolution, knowledge of effective neuron 
combinations needs to be maintained.   
 

4.2.1 Knowledge of effective neuron combinations 
 
Neuron evolution alone has proven insufficiently powerful in generating neural 
networks for complex tasks. Moriarty & Miikkulainen (1996b) enhanced the general 
principle of implicit fitness sharing (Horn et al., 1994), by investigating how partial 
solutions may be effectively combined to form complete solutions (Moriarty & 
Miikkulainen, 1998). 
  
Knowledge of useful neuron combinations must be preserved and exploited. 
Intelligent direction for neuron combination is desirable. Without intelligent 
recombination, neurons may not be combined consistently with other cooperative 
neurons. An effective neuron may be lost if not be effectively combined during a 
generation. The quality of randomly combined networks would vary to a large extent 
during evolution. In the initial generations random combination is advantageous, as 
many different kinds of networks are evaluated to find cooperative neurons. Without 
intelligent neuron combination the direction of the search during later generations is 
often stalled, due to inconsistent combination of neurons when the focus should be on 
better performing networks (Moriarty & Miikkulainen, 1998). 
 
SANE introduces a mechanism whereby a layer of neural network blueprints is 
evolved along with the neuron population. This blueprint population carries 
knowledge of effective neuron combinations that may be retained in subsequent 
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generation. The blueprint population results in more accurate neuron evaluations, as 
neurons are more consistently combined with other neurons that have cooperated well 
together. Fitter neurons also garner more pointers from the blueprint population, 
thereby participating in a larger number of networks. This biasing towards historically 
more cooperative neurons provides more accurate evaluation of the elite neurons. 
Newer neurons in this model, however, may consequently receive too few evaluations 
for proper evaluation. Empirically, the allocation of more trials to elite neurons 
performs better than uniform neuron participation. Figure 4-6 illustrates the 
relationship between the blueprint and the neuron population (Moriarty & 
Miikkulainen, 1998).  
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Figure 4-6 - Network blueprint population in relation to the neuron population.  

 
Evolving network blueprints exploits the best networks discovered during evolution. 
By evolving the blueprint population, the best neuron combinations are also 
recombined to form new, potentially better, collections of neurons. The blueprint level 
evolution thus provides a very exploitative search that utilises the best neuron 
combinations, thereby focusing the search in later generations (Moriarty & 
Miikkulainen, 1998). 
 
Several third generation evolutionary reinforcement learning algorithms have been 
proposed since the publication of the SANE algorithm. These include Eugenic 
evolution (Polani & Miikkulainen, 2000), Enforced sub-populations (ESP) (Gomez & 
Miikkulainen, 1997), NeuroEvolution of Augmenting Topologies (NEAT) (Stanley & 
Miikkulainen, 2002) and a cultural algorithm that combines EA with back-
propagation (McQuesten & Miikkulainen, 1997). All these newer algorithms have 
elements of SANE as their foundation. The SMNE algorithm (detailed in section 4.6), 
developed in this work, draws strongly from the implicit fitness sharing concepts in 
SANE and as such should be regarded as a third generation algorithm indebted to the 
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SANE algorithm. In this thesis, the SANE algorithm has been used to develop 
neurocontrollers and to serve as comparative algorithm to the SMNE algorithm. 
Section 4.3 details the implementation of the SANE algorithm.  
 

4.3 SANE IMPLEMENTATION 

 
SANE evolves both a neuron and a network blueprint population. Each neuron in the 
hidden layer specifies a set of weights and connections to the input layer and output 
layer. Each genotype in the network population specifies a grouping of neurons to 
include in the network. The neuron evolution thus searches for effective partial 
solutions (i.e., neurons), whilst the blueprint evolution searches for effective 
combinations of these partial solutions (i.e., networks) (Moriarty & Miikkulainen, 
1998). 
 
Each neuron represents a hidden neuron in a 3-layer partially connected feed-forward 
network. Gene pairs in each neuron genotype encode an even number of connection-
weight combinations. The first gene in a pair encodes a neuron connection and the 
second gene encodes the weight for that particular connection. Each connection gene 
is an integer value that ranges between zero and the total number of input and output 
nodes less one. Decoding a connection gene assigns a connection to either an input or 
an output node. Should the integer value in the connection field be less than the total 
number of input nodes, the connection is made to the corresponding input node 
number. Otherwise, the connection is made to the corresponding output node number. 
Connections are thus probabilistically assigned to either input or output nodes, based 
on the number ratio of input to output nodes. Each weight gene is a floating point 
value with a gaussian distribution around the mean 0, with a standard deviation of 
typically 2. Initially the connection and weight genes are randomly allocated to each 
neuron in the population (Moriarty & Miikkulainen, 1998). 
 
Each genotype in the network blueprint population is comprised of a set of neuron 
pointers (i.e., address pointers) to neuron structures. The number of neurons in each 
network is fixed, depending on the complexity of the problem. Initially the neuron 
address pointers are assigned randomly to neuron structures (Moriarty & 
Miikkulainen, 1998). 
 
SANE’s evolutionary generational algorithm operates in two main phases – 
evaluation and recombination. The macro flow chart of the SANE algorithm is 
illustrated in Figure 4-7 (Moriarty & Miikkulainen, 1998). 
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Figure 4-7 - Macro flow chart of the SANE algorithm.  
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4.3.1 Evaluation stage 
 
The evaluation phase determines the fitness of each neuron and network in the 
populations. Network blueprints are evaluated based on reinforcement from direct 
interaction with either a dynamic simulation or real world environment (section 3.2).  
Figure 4-8 illustrates the process of evaluation for a single network genotype. The 
plant state is initially typically set to an initial condition that lies in the region around 
the desired set points. The dynamic state equations are solved, using fourth order 
Runga-Kutta, for a single sample period. The plant enters a new state, st, and the state 
variables and other inputs determine the neurocontroller's control action, at. The error 
from the desired state for the current sample period is calculated and stored for fitness 
calculation, rt, purposes. The control action will determine the solution of the state 
equations for the next sample period. The current plant state is evaluated to determine 
if a premature failure criterion has been triggered. Should premature failure occur, a 
specified maximum error is assigned to the remaining time steps (i.e., sample periods) 
of the trial. Should premature failure not occur, the described sequence of events is 
repeated, until the evaluation trial terminates. A fitness value is assigned to the 
blueprint network based on the criterion specified by the objective function.  
 
Each neuron genotype contained within a blueprint network is assigned a fitness 
based on the summed fitness of the best five networks that the neuron participated in. 
Utilising only the best five networks prevents an average or "aging" neuron with 
several pointers from dominating more effective neuron discoveries that have few 
pointers (Moriarty & Miikkulainen, 1998). 
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Figure 4-8 - Micro flow chart for evaluation phase for a single network genotype. 
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4.3.2 Recombination for the neuron population 
 
After evaluation, the neuron population and the network blueprint population are 
ranked based on the assigned fitness. For each neuron in the top 20 [%] of the neuron 
population (i.e., elite population), a mate is selected randomly from the neurons that 
have a higher fitness than that particular neuron. Thus, the neuron ranked 3rd may 
only reproduce with the neurons ranked 2nd and first. Two offspring neurons are 
created from a one-point crossover operator. One of the offspring neurons is randomly 
selected to enter the population. The other offspring neuron is replaced randomly by 
one of the parent neurons, after which the offspring neuron is inserted into the 
population. Copying one of the parent neurons as the second offspring, reduces the 
effect of adverse neuron mutation on the blueprint population. The two offspring 
replace the most ineffective neurons in the population according to rank. This replaces 
a number of the most ineffective neurons (i.e, double the number of elite neurons) in 
the population after each generation. No mutation operator is used on the elite or 
breeding neurons (Moriarty & Miikkulainen, 1998). 
 
Only the non-elite (non-breeding) portion of the population partakes in neuron 
mutation. For connection genes a 2 [%] probability exists that a connection may be 
randomly reassigned to either an input or output node. For weight genes a mutation 4 
[%] probability exists for a random gaussian weight adjustment and a 0.1 [%] 
probability for a weight sign inversion. The original weight is modified within a 
standard deviation of 1.0 (Moriarty & Miikkulainen, 1998). 
   
This aggressive, elitist breeding strategy is normally not incorporated in 
neurocontrollers evolution, as this would generally lead to premature convergence of 
the population. As SANE provides for pressure against convergence, SANE performs 
well with this aggressive strategy (Moriarty & Miikkulainen, 1998). 
 

4.3.3 Recombination for the network population 
 
Crossover in the blueprint population results in the exchange of address pointers to the 
neuron population. Should a parent point to a specific neuron, one of its children will 
consequently also point to that particular neuron (Moriarty & Miikkulainen, 1998). 
 
To avoid convergence in the blueprint population, a twofold mutation strategy is 
incorporated. A 0.2 [%] probability exists that a pointer is reassigned to a random 
neuron in the neuron population. This promotes the use of neurons other than the 
neurons in the elite neuron population. A neuron that does not participate in any 
networks may so doing obtain a pointer from the blueprint population. Also, each 
offspring neuron is potentially better than or an exact copy of a parent neuron. The 
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blueprint evolution takes advantage of this knowledge, by reassigning breeding 
neuron pointers to offspring neuron pointers with a 50 [%] probability. These two 
mutation operators preserve neuron pointers in the top blueprints, by not mutating any 
breeding (elite) networks (Moriarty & Miikkulainen, 1998). 
 
As pointers are occasionally reassigned to offspring neurons, new neuron structures 
are evaluated. As neuron pointers are also reassigned to exact copies of parent 
neurons, some resilience against adverse mutation at the neuron level is incorporated. 
If pointers were not reassigned to neuron copies, several blueprint networks may point 
to the same neuron. Any mutation in that neuron would consequently affect each 
network that points to it. This copy strategy limits possible adverse effects to only a 
few blueprint networks. This is similar to schema promotion in standard evolutionary 
algorithms. As evolution progresses, highly fit schemata (neurons) become more 
prevalent in the population. Mutation to one copy of the schemata should not affect 
other copies in the population (Moriarty & Miikkulainen, 1998). 
 

4.4 THE SUITABILITY OF SANE FOR EVOLVING NEURAL NETWORKS 
 
Section 3.4 discusses several complications in evolving neural networks using genetic 
algorithms. These include scale-up and the structural/ functional mapping problem. 
 
The evolution of large complete neural networks (i.e., GENITOR II) requires binary 
encodings that have long genotype (string) encodings. The longer the encoded 
solution, the greater the probability that the crossover operator becomes disruptive to 
the genetic search (section 3.4). SANE deals with this scale-up difficulty by encoding 
the neuron population utilising real value encoding (Whitley & Starkweather, 1990)  
as described in section 3.4. This reduces the genotype length and consequently results 
in less disruptive crossover. The evolution of individual neurons, instead of complete 
networks, also reduces the probability of disruptive crossover. Individual neurons 
have far shorter encodings than full network encodings, thus reducing the probability 
of relevant schema being separated by great genotype distances. 
 
Genetic search relies probabilistically on offspring being potentially better than their 
parents. However, fully encoded neural networks are subject to the 
structural/functional mapping problem or competing conventions (section 3.4). In a 
neuron population, each neuron typically represents a single functionality in solving 
the complete task, disallowing the structural/functional mapping problem. Loss of 
neuron functionality due to the crossover operator is not a concern at the neuron level. 
Particularly, crossover between two functionally different, yet cooperating neurons, 
may result in two tasks being effectively combined into a single neuron. Neuron 
crossover thus promotes the emergence of generalists (section 3.5) in an environment 
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with limited resources and network size (Smith et al., 1993). The top neurons in each 
generation are also copied unchanged to the next generation. Any detrimental 
crossover or mutation effects thus only affect the offspring neurons. A robust search is 
thus maintained at the neuron level. 
 
SANE's network (blueprint) population is, however, susceptible to the 
structural/functional mapping problem (section 4.3.3). Blueprint networks point to 
functional neurons and crossover may disrupt useful combinations, should 
functionally similar neurons reside at different positions in the blueprint network 
encoding. SANE deals with this deficiency indirectly, by copying the top networks 
unchanged to the next generation. Should poor offspring result from two effective 
parents, the effect only slows the genetic search. Nevertheless, slower convergence is 
detrimental, as a slower search implies utilising more evaluations that may prove 
costly in practice. 
 
The success of ERL in game tree search (Moriarty & Miikkulainen, 1998), controlling 
chaos (Weeks and Burgress, 1997), robot arm control and maze experiments has 
motivated its use in controlling non-linear unit operations (Conradie, 2000). In 
process control, ERL deals effectively with non-minimum phase behaviour, process 
time delays, operating constraints and actuator delays (Conradie, 2000), motivating its 
use in plant-wide control applications. For large problems like the Tennessee Eastman 
control challenge, SANE is slow in converging to an optimal neurocontrol structure. 
The SMNE algorithm speeds learning as described in section 4.5. 
 

4.5 SYNERGY AND GENETIC DIVERSITY 

 
This section introduces elements of a novel learning methodology, Symbiotic 
Memetic Neuro-Evolution (SMNE), for developing neural network controllers in a 
reinforcement learning framework.  

4.5.1 Reinforcement learning 
 
As discussed in section 3.2, reinforcement learning is a computational framework that 
allows automation of the learning process. Reinforcement learning is set apart from 
conventional non-linear control techniques by minimal reliance on explicit process 
knowledge. However, reinforcement learning relies heavily on the learning 
methodology that uses controller performance evaluations to direct the learning 
process. Evolutionary algorithms (EA) are robust global optimisation methods for 
solving complicated combinatorial tasks, such as determining optimal controller 
parameters. Evolutionary algorithms have been used effectively as learning 
methodologies in reinforcement learning frameworks. In neurocontrol, evolutionary 
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reinforcement learning searches in a population of possible neural network controllers 
for a strategy that encompasses effective control actions in the chemical process. 
Neurocontrollers are comprised of collections of neurons, with each neuron specifying 
the weights from the input layer (sensor readings) to output layer (control actions). In 
an EA framework, effective neurocontrollers produce offspring, which propagates 
effective neurons (genetic material) in the population. This genetic propagation of 
effective neuron structures is key to solving the combinatorial nature of 
neurocontroller parameter estimation (Moriarty & Miikkulainen, 1998).  
 

4.5.2 Memetic  algorithms 
 
EA's propagate effective neuron structures by varying the sample distribution in the 
solution space, depending upon the evaluation of the objective (fitness) function. This 
selection biases the search towards regions of the solution space where near optimal 
solutions have been discovered. Local refinements to these near optimal solutions 
could significantly accelerate arriving at an optimal solution. However, EA's are not 
suited to focusing local refinements in large combinatorial tasks. Genetic evolution 
may be augmented to facilitate local (neighbourhood) search via cultural evolution 
(Merz, 2000).  
 
Analogous to genetic propagation, cultural transmission (i.e., bird song) is the 
evolutionary flow of information. However, there are significant differences between 
cultural and genetic evolution. In cultural evolution, improvements are seldom a result 
of copying errors or the exchange of co-adapted units of information. Clear-cut 
combination of exact ideas does not generally lead to innovation. An idea is rather 
blended with other similar ideas based upon perception and understanding. This 
blending process is the driving force towards innovation. Genetic evolution does not 
incorporate an innovative component, as experimentation (reproduction) with new 
information is governed by biased selection. A gene is not changed based on the 
quality of other similar genes. The individuals in cultural evolution are conscious 
entities that use one another's ideas in the search process, subject to cooperation and 
competition. Genetic evolution has no concern for individual genes, but focuses on 
improving the population by propagating effective gene combinations (Merz, 2000).  
 
Memetic algorithms (MA) are evolutionary algorithms that use cultural evolution for 
local search (LS). The local search is applied to solutions in each generation of the 
EA, creating a process of lifetime learning. The EA searches globally for regions 
containing significant optima, while the LS searches these regions for the local 
optimum. The EA is thus responsible for exploration, whilst the LS governs 
exploitation. A balance between exploration and exploitation ensures that the 
minimum number of evaluations is employed in finding the global optimum. This 
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balance is dependent on the synergy between lifetime learning and evolution (Merz, 
2000).  
 
LS aids the evolutionary process by smoothing the fitness landscape. LS exploits the 
local fitness landscape, which absolves the EA from devoting resources to searching 
in areas of local complexity on the fitness surface. This smoothing essentially 
involves a discretisation of the fitness landscape. Consider the optimisation of the 
fitness landscape in Figure 4-9. 
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Figure 4-9 - Smoothing of the fitness landscape by local search, thereby reducing the complexity 
of the EA's solution space.  

 
Assume that any EA solution, located on one of the slopes on the three peaks, is able 
to locate the local maximum through LS. The EA's task is simplified considerably, in 
that it only needs to locate three regions of the search space. The dashed lines in 
Figure 4-9 indicate these three discrete regions. With the added local search 
capability, the complexity of the EA's solution space is reduced significantly. The 
plasticity afforded by lifetime learning makes it easier for the EA to climb to peaks in 
the fitness landscape (Merz, 2000).   
 
Therefore, the EA of a memetic algorithm should not generate multiple solutions in 
the neighbourhood of a single optimum, but should maintain a diverse (wider) search 
in the solution space. Thereby, the EA aids the LS by bordering regions (sub-spaces) 
of the fitness landscape that contain significant optima. Such regions become prime 
candidates for exploitation by local search algorithms. A synergetic effect, which 
accelerates evolution, thus exists in an evolving population of individuals, where the 
individuals are also exposed to learning during their lifetime (Merz, 2000). 
 
A key element to maintaining such synergy is a diversification mechanism in the EA. 
Genetic diversity is required to continue a global search. Global reliability, which 
promises convergence to the global optimum, is required to ensure that every region 
of the solution space is effectively explored (Merz, 2000).  
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4.5.3 Effective genetic diversification 
 
Genetic diversity prevents convergence to a local optimum and allows continued 
genetic search, assuring global reliability. The continued introduction of informational 
variety is critical for effective exploitation by cultural evolution. Numerous methods 
for maintaining genetic diversity have been proposed; such as crowding, distributed 
sub-populations with migration, local mating and explicit fitness sharing (section 3.5). 
These methods are effective in slowing convergence, but have been unable to sustain 
a diverse dynamic equilibrium in the EA's population. 
 
Implicit fitness sharing entails the search for partial solutions, which cooperate to 
encode the complete solution. In neuro-evolution, individual neurons are partial 
solutions to the complete solution (neural network).  Neurons that compete to perform 
the same task, compete for the same rewards, namely weak cooperation. Neurons that 
do not overlap in their tasks, are cooperating in an indirect manner, namely strong 
cooperation. Strong cooperation is symbiotic in nature (section 3.5.5). 
 
Strong cooperation maintains high quality diversity in the face of significant selection 
pressure, by balancing convergence with the restorative force of niching pressure. A 
niching phenomenon also implies several parallel searches for partial solutions, which 
should prove more effective than a single search for the complete solution (section 
3.5.5).  
 

4.6 SYMBIOTIC MEMETIC NEURO-EVOLUTION (SMNE) 

 
Implicit fitness sharing and the synergetic effect of memetic algorithms, may be 
combined to enhance global reliability and accelerate evolution in complex 
combinatorial tasks. This section introduces a novel memetic algorithm, Symbiotic 
Memetic Neuro-Evolution (SMNE), for developing neurocontrollers in a 
reinforcement learning framework. A symbiotic genetic algorithm (Figure 4-10) is 
employed to ensure global reliability, while performing an aggressive explorative 
search. Particle Swarm Optimisation (PSO), a cultural evolution method, is used for 
local exploitative search and refinements after each EA generation. Compared to other 
evolutionary approaches, this synergetic effect accelerates and improves the 
automated acquisition of process control knowledge from non-linear dynamic models.  
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Figure 4-10 - Flow diagram for a single generation in the Symbiotic Memetic Neuro-Evolution 
algorithm. 

 

4.6.1 Symbiotic evolutionary algorithm 
 
Similar to the SANE algorithm (section 4.3), the symbiotic EA (dashed box in Figure 
4-10) maintains both a neuron and a network population. Each member of the neuron 
population encodes a hidden neuron, with weights from the input layer to the output 
layer. While SANE maintains a single neuron population, SMNE's neuron population 
is comprised of a number of sub-populations. The network population is constructed 
from the neuron population. Each network is a collection of pointers to the neuron 
sub-populations. Each position in a network's hidden layer is filled from a different 
neuron sub-population.  
 
Competing conventions is avoided in the SMNE's network population, as each 
network position points to a particular sub-population (compare section 4.4). 
Competing conventions is also avoided in the neuron population, as each weight 
connects to a fixed input or output throughout evolution. Real-value encoding of 
neuron weights also ensures that the crossover location is at the gene (weight) 
boundaries. This causes less gene disruption during crossover. Unchanged genes are 
thus carried into the next generation, focusing the search. 
 
Each network is evaluated in the reinforcement learning task (i.e., process control) 
and assigned a fitness value based on the control performance criteria. High network 
fitness reflects superior performance in the control task. The network population is 
ranked after evaluation. The neuron fitness assignment implements implicit fitness 
sharing. Each neuron is assigned a fitness value, based on the summed fitness of the 
five best networks in which it participated (Moriarty & Miikkulainen, 1998). High 
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neuron fitness reflects a neuron's ability to cooperate with other neurons in different 
sub-populations. Rewarding neuron cooperation with high fitness, induces niching 
pressure in the sub-populations. Strong cooperation between sub-populations 
facilitates the search for partial solutions that comprise the complete solution. Each 
sub-population thus serves as a container in which a niche may emerge. The niching 
pressure retains genetic diversity in the neuron population, allowing the genetic search 
to continue. The neuron population is ranked after evaluation. Recombination and 
reproduction is based on the network and neuron ranking (Moriarty & Miikkulainen, 
1998). 
 
One-point crossover is applied to the elite neuron population (top 20 [%]). The elite 
neurons breed across the sub-populations, thereby exploring the solution space 
between current niches. Each elite neuron randomly selects (on rank) a mate that has a 
higher fitness than itself. Two effective parents should produce offspring with similar 
or superior performance. As the best elite neurons are more likely situated in different 
sub-populations (strong cooperation), their offspring attempt combining two 
functionalities into a single neuron. This may free sub-populations to pursue other 
niches. Crossover in the less fit elite neurons has a greater probability of selecting a 
parent from the same sub-population, which focuses the genetic search (weak 
cooperation). Each offspring neuron is copied to a neuron sub-population, depending 
on the gene contribution from each parent. The offspring neurons replace the worst 
neurons in each sub-population. Mutation is applied, with low probability (2 [%]), to 
the remainder of the neuron population.  
 
An elite network population (top 20 [%]) retains knowledge of effective neuron 
combinations (Moriarty & Miikkulainen, 1998). The elite network population's 
reproduction operator replaces a neuron pointer with one of its offspring that was 
copied to the same sub-population. This reproduction operator applies, with 25 [%] 
probability, to all the neuron pointers in the elite network population. The offspring 
networks replace the worst networks. The remaining networks are constructed 
randomly from the sub-populations, with a propensity for selecting offspring neurons 
of the elite neuron population. This scheme ensures that neurons not selected in the 
previous generation, obtain pointers and therefore a fitness evaluation.  
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4.6.2 Particle Swarm Optimisation 
 
A local refinement search, Particle Swarm Optimisation (PSO), augments SMNE's 
symbiotic EA. PSO is implemented after each EA generation, as illustrated in Figure 
4-10, thereby inducing lifetime learning. PSO is a population based optimisation 
method loosely based on the social behaviour of flocks (swarms) of birds. PSO 
updates each individual based on the collective experience of the swarm particles in 
the solution space (Shi & Eberhart, 1999): 
 

( ) ( )idgdidididid xprandcxprandcvv −⋅⋅+−⋅⋅+⋅= ()(): 21ω    (4-3) 

ididid vxx +=:                        (4-4) 

 
where vid is a particle's velocity vector, ω is the inertia weight, c1 and c2 are constant 
parameters and xid is a particle's position vector. Each particle retains partial 
knowledge of its own best position, pid, and the position of the best swarm particle, pgd 
(equation 4-3). Based on these two knowledge components, each particle updates its 
velocity vector to determine its next position (equation 4-4) (Shi & Eberhart, 1999). 
PSO shares numerous characteristics with cultural algorithms. The swarm's movement 
in the solution space is akin to cultural transmission and the innovative blending of 
ideas. Also, each particle's momentum protects against entrapment in a local 
optimum.  
 
Each particle thus blends its own experience and that of the best swarm particle in a 
unique manner. PSO assumes that the best swarm particle is located in a region of the 
solution space that contributes to solving the control task. Each particle moves 
uniquely in the general direction of the best swarm particle. This may lead to the 
discovery of superior, adjacent regions of the solution space. A new best swarm 
particle consequently moves the swarm in a new direction. PSO thereby involves 
cooperation as a result of shared experience and competition for superior fitness (Shi 
& Eberhart, 1999).  
 
SMNE's particle swarm implementation incorporates a small inertia weight (ω = 0.4 
in equation 4-3) to facilitate local search. The parameters c1 and c2 (equation 4-3) are 
also equal to 0.5 (conventionally 2.0), which ensures an exploitative search. Each 
neuron sub-population contains a separate PSO implementation. The PSO's neuron 
weight changes are Lamarckian, that is, the weight changes update the genes. The best 
neuron in a sub-population is the best particle in its swarm. PSO refines each partial 
solution, by sharing the best neuron's control knowledge with other neurons in its sub-
population.  
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Local search (LS) should only be applied to evolutionary solutions where it will be 
the most beneficial. A Lamarckian LS may also begin to dominate the genetic 
population, causing a loss in diversity. LS should thus only be applied to a sub-set of 
the total population (Merz, 2000). Therefore, the neurons of the elite network 
population constitute the candidates for LS. These neurons are presumably located in 
close proximity to the regional sub-spaces that contribute to the search for partial 
solutions. Complete LS may also involve a large number of evaluations. The LS is 
only applied for the limited number of five steps. This ensures that evaluations are 
effectively utilised, after each evolutionary step. This partial local optimisation is in 
keeping with cultural evolution, ensuring that each particle modifies the swarm 
knowledge uniquely. Applying LS for a limited number of steps, also avoids a loss of 
diversity in the elite network population's neurons.  
 
As discussed in section 4.5, the symbiotic EA and the PSO of SMNE result in a 
synergetic search algorithm that allows effective discovery and refinement of partial 
solutions. The SMNE algorithm was subsequently applied to a challenging real world 
problem. 
 

4.7 AGRAWAL BIOREACTOR FLOW SHEET OPTIMISATION - 

COORDINATED PROCESS DESIGN AND CONTROLLER 

DEVELOPMENT 

 
Fermenters may be extremely difficult to control, as their dynamic behaviour is 
invariably non-linear and model parameters may vary unpredictably. Accurate process 
models are rarely available owing to the complexity of the underlying biochemical 
process systems. Also, the process state is difficult to evaluate accurately, owing to a 
lack of reliable biosensors (Henson & Seborg, 1992).  
 
Agrawal et al. (1982) modelled the behaviour of microbial cultures within the 
framework of lumped kinetic models, which has proven useful in industrial 
applications. Cell growth rates are frequently inhibited by large substrate 
concentrations. Agrawal et al. (1982) investigated the effect of this inhibition on 
steady-state and periodic solutions, by using the following one-hump growth model: 
 

)/(}{ KSeSkS −⋅⋅=µ         (4-5) 
      

where µ is the specific growth rate (maximum at S = K) and S is the substrate 
concentration. The specific substrate consumption rate, σ, is related to the specific 
growth rate through the yield coefficient, Y. 
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Figure 4-11 - Bioreactor flow sheet to be optimised by the SMNE algorithm from both a design 
and control perspective.  

 
For the CSTR in Figure 4-11, the cell and substrate mass balances are described by 
the following coupled non-linear differential equations 4-6 to 4-8. The model 
variables are defined in Table 4-2. 
 

( )
2

5.01
R

hfFF
dt
dh vc

⋅
⋅⋅−−+

=
π

α
      (4-6) 

( )
XeSkX

hR
hfFF

dt
dX KSvc ⋅⋅⋅+⋅

⋅⋅
⋅⋅++

−= − )/(
2

5.0

π
α

    (4-7) 

( ) ( )
X

Sba
eSk

hR
SSFSSF

dt
dS KS

ccF ⋅
⋅+

⋅⋅−⋅
⋅⋅

−⋅+−⋅
=

− )/(

2π
    (4-8) 

 

Table 4-2 - Model parameters and variables for bioreactor flow sheet.    

Description Formulation Unit 
Nominal Substrate Feed Flow rate  F [m3·min-1] 
Concentrated Substrate Feed Flow rate Fc [m3·min-1] 
Reactor outlet valve position fv [m2.5·min-1] 
Reactor liquid height h [m] 
Reactor radius R [m] 
Nominal Substrate Feed Concentration S [kmol·m-3] 
Concentrated Substrate Feed Concentration Sc [kmol·m-3] 
Cell mass concentration X [kg·m-3] 
Recycle Ratio α  - 
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The flow sheet in Figure 4-11 needs to be optimised by maximising φ in equation 4-9, 
with the operating profit (P) described by equation 4-10 and the fixed capital cost 
(FCI) described in equation 4-11. The rate of return (ROR) is fixed at 15 [%]. The 
reactor height is also limited by the constraint in equation 4-12. The various cost 
coefficients and process design parameters are presented in Table 4-3.  
 

FCIRORP
vfFFcSXh

⋅−=φ
α ,,,,,,

max       (4-9) 

t
v

cv P
hfXc

FcFchfXcP ⋅






 ⋅⋅⋅
−⋅−⋅−⋅⋅⋅=

3600

5.0
4

32
5.0

1    (4-10) 

( )[ ]444.05.0
,

724.0
,18.1 hfXBFVBFFCI vccbmvvbm ⋅⋅⋅⋅+⋅⋅⋅=    (4-11) 

 
09.1 ≥−⋅ hR          (4-12) 

 

Table 4-3 - Parameter and cost coefficients for flow sheet optimisation. 

Parameter Unit Value Cost 
Coef. 

Unit Value 

R 
SF 

Sc 
a 
b 
k 
K 

m 
kmol·m-3 
kmol·m-3 
kg·kmol-1 
kg·m3·kmol-2 
m3·kmol·s-1 
kmol·m-3 

3.00 
0.3 
1.00 
5.4 
180 
1.00 
0.12 

c1 
c2 

c3 
c4 
Fbm,v 

Fbm,c 

Bv 
Bc 

$·kg-1 

$·m-3 
$·m-3 
($·h-1)/(kg·s-1) 
- 
- 
$/(m3)0.724 
$/(kg·min-1)0.444 

5.00 
10.80 
200.00 
0.04 
4.5 
3.4 
1836.5 
54 325 

 
SMNE was used to develop a neurocontroller with 3 input nodes, 12 hidden nodes and 
4 output nodes (Table 4-4 & Table 4-5). The three input nodes were the system state 
variables, namely the cell mass concentration (X), substrate concentration (S) and 
reactor liquid level (h). The four output nodes were the nominal feed flow rate (F), the 
concentrated feed flow rate (Fc), the recycle fraction (α) and the reactor outlet valve 
position (fv) (which reflects the valve coefficient (Cv) multiplied by the flow 
characteristic of the valve). The four possible manipulated variables were bounded as 
follows: 0 ≤ F ≤ 10; 0 ≤ Fc ≤ 10; 0 ≤ fv ≤ 3.5 and 0 ≤ α ≤ 1. Twelve hidden nodes 
over-specify the mapping of state variables to control actions, but SMNE effectively 
prunes unnecessary connections and neurons from the neurocontroller solution. 
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Table 4-4 – Ranges of process and manipulated variables, normalised between 0 and 1 as inputs 
and outputs of neurocontroller. 

Neurcontroller 
inputs & outputs 

Process & manipulated 
variables 

Unit Normalised 
minimum 

Normalised 
maximum 

y1 
y2 
y3 
u1 
u2 
u3 
u4 

h 
X 
S 
α 
Fc 
F 
fv 

m 
kg·m-3 
kmol·m-3 
- 
m3·min-1 
m3·min-1 
m2.5·min-1 

0 
0 
0 
0 
0 
0.1 
0 

5.7 
17.82 
1 
0.99 
10 
10 
3.5 

 

Table 4-5 – Optimal SMNE neurocontroller based on equations 4-9 to 4-12 and the parameters in 
Table 4-3 (sample frequency of 10.5 [min]). 

 
SMNE searched the solution space for the neurocontroller with maximum economic 
return (equation 4-9). No set point values were provided, as SMNE was required to 
find the optimal operating point and develop an appropriate neurocontroller 
simultaneously.  
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SMNE optimised the design flow sheet for control at the steady state values as 
presented in Table 4-6. This optimal steady state is similar to that found with the 
PRODOC (PRocess Design, Operations and Control) research tool that uses 
homotopy-continuation methods for optimisation (Brengel & Seider, 1992). 
PRODOC uses the steady state process model to optimise the design objective 
function. As the design optimisation proceeds, the controllability using model 
predictive control is evaluated at various steady states on the search trajectory using 
the dynamic model. PRODOC coordinates the two non-linear programming (NLP) 
problems for the design optimisation and model predictive control development 
(MPC), which allows for a trade-off between profitability and controllability. In 
SMNE, the dynamic model is used directly to find the optimum operating point and 
develop a neurocontroller. As the genetic search progresses many neurocontrollers are 
developed in various operating regimes and recombined, until the neurocontroller 
with the greatest economic reward is found. In SMNE, a single optimisation is thus 
performed, while PRODOC coordinates two optimisation problems. Furthermore, 
Seider & Brengel (1992) found that convergence could not be guaranteed for all 
starting points in the PRODOC search, while SMNE's methodology is robust in that 
finding the global optimum is assured. As with PRODOC, SMNE may reduce the 
occurrences of overdesign via process design and control optimisation. 
 

Table 4-6 - Optimum values for design for bioreactor flow sheet. 

Variable Unit Brengel & Seider (1992) 
optimal steady state 

SMNE optimal steady 
state 

h 
X 
S 
α 
Fc 
F 
fv 

m 
kg·m-3 
kmol·m-3 
- 
m3·min-1 
m3·min-1 
m2.5·min-1 

5.70000 
4.89616 
0.13009 
0.00000 
0.00000 
7.09087 
2.97004 

5.69070 
4.89693 
0.13003 
0.00000 
0.00000 
7.08030 
2.96775 

 
A bifurcation analysis of the fermenter process model reveals that the optimal steady 
state (Table 4-6) corresponds to an unstable steady state in the open loop (Brengel & 
Seider, 1992). In a conservative design approach, it may seem prudent to operate at 
the highest cell concentration, but to avoid control difficulties not in near proximity to 
the region of instability. Selecting to operate in the region of stable steady state 
attractors, however, produces lower cell concentrations with greater residence times. 
At the global economic optimum (i.e., an open loop unstable steady state), the venture 
profit exceeds that at the most economic stable steady state (i.e., local optimum) by 
31.6 [%] (for a bioreactor with similar volume). Operating at the optimal unstable 
steady state, the net present value is considerably greater for the same capital 
investment. The SMNE neurocontroller design approach does not limit the 
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development of a controller to the open loop stable region of the process. Controller 
robustness in complex, unstable regions may thus be achieved with a large degree of 
autonomy.   
 
The solution found by SMNE has a number of positive design implications. The 
reactor volume was selected as the largest within the design constraint of equation 4-
12. The bioreactor volume had thus been appropriately determined by the SMNE 
algorithm, given the capital cost implication to the proposed project as in equation 4-
11. The centrifugal filter has also been sized, based on the capital cost of the proposed 
filter equipment at the desired filter duty. A concentrated substrate feed stream and a 
recycle stream are unnecessary from a control perspective for the nominal process 
conditions. Omitting these streams reduces the capital cost of the proposed flow sheet. 
Also, the inlet and outlet valves may be appropriately sized based on the flow rates 
that assure the appropriate residence time in the bioreactor. 
  
A typical neurocontroller response from a stable steady state initial condition (X = 
2.736 [kg·m-3], S = 0.025 [kg·m-3], h = 4.5 [m]) is presented in Figure 4-12 to Figure 
4-13. This typical response may be observed from any possible initial condition, as 
the neurocontroller effectively generalises to initial conditions not encountered during 
learning. From Figure 4-12 it is evident that the constraint in equation 4-12 represents 
a hard active constraint, in that the optimum reactor volume is at the upper limit of the 
h(R) constraint. During learning, should the constraint, h ≤ 5.7 [m], have been 
exceeded, premature failure would have occurred for that evaluation. The best 
neurocontroller thus learnt to maintain the level of the bioreactor at 5.691 [m] during 
an evaluation. The response in the reactor level thus had no overshoot (i.e., 
overdamped response) and the approach to the optimum steady state was gradual, so 
as to avoid the hard constraint limit. The response for the cell mass reveals an inverse 
response (i.e., non-minimum phase behaviour) caused by the presence of a right half 
plane zero in the process model. Process systems that exhibit non-minimum phase 
behaviour may cause linear controllers (i.e., PID controllers) to suffer from poor 
robustness, making optimal performance difficult to attain. The manipulated variable 
responses in Figure 4-13 are also gradual and the final control elements are thus not 
subjected to excessive control actions. The SMNE algorithm developed a 
neurocontroller with an annual venture profit of $48.477 million for the model 
parameters and cost coefficients as presented in Table 4-3. The instantaneous 
operating profit settles to the global economic optimum of 96.86 [$·min-1] as in Figure 
4-14. 
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Figure 4-12 - Response of the state variables from initial condition X = 2.736 [kg·m-3], S = 0.025 
[kg·m-3],  h = 4.5 [m]. 
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Figure 4-13 - Control action of the manipulated variables from initial condition X = 2.736 [kg·m-

3], S = 0.025 [kg·m-3], h = 4.5 [m]. 
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Figure 4-14 - Instantaneous economic optimum without disturbances, starting from initial 
condition X = 2.736 [kg·m-3], S = 0.025 [kg·m-3], h = 4.5 [m]. 

 
Bioreactors are typically subject to uncertainty in the substrate feed concentration, SF, 
owing to the complexity of nutrient media. To simulate this uncertainty, gaussian 
noise was introduced around the nominal value of SF = 0.3 [kmol·m-3] with a standard 
deviation of 0.025 [kmol·m-3] at every 10 sample period intervals (Figure 4-15). This 
is a difficult disturbance to reject in a CSTR reactor, as the unmeasured disturbance 
has an immediate impact (step change) on the substrate concentration in the uniformly 
mixed reactor. The state variable and control action responses are illustrated in Figure 
4-17 and Figure 4-18. As the presence of this disturbance was not simulated during 
learning, any control action that attempts to reject the disturbance is an indication of 
the neurocontroller's ability to generalise in the presence of uncertainty. From Figure 
4-16, the neurocontroller remains robust in the presence of significant uncertainty and 
remains in close proximity to the economic optimum for SF = 0.3 [kmol·m-3]. For SF < 
0.3 [kmol·m-3] the instantaneous operating profit can not be maintained at 96.86 
[$·min-1], as the maximum attainable cell mass concentration is well below 4.89 
[kg·m-3]. This is reflected in the reduced instantaneous profit (Figure 4-16) as SF is 
reduced below 0.3 [kmol·m-3] (Figure 4-15). However, the optimal instantaneous 
profit is above 96.86 [$·min-1] for SF > 0.3 [kmol·m-3]. From Figure 4-17 it is thus 
evident that the neurocontroller is unable to take advantage of an increase in SF to 
increase the operating profit.  
 
The neurocontroller is thus able to maintain robust performance in the presence of a 
feed disturbance, but is unable to track the optimum instantaneous operating profit 
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with changes in the model parameters (such as SF). The neurocontroller is thus 
specialised for optimal performance with SF = 0.3 [kmol·m-3]. Unmeasured 
disturbances, however, reduce the ability of the neurocontroller to maintain optimal 
performance in the light of equation 4-9. The net effect of a disturbance in SF (Figure 
4-15) on the profitability of the process is a reduction in the annual venture profit to 
$38.36 million from the nominal $48.477 million. On-line adaptation using Adaptive 
Neural Swarming (ANS) offers opportunities for improving profitability (section 4.9). 
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Figure 4-15 - Gaussian noise disturbance in the substrate feed concentration.  (----) Nominal SF. 
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Figure 4-16 - Instantaneous operating profit for the introduced gaussian noise on SF.  (-----) 
Optimal instantaneous operating profit for SF = 0.3 [kmol·m-3]. 
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Figure 4-17 - Response of the state variables to gaussian noise on the SF.  (-----) Economic optimal 
steady state for SF = 0.3 [kmol·m-3]. 
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Figure 4-18 - The control action of the manipulated variables to gaussian noise on the SF. (-----) 
Economic optimal steady state for SF = 0.3 [kmol·m-3]. 

 

4.7.1 Region change 
 
Other than process disturbances such as SF, disturbances in market conditions are also 
inevitable. Should the raw material cost of the concentrated substrate feed, SC, change 
from 200 [$/m3] to 150 [$/m3] owing to prevailing market conditions, the economic 
optimum shifts dramatically as seen in Figure 4-19 to Figure 4-21. With c3 < 150 
[$/m3], it becomes profitable to use SC, where previously the cost was prohibitive.  
Assuming model validity and sufficient dissolved oxygen can be supplied to sustain 
the high cell concentration (Figure 4-19), the operating profit almost doubles as seen 
in Figure 4-21. The two operating regions are located in vastly different regions of the 
state space. It becomes an inefficient task for a single neurocontroller to map such a 
large area of the state space to control actions. Typically such a strategy may be 
implemented using two optimal neurocontrollers that are switched from one to the 
other based on the cost of Sc. The generalisation and robustness of two such 
neurocontrollers allow for seamless transitions from one control strategy to the other.     



 Copyright University of Stellenbosch, 2004 105

0 1000 2000 3000 4000 5000 6000
2

3

4

5

6

h 
[m

]

0 1000 2000 3000 4000 5000 6000
0

20

40

60

X
 [k

g/
m3 ]

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

Time [min]

S 
[k

m
ol

/m
3 ]

 
Figure 4-19 - State variable responses for a change in operating region necessitated by a change 
in the raw material cost of SC from 200 [$/m3] to 150 [$/m3]. 
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Figure 4-20 - Manipulated variable outputs for a change in operating region necessitated by a 
change in the raw material cost of SC from 200 [$/m3] to 150 [$/m3]. 
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Figure 4-21 - A change in the raw material cost of Sc from 200 [$/m3] to 150 [$/m3] shift the 
operating region with the greatest economic return significantly. 

 

4.7.2 Conclusions for SMNE neurocontroller development 
 
Evolutionary reinforcement learning, in particular the SMNE algorithm, offers a 
robust search alternative for combined design and control optimisation. SMNE allows 
for flow sheet optimisation and optimal controller development based on economic 
considerations. The integrated design and controller development functions should 
significantly reduce the occurrences of over-design in the process industries. SMNE 
may thus considerably reduce the implementation of conservative design objectives. 
Also, the high degree of generalisation afforded by the developed non-linear 
neurocontrollers brings about more autonomous control for highly complex non-linear 
process environments. Efficient generalisation also allows for integration of several 
neurocontrollers into a single control strategy, thereby ensuring optimal operation 
over vast operating shifts in the state space brought about by market changes.  
 
 
 
 
 
 



 Copyright University of Stellenbosch, 2004 107

4.8 COMPARATIVE ABLATION BIOREACTOR STUDY 

 
SMNE and SANE are highly effective global optimisation algorithms. Given the 
bioreactor benchmark as described in section 4.7, SMNE and SANE arrive at the 
same global optimum. Convergence speed is critical in large, real world problems 
where a single evaluation, though simulated, may consume significant processing 
time.  As described in section 4.4, the SANE algorithm (section 4.3) has limitations in 
evolving neural networks. SMNE (section 4.5) overcomes these encoding limitations 
and augments a symbiotic EA with the synergy of a local search algorithm, PSO. 
Using the bioreactor benchmark as the dynamic environment, an ablation study 
demonstrates the contribution that each element in SMNE makes to convergence 
speed. 
 
SMNE was compared to three other methods: (1) multi-start stochastic hill climbing 
(SHC) as a reduced model, augmented with an initial random search for suitable 
starting points, (2) the SANE algorithm as a symbiotic EA with a single population of 
neurons, and (3) the symbiotic sub-population EA used in SMNE without PSO. The 
neurocontrollers received the bioreactor's three sensor readings as inputs, and 
determined the output positions of the four valves. Twenty learning simulations, each 
for a total of 30 000 evaluations, were completed for each learning method. Each 
evaluation was initialised to a random process state and run for 300 sample periods. 
The fitness for each evaluation was calculated as: 
 

∫ ⋅⋅=
300

0

)( dtttf φ              (4-13) 

 
where f is the fitness value and Φ(t) is the instantaneous profit at sample period, t. The 
statistical significance of the performance differences was measured using ANOVA 
analyses. 
 

Table 4-7 - ANOVA analysis for ablation study. 

ANOVA analysis P-Value 
Stochastic hill climbing vs. SANE 
SANE vs. SMNE's symbiotic EA 
Symbiotic EA vs. SMNE   

8.9·10-6 
5.1·10-4 
2.1·10-3 
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Figure 4-22 - Average normalised venture profit for the learning methodologies. A normalised 
venture profit of 1.0 represents the global optimum for the bioreactor control task. 
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Figure 4-23 - Principal components of the weight vectors of each neuron weights in the elite 
network population.   
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The average normalised venture profit for each method is shown in Figure 4-22. The 
ANOVA results are tabulated in Table 4-7.  Stochastic hill climbing could not learn 
an effective control strategy for the bioreactor (Figure 4-22). SHC could not reliably 
progress beyond the initial basin of attraction for any of the twenty simulation runs. 
This demonstrates the complexity of the bioreactor's dynamics and justifies using 
more complex algorithms in solving the control task.  
 
The EA algorithms proved more successful in progressing towards the global 
optimum (venture profit = 1). Although SANE and SMNE's symbiotic EA are similar 
in implementation, SMNE's symbiotic EA deals more effectively with competing 
conventions and focuses the niching phenomenon. The ANOVA analysis indicates 
that the sub-population treatment is statistically superior (ANOVA p  < 0.01) to the 
single neuron population SANE algorithm. 
 
SMNE, with its local search refinement operator (PSO), both accelerated and 
produced a higher average venture profit than the symbiotic EA implementations 
alone (Figure 4-22). The ANOVA analysis (ANOVA p < 0.01) also indicates that the 
PSO treatment in SMNE is statistically superior to the symbiotic EA implementations 
alone.  
 
Figure 4-23 presents a principal component analysis (first three principal components, 
explain 77 [%] of the variance). Each marker represents a neuron in the elite network 
population. The key elements of SMNE are illustrated: (1) the observed clusters 
illustrate the niching pressure induced by implicit fitness sharing, (2) genetic diversity 
has been maintained, allowing continued exploratory search, (3) each neuron cluster 
represents a swarm, which refines the promising sub-space regions identified by the 
symbiotic EA. 
 

4.8.1 Discussion of ablation study  
   
The ANOVA analyses (Table 4-7) prove that the synergy between evolution 
(symbiotic EA) and lifetime learning (PSO) in SMNE significantly enhances learning 
efficiency. This synergy relies on an effective balance between exploratory (genetic 
search) and exploitative (lifetime learning) search in the solution space. Implicit 
fitness sharing preserves this synergetic balance by maintaining genetic diversity 
through induced niching pressure. Genetic diversity allows a continued exploratory 
search, without which lifetime learning could not exploit the solution space 
effectively. Niching pressure bounds the solution space into distinct sub-space regions 
(clusters in Figure 4-23), which are partial solutions to the complete task. These sub-
space regions are prime candidates for a local search (learning). The symbiotic EA's 
niching phenomenon thus aids learning by creating good conditions for lifetime 
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learning (i.e. initial weights). Learning guides evolution by absolving it from 
exploring neighbouring solutions to the current evolutionary solutions. Evolution only 
needs to find appropriate regions in the solution space, rather than specific points in 
the solution space. A synergetic effect thus motivates the learning efficiency in the 
SMNE algorithm.  
 
In the SMNE algorithm, evolution is learning at the level of the neuron population, 
while lifetime learning (PSO) is learning at the level of each individual neuron. The 
evolutionary task searches for cooperative neurons, while the learning task seeks to 
improve each neuron's partial solution to the complete task. The evolutionary and 
learning tasks are thus quite different. What the neurons are required to learn (i.e., the 
learning task) and which neurons are selected during evolution (i.e., evolutionary 
task), are indirectly related. In other words, the symbiotic EA selects neurons that 
cooperate successfully, while PSO optimises the partial solutions that each neuron 
represents. The evolutionary fitness surface and the learning fitness surface are 
correlated, i.e. superior neurons tend to have high fitness values on both the fitness 
surfaces (Nolfi et al., 1994). A superior neuron cooperates effectively and also 
represents a good partial solution to the control task. Effective synergy results once 
high correlations between the learning and the evolutionary fitness surfaces are found.        
 
However, the fitness landscapes of the learning and evolutionary tasks are 
continuously changing, relative to one another, during evolution. This continuous 
change depends on the population's current location in the solution space. This 
suggests a dynamic correlation between the two fitness surfaces (Nolfi et al., 1994). 
Consider a novel neuron, with high learning task (i.e., partial solution) fitness. High 
partial solution fitness improves the likelihood of selection for genetic reproduction. 
Over several generations, the neuron is thus likely to obtain additional pointers from 
the network population. A greater number of neuron pointers translate to a higher 
cooperation (i.e., evolutionary) fitness. For effective synergy, a search for high 
dynamic correlation between the fitness surfaces must be maintained.     
               

4.8.2 Conclusion 
 
The Symbiotic Memetic Neuro-Evolution (SMNE) algorithm is effective at 
developing neurocontrollers for use in highly non-linear process environments. 
Implicit fitness sharing maintains genetic diversity. Implicit fitness sharing's niching 
pressure accelerates the evolutionary search for solution sub-spaces that may be 
exploited by local search. Particle swarm optimisation effectively absolves the EA 
from devoting its resources to local refinements. The synergy between the symbiotic 
EA and PSO accelerates learning from dynamic process models. SMNE's efficient 
learning translates to greater economic return for the process industries. 
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4.9 ADAPTIVE NEURAL NETWORKS 

 
A process' operating point (i.e., the process state) determines the product purity and 
production rate. As in section 4.7, the operating point thus has an intrinsic economic 
value. Control engineers select fixed operating points (i.e., set points) based on 
economic value. Process changes, due to process disturbances and drifting dynamics, 
cause deviations from the set points, requiring corrective action. Optimal set points 
and effective corrective actions yield greater economic return. Typically, linear 
controllers (e.g., PID controllers) maintain the set points and provide corrective action 
to process changes (Seborg et al., 1989). For example, an exothermic reactor has an 
optimal operating temperature. This temperature determines the production rate that 
directly impacts on the economic return from the reactor. The control engineer selects 
this optimal temperature as a set point. A PID controller responds to process 
disturbances that affect the reactor temperature, by increasing or decreasing the 
cooling water flow rate, thereby maintaining the set point. 
 
PID controllers typically utilise both fixed set points and fixed controller parameters. 
The PID controller parameters govern the corrective action (i.e., the control response) 
to process changes. There are three PID controller tuning parameters: proportional 
gain, integral and derivative. PID control's linear control structure is the industry 
standard, though not suited to non-linear processes that are common in the process 
industries. For non-linear processes, PID controller parameters are optimal only over a 
limited operating region. Process changes may cause the operating point to stray far 
from the set point, whereupon PID controllers may implement sub-optimal corrective 
actions. Detuning of the PID parameters may be necessary to maintain robust 
performance and ensure stability, resulting in a sacrifice of controller performance 
(Kavchak & Budman, 1999). Sub-optimal performance may be avoided only by 
adapting the controller parameters. As the set points largely determine the economic 
return, the set points must also adapt in response to process changes. Tracking the 
economic optimum therefore requires adapting both the controller parameters and the 
set points (Hrycej, 1997).   
 
Even a basic control system comprised of a linear, time-invariant process and a linear 
feedback control law, becomes a high-dimensional, coupled, non-linear problem with 
the addition of on-line parameter tuning (Sanner & Slotine, 1992). For non-linear 
systems, a constant proportional gain for a PID controller may give unsatisfactory 
control responses and even result in instability. Even for linear processes, the system 
dynamics change over time due to, for example, catalyst decay and mechanical wear-
and-tear. Different operating conditions should thus be matched to a set of PID 
controller gains (i.e., gain scheduling). Neural networks have been used in hybrid 
adaptive schemes. Megan & Cooper (1992) and Parlos et al. (2001) presented 
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methodologies for using neural networks to map the current process conditions to a 
particular set of linear controller parameters. Essentially, these methods involve self-
tuning PID controllers using neural networks. Megan & Cooper (1992) used a neural 
network, trained on patterns from ideal second order response data, to update PID 
tuning parameters. Similarly, Kumar and Guez (1991) used a neural network to 
estimate the second order model parameters based on the system response. Given the 
approximation of the plant within a linear second order model, standard pole 
placement techniques were used to calculate the controller parameters. This method 
has the advantage of being applicable to a wide range of dynamic systems without 
needing an explicit dynamic model.  
 
Section 4.7 demonstrates that for complex process dynamics, sub-optimal economic 
performance may result even for minor disturbances to the process (Figure 4-16). A 
feedforward neurocontroller (i.e., static neural network) with constant weights 
presumes that both the process dynamics and the control objective are static over 
time. For real-world systems, this is almost never the case and although static neural 
networks generalise well to new process conditions, on-line adaptation of the weights 
preserves near-optimal control performance.  
 
Numerous adaptive schemes have been proposed for neural networks in on-line 
process applications. The uncertain and changing nature of non-linear, time-varying 
processes necessitates on-line adaptation, thereby ensuring operation at the economic 
optimum. On-line adaptation of neural networks may prove problematic due to a lack 
of first principles knowledge, slow learning and rapid "forgetting" of past process 
knowledge. Slow learning is a function of the training algorithm. The 
backpropagation algorithm needs numerous passes through the training data to reduce 
the model error, which may be too slow for on-line application. More importantly, 
seldom-seen patterns are forgotten during adaptation as nodes are re-allocated to map 
more recent changes in the process dynamics. Typically, neural networks model the 
entire process, which presents a complex mapping (i.e., large neural networks) that is 
not suited to the time constraints and robustness criteria associated with on-line 
adaptation. Including neural networks within a fundamental model could reduce the 
learning burden (Ungar et al., 1990). Convergence and stability measures have been 
limited to specific classes of non-linear systems and are not generally applicable to 
numerous real-world processes. Ungar et al. (1990) concluded that based on the above 
arguments neural networks should not be adapted on-line. Rather, neural networks 
should be updated off-line with new process information and frequently updated.  
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Figure 4-24 - Indirect control using adaptive neural networks (Poznyak et al., 1999). 

 
Saerens and Soquet (1991) differentiated between generalised and specialised learning 
for neural network controllers. Generalised learning refers to learning from input-
output plant models, where the learning task drives a dynamic system so that its state 
vector follows a desired trajectory. Effectively, this involves inverting the process 
dynamics and the controller is required to function as an optimal controller based on a 
chosen cost function (i.e., control objective). Specialised learning entails learning 
from the direct evaluation of the actual plant output as compared to the desired plant 
output. The network weights are changed based on the error signal between the actual 
and the desired value of the controlled variable. Dirion et al. (1996) noted that the 
learning rate for specialised learning based on back-propagation must be small, 
otherwise the control response becomes oscillatory and the neurocontroller becomes 
ineffective. The rate of specialised learning is thus not only limited by the type of 
learning algorithm, but may require slowing the chosen algorithm to prevent large 
changes to the controller structure. In turn, specialised learning may be categorised as 
either indirect or direct control. Poznyak et al. (1999) proposed an indirect control 
methodology as shown in Figure 4-24 in which the parameters of the neural network 
plant model are adapted on-line and the control law (e.g., model predictive control) is 
updated based on the updated dynamic model. For indirect adaptive control, any 
improvement in the estimation of plant dynamics should result in more accurate 
models and consequently for model-based control in better controller performance 
(Kavchek & Budman, 1999). Saerens and Soquet (1991) proposed a direct control 
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methodology by directly adapting the weights of a neural network controller to reduce 
the output error. Unfortunately, the scheme by Saerens and Soquet (1991) is 
demonstrated using toy domains. Toy domains may relax conditions critical to 
efficient on-line adaptation in complex, real world domains. 
 
On-line adaptive control (i.e., specialised learning) suffers from a need to maintain the 
persistent excitation (PE) condition. PE can be described as an observability criterion, 
which ensures that the state variables are observable (i.e., may be reconstructed) in the 
time series of the process variable (Ydstie, 1990). Therefore, for a model to be 
updated consistently and accurately, the state variables must be embedded in the input 
data time series. Interestingly, steady state off-set cannot provide the necessary 
dynamic information that adheres to persistent excitation, though in the indirect 
adaptive approach the model must be updated to eliminate off-set. The adaptive 
algorithm thus not only determines when the actual control response deteriorates far 
enough from the desired response for adaptation, but also needs to assess whether the 
current process signals contains information of the dominant state variables for 
adaptation. Direct adaptation may suffer less from this constraint, since there is no 
model integrity that must be maintained.  
 
Krishnapura and Jutan (2000) noted that neural network models are typically not 
parsimonious and therefore an adaptive control scheme needs to update a large 
number of weights. Updating a large number of weights at each sampling instance is 
prone to error. Krishnapura and Jutan (2000) proposed using a small neural network 
structure (i.e., two neurons) modelled on the conventional PID controller, making on-
line adaptation by simple gradient methods viable. This adaptive approach was 
demonstrated in noise-free simulation studies, preventing assessment of this gradient-
based method in noisy process environments. Narenda and Balakrishnan (1997) 
proposed using switching rules to cater for changing process conditions. Multiple 
models, with few weights, map different operating regions in which the control 
system may need to function. If the plant is sufficiently close to any particular model, 
the model may be used to choose the controller. Multiple models are used to 
determine both when and to which controller the control system should switch, as 
dictated by the process conditions. Further, avoiding a large number of weights for 
adaptation, Pottmann & Henson (1997) demonstrated that radial basis function (RBF) 
networks have favourable adaptation properties. The localised mapping of RBF 
networks imply that only active nodes need to be adapted, since new information only 
applies to the firing neurons. This reduces the number of weights that require 
adaptation considerably.  
 
In any adaptive control methodology, the task reduces to finding a stable algorithm 
for adjusting the weights of the network. A brute-force correction of the controller 
parameters based on the gradient of the output error, particularly for noisy input 
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signals, could result in instability even for linear systems. To avoid such instabilities, 
neurocontrollers are often trained off-line to first provide, as a minimum, stabilising 
non-linear control. A simple approach is to find the identity mapping that 
approximates the inverse dynamics of the non-linear system (see 4.1.1). Direct inverse 
control may result in large control actions unsuited to many dynamic systems. The 
off-line training is thus frequently posed as an optimisation problem using a reference 
model or cost function (see 4.1.1). Stabilising or near-optimal performance may be 
further improved by on-line adaptation of the neural network weights in response to 
process changes. Effective generalisation and adaptability during process changes are 
essential to tracking a process' economic optimum. Robust search techniques are 
required for effective on-line adaptation of neurocontroller weights. 
 
Section 4.10 outlines basic notions in conventional adaptive control, which remain 
relevant to an advanced adaptive control schemes. Section 4.11 introduces an adaptive 
neurocontrol strategy, Adaptive Neural Swarming (ANS). A highly non-linear 
bioreactor benchmark (section 4.7) is used in the control simulation. The bioreactor's 
dynamic behaviour is changed continuously, which shifts the operating point with 
maximum economic return. In section 4.12, ANS adapts an existing neurocontroller's 
weights to reap greater economic return from the changing bioreactor process. ANS 
emerges as an effective tool for adapting existing neural network strategies, resulting 
in enhanced performance.   
 

4.10 ADAPTIVE CONTROL METHODS 

 
Control design requires a dynamic process model. Optimal control design is possible 
only if the process model is accurate. However, the model and the actual process are 
invariably mismatched. Also, exact knowledge of possible process changes is seldom 
available for control design purposes. Despite these shortcomings, robust control 
remains a control requirement. Generalisation is the ability of a controller to deliver 
near optimal performance, despite limited process knowledge during its design.  
 
Generalisation may provide robust control, but optimal control is rarely ensured 
during the control design process.  The designed controller frequently requires on-line 
refinements to the controller parameters and set points. Improved generalisation is 
difficult to impart on-line, as it involves reconciling past (i.e., design) and current 
process information into a single control strategy. For example, catalyst decay may 
cause the optimal temperature of a reactor to change over time. In contrast, adaptation 
changes controller parameters giving precedence to on-line process information. 
However, degraded performance may result should past process conditions return. A 
balance must thus be maintained between retaining generalisation imparted during 
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design, while allowing adaptation to exploit changes in the process conditions 
(Hrycej, 1997).  
 
On-line process information contains inaccuracies due to sensor noise and short-lived 
disturbances. Adapting controller parameters based on imperfect process information 
involves operational risk. The process may become unstable. On-line adaptation to 
control parameters faces numerous challenges: (1) Balancing the use of past and 
present process information, (2) supervising process stability, (3) implementing 
emergency procedures should the process become unsafe, due to on-line adaptation 
(Hrycej, 1997).  
 
The following two sub-sections illustrate the aims of conventional methods for 
adapting controller parameters (section 4.10.1) and process set points (section 4.10.2). 
ANS has the same aims, though its methodology is dissimilar. 
 

4.10.1 Conventional adaptive control 
 
An adaptive linear controller maintains a specified control response (i.e., corrective 
action) around a set point during process changes. For non-linear processes, a set of 
PID controller parameters can only maintain the specified control response for a 
limited range of process conditions. Process changes in non-linear processes may 
cause the control response to become oscillatory around the set point, as illustrated in 
Figure 4-25a. Adaptive linear control tunes the PID controller parameters, which 
corrects the oscillatory response in Figure 4-25a to the specified response in Figure 
4-25b. Conventional adaptive control relies on on-line process modelling (i.e., Model 
Reference Adaptive Control) and heuristic methods (i.e., Ziegler-Nichols) for 
adapting controller parameters (Ghanadan, 1990). Likewise, ANS must also ensure 
that a specified control response is maintained. 
 



 Copyright University of Stellenbosch, 2004 117

0 10 20 30 40 50
0

0.5

1

1.5

2

Pr
oc

es
s 

va
ria

bl
e Process variable

Set point       

0 10 20 30 40 50
0

0.5

1

1.5

Time [s]

Pr
oc

es
s 

va
ria

bl
e

Process variable
Set point       

(a) 

(b) 

 
Figure 4-25 - Objective of linear adaptive control. An oscillatory control response around the set 
point (a) is changed to a specified control response (b). The specified control response settles 
sooner on the set point. 

 

4.10.2 Evolutionary Operation  
 
Adaptive control does not change the set points that largely determine the economic 
return. Set points are selected during design based on an optimisation of the dynamic 
model equations. The optimisation considers both economic return and controllability. 
However, process changes during operation may make the current set points 
economically sub-optimal.  
 
Evolutionary operation (EVOP) challenges the use of constant set points in a 
continuously changing process. EVOP monitors the process and improves operation 
by changing the set points towards the economic optimum. EVOP makes a number of 
small set point changes that do not disrupt production. However, the set point changes 
need to be sufficiently large to discover potential improvements in the operating point. 
EVOP uses an experimental design to determine the number of set point change 
experiments. Pattern search methods use the experimental results to determine 
whether and in which direction the set points should be changed (Walters, 1991).  
 
Consider Figure 4-26, which graphs the economic return of a process that has two 
process variables. The contour lines represent operating points with similar economic 
returns.  The circular marker represents the current set point, which is economically 
sub-optimal. The set points for both process variables should be reduced for optimal 
economic return. EVOP conducts a number of set point change experiments 
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(represented by square markers) in the neighbourhood of the current set point. The 
economic return for each set point experiment is determined. In Figure 4-26, three 
experiments have greater economic return than the current set point. EVOP adjusts the 
current set point in the direction of greater economic return. The process is repeated 
until optimal set points are found (Walters, 1991).    
 
EVOP does not adapt the PID controller parameters for each of the set point 
experiments. As discussed in section 4.10.1, using the same controller parameters for 
all the set point experiments may give oscillatory responses. Poor control responses 
impact negatively the accurate determination of economic returns. 
 
Adaptive control and EVOP may be combined in a two-step methodology to track a 
changing economic optimum. EVOP selects a number of set point experiments. An 
adaptive control method establishes a specified control response for each set point 
experiment. The economic evaluations for each experiment will consequently be 
comparable, whereupon EVOP adjusts the current set point. This cumbersome two-
step process is repeated until the optimal set point is found. Ideally, a single on-line 
experiment (evaluation) should provide information on both the economic return and 
the control response. 
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Figure 4-26 - EVOP for a process with two process variables. The current set point (circular 
marker) is moved along the arrow's trajectory based on the economic return of each set point 
experiment (square markers). The process operation is thus improved. 
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4.11 ADAPTIVE NEURAL SWARMING 

 
This section describes Adaptive Neural Swarming (ANS), which combines adaptive 
control and EVOP into a single comprehensive step. In ANS, both the economic 
return and the control response are combined into a single feedback signal. A local 
PSO uses this sparse reinforcement information to adapt the weights of existing neural 
network controllers towards greater economic return in response to a changing 
process.  
  

4.11.1 Neural network structures 
 
Neurocontrollers may originate from various sources. Neural networks may be trained 
to mimic the control actions of existing PID controllers, thereby distributing the PID 
functionality over several neurons. Existing fuzzy logic systems may be converted to 
equivalent neural network architectures (Jong & Sun, 1993). Neurocontrollers are also 
developed utilising evolutionary reinforcement learning techniques (Conradie et al., 
2000). Neural networks possess characteristics that are beneficial to an adaptive 
scheme, such as generalisation and graceful degradation. 
 
For non-linear systems, Chen and Khalik (1995) confirmed the importance of 
extensive off-line training based on a prototype (even partial) model of the dynamic 
system. Off-line training provides a good starting point when the network is adapted 
on-line. Although the neural network may only provide robust or stabilising control, 
such a network may have initial parameters that are within the domain of attraction. 
 
The ability of neural networks to generalise from insufficient or partial information is 
particularly useful for noisy input data and provides a computing architecture for real-
world adaptive control. Also, once a PID controller is adapted, the small number of 
control parameters prohibits effective generalisation to past process conditions. 
Neural network controllers are collections of neurons, with each neuron specifying the 
weights from the input layer (process states) to output layer (control actions). 
Neurocontroller parameters are the neural network weights. A neurocontroller that is 
equivalent to a PID controller, has additional degrees of freedom, owing to a larger 
number of controller parameters. During adaptation, a neural network's distributed 
functionality preserves greater generalisation to past process conditions. The need for 
effective generalisation justifies the use of neural networks. 
 
Neural networks also exhibit graceful degradation. Graceful degradation allows small 
changes to the weights, without causing catastrophic control performance loss (S'euim 
& Clay, 1990; Ydstie, 1990).  Process stability is preserved during adaptation.   
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These neural network characteristics are relied upon in a reinforcement learning 
framework, described below, to provide process stability and continued 
generalisation.  
 

4.11.2 Reinforcement learning 
 
Reinforcement learning (RL) automates the acquisition of on-line performance (i.e., 
feedback) information and the adaptation process. RL uses on-line performance 
evaluations to guide adaptation (section 3.2).  
 
ANS maintains a population of possible neurocontroller solutions that serve as RL 
evaluations, similar to EVOP experiments. Each neurocontroller is evaluated 
individually over a number of sensor sample periods while interacting with a dynamic 
process as in Figure 3-1. Initially, the process may be at an arbitrary operating point 
(state, st). The neurocontroller observes the current process operating point at sample, 
t, and selects a control action, at. The control action changes the operating point to 
st+1. A reward, rt, is assigned based on the economic value of this new operating point. 
The objective is to maximise the total reward over a series of control actions, while 
maintaining a specified control response. An optimisation algorithm adapts the neural 
network weights based on the reward feedback from each evaluation.  
 
ANS treats the population of neurocontrollers as a swarm, using a local particle 
swarm optimisation for adapting the weights of each neurocontroller.   
 

4.11.3 Particle swarm optimisation 
 
PSO is loosely based on the social behaviour of flocks of birds. A population of 
individuals is updated based on feedback evaluations, gathered from the collective 
experience of the swarm individuals (Shi & Eberhart, 1999). Equations 4-14 and 4-15 
determine the velocity and position of the swarm in the solution space: 
 

( ) ( )idgdidididid xprandcxprandcvv −⋅⋅+−⋅⋅+⋅= ()(): 21ω                             (4-14) 

ididid vxx +=:                                                           (4-15) 

 
where each particle, i, moves through the solution space with dimension, d. Each 
particles velocity vector, vid, is dynamically adjusted according to the particle's own 
best experience, pid, and that of the current best particle, pgd, in the swarm. These two 
knowledge components are blended with each particle's current velocity vector to 
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determine the next position of the particle as per equation 4-15 (Shi and Eberhart, 
1999).  
 
The best swarm particle is a beacon to a region of the solution space that may contain 
better optimisation solutions. Each particle searches the solution space along its 
unique trajectory for better solutions. Should a better solution be found, the new best 
swarm particle moves the swarm in a new direction. The momentum in each particle's 
current velocity provides some protection against convergence to a local optimum 
(Shi and Eberhart, 1999).  
 
PSO has been utilised in tracking changing optima in function optimisation problems 
(Carlisle and Dozier, 2001; Angeline, 1997). PSO's success in these artificial domains 
motivates its use in complex real-world problems. 
 

4.11.4 On-line optimisation using ANS 
 
ANS uses a local PSO search as the optimisation algorithm within a reinforcement 
learning framework. ANS thereby tracks the shifting economic optimum resulting 
from a changing process.  Practical considerations for on-line application relate to the 
(1) selection of swarm size, (2) swarm initialisation, (3) appropriate PSO parameters 
and (4) duration of an RL evaluation. 
 
Each on-line experiment is time and resource intensive, since no control 
improvements are possible during the evaluation phase. The number of reinforcement 
learning evaluations per PSO adaptation must therefore be minimal. However, the 
dimensionality of the control task constrains the minimum number of evaluations. 
More process information (i.e., more evaluations) is required during the evaluation 
phase, as the dimensionality of the control task increases. Otherwise, effective 
adaptation based on on-line feedback is not possible. Each neuron in a neurocontroller 
represents a partial solution to the control task. The number of neuron weights reflects 
the dimensionality of such partial solutions. For example, to effectively adapt neurons 
with 12 weights, an absolute minimum of 12 evaluations is required. The number of 
swarm neurocontrollers (n) is thereby selected based on the dimensionality of the 
control task, as reflected by the number of neuron weights.  
 
In ANS, each swarm particle is an altered version of an existing neurocontroller. The 
initial swarm consists of the original (i.e., existing) neurocontroller and (n-1) altered 
neurocontrollers. Each altered neurocontroller is initialised with a small gaussian 
deviation from the existing neurocontroller weights. The maximum weight deviation 
is 3 [%] from the each original weight, thereby altering the control policy only 
marginally. A neurocontroller swarm is thus initialised in a local region of the 
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network weight solution space. This slight weight alteration determines the direction 
in which the swarm should move, without negatively effecting production and 
inducing process instability. On-line evaluation (experimentation) is thus limited to 
neighbouring solutions of an existing solution.  
 
Each swarm neurocontroller is evaluated on-line for a limited number of sensor 
samples. A process' time constant is defined as the process response time to a step 
change in a control action. The process' time constant determines the number of 
sensor samples used in each evaluation.  Equation 4-16 is the fitness evaluation that 
serves as feedback of each swarm neurocontroller's economic return: 

PenaltydtttFitness
t

t

−⋅⋅= ∫
2

1

)(φ           (4-16) 

where the evaluation is conducted for the number of samples between t1 and t2 and 
Φ(t) is the instantaneous profit at time t.  
 
A higher Φ(t) for each sample reflects a higher economic return, which increases the 
fitness value. ANS thus searches for improved economic return. Equation 4-16 also 
dictates the specified control response. An ITAE (integral-time-absolute-error) control 
response has minimal oscillation, which is suited to numerous process control 
applications. Maximising the integral results in an ITAE control response. The fitness 
evaluation thus contains information regarding both the economic return and the 
desired control response. Also, should hard operating constraints exist for the process, 
a penalty is assigned should such operating constraints be approached during 
adaptation. This penalty reduces the fitness and solutions are therefore pursued only 
within the search boundaries.  
 
An exploitative search preserves generalisation and reduces the risk of inducing 
process instability. A local (i.e., exploitative) PSO search is implemented by selecting 
a small inertia weight (ω = 0.4) and the parameters c1 and c2 equal to 0.5 
(conventionally 2.0) in equation 4-14. Each neurocontroller, i, adapts each weight, xid, 
at position d in accordance with equation 4-15.   
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Figure 4-27 - Possible adaptation trajectories of a weight vector based on the swarm's experience. 
The possible final position after adaptation lies in the plane formed by the arrow lines. The 
search is exploitative. 

 
A neurocontroller may move only in a limited number of trajectories based on the 
swarm's experience. Consider a neurocontroller comprised of one neuron with 3 
weights with no initial velocity. In Figure 4-27, the circular marker represents the 
current weight vector. The dashed arrow lines illustrate the possible adaptation 
trajectories. These trajectories are determined by the global best neurocontroller 
(square marker) and the neurocontroller's own best experience (diamond marker). 
These limited trajectories make the search exploitative and are relevant to the 
optimisation objectives, since the directions are determined by the swarm's collective 
experience (Shi and Eberhart, 1999).   
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Figure 4-28 - Adaptive neural swarming flow diagram. An effective neurocontroller is initialised 
into a swarm and adapted based on the evaluation of the swarm.  

 
The local PSO search is run for five iterations, as illustrated in Figure 4-28. The 
swarm is then re-initialised around the new best neurocontroller. Re-initialisation 
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starts a new search in the neighbouring solution space of the new best neurocontroller. 
The search thus continues outside the solution space of the prior initialisations.  
 
ANS was tested in a real-world bioreactor case study. Section 4.12 illustrates ANS' 
ability to adapt the neurocontroller weights towards greater economic return.   
 

4.12 ADAPTIVE CONTROL OF THE BIOREACTOR BENCHMARK 

 
As described in section 4.7, a bioreactor is a continuous stirred tank fermenter. It 
contains a biomass of micro-organisms that grow by consuming a nutrient substrate. 
The liquid substrate is fed continuously into the reactor, which also determines the 
reactor's liquid level (i.e., hold-up). The biomass is sold as the product. The 
bioreactor's dynamic behaviour is highly complex, non-linear and varies 
unpredictably. Also, the bioreactor process is difficult to quantify, due to unreliable 
biosensors and long sampling periods (Brengel and Seider, 1992).  
Furthermore, the maximum bioreactor liquid level is a hard operating constraint. 
Should operation exceed the maximum level, the bioreactor is shut down and must 
then be restarted at great operational cost. However, the maximum instantaneous 
profit increases as operation approaches the hard level constraint. A trade-off between 
safety and the maximum economic return is required (Brengel and Seider, 1992). 
 
The operating objective is to maximise the venture profit of the process on-line in 
response to process changes. This entails tracking the operating point with the 
maximum venture profit and ensuring acceptable control responses. The bioreactor 
may be simulated accurately and as such constitutes a benchmark for testing new 
adaptive methodologies without risking unsafe operation. 
 

4.12.1 Experimental set-up 
 
Typical process changes were simulated to mimic real-world bioreactor operation. 
The bioreactor's model was changed significantly by reducing the cell mass growth K 
(Figure 4-29a) and increasing the substrate feed concentration SF. The increased (i.e., 
off-set) SF is also disturbed with a gaussian distribution (Figure 4-29b). In addition, 
the biosensors were inaccurate with a gaussian distribution around the correct reading.  
 
Process search limits ensured that the process operation did not exceed the operation 
constraints. An adaptation scheme should never induce process shutdown by 
searching for operating points that are unsafe. The reactor level must remain below a 
high level alarm, which is a safety margin before bioreactor shutdown is initiated. 
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Contrary to equation 4-12, the high level alarm was set at 5.95 [m] and bioreactor 
shutdown at 6.2 [m].  
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Figure 4-29 - Process changes to the bioreactor. The arrows show the changes from the nominal 
process conditions (dashed line) for the growth parameter (a) and the substrate feed (b). The 
process is changed significantly. 

 
An optimal neurocontroller, with 12 neurons comprised of 7 weights each, was 
developed for the nominal process conditions using the SMNE algorithm (section 
4.3). As discussed in section 4.11, ANS utilised this original neurocontroller to 
initialise a swarm of 10 neurocontrollers and each swarm neurocontroller was 
evaluated on-line over 20 sample periods. The inaccurate sensors and randomly 
changing process conditions make obtaining accurate feedback (i.e., evaluations) for 
ANS difficult. The ten evaluations, though not based on precise information, 
determined the direction and velocity of the neurocontroller swarm.  
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4.12.2 Results 
 

4.12.2.1 Adaptation efficiency of ANS 

 
Figure 4-30 presents the instantaneous profit (IP) for the original neurocontroller and 
the ANS neurocontroller over a hundred day operating period. Figure 4-30 illustrates 
the effect of the process changes on the IP. The average instantaneous profit for the 
original neurocontroller was 55 [$/min]. As shown in Table 4-8, this is well below the 
optimal profit of 96 [$/min] expected during design for the nominal process 
conditions. The original neurocontroller's IP is reduced due to sub-optimal 
generalisation to the process changes, though it was able to keep the process stable. 
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Figure 4-30 - Instantaneous profit for the original and ANS neurocontrollers over 100 days of on-
line operation. The adaptive neurocontroller garners greater economic return from the changing 
process than the original neurocontroller. 

 

Table 4-8 - Maximum IP for changing process conditions. 

Process condition Maximum 
profit[$/min] 

Nominal process conditions 
K reduced, Off-set SF 

K reduced, Minimum SF deviation 
K reduced, Maximum SF deviation 

96 
106 
69 
130 
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The original neurocontroller incurs an economic opportunity cost. Improved 
performance over 55 [$/min] is attainable with ANS. The average increase in SF (i.e. 
off-set) presents an opportunity for greater venture profit. ANS achieves a 
substantially increased average profit of 94 [$/min] (Figure 4-30), which is only 
slightly below the attainable 106 [$/min] possible for the increased SF (Table 4-8).  
 
As seen in Figure 4-30, the ANS neurocontroller has a larger IP standard deviation 
than the original neurocontroller. ANS tracks the optimal IP that is due to the gaussian 
disturbance in SF. For high SF values over extended periods (Figure 4-29b, between 
samples 2000-2250), an IP of 120 [$/min] was attained, though a maximum of 130 
[$/min] is attainable (Table 4-8). For unusually low SF values over extended periods, 
the swarm attained a minimal profit of 60 [$/min]. The optimal profit for this 
unfavourable process condition is 69 [$/min] (Table 4-8). ANS thus approximates the 
changing optimal IP. A small difference remains, because SF changes substantially 
over time periods that are too short for the swarm to adapt completely. The swarm is 
thus essentially tracking the moving average of SF. Nevertheless, the IP for ANS 
control exceeds the highest IP for the original neurocontroller at all times (Figure 
4-30). ANS offers considerable benefits over the generalisation offered by the original 
neurocontroller.  
 

4.12.2.2 Avoiding Hard Process Constraints 
 
Figure 4-31 illustrates the swarm's ability to avoid the process search limits. Recall 
that the IP increases as the bioreactor level increases. The swarm neurocontrollers 
thus searched for control policies that increased the bioreactor level. Consequently, 
the swarm moved towards the high level alarm during on-line operation. The high 
level alarm of 5.95 [m] should never be exceeded; preserving the safety margin before 
bioreactor shutdown. A neurocontroller's fitness was penalised severely for exceeding 
the high level alarm. Such a penalised fitness was always lower than the fitness of a 
neurocontrol policy that remained within the search boundaries. Neurocontrollers with 
a penalised fitness, no longer guided the swarm and the swarm moved away from the 
high level alarm. In Figure 4-31 at 3000 sample periods, the trend line indicates a 
move away from the high level alarm. Shutdown at a reactor level of 6.2 [m] was thus 
safely avoided in ANS' on-line search.   
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Figure 4-31 - Avoiding the hard level constraint. The trend line (solid) illustrates the swarm 
moving away from high level alarm set at 5.95 [m]. Process shutdown is thereby avoided. 

 

4.12.2.3 Neuron Weight Adaptations 
 
Each neuron in a neurocontroller has a particular functionality that is a partial solution 
to the control task. A neuron's weight vector determines its functionality. The changes 
to a neuron's weight vector during adaptation, provides insight into how its 
functionality changed in response to the changing process conditions. Principal 
component analysis allows visualisation of neuron weight vectors and therefore 
neuron functionality.  
 
Figure 4-32 is a principal component plot of the weight vector of each neuron in the 
swarm's current best neurocontroller. After each adaptation, all the neuron weight 
vectors for the best swarm neurocontroller were plotted in Figure 4-32 as circular 
markers. The markers thus represent the history of adapted neuron functionalities.  
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Figure 4-32 - Principle component analysis of neuron functionality (85% variance explained). 
Circular markers represent neuron weight vectors. Each cluster represents the change in neuron 
functionality due to adaptation. The extent of each neuron's adaptation is determined by the 
reigning process changes. 

 
In Figure 4-32, the clusters indicate the different neuron functionalities that solve the 
control task.  A cluster that is distributed over a larger region of the neuron weight 
space, had undergone a greater degree of on-line adaptation to its functionality. The 
extent of each neuron's adaptation is determined by the reigning process changes. 
 

4.12.3 Discussion and future work 
 
ANS' exploitative search preserves the existing neurocontroller's generalisation. For 
the bioreactor, adaptation failure (i.e., shutdown) never occurs during extensive 
implementation. Also, instability is never induced in the control response. The 
bounded nature of each neuron cluster in Figure 4-32 provides insight into how ANS 
preserves generalisation. Each neurocontroller retains memory of its best position 
(equation 4-14) during the five iterations between initialisations. As the fitness 
landscape changes, the fitness value of a neurocontroller's best position is no longer 
valid. A neurocontroller's best position rather serves as an example of where previous 
good solutions have been found. Memory of past neurocontroller positions biases the 
search in the direction of good past solutions. This memory function preserves 
generalisation by considering both past and current process information in the search. 
Re-initialisation, which clears the swarm's memory, limits prolonged bias to past 
solutions. Without limiting memory of past solutions, a drifting optimum would be 
difficult to track. 
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ANS' search for optimal control policies in a changing process works as follows. 
Process changes affect each neuron's functionality differently. Some neurons 
consequently no longer contribute to optimal economic return. The functionality of 
such a neuron needs to be updated, while retaining information in its weight structure 
that is still valid.  
 
Consider a neuron weight that is optimal once adapted to a fixed value, despite 
continued process changes. Such fixed weights correspond to process conditions that 
remain constant (e.g., fixed growth parameter). As described in section 4.11, the 
possible directions for adaptation are limited to the positional experiences of all the 
swarm neurocontrollers. In ANS, the swarm neurocontrollers align along such a fixed 
weight, preventing (as per equation 4-14) the swarm from moving along that 
particular weight dimension. After several ANS iterations, only weights still relevant 
to improving the IP are implicitly changed. Re-occurring process changes (e.g., SF) 
govern which specific neuron weights are continuously changed to track the economic 
return. The dimensionality of the search is thus somewhat reduced. Figure 4-33 is a 
copy of Figure 4-32, except that adaptation trajectories are emphasised by drawing 
arrow lines through the clusters. Each neuron functionality (cluster) moves along a 
fixed trajectory in response to re-occurring process changes. ANS establishes these 
trajectories implicitly and exploits this swarm knowledge for greater economic return.  
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Figure 4-33 - Arrow lines indicate the trajectories of neuron functionalities in response to 
common (re-occurring) process changes such as SF. ANS implicitly takes advantage of common 
process changes, which facilitates effective adaptation. 
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Future work will explicitly identify neuron functionalities that require adaptation. 
Such explicit knowledge may be used to further speed adaptation using fewer on-line 
evaluations. As ANS is a robust means for adapting neurocontrollers, it will be tested 
in other complex domains such as robotics and gaming. 
 
Although neurocontrollers generalise their control actions in a changing process, such 
generalisation, though robust, may be economically sub-optimal. Adaptive Neural 
Swarming augments neurocontroller weights on-line, thereby garnering greater 
economic return from the changing process. ANS balances the need to adapt with the 
need to preserve generalisation. ANS also effectively avoids hard operating 
constraints during its on-line search. ANS implicitly identifies re-occurring process 
changes and uses this knowledge to speed adaptation. ANS is therefore a robust 
general tool for adapting of neural network controllers on-line. The greater economic 
return for the bioreactor case study suggests that neurocontrollers developed with 
SMNE would benefit significantly by implementing Adaptive Neural Swarming.  
 

4.13 CONCLUDING REMARKS 
 
Chapter 4 describes direct inverse control and model predictive control as two 
principal approaches to using neural networks in control architectures. Evolutionary 
methodologies to neurocontroller development have included single chromosome 
encodings, co-adaptive and cooperative evolutionary approaches. Cooperative 
evolutionary approaches have proven superior to single chromosome encodings, 
owing to more efficient credit assignment, maintained genetic diversity and a parallel 
search for partial solutions. SANE is a second generation cooperative EA for evolving 
neurocontrollers via implicit fitness sharing and the preservation of effective neuron 
combinations. SMNE is a third generation algorithm that improves on the SANE 
algorithm by incorporating the synergy provided by a local search combined with a 
global search (i.e., a memetic algorithm). The synergy between a local PSO algorithm 
and a symbiotic EA smoothes the fitness landscape, allowing for accelerated 
convergence to the global optimum. Similar to SANE, SMNE maintains genetic 
diversity via implicit fitness sharing. An ablation study gives statistical significance to 
the enhanced learning speed of SMNE over SANE for a simulated bioreactor 
benchmark. Although evolutionary algorithms such as SANE and SMNE impart 
significant generalisation to process uncertainty, adapting a neurocontroller on-line 
may improve economic performance significantly. ANS adapts neurocontrollers on-
line using a local PSO implementation, appreciably improving economic return. The 
SMNE and ANS algorithms provide a comprehensive tool-set for developing 
intelligent, non-linear controllers for the process industries. The SMNE and ANS 
methodologies stand in sharp contrast to the tools offered by conventional plant-wide 
control approaches highlighted in chapter 2.   
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5 NEUROCONTROL OF BALL MILL GRINDING CIRCUITS 
 

OBJECTIVES OF CHAPTER 5 

• Illustrate the ERL plant-wide controller design approach applied to a high 
dimensionality, first principles non-linear model of a closed loop grinding circuit. 

• Highlight the benefits of SMNE as opposed to current grinding control 
methodologies. 

• Show effective set point tracking and rejection of common disturbances. 
• Establish ERL techniques, such as SANE and SMNE, as a plant-wide control 

technique for the mineral processing industry. 

5.1 INTRODUCTION 

 
The simulation bioreactor benchmark in chapter 4 has only three state variables and 
four manipulated variables. Though the bioreactor benchmark has highly non-linear 
dynamics, the control problem remains a single unit operation with low 
dimensionality. The bioreactor benchmark, though multi-input multi-output, is not 
ideal for demonstrating whether a controller development algorithm is prone to the 
curse of dimensionality or significant process interactions. Mineral processing plants 
have interacting, non-linear dynamics and are typically comprised of numerous state 
variables (i.e., high dimensionality). 
 
Mineral processing operations aim to concentrate a raw ore for metal extraction. First, 
valuable minerals are liberated from the ore matrix by grinding (e.g. ball mills) and 
classification (e.g. hydrocyclones) processes. The liberated minerals are consequently 
concentrated according to chemical or physical properties in flotation (i.e., surface 
chemistry) or magnetic separation. The majority of grinding circuits employ the 
principle of a closed loop consisting of a mill and a classifier (e.g., hydrocyclone). 
Ore is partly milled and fed to the classifier where the finer material is split off and 
the coarser material is recycled to the mill for further milling. A slurry sump, which 
accepts the mill discharge, acts as a buffer to fluctuations in the incoming flow from 
the mill.  
 
The overall control objective is to produce a concentrate that maximises the venture 
profit of the concentrator. The role of the comminution circuit in the overall control 
objective is optimal liberation of valuable minerals, which may be exploited by the 
concentration processes. Liberation is not measurable on-line. Therefore, the 
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production objective seeks to maintain a particle size distribution deemed optimal for 
subsequent concentration (Hodouin et al., 2001). 
 
Another operational concern lies in the energy inefficiency of ore size reduction. With 
less than 10 [%] of the electrical power input contributing to grinding of the ore, the 
total operating cost of a grinding facility may contribute more than 50 [%] of the 
overall cost of mineral processing (Lo et al., 1996). To minimise operating cost, it is 
thus pertinent that the ore feed rate (i.e., throughput) remains in close proximity to the 
maximum design specification. This desirable operating state is constrained by the 
need to meet the particle size specification dictated by the flotation circuit. It is 
therefore essential that grinding circuits are subject to effective control in which both 
an optimal particle size distribution is provided to downstream operations and optimal 
utilisation of electrical energy is assured (Rajamani & Herbst, 1991).  
 
Disturbances are prevalent during grinding circuit operation, viz. ore hardness 
changes, ore feed rate changes and feed particle size variations. The resulting sub-
optimal particle size distribution affects downstream operations adversely. Variations 
in ore hardness and feed size variations may reduce the mill throughput drastically by 
perturbing the mass flow rate of the hydrocyclone overflow and particle size 
distribution continuously. In order to counteract the effects of these disturbances, a 
basic circuit usually has a minimum of two manipulated variables, viz. the fresh solids 
feed rate to the circuit and the dilution water to the sump. The most common process-
manipulated variable pairings are illustrated in Table 5-1 (Rajamani & Herbst, 1991).  
 

Table 5-1 - Common Single-Input-Single-Output (SISO) control loop pairings. 

Pairing Controlled variable Manipulated variable 
I Particle size hydrocyclone overflow → Sump water dilution rate 
 Hydrocyclone feed rate  → Fresh solids feed (& dilution rate) 
   

II Particle size hydrocyclone overflow → Fresh solids feed (& dilution rate) 
 Hydrocyclone feed rate  → Sump water dilution rate 
  
A high degree of controller interaction between the control pairings in Table 5-1 is 
evident. For pairing I, the dynamic response to an upward step in the product size, 
mOF, set point illustrates this interaction. This set point change initially causes the first 
control loop to increase the sump dilution rate, QWsp. An increase in the dilution rate 
to the sump causes an increase in the discharge flow rate, QSP, and a decrease in the 
solid concentration of the feed to the cyclone, CS,SP, both of which have the initial 
effect of causing a finer classification. Although resulting in a finer classification, an 
increase in cyclone feed rate, QSP, at approximately constant solids concentration 
implies that a larger portion of the solids are classified to the underflow. The resulting 
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larger mass flow rate of coarse material to the mill, MUF, reduces the mill's ability to 
grind the material as fine as prior to the set point change. Hence the discharge from 
the mill slowly becomes coarser. Once this coarser particle distribution reaches the 
cyclone, the cyclone overflow particle size distribution becomes coarser and the 
particle size distribution to the overflow may return to a similar state as to before the 
step change in dilution rate, QWsp. This open-loop response is illustrated in Figure 5-1 
(Barker & Hulbert, 1983). 
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Figure 5-1 - Particle size response (mOF, top) in hydrocyclone overflow in response to an open 
loop step change in dilution rate (QWsp, bottom). 
 
The increase in the hydrocyclone feed rate, QWsp, initiated by the first control loop 
consequently causes the second control loop in pairing I to decrease the fresh feed to 
the mill, MFF (reducing the mill production rate). This is primarily a response to the 
mill's inability to cope with the larger amount of coarse particles in the mill. The long-
term change in product size (Figure 5-2) is thus mainly a result of a change in fresh 
solids feed rate, but this control configuration (pairing I) initially results in an upset to 
the cyclone in order to attain the set point change. Continuous interaction between the 
two control loops may lead to prolonged upsets to the product specification, before 
the new set point is finally reached. Pairing II similarly results in significant controller 
interaction (Barker & Hulbert, 1983).  
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Figure 5-2 - Particle size response (mOF, top) in the hydrocyclone overflow, after an open loop 
step change in fresh solids feed rate (MFF, bottom). 
 
The time constant of the hydrocyclone is negligible compared to any of the other time 
constants in the grinding circuit, necessitating precise hydrocyclone control to prevent 
short-term fluctuations from affecting the product. As particle size instrumentation is 
prone to time delay, any form of control based on the measurement of particle size 
may be ineffective to high frequency disturbances to the hydrocyclone. As the feed 
flow to the cyclone has a significant effect on the behaviour of the cyclone and thus 
on the behaviour of the rest of the circuit, the sump discharge flow rate should be as 
steady as possible. Many control strategies have regarded the sump level as a separate 
entity from the mill control, in that, the sump level is controlled separately by a 
single-input-single-output (SISO) controller. This reduces the rigour of the controller 
design methodology, by ensuring that the remainder of the circuit is open loop stable. 
However, stringent SISO level control results in continuous variation of the flow rate 
to the hydrocyclone. High performance sump level control, i.e., control that 
contributes to the control objectives of the entire circuit, should ensure a steady flow 
to the cyclone and thus reduce the likelihood of short-term fluctuations in the product 
size distribution. In view of the severe interaction between controlled and manipulated 
variables (Table 5-1), better control may be achieved by incorporating mill rotation 
speed into the control law. Mill speed has been proposed as a less interactive 
manipulated variable. Mill speed may be considered ideal as it directly affects the 
grinding kinetics of the mill and therefore should eliminate the interactions caused by 
control through flow rate manipulation. The basic premise is that a build-up of coarse 
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material in the mill should result in an increase in mill speed. Large variable speed 
drive motors would allow for continuous adjustment in mill speed (Herbst et al., 
1983). As a minimum requirement, a decoupled SISO arrangement or a multi-input 
multi-output (MIMO) controller design is thus required to eliminate negative 
controller interaction (Barker & Hulbert, 1983). 
 
Lo et al. (1996) demonstrated the benefits of advanced control and design 
optimisation in reducing unit production costs thereby increasing profits. Both steady 
state and dynamic optimisation are proposed. Steady state optimisation evaluates the 
design and operating variables that impact the specific energy consumption (kWh) at 
a given product specification. Lo et al. (1996) demonstrated that appropriate grinding 
circuit modifications may result from combined experimental and simulation work. 
Batch grinding tests and simulation revealed that a reduction in the recharge ball size 
(i.e., design variable) and lower percentage solids (i.e., operating variable) increased 
the throughput from 10-13 [%] in an open-circuit industrial facility. This increased the 
revenue by $16.5 million per annum for an investment of $200 000. In another 
industrial application, a model-based expert system, together with an ore hardness 
estimator, increased the mill throughput by approximately 7 [%]. This corresponded 
to increased revenue of $8.4 million per annum for an investment of $250 000. As 
grinding circuits are often the process bottleneck, small increases in efficiency have a 
dramatic performance impact.      
 
The objective of this chapter is to demonstrate the potential of evolutionary 
reinforcement learning, in particular the SMNE algorithm (section 4.6), for the 
development of non-linear (neuro)controllers for ball mill grinding circuits. The 
effective elimination of process interaction, which has plagued multi-loop SISO 
designs, is shown. The high performance of the developed neurocontroller is 
demonstrated for a wide variety of disturbances, viz. ore hardness and feed particle 
size distribution changes. As shown, this novel approach to the design of high 
dimensionality, non-linear controllers can incorporate all possible process and 
manipulated variables (including mill speed) into an optimal control law (i.e. neural 
network), which effectively deals with the control challenges posed by ball mill 
grinding circuits.  
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5.2 CURRENT CONTROL TECHNIQUES 

 
Although grinding circuits exhibit non-linear dynamic behaviour, controller design 
has largely been investigated from a linear controller perspective (e.g. PID control). 
Linear controller design techniques (modern and classical) require the use of linear 
process models. As rigorous grinding circuit models are necessarily non-linear, the 
non-linear models need to be linearised in the vicinity of a predetermined 
economically optimal operating region. Should the state space be highly non-linear in 
this region of the state space, the developed linear controller may not remain robust 
(or severely degrade in performance) once operation strays significantly from the 
region where the linearisation applies. Nevertheless, linear MIMO control strategies 
have been applied with significant success in industrial grinding circuits.  

5.2.1 Linear multivariable control design 
 
Rajamani & Herbst (1991b) implemented a multi-loop SISO feedback strategy for an 
experimental pilot-scale grinding circuit. The sump level and percentage solids in the 
fresh feed were controlled separately with PI controllers, thereby assuming that these 
process variables do not contribute to the overall control objective. A variable speed 
pump controlled the sump level through PI control. The percentage solids in the fresh 
feed was controlled with a PI ratio controller, maintaining the fresh feed water in 
proportion to the fresh ore feed, thereby assuming that 60 [%] (m/m) solids in the 
fresh feed is optimal. The exclusion of these controlled variables from the multi-loop 
SISO design, limits the integration advantages provided by a more plant-wide control 
approach. In a multivariable system, PID controllers are limited by a fixed structure 
and controller pairing uncertainties, which require an effective tuning method. In a 
2x2 control system the tuning of one controller impacts the tuning of the other 
controller. The controller design thus focuses on the control system structure (i.e., 
pairing I or pairing II in Table 5-1) and the controller parameter tuning. Figure 5-3 
illustrates the implementation. 
 
Herbst & Rajamani (1979) compared the control strategies presented by pairing I and 
pairing II. Recall that the response of the overflow product size, mOF, to changes in 
fresh feed rate (MFF) is delayed, owing to the lag introduced by the mill and the sump. 
The particle size response in the cyclone overflow responds rapidly to sump water 
addition (Gp11(s) in Figure 5-3), owing to the rapid classification in the cyclone to 
changes in cyclone feed percentage solids, fv. Similarly, the mill throughput response 
is rapid with respect to the solids fresh feed rate (Gp22(s) in Figure 5-3). For this 
reason, pairing I was confirmed superior to pairing II. Conventionally, the 
proportional and integral parameters of the PI controllers are determined by trial-and-
error, which requires no modelling exercise. Trial-and-error tuning is prone to 
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oscillatory responses, as limited consideration is given to decoupling the two 
controllers. The impact of Gp12(s) and Gp21(s) in a system without decoupling is 
pronounced (Figure 5-3). Herbst & Rajamani (1991b) determined the controller 
parameters for the multi-loop SISO system using "simulation tuning". A simulation 
model of the pilot grinding circuit was used to maximise an objective function that 
aimed to maximise mill throughput while minimising the errors from the set points. A 
Box-Wilson search determined the best parameter tunings. Nevertheless, oscillations 
were observed in the particle size passing 44 [µm] in the pilot plant implementation, 
due to the process interaction described in section 5.1. Detuning of the simulation-
tuned controllers was also necessary to compensate for inappropriate control actions 
to measurement noise.  
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Figure 5-3 - Distributed SISO control without decoupling. 

 
Multivariable decoupling strategies have proven highly effective in overcoming 
controller interaction. Decoupling strategies aim to augment the output of distributed 
PI SISO controllers (i.e., PI controllers) as in Figure 5-4. Inverse Nyquist Array (INA) 
multivariable control has proven highly successful at overcoming controller 
interaction in closed milling circuits. Consequently, INA has been applied in 
numerous industrial applications (Hulbert et al., 1980; Gossman and Buncombe, 
1983; Barker and Hulbert, 1983; Jämsä et al., 1983; Hulbert et al., 1990) Hulbert et al. 
(1990) implemented a multivariable controller using INA methods. INA is an 
interactive design method in the frequency domain with the objective of decoupling 
the controller interactions. The linear INA distributed multi-loop SISO controller was 
implemented in a run-of-mine (ROM) milling unit. Hulbert et al. (1990) demonstrated 
the effective use of a continuous particle-size monitor (PSM) in the industrial control 
application. After obtaining sufficient process data from dynamic tests, a linear 
dynamic model was constructed with the product size (PSM), mill load (MLOAD), 
sump level (SLEV) and cyclone feed density (CFD) as the process variables. The 
manipulated variables were the sump dilution feed rate, the fresh solids feed rate, the 
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slurry feed rate to the cyclone and the water feed rate to the mill inlet. The control of 
the CFD was omitted and the INA controller was developed to control MLOAD, 
SLEV and PSM. The water feed to the mill inlet was disregarded as a manipulated 
variable in the INA design. The overflow particle size was paired with the sump water 
addition rate, the mill load with the fresh feed rate and the sump level with the 
cyclone feed rate. The outputs of the three PI controllers were intermediate variables 
fed to the INA matrix compensator. The matrix compensator was designed so that the 
corrective action to one controlled variable changes all the manipulated variables to 
some degree, but does not change the other controlled variables significantly.  Despite 
the non-linear behaviour of the milling circuit, the 3x3 INA controller proved highly 
effective. The INA controller reduced the standard deviation in the particle size 
specification of the cyclone overflow and increased the mill throughput. This 
decoupled approach demonstrated the benefit of multivariable control for milling 
circuits, though the application was linear. Effective decoupling of the process 
variables was achieved and accepted into continuous industrial implementation.      
 
The success of a decoupling scheme for multi-loop SISO control is highly dependent 
on the accuracy of the process models. A rigorous identification program contributes 
markedly to the successful implementation of such controllers. Hulbert et al. (1990) 
obtained perturbation data for model identification from 34 tests over a period of two 
months. Perfect decoupling may be difficult to achieve, though partial decoupling 
may be beneficial to the control objectives. Foss (1973) emphasised that there is 
frequently no compelling argument to impose decoupled servo responses on 
processes, particularly as the main objective is rejecting disturbances that reduce the 
mill throughput. Also, interactions between process variables may enhance control, 
provided dynamic information in an adequate modelling exercise is exploited by an 
appropriate control theory.  
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Figure 5-4 - Distributed SISO controllers with decoupling. 
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A more implicit decoupling or exploitation of interactive controlled variables results 
through the use of state space methodologies (Ylinen et al., 1983; Rajamani & Herbst, 
1991b). Modern control is a state space methodology that offers a complete 
multivariate (MIMO) approach to mill controller design (Rajamani & Herbst, 1991b). 
The MIMO design had particle size in the cyclone overflow and the mill throughput 
as controlled variables, with the sump dilution rate and the solids fresh feed as 
manipulated variables. No prior knowledge of appropriate controller pairings is 
required in a state space design. Modern control determines a manipulated variable's 
control action based on all the state variables in a linear model, as opposed to 
feedback control that uses a single error input. Rajamani and Herbst (1991a) 
developed a rigorous non-linear dynamic model of a pilot scale ball mill circuit. To 
use the rigorous non-linear model in a modern control framework, the model was 
linearised. The linearisation is applicable to a narrow operating range around the set 
points, which also limits the operating region in which the linear control law is 
optimal in the non-linear process. Full advantage could thus not be taken of the 
available non-linear model. The control system is complicated by unmeasured state 
variables, which required an observer (state estimator) in the control block. 
Furthermore, a pure integrator must generally be added to account for process / model 
mismatch. However, the modern control dealt effectively with process interaction. 
Rajamani & Herbst (1991b) confirmed experimentally that an optimal control strategy 
performed significantly better than an optimised multi-SISO design with smooth 
settling to set point changes (i.e., minimal oscillation) and required no detuning of 
controller parameters.    
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Figure 5-5 - Complete multivariable controller. 

 
Desbiens et al. (1994) used an adaptive distributed general predictive control (GPC) 
design in a simulation study for grinding circuit control. The implemented predictive 
controller was linear. A PI controller controlled the sump level and a proportional 
controller controlled the water addition to the rod mill, both independent of the GPC 
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scheme. Historical data were used to obtain dynamic process information and 
construct linear discrete polynomial models. One GPC controller paired the cyclone 
overflow particle size with the sump water addition. The other GPC controller paired 
the circulation load (i.e., throughput) with the fresh ore feed rate. At each sampling 
period, the model parameters were re-estimated and a sequence of multi-step control 
actions were calculated which minimised the cost functions. The first control action 
was implemented and the process repeated at the next sample. The model parameter 
adaptation was the key to the control system, though the control system's distributed 
nature complicated the model identification for each GPC controller. The adaptive 
GPC scheme had 39 [%] lower summed squared error than a fixed GPC 
implementation for particle size set point tracking. The adaptive GPC scheme also 
improved the tracking error of the circulation load by 8 [%]. However, identification 
was difficult during external disturbances to the process. Also, a multivariable (not 
distributed) GPC scheme has advantages due to insensitivity to controller pairings and 
the internal elimination of process interaction.  
 
Pomereau et al. (2000) compared the performance of decentralised PID controllers 
without explicit decoupling (i.e., co-tuning), a partially decoupled PID control 
scheme, internal model control and adaptive linear GPC. Pomereau et al. (2000) found 
that distributed controllers performed comparably with the multivariable controllers, 
provided the coupling of the process was taken into consideration and the pairings 
were selected appropriately. The adaptive GPC had superior performance to the fixed 
controllers in the event of process / model mismatch. 
 
Linear multi-loop SISO and MIMO control may be further improved through non-
linear identification and controller development that offer substantial opportunities for 
operation over a wider region of the state space. Non-linear controllers cope with a 
wider variety of disturbances and process uncertainties, making non-linear controller 
design based on non-linear process models highly desirable.  
 

5.2.2 Non-linear control 
 
The non-linear nature of grinding circuits makes process identification difficult. 
Furthermore, determining the structure of a useful model is non-trivial. Neural 
networks overcome the identification uncertainties presented by input-output plant 
data. Neural networks offer a non-linear, self-organising structure for developing non-
linear models with minimal user input. Flament et al. (1993) gathered process data 
from a rigorous grinding simulator for training feedforward neural networks. Both 
non-linear model predictive control and direct inverse control was considered. An 
adaptation scheme for the neural network weights also improved settling performance. 
However, the implementation adds one MISO non-linear controller to an otherwise 
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distributed, linear control objective. The fresh feed dilution rate, the sump level and 
the fresh solids feed was controlled by PI controllers. The non-linear control scheme 
is limited to controlling only the particle size in the cyclone overflow, with no 
consideration to maximising the mill throughput. The circulating load and the particle 
size in the cyclone overflow were the process variables, with the sump dilution rate as 
the only manipulated variable. This neurocontrol implementation makes a decoupling 
arrangement with the other PI controllers difficult. Significant process interaction is 
assumed to exist with the PI controller for mill throughput as discussed in section 5.1. 
 
Cho et al. (1997) also applied neural network based model predictive control (MPC) 
to SAG mill control. A neural network model and a linear state space model were 
derived from sampled plant data. The control study was implemented in a simulated 
environment.  Linear MPC and LQC (linear quadratic) control were compared to a 
non-linear MPC scheme with the neural network as model. The manipulated variables 
were SAG speed, SAG solids feed rate and sump pump speed, with the overflow 
particle size as only controlled variable. The control objective had no consideration 
for maximising the mill throughput. The non-linear MPC had faster simulated settling 
times than both the linear MPC and LQC schemes. This was attributed to the 
advantages of using non-linear model identification. 
 
Martin and McGarel (2001) applied a non-linear MPC scheme to a cement plant's 
closed ball mill circuit. The significant dead-time between a change in the fresh feed 
to a response in particle size was cited as justification for MPC. A neural network 
model was created from logsheet data, which provided non-linear gains for non-linear 
MPC. On-line application revealed that non-linear MPC increased production, 
improved cement consistency and quality and provided effective feed disturbance 
rejection, though only simulated results were presented.  
 
Flament et al. (1997) and Desbiens et al. (1997) used a rigorous dynamic grinding 
circuit model, based on population balances, to evaluate numerous control strategies. 
After model parameter estimation from experimental data, the simulator conformed to 
the dynamic responses of the plant. Controlled variable pairings were selected using a 
relative dynamic gain technique (i.e., frequency domain). Decoupled controller tuning  
was resolved using a frequency based method. Though the dynamic simulator offered 
non-linear simulation, the controller development was confined to linear analysis.  
 
The following section details the non-linear phenomenological model, used by the 
SMNE algorithm in entirety to develop a plant-wide neurocontrol strategy.  
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5.3 GRINDING CIRCUIT SIMULATION MODEL 

5.3.1 Pilot plant simulation model 
 
Rajamani & Herbst (1991a) developed a dynamic model for a pilot scale grinding 
circuit (Figure 5-6). The simulation model is based on a ball mill with an internal 
diameter of 0.76 [m] and a length of 0.46 [m]. The simulation parameters reflect a ball 
load of 345 kg, which corresponds to a 40 [%] mill filling. The mill discharge is fed to 
a sump with a 0.3 [m] diameter and a 0.8 [m] height. The 0.075 [m] hydrocyclone 
classifies the feed from the sump.  
 
For the purposes of this control study it is assumed that sensors are available to 
measure the mass flow rate for the fresh ore feed (limestone with a density of 2500 
kg/m3 and particle size distribution -1680 µm), and the solids concentration in both 
the sump discharge and the cyclone overflow streams. Also, volumetric flow metering 
is provided in the cyclone overflow stream. A particle size analyser provides the 
fraction passing 53 [µm] with a sample interval of 2 [min]. The solids concentration 
and volumetric flow sensors give an indication of the mass flow rates of the solids and 
water. 
 
The model equations (Equations 5-1 to 5-17) in the following sub-sections were 
solved simultaneously using Euler's method. 

5.3.2 Ball mill model 
 
The population balance concept may be applied to the particle breakage processes 
occurring in a ball mill. A linear, size-discretised model for breakage kinetics may be 
derived by selecting n size intervals into which the particulate material may be 
divided, with d1 being the maximum size and dn the minimum size. The ith interval is 
thus bounded by di above and di+1 below. The mass balance for the mass fraction in 
each size interval, mi(t), may consequently be expressed in equation 5-1. In this study, 
13 size intervals were considered from -2380 [µm] to -37 [µm] with size intervals of 

2 , leading to 13 differential equations with the general form of equation 5-1 
(Rajamani & Herbst, 1991).  
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where H(t) is the total particulate mass hold-up in the mill. MUF, the underflow mass 
feed rate from the hydrocyclone, and MFF, the fresh ore mass feed rate, cumulatively 
represent the total feed, MMF, to the ball mill (Figure 5-6). The mixing of the two feed 
streams, MFF  and MUF, is assumed to be perfect before the total feed enters the mill. 
The size-discretised selection function, Si, is the rate at which material is ground out 
of the ith size interval. The size-discretised breakage function, bij, represents the 
fractions of the ore in the size interval j that is broken into the following smaller size 
intervals. The ball mill is modelled as uniformly mixed, which was found to be a fair 
assumption based on residence time tracer tests (Rajamani & Herbst, 1991a).  
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Figure 5-6 - Grinding circuit flow diagram as modelled by Rajamani & Herbst (1991). 

 
For overflow mills, the volume of slurry in the mill is reasonably constant over a wide 
range of operating conditions. However, the effective slurry volume, VM, is expected 
to vary as the fraction of mill critical speed, N, varies. This steady state relationship is 
expressed by equation 5-2 (Herbst et al., 1983). It is assumed that the time constant 
for the dynamics relationship between mill volume and mill rotation speed is small.  
 

0482.00818.00899.0 2 +⋅−⋅= NNVM      (5-2) 
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For the computation of mill hold-up, the solids concentration (mass of solids per unit 
volume of slurry), Cs, MP, is computed utilising Equations 5-3 to 5-4. The volumetric 
feed rate to the mill is assumed to equal the volumetric discharge rate at all times. 
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Selection functions for a particular material are proportional to the specific power 
drawn by the mill as described in equation 5-5. The power, P, drawn by the mill is 
determined by the Bond power correlation (equation 5-6), which is influenced by the 
fraction of mill critical speed, N. The specific selection function, Si

E, is dependent on 
the fineness of the product in the mill. However, in the pilot plant model developed by 
Rajamani & Herbst (1991), a single set of selection functions described by equation 5-
7 was deemed applicable in the fresh solids feed range 90-136 [kg/h]. The fresh solids 
feed rate was limited to this range in this control study to ensure model validity. To 
good approximation, the cumulative form of the breakage function, Bij, may be 
described by equation 5-8. The feed size to the mill is linearly transformed to the mill 
discharge particle size distribution, which is dictated to by the selection and breakage 
functions (Rajamani & Herbst, 1991a). 
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5.3.3 Sump model 
 
An agitator suspends the slurry in the sump. Along with the assumption of uniform 
mixing in the sump, no particle size changes are assumed to occur due to abrasion. 
Equations 5-9 to 5-11 provide the dynamic behaviour of the sump, where MSP is the 
sump discharge mass flow rate, QSP is the volumetric discharge rate of slurry, QWsp is 
the volumetric dilution rate and mSP,i is the fraction of size interval i in the sump. 
Equation 5-9 is the mass balance for the particle size intervals and equation 5-10 
represents the change in sump volume, Vs, during operation (simple mixing rule 
applies). The overall mass balance for the sump is described by equation 5-11.   
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5.3.4 Hydrocyclone model 
 
Rajamani & Herbst (1991a) deemed the use of a dynamic model for the hydrocyclone 
unnecessary. The dynamic response of the hydrocyclone is assumed orders of 
magnitude faster than the other time constants in the grinding circuit. An empirical 
model was utilised as described by the model equations 5-12 to 5-17. The water flow 
rate in the overflow, WOF, is determined by the water feed rate to the hydrocyclone, 
WF, as prescribed by the water split equations 5-12 and 5-13. The particle size, d50, at 
which 50 [%] of the solids are classified to the overflow and 50 [%] of the solids are 
classified to the underflow, is described by equation 5-14. In equation 5-14, QSP, is the 
slurry volumetric feed rate to the hydrocyclone and, fv, is the volume fraction of solids 
in the slurry feed. To account for short circuiting of fines to the underflow, Rf, is 
defined in equation 5-15. Rf is used with the corrected efficiency curve, Yi (eq. 5-16), 
to calculate, Ei (eq. 5-17), which represents the fraction of particles in size interval i 
classified to the underflow.  
 

75.10363.1 −⋅= WFWOF  for WF < 21.4 [kg/min]   (5-12) 

35.0837.0 +⋅= WFWOF  for WF > 21.4 [kg/min]   (5-13) 

vSPe fQd ⋅+⋅⋅−= − 2010006.15616.350log 2     (5-14) 

( )
WF

WOFWFR f
−⋅−= 7932.0818.0       (5-15) 
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Rajamani & Herbst (1991a) determined the 8 empirical coefficients in equations 5-12 
to 5-17 over the cyclone feed range 15-30 [L/min] with a feed solids volume 
percentage ranging from 30-50 [%]. To ensure model validity these constraints were 
adhered to during simulation.  
 

5.4 NEUROCONTROLLER DEVELOPMENT AND PERFORMANCE 

5.4.1 SMNE implementation 
 
The rigorous non-linear model in section 5.3 was used in the SMNE algorithm 
(section 4.6) to develop a feed-forward neurocontroller with 6 input nodes (i.e., 
process variables), 12 hidden nodes and 5 output nodes (i.e., manipulated variables). 
The 6 inputs nodes and the 5 output nodes are listed in Table 5-2. 
 

Table 5-2. Description of neurocontroller inputs and outputs. 

Input nodes Output nodes 
Product mass fraction < 53 [µm], mOF   Solids fresh feed mass flow rate, Mff 
Product mass fraction < 53 [µm] set point Fresh feed water dilution addition 

rate,QWff  
Sump volume, Vs Sump water dilution addition rate, QWsp 

Product volumetric flow rate, QOF  Sump volumetric discharge rate, QSP 

Sump solids concentration, Cs,SP Fraction of mill critical speed, N  
Product solids concentration Cs,OF  
 
The operating range constraints for the manipulated variables (i.e., output nodes) in 
Table 5-3 are listed in Table 5-4. 
 
SMNE was required to minimise the fitness function in equation 5-18 (i.e., maximise 
reward) at each time step. A neurocontroller is thus able to attain reward based on the 
effectiveness with which it tracks the set point, while maintaining the highest possible 
production rate. Note that economic considerations such as operating cost are not 
considered in the neurocontroller design, but could be added if available.   

1200
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Table 5-3 - Operating ranges of manipulated variables. 

Manipulated variable (Output nodes) Operating range constraint 
Solids fresh feed mass flow rate, Mff 90 - 136  [kg·h-1] 
Fresh feed water dilution addition rate, 
QWff  

0.1 - 2.0  [m3·h-1] 

Sump water dilution addition rate, QWsp 0.1 - 3.0 [m3·h-1] 
Sump volumetric discharge rate, QSP 0.1 - 2.0 [m3·h-1] 
Fraction of mill critical speed , N 0.3 - 0.8 [-] 
 
During each learning trial, the initial condition for the state variables is initialised with 
a gaussian distribution around the mean values listed in Table 5-4. Initialisation serves 
as a starting point for the dynamic optimisation conducted by the SMNE algorithm. 
 

Table 5-4 - Mean initial conditions of the grinding circuit state variables. 

Size interval  
[µm] 

Solids fresh feed 
mass fraction [-] 

Mill 
mass fraction [-] 

Sump 
mass fraction [-] 

2380 - 1680 0.150 0.07692 0.07692 
1680 - 1190 0.150 0.07692 0.07692 
1190 - 841 0.150 0.07692 0.07692 
841 - 595 0.200 0.07692 0.07692 
595 - 420 0.200 0.07692 0.07692 
420 - 297 0.033 0.07692 0.07692 
297 - 210 0.033 0.07692 0.07692 
210 - 149 0.033 0.07692 0.07692 
149 - 105 0.010 0.07692 0.07692 
105 - 74 0.010 0.07692 0.07692 
74 - 53 0.010 0.07692 0.07692 
53 - 37 0.010 0.07692 0.07692 

-37 0.010 0.07692 0.07692 
Process variable Initial condition Unit 

H 36 [kg] 
Vs 0.0028275 [m3] 

Cs, SP 350 [kg·m-3] 
Manipulated variable Initial condition Unit 

Mff 100 [kg·m3] 
N 0.75 [-] 

QWff 0.005 [m3·h-1] 
QSP 1 [m3·h-1] 
QWsp 0.6 [m3·h-1] 
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Figure 5-7 - Set point change responses of the hydrocyclone process variables without the 
presence of disturbances to the grinding circuit (learning environment). 
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Figure 5-8 - Set point change responses of the ball mill process variables without  the presence of 
disturbances to the grinding circuit (learning environment).  
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Figure 5-9 - Ball mill manipulated variable control actions based on the observed inputs to the 
neurocontroller (learning environment). 
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Figure 5-10 - Set point change responses of the sump process variables and the associated control 
actions (learning environment). 
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5.4.2 Learned behaviour - set point changes 
 
Figure 5-7 to Figure 5-10 illustrate the learned behaviour acquired by the developed 
neurocontroller. With the reinforcement learning methodology (section 3.2), learning 
occurs without explicitly showing the neurocontroller how the task is to be performed. 
Instead, the reinforcement learning framework is concerned with what is to be 
accomplished. The learning algorithm (SMNE) explores the simulated environment 
and implicitly discovers how the task should be performed. No prior analysis of the 
simulated environment, for example possible controller pairings or likely control 
strategies, was provided to SMNE. The learned behaviour is purely an indication of 
what could be gauged from cause-effect interactions with the simulated environment. 
For example, consider the step change in set point from mOF, 53 µm = 0.65 [-]  to mOF, 53 

µm = 0.75 [-] between 4 - 6 [h]. As may be seen in Figure 5-7b, the set point change 
resulted in an overdamped response in the controlled variable with negligible steady 
state offset. As the SMNE design methodology does not impose a specific dynamic 
response in the controlled variable, the overdamped response reflects the dynamic 
response most suited to gaining the maximum reward from the dynamic environment. 
The controlled variable's dynamic response is thus implicitly chosen based on the 
system dynamics.  
 
To establish this change in set point, the neurocontroller made a number of changes to 
the available manipulated variables. The mill solids fresh feed (Mff), as illustrated in 
Figure 5-9a, was reduced significantly to allow for finer grinding of the mill charge by 
increasing the circulation load (ratio of mill feed rate to the fresh feed rate). The fresh 
feed dilution (QWff) was not changed significantly (Figure 5-9b), which had the effect 
of reducing the solids concentration in the mill feed. This had the added effect of 
reducing the total mill hold-up (H) as seen in Figure 5-8b. With regard to equation 5-5 
this resulted in the selection function, Si, increasing due to a reduction in the mill 
hold-up, which increased the breakage rate. The mill speed could also be used to 
regulate the mill power and thus increase the selection function (equation 5-5). As the 
fraction of the mill critical speed (N) had been included as a possible manipulated 
variable,  notably N was not considered by the neurocontroller for the mill control 
(Figure 5-9c). The value of N was primarily maintained at the maximum allowable 
value of 0.8 [-] (Table 5-3). Although the manipulated variable, N, is promising for 
reducing SISO controller interaction, the requirement of maintaining maximum mill 
throughput negates the effective use of N. The acquisition of variable speed drive 
inverters is thus unnecessary for this control strategy.  Assumed that the increase in Si 
is desirable, SMNE found that the reduction in H was more beneficial than an increase 
in mill power draw (Figure 5-8c), P, to the overall control strategy. The higher 
circulation load to the mill naturally allowed for finer grinding of the mill content as 
seen by the upward step change in mp,53 µm in Figure 5-7a.  
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For the set point change between 4 – 6 [h], the sump volume, Vs, reduced significantly 
(Figure 5-10a). Sump level control (i.e., sump volume) is frequently regarded as a 
separate entity to the circuit control strategy. This generally implies that the sump 
level is maintained at a constant level throughout the grinding circuit operation. As 
the sump level control has been included in the more plant wide approach of SMNE, 
this control action is of interest. In Figure 5-10b it is evident that the sump discharge, 
QSP, and dilution water feed rates, QWsp, were maintained at a more or less constant 
setting. The reduction in sump volume was thus as a result of the reduced mill 
throughput that accommodated the product specification set point change. Allowing 
the sump level to float within its lower and upper limits has favourable implications 
for control of the hydrocyclone. The constant QSP in Figure 5-10b means that the 
impact of hydrocyclone feed rate on classification, as dictated by equation 5-14, has 
been eliminated from consideration. The hydrocyclone classification control was thus 
limited to manipulating the solids volume fraction (fv in equation 5-14) in the 
hydrocyclone feed rate. The reduction in Cs,SP in Figure 5-10c effectively resulted in 
the classification becoming finer and had the desired effect of reducing d50 in Figure 
5-7a. A larger portion of the fine hydrocyclone feed was thus also classified to the 
underflow to accommodate the set point change (Figure 5-7c).  
 
The SISO controller interaction discussed in section 5.1 is thus not observed. A 
positive set point change in the product specification caused no interaction between 
the solids fresh feed rate and the sump discharge rate. SMNE has thus allowed for 
highly effective implicit elimination of controller interaction as a result of a more 
plant wide control approach. 
 

5.4.3 Feed particle size and ore hardness disturbances 
 
It is significant that the learned behaviour, illustrated in the previous section, is the 
neurocontroller's response to the simulated environment without the presence of 
sensor noise or disturbances of any kind. However, real world grinding circuits are 
plagued by disturbances. The neurocontroller's ability to effectively generalise its 
learned behaviour in the presence of disturbances, viz. feed particle size changes and 
ore hardness changes, is a measure of controller autonomy in dealing with uncertainty 
in its operating environment.  
 
Figure 5-11 to Figure 5-14 illustrate the neurocontroller's ability to generalise in the 
presence of feed particle size disturbances. This disturbance is introduced as a twofold 
increase in the mass fractions of the four largest size intervals in the fresh mill feed 
(Table 5-4). The particle size disturbance is consequently changed randomly every 12 
[min]. This disturbance frequency is deemed sufficient to allow for the complete 
development of transient responses. The impact on set point changes is illustrated in 
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Figure 5-11b. The process variable tracked the set point reasonably well considering 
the large disturbance. Robust performance is maintained despite needing to 
simultaneously make set point changes and deal with the disturbance in the feed. The 
solids feed rate, as with no disturbances, appears to be the primary manipulated 
variable for maintaining effective controller performance (Figure 5-13a). 
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Figure 5-11 - Set point change responses of the hydrocyclone process variables in the presence of 
particle size disturbances in the fresh solids feed. 
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Figure 5-12 - Set point change responses of the ball mill process variables in the presence of 
particle size disturbances in the fresh solids feed. 
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Figure 5-13 - Ball mill manipulated variable control actions based on the observed inputs to the 
neurocontroller (with particle size disturbances in fresh solids feed). 
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Figure 5-14 - Set point change responses of the sump process variables and the associated control 
actions (with particle size disturbances in fresh solids feed). 

 
Another common grinding circuit disturbance is changes in ore hardness. The 
neurocontroller's response to this disturbance is illustrated in Figure 5-15 to Figure 
5-18. The ore hardness disturbance is modelled by changing the nominal selection 
function (equation 5-5), Si, randomly by a percentage at 12 [min] intervals. The 
change in hardness is indicated as a percentage change from the nominal value, as 
illustrated in Figure 5-16d. Despite this being a significant change in ore hardness 
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over unrealistically short periods of time, the performance of the neurocontroller in 
dealing with this disturbance is extremely satisfactory (Figure 5-15b).  
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Figure 5-15 - Set point change responses of the hydrocyclone process variables in the presence of  
ore hardness disturbances. 
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Figure 5-16 - Set point change responses of the ball mill process variables in the presence of ore 
hardness disturbances. 
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Figure 5-17 - Ball mill manipulated variable control actions based on the observed inputs to the 
neurocontroller (with particle size disturbances in fresh solids feed). 
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Figure 5-18 - Set point change responses of the sump process variables and the associated control 
actions (with ore hardness disturbances). 
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5.5 CONCLUSIONS 

 
Evolutionary reinforcement learning offers significant opportunities for developing 
non-linear controllers (neurocontrollers) for mineral processing plants. The grinding 
circuit has a high dimensionality (i.e., numerous state variables). SMNE identifies and 
maps the dominant state variables to the input node patterns (i.e., process variables) 
during learning from cause-effect relationships. Cause-effect dynamic learning 
effectively reduced the dimensionality of the control problem. The SMNE algorithm 
was able to implicitly learn to eliminate controller interactions owing to cause-effect 
learning. The robust and highly autonomous control provided by the neurocontroller 
was demonstrated for both particle size disturbances in the fresh mill feed and for ore 
hardness variations. This effective neurocontroller behaviour is an indication of the 
ability of the SMNE algorithm to impart a beneficial degree of generalisation to the 
neurocontroller during the learning process, which allows for superior control in the 
face of process uncertainty (unmeasured disturbances). A more plant-wide approach 
to controller design based on the complete non-linear process model is achievable 
through the use of evolutionary reinforcement learning.  
 

5.6 SYMBOLS 

 
Symbol Description Unit 

at control action at time, t [-] 
bij discrete breakage function [-] 
Bij cumulative breakage function [-] 
Cs solids concentration [kg·m-3] 
d process disturbances [-] 

d50 cut size for hydrocyclone [µm] 
di mesh opening with size interval 2 [µm] 
D mill diameter [ft] 
Ei fraction of solids in i reporting to underflow [-] 
fv volume fraction solids in cyclone slurry feed [-] 
H total particulate mass hold-up in the mill [kg] 

 mi  mass fraction of material in size interval i [-] 
M solids mass flow rate [kg·h-1] 
Mb fraction of mill loaded with balls [-] 

Mballs mass of balls in mill [short tons] 
N fraction mill critical speed [-] 
P net mill power draw [kW] 
Q volumetric flow rate [m3·h-1] 
rt reward at time, t [-] 
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Rf short circuiting of fines to cyclone underflow [-] 
st process state at time, t [-] 
Si selection function [h-1] 
Si

E specific selection function [t·kWh-1] 
t time [h] 
u manipulated variable control actions [-] 
V vessel volume [m3] 

WF water flow rate in cyclone feed stream [m3·h-1] 
WOF water flow rate in cyclone overflow [m3·h-1] 

yp process variables [-] 
Yi correction for entrainment [-] 
z-1 Z-transform (time delay) [-] 

 
Subscript 
 

Symbol Description 
i size interval 
n size interval -37µm 

FF solids fresh feed 
M mill 

MF mill feed 
MP mill product 
OF cyclone overflow 
S sump 

SF sump dilution stream 
SP sump discharge stream 
UF cyclone underflow 
Wff fresh feed dilution water 
Wsp sump dilution water 
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6 DYNAMIC MODELLING 
 
OBJECTIVES OF CHAPTER 6 
• Describe an empirical rapid model development approach, singular spectrum 

analysis (SSA). 
• Illustrate the SSA methodology for modelling the dynamics of an industrial lysine 

bioreactor from historical plant input-output data. 

6.1 DYNAMIC MODELLING APPROACHES 
 
The availability of a rigorous fundamental dynamic model, as in chapter 5, is rare. 
Although a phenomenological structure exists for parameter estimation via data 
reconciliation methods, an inappropriate model structure may make such a fit 
impractical. 
 
In industrial practice it is seldom technically or economically feasible to construct 
detailed first principles models. The industrial success of MPC is largely attributed to 
the availability of commercial software for developing linear dynamic models from 
plant tests. No established method exists for identifying empirical non-linear models, 
due to the complexity of non-linear systems. Consequently, non-linear models are 
frequently based on fundamental models, derived from energy and material 
conservation laws (Henson, 1998; Morari and Lee, 1999). 
 
In system identification, the prime concern is to find a suitable model structure 
wherein a good model fit may be obtained. Prior knowledge of physical relationships 
should be used in the model structure. Identifying concrete model relationships makes 
the model development task complex. Wherever possible, the problem should be 
reduced to parameter estimation, thereby making the system identification task less 
rigorous. Three model types exist (1) white-box models, (2) grey-box models and (3) 
black-box models. White-box models include fundamental models, where knowledge 
and physical insight describes the process behaviour perfectly. Grey-box models are 
sub-divided into (a) physical modelling and (b) semi-physical modelling. Grey-box 
physical modelling pertains to cases where a model structure is known, but certain 
parameters need to be estimated from experimental data. Grey-box semi-physical 
modelling suggests that certain measured input signals are used for constructing 
unstructured models such as neural networks. Black-box modelling implies that no 
prior physical insight is available and is typically grounded in unstructured regression 
models (Sjöberg et al., 1995).  
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6.1.1 Fundamental Models 
 
Fundamental dynamic models derive from transient material, energy and momentum 
balances that are relevant to the process. Without spatial variations, the general form 
of non-linear phenomenological models is: 
 

( )uxfx ,=&          (6-1) 

( )uxg ,0 =          (6-2) 

( )uxhy ,=          (6-3) 

 
where the ordinary differential equations (f), the algebraic equations (g) and the 
measurement equations (h) are functions of the n-dimensional state variable vector x  
and the m-dimensional manipulated variable vector u . y  is the a p-dimensional  
observability vector dictated by the available sensor measurements. Fundamental 
models have several advantages over non-linear empirical models. The constrained 
structure and limited parameters require less process data for development. 
Particularly, model parameters may be estimated from laboratory experiments as 
opposed to time-consuming plant experiments needed for empirical modelling. Also, 
fundamental models extrapolate well to operating regions not represented in the data 
set used for model parameterisation, provided the underlying assumptions remain 
valid. Effective extrapolation is important where processes have a wide operating 
region. Commercial dynamic simulators, such as AspenPlus (from Aspen 
Technologies) and Hysys (Hyprotech), provide for rapid development of rigorous 
non-linear dynamic models. However, these fundamental models must be validated 
with plant or laboratory data that reflect typical operating conditions. On-line 
validation involves placing the model in predictive mode in parallel with the process, 
whereupon large deviations between plant measurements and the model predictions 
may necessitate further modelling effort (Henson, 1998).  
 

6.1.2 Empirical models       
 
Numerous processes elude fundamental modelling, owing to a lack of process 
knowledge and suitable fundamental equation frameworks. Although fundamental 
modelling is conceivable for a large number of chemical and mineral processing 
operations, mechanistic model-based approaches may prove unreliable in their 
predictions. Many micro-phenomena that occur in complex processes (e.g., flotation) 
are poorly understood and identifying the large number of parameters within a 
reasonable fundamental framework may require a vast number of dedicated 
experiments (Amirthalingam & Lee, 1997). Empirical non-linear models must 
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consequently be developed from dynamic plant input-output data. Discrete-time non-
linear models include: (1) Hammerstein and Weiner models, (2) Volterra models, (3) 
polynomial ARMAX models and (4) artificial neural network models. Such non-
linear input-output models have the general form: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]1,...,,,...,1,,...,1 +−−−−−= euy nkekenkukunkykyFky   (6-4) 

 
where F is a non-linear mapping, k the sample index, y the measured variable, u the 
manipulated variable and e the noise input. The number of past samples used is 
denoted by n. State space representations of the input-output data are also feasible. 
Typically multi-variable processes are modelled by a multi-input, single-output model 
for each measured variable (Henson & Seborg, 1995).  
 
Non-linear identification entails the task listed in Table 6-1. 
 

Table 6-1 - Non-linear system identification (Henson, 1998). 

1. Input sequence design - selection of appropriate measured and manipulated 
variables that impact y(k). 

2. Structure selection - selection of input parameters ny, nu and ne. 
3. Noise modelling - estimation of the noise input e(k). 
4. Parameter estimation - estimation of the model (i.e., mapping) parameters. 
5. Model validation - prediction comparisons with plant data not used during 

training.  
 
Most of the tasks listed in Table 6-1 remain open-ended problems. The relative 
suitability of either Hammerstein, Weiner, ARMAX and neural network models for a 
given problem is not formally defined. An important issue is the design of plant tests 
that provide sufficient excitation for determining the dynamics without impacting 
production. The optimal number of delayed inputs ny, nu and ne are difficult to 
determine, requiring complex techniques such as false nearest neighbours. A 
promising method for non-linear multi-variable identification is to determine state 
representations through appropriate projection (i.e., linear or non-linear) of input-
output time-series data. Also, most practical problems require multi-input multi-
output dynamic models. Combining MISO process models into a multi-variable 
model may not be effective. Non-linear models will inherently contain modelling 
errors in their process approximation, which need to be quantified in the controller 
design and analysis to ensure robust control (Morari and Lee, 1999).    
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Empirical non-linear models offer advantages over fundamental models, in that 
empirical dynamic models do not require detailed process understanding. Artificial 
neural networks are the most popular framework (Henson, 1998). 

6.1.3 Hybrid models 
 
Hybrid non-linear models combine the fundamental and empirical approach, which 
allows exploitation of the advantages of both methods. Typically, hybrid models use 
empirical models to estimate unknown functions in fundamental models, such as 
reaction rates in a fundamental reactor model. Hybrid models constrain the underlying 
physics within a fundamental framework, while estimating complex sub-systems 
using empirical approaches (Henson, 1998). 

6.1.4 Batch modelling 
 
Though fundamental, empirical and hybrid models have found application in control 
applications for continuous processes, few applications of model-based control to 
batch processing exist (Morari & Lee, 1999). Control objectives in batch processes 
are most frequently posed as tracking problems for time-varying reference trajectories 
over a defined batch time. During a batch, the process variables traverse wide regions 
of the state space that are characterised by varying degrees of non-linearity. The batch 
trajectory may only be in a particular region of the state space for a limited time 
period, limiting the representative data that may be collected for modelling the 
regional process dynamics. For effective modelling, a representative data set larger 
than for continuous process modelling is typically required. Favourably, batch 
processing is repetitive and hence process information may be exploited in a 
framework that allows the use of past batch data along with real-time data in the 
control system. Previous batches may be incorporated through state estimation within 
the predictive control computation. Run-to-run learning is fundamental to batch 
optimisation and control (Morari & Lee, 1999). 
 
Developing an accurate batch model is thus considerably more difficult than for 
continuous operation. Owing to the high probability of an inaccurate dynamic model, 
a model-based control system is likely to have significant tracking error. The 
modelling exercise needs to include additional identification rigour and the modelling 
technique must maximise process knowledge from limited process information. 
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6.2 COMPLEXITY OF NON-LINEAR MODEL DEVELOPMENT 

 
Modelling the complexities of non-linear processes from first principles often 
necessitates a large time investment that escalates costs. Modelling costs typically 
account for over 75 [%] of the expenditure incurred in an implementation of advanced 
control. Reaching tractable solutions to the modelling effort frequently requires 
relaxing the modelling rigour by introducing simplifying assumptions. A first 
principles model may not only be costly but also subject to inaccuracies. Poor model 
accuracy, owing to highly non-linear dynamics, may limit implementation to a narrow 
operating range. Without sufficient process models, advanced control methodologies 
have limited scope for successful implementation. Even with accurate process models, 
conventional advanced control strategies prove complex to implement (Hussain, 
1999). Although the percentage of process units that require advanced control is 
small, these key units may account for up to 40 [%] of the gross revenue regenerated 
in USA process industries (Harris & Palazoglu, 1998). A technique that allows 
generality of the model structure (i.e., thereby facilitating rapid and less costly 
development) and high accuracy in expressing the process non-linearities is highly 
sought (Willis et al., 1992).  
 
Research on non-linear system identification has focused on SISO systems, while 
most control challenges of practical importance are MIMO systems. In most cases, 
model regression uses SISO and MISO methodologies. Since the models are fitted 
separately, these methods prove less useful for MIMO control system development. 
Correlation among different outputs are not captured or exploited in the model 
identification process.  A MIMO identification algorithm fits a single model with all 
the outputs simultaneously, normally in the form of a combined stochastic/ 
deterministic system. Thereby, correlation between outputs is incorporated and 
typically leads to improved identification of the deterministic part of the model 
(Morari & Lee, 1999).  
 
Intelligent process control has been a reaction to the inability of conventional non-
linear control to meet the needs of industrial control challenges (Stephanopoulos and 
Han, 1996). As neural networks approximate the complex dynamic behaviour of non-
linear systems effectively, the use of neural networks in non-linear model 
identification for non-linear control becomes attractive. As neural networks learn by 
example, the development of useful process models from plant input-output data, 
becomes cost effective. Several neural network control strategies have been applied 
for a wide range of control objectives on-line (Hussain, 1999). However, no 
established method exists for constructing a non-linear model from plant test data 
(Morari & Lee, 1999). 
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The most extensive use of neural networks in control applications has been in a model 
predictive control (MPC) guise. Non-linear MPC entails a non-linear optimiser, which 
uses an on-line process model to determine future control actions. The process model 
is included in the control loop as in Figure 6-1. The non-linear optimiser uses the 
process model to calculate a number of optimal control actions over a prediction 
horizon. This involves calculating a control action vector, υ , which optimises a cost 

function containing the process vector, mψ  with reference to the desired process state, 
SPψ . The first predicted control action in the prediction horizon ( )1+tυ  is applied to 

the plant, which changes the process state to ( )1+tpψ . MPC uses an error signal, e, to 
improve the process model by reducing the plant/model mismatch. NMPC's success is 
highly dependent on the quality of the process model. Both experimental-scale and 
industrial implementations have used neural network models in MPC control loops. 
These include control of an industrial polypropylene reactor, an industrial multi-pass 
packed bed reactor, a laboratory scale distillation column and  temperature control of 
a 175 [kW] experimental furnace system (Hussain, 1999). These control applications 
are single-input single-output (SISO) control systems. 
 

Process

d
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M

Non-linear
optimiser

e

ψSP 

ψp(t+1)

ψm(t+1)

mψυ

υ(t+1)

υ(t+1)

e

 
Figure 6-1. Control structure for non-linear model predictive control. 

 
A simpler alternative to NMPC is direct inverse control (DIC). DIC inverts a neural 
network model, which acts directly as the controller (Figure 6-2). The controller 
inputs may include several current and past process variables (ψp), set points (ψSP) 
and past control actions (υ). Thereby, the controller determines the control action, 
υ(t+1), which along with disturbances d changes the process state to ψp(t+1). Direct 
inverse controllers have been utilised in laboratory scale applications for single-input 
single-output (SISO) temperature control (Hussain, 1999).  
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Figure 6-2. Control structure for direct inverse control.  

 
This chapter demonstrates a non-linear identification methodology Singular Spectrum 
Analysis (SSA). SSA identifies the state variables that created the time series of a 
given process variable and constructs a dynamic neural network model using principal 
component analysis (PCA). SSA models may consequently be used by the SMNE 
algorithm for neurocontroller development.  The following section describes the SSA 
methodology. Historical input-output data from an industrial fed-batch bioreactor 
demonstrates the SSA methodology as a case study.  
 

6.3 RAPID MODEL DEVELOPMENT IN A NEURAL NETWORK 

PARADIGM 

6.3.1 Semi-empirical dynamic modelling 
 
Dynamic modelling entails determining those variables that describe a physical 
system's dynamic response and how these variables are interrelated. The ultimate goal 
of any dynamic modelling exercise is to accurately predict the process conditions of a 
real plant at some time in the future. Such models prove invaluable in the 
implementation of advanced process control strategies. As discussed in section 6.1, 
phenomenological modelling is concerned with models based on first principles, 
whilst empirical modelling uses input-output data for creating representations of a real 
system's dynamics. Modelling from first principles is desirable, as it generally 
provides wider applicability and greater understanding of the process. However, 
phenomenological modelling is far more time-consuming and therefore more 
expensive than empirical modelling that relies on warehoused plant data. Ideally, the 
gap between phenomenological and empirical modelling should be bridged. This may 
be accomplished by constructing pseudo-phenomenological models from input-output 
data.    
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A promising approach for non-linear multivariable system identification involves 
defining states from input-output data through appropriate non-linear projection, 
thereby building a state-space model (Morari & Lee, 1999). A deterministic system 
may be described by differential equations comprised of state variables and the 
manipulated variables that impact on the state variables. The state variables, ξi, 
represent the minimum number of variables required to fully describe the dynamic 
system. The vector of state variables represents the phase space for the dynamic 
system. The dimension of the state space is equal to the number of differential 
equations. Manipulated variables, υi, act upon the dynamic system and determine the 
future values of the state variables. The dynamic system may be comprised of f 
ordinary differential equations with state vector ξ (t) = [ξ1(t), ξ2(t), ... , ξf(t)] and is 
assumed differentiable over the full range of operation, so that each state variable may 
be described by (Abarbanel et al., 1993): 
 

( ) ( ) ( )υξξ gf
dt

td i +=         (6-5) 

( ) ( )kk ht ξψ =          (6-6) 

 
where f is a function of the state vector, ξ , and g is a function of the manipulated 

variable vector, υ . The process variables, ψi, are related to the state variables by the 
function transformation h (Abarbanel et al., 1993). A continuous process typically has 
a single steady state attractor associated with the chosen operating point. Such steady 
state attractors may be either point attractors, chaotic (i.e., non-linear attractors) or 
periodic attractors with long oscillation periods. Consider the bioreactor flow sheet 
optimisation study presented in section 4.7. With no recycle or concentrated substrate 
feed at constant bioreactor level, a bifurcation analysis reveals that numerous open-
loop steady states exist depending on the residence time. Figure 6-3 shows the 
bifurcation analysis, i.e. the possible open-loop steady state conditions for the 
optimised bioreactor flow sheet. At a Damkohler number of ±1.5 [-], the steady state 
attractor is open-loop stable. A stable attractor is also referred to as a point attractor as 
shown in Figure 6-4 for 3 state variables in phase space. When the Da = ± 1.0 [-], the 
steady state attractor exhibits multiplicity. Multiplicity implies that the phase space 
attractor nearest the initial condition determines the open loop steady state response. 
The attractor may consequently be either open-loop stable or unstable. An unstable or 
chaotic attractor is shown in Figure 6-5. As the Damkohler number is further reduced, 
the steady state open-loop response can no longer be stable, regardless of the initial 
condition, and unstable attractors and periodic attractors become the possible 
attractors depending on the initial condition.   
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Figure 6-3 - Bifurcation analysis for the optimised bioreactor flow sheet. C1 represents the 
dimensionless biomass concentration and Da the Damkohler number (i.e., dimensionless 
residence time).  Solid lines represent stable open-loop steady state attractors. Dashed lines 
represent unstable or chaotic open-loop steady state attractors. Marked solid lines represent 
periodic attractors with long periods. 
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Figure 6-4 - Point attractor for a 3-dimensional 
state space (i.e., 3 state variables). 

Figure 6-5 - Chaotic attractor for a 3-
dimensional state space (i.e., 3 state 
variables). 

 
Since the experimental pilot-plant case study in this work pertains to batch distillation 
(chapter 7), the differential equations for a unit volume of structured packing in a 
batch rectifier serve as example. For an arbitrary volume of column packing the 
governing mass balance, component balance and enthalpy balance yields (Distefano, 
1968): 
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jjjj
j LVLV

dt
dH

−−+= −+ 11        (6-7) 

( )
jijjijjijjij

jij xLyVxLyV
dt

xHd
,,1,11,1

, ⋅−⋅−⋅+⋅= −−++    (6-8) 

( )
jjjjjjjj

jj ILJVILJV
dt

IHd
⋅−⋅−⋅+⋅=

⋅
−−++ 1111     (6-9) 

 
where H is the liquid hold-up, V is the vapour flow rate and L the liquid flow rate. The 
state variables xij and yij are the mass fractions of each component, i, at column 
location, j, in the liquid and vapour phases respectively. Since the mathematical model 
involves heat balances, liquid and vapour enthalpies are given by Ij = f(xj, Tj) and Jj = 
f(yj, Tj). Assuming constant volume hold-up, the hold-up mass per volume of 
structured packing may be described by the algebraic equation, Hj = Gj⋅ρj with the 
liquid density ρj = f(xj, Tj, Pj) and Gj the volume hold-up. The rate of interface mass 
transfer, with the vapour phase rate limiting, may be given by (Distefano, 1968): 
 

( )yySak
dt

dy
y

ji −⋅⋅⋅= *,        (6-10) 

( )*, yySak
dt

dx
y

ji −⋅⋅⋅=        (6-11) 

 
where ky is the overall mass transfer coefficient with ky = f(V, L, packing geometry), a 
is the interfacial area per unit volume of the structured packing and S is the cross-
sectional area of the column. The vapour-liquid equilibrium relationship may be given 
by (Distefano, 1968): 
 

jijiji xKy ,,,
* ⋅=          (6-12) 

 
where Ki,j = f(xj, Tj, Pj) determined by an equation of state. Figure 6-6 illustrates the 
unit volume of structured packing with the governing variables. 
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Figure 6-6. Control volume of a structured-packing distillation column near the top of the 
column. 

 
For the batch distillation column section in Figure 6-6, the dominant state variables 
are the variables of the differential equations, that describe xi,j and yi,j. These state 
variables are rarely measured in batch distillation, owing to the high cost of 
composition analysers. For a binary or pseudo-binary system, a temperature sensor 
serves as inferential indicator for composition using the temperature dependency of 
equation 6-12 (assuming constant pressure). Such a temperature measurement along 
the column is thus an example of a process variable. Assuming a constant heat duty, 
the manipulated variable for the column is the liquid reflux rate, L. When such a 
system is sampled discretely, the dynamic representation for each state variable 
becomes (Abarbanel et al., 1993): 
 

( ) ( ) ( )ss ntntn τυτξξ ⋅++⋅+= 00       (6-13) 

( ) ( )[ ] ( )[ ]nGnFnk υξξ +=+1        (6-14) 

 
where, n is the number of samples taken since time t0 with sample period τs. F and G 

relates the state variable at ξk(n+1) to the state vector ξ (n) and the manipulated 

variable υ (n) respectively. The relationship between the continuous and discrete 
system may be established by considering the approximate time derivative 
(Abarbanel, 1993): 
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     (6-15) 

 
The state vector (i.e. xi,j and yi,j) for a binary system at an arbitrary column location 
thus has 4 state variables. These four state variables pass through a four-dimension 
hyperplane (i.e., phase space) as the batch progresses. The process thus has a 
trajectory fixed in a coordinate system (i.e. phase space), which is dictated by the 
system dynamics. The path laid by such a trajectory in time is referred to as the phase 
portrait. Recall that a single temperature reading serves as inferential indicator of the 
four state variables. Sampled data is logged to a process database at a specified 
sample rate τs

-1. Large warehouses of historical data, comprised of process (input) and 
manipulated (output) variables, provide information regarding past dynamic 
responses. Ideally, historical data should be useful in constructing the phase portrait 
and consequently an accurate representation of the underlying differential equations. 
Using equation 6-15, these logged samples may be used to reconstruct the derivative 
equations that underlie the dynamics. To recreate the temperature differential 
equation, the derivative from a time series of the temperature process variable must be 
approximated using numerical differentiation. A regression model, containing input 
elements as in equation 6-14, may be constructed to predict these derivatives. Sensor 
noise may limit the application of such an approach. However, it proves unnecessary 
to approximate the derivates directly.  
 

6.3.2 Extracting state variables from time series data 
 
Takens' theorem states that a single time series holds knowledge of all the state 
variables that created the time series, i.e. the time series for the process variable T 
holds knowledge of the four state variables that determined T's value at any sample n. 
Knowledge of the state variables allows reconstruction of the phase portrait. A state 
space can be constructed from observed variables by using the method of delays 
(Ydstie, 1990; Narenda and Partharasarathy, 1990; Hernandez & Arkun, 1992). The 
use of a number of past (i.e., lagged) samples proves sufficient to predict the 
trajectory in the four dimensional space (i.e. the phase portrait), so that: 
 

 ( ) 







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L
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τ
τ

    (6-16) 

 
Therefore, with sufficient knowledge of the system's past locations in the four 
dimensional space, the next location in the coordinate space may be predicted. 
Singular spectrum analysis (SSA) is a data-analysis tool introduced into non-linear 
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dynamics by Broomhead and King (1986) for creating predictive models from time 
series information. As such, SSA is a rapid model development (RMD) tool. SSA 
uses a lagged embedding matrix (LEM) of the time series, which serves as the 
foundation from which the state variables are extracted. A number of time scale issues 
need to be resolved in constructing the LEM. A short sample time, τs, allows for 
accurate description of rapid dynamic variations, but creates highly correlated 
samples. High correlation between successive samples means that a large number of 
historical samples must be used to resolve slow dynamics. The LEM is determined by 
the lag time, τL, and the window length, τw. The lag time, τL= kτs, should ensure a 
degree of statistical independence between the samples. In this work a lag time τL= τs 
is selected for the embedding. The window length, τw, is defined as the number of past 
samples needed to accurately reconstruct the phase portrait. Clearly, as τw is 
decreased, the measurable dynamic variation in the window becomes less. Increasing 
τw thus increases the amount of information contained in the window. The window 
length should be selected based on an estimate of the process time constant. Consider 
the time series for a temperature sensor on a batch distillation column T, with N data 
samples. The time series is consequently embedded based on the number of window 
length samples M as in Table 6-2 (Broomhead & King, 1986).  
 

Table 6-2 - Lagged embedding matrix (Broomhead & King, 1986). 

X1 X2 X3   XM 

T(1) T(2) T(3) . . T(M) 
T(2) T(3) T(4) . . T(M+1) 
T(3) T(4) T(5) . . T(M+2) 

. . . . . . 

. . . . . . 
T(N-M) T(N-M+1) T(N-M+2) . . T(N) 

 
The rows of the LEM represent a time fragment (i.e., window) in which the dynamics 
of the process may emerge. The LEM columns represent an initial estimate of the 
state variables as determined by τL and τw. Thereby, each LEM row must map 
consistently to a unique location in phase space. State variables are by definition 
orthogonal to one another; as the state variables are represented by the axes in a phase 
portrait coordinate system. However, the column vectors in X  are highly correlated, 
owing to a small shift by the lag time τL. In other words, choosing a restricted τw 
means that X1 and XM are too highly correlated and hold similar information. 
Choosingτw too large makes X1 and XM completely uncorrelated (i.e., independent) 
and the projection of an orbit on the attractor is onto two unrelated directions. A 
criterion for an intermediate choice is based on linear autocorrelation: 
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where, CL is the correlation matrix based on the embedding matrix (Table 6-2). The 
first minimum in the first row of the correlation matrix is typically a good guideline 
for τw. Should no minimum exist, τw is typically selected at a correlation of 0.2. A 
non-linear notion of independence, average mutual information (AMI), may also be 
used to determine τw, noting that AMI is sensitive to noise in the data. These 
guidelines should be cross-checked with the expected process time constant, since 
most of the dynamic information will be contained within the time frame of the 
process time constant. More often than not, τw is determined by trial-and-error 
(Kugiumtzis, 1996). 
 
SSA relies on principal component analysis (PCA) of the LEM to extract the state 
variables from the time window in each row of the LEM. Classical PCA gives the 
principal axes of such a M x (N-M) matrix, X , by rotating the coordinate axes to 
minimise the variance between the variables in an orthonormal fashion. First, the 
column vectors of X  are normalised (i.e., centred) by subtracting each column's mean 
and dividing each column element by the standard deviation. Thereafter, a large set of 
correlated variables may be transformed into a small set of uncorrelated (i.e. 
orthogonal) variables by projecting the variables in X  so that:  
 

PCXE ⋅=          (6-19) 

 
where PC  is the projection coefficients matrix or principal components and the 
matrix E  is called the empirical orthogonal functions. Though M components are 
needed to reproduce the complete system variability, sufficient variability may be 
explained by using only C principal components. The dimensionality of the variable 
space is thus reduced. As the variables of the matrix E are orthogonal to one another, 
the variables are also state variable representations for the time series. Should C 
principal components explain more than typically 95 [%] of the variance, the first C 
column vectors in E  are the state variables of the system. PCA thus establishes the 
true dimension of the phase space.  
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The remaining (M-C) column vectors in E  contain minor system dynamics and noise. 
Discarding the coordinates containing insignificant variance, noise is implicitly 
filtered from the time series. This noise filtering property offers an opportunity to use 
closed loop data for model identification. Closed loop plant data, i.e. data generated 
during feedback control, is more readily available than open loop data. The 
fundamental problem with model identification from closed loop data is the 
correlation introduced by the noise in the process variable signal that is fed back into 
the control action signal to the plant (Forssell and Ljung, 1999). Projecting the noise 
out of the time series and changing the plant measurement to a state space 
representation decouples the noise element in the manipulated variable time series 
from the process variable representation. SSA is thus a robust means of identifying 
the open loop plant from closed loop data as in Figure 6-7. 
 

PlantController
e(t)Set point +

-

+

+

Noise

Model identification

ψ(t) υ(t) 

Input Output

 

Figure 6-7 - Closed loop process model identification.  

 

6.3.3 Trends and non-stationarities 
 
During start-up, a continuous process may pass through several attractors as seen in 
Figure 6-8. Figure 6-8 shows the hypothetical open loop behaviour of a dynamic 
system with 3 state variables, which moves from the start-up (i.e., initial) condition 
and settles in the region of an open loop unstable steady state (e.g., the region of 
maximum economic return). Minimal plant data may be available for complete 
modelling of attractors only encountered during start-up. Nevertheless, a model 
predictive controller must stabilise the unstable attractors by robust feedback along 
the full start-up trajectory.  The practical applications in this thesis deal primarily with 
batch processes, which are also inherently non-stationary. Modelling such large 
regions of the state space complicates SSA and the non-stationary operation tests the 
boundaries of the modelling technique. 
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Figure 6-8 - Hypothetical chaotic attractors during state transitions or start-up. 

 
When applying PCA, normalised data in multi-channel embeddings prevents biasing 
towards a time series that has a large scale in the selected engineering units. Long 
start-up periods for continuous processes and transitions from one steady state to 
another introduce a distinct trend into the time series data. A trend introduces 
significant variability in a particular direction in n-dimensional state space. PCA 
reduces this variability in the embedding matrix, by including the trend in the first few 
principal components. Note that any set or combination of n variables that completely 
determine the system dynamics may describe the state space. For the data in Figure 
6-9, any rotation of the 3 dimensional Cartesian axes is a valid state space 
representation. For the non-stationary process in Figure 6-9, SSA selects a state 
representation with the non-stationary element as major state variable, i.e. the 
remaining variability of the system is reduced after aligning the n-dimensional 
Cartesian axes along the trend. 
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Figure 6-9 – Data for a hypothetical batch process within a true three dimensional state space.  
Phenomenological modelling may use the Cartesian axis determined by 'state variable 1',  'state 
variable 2' and 'state variable 3'. The trend in the 3-dimensional data biases SSA to a state space 
representation with 'New state variable 1', 'New state variable 2' and 'New state variable 3'. 

  
For example, consider a batch distillation column with variable reflux and no product 
removal from the reflux drum. Assume that a batch terminates when a desired reboiler 
temperature is reached. The time series for the column's temperature has fast 
dynamics determined by the reflux rate, whilst the reboiler temperature is determined 
by the rate of accumulation in the reflux drum. As the batch progresses, the reboiler 
temperature increases. By embedding the column temperature and the reboiler 
temperature time series, the reboiler temperature introduces a trend in the embedding 
matrix. SSA selects a state space representation that includes the reboiler temperature 
as a major component of one of the state variables (compare Figure 6-9). Such a state 
space representation may obscure the importance of variability in the data that has fast 
dynamics. In Figure 6-9, 'State variable 1' and 'State variable 2' are combined into 
'New state variable 1' as a result of the non-stationary trend of the batch. In practice, 
despite non-stationary dynamics, SSA still works reasonably well (Vautard et al., 
1992).  
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6.3.4 Dynamic neural network modelling & model validity 
 
Given the state variables that determine the time series and the manipulated variables 
that are highly correlated with the time series, a predictive model may be constructed. 
Primarily, in accordance with equation 6-20, an accurate predictor for the process 
variable T (i.e. ψ in equation 6-6) is sought, by finding the function: 
 

( ) ( ) ( )[ ]υξ gfhtT +=+1       (6-20) 

 
Neural networks may approximate any non-linear continuous function to an arbitrary 
degree of accuracy. The calculated state variables at time t and the reflux rate sampled 
over a past window length τw form the inputs to the neural network. The reflux rates at 
[(t), (t-1), (t-2),...,(t - (τw / τs) )] are incorporated as inputs to allow for time delay in 
the process response to a change in the manipulated variable. The Levenberg-
Marquart algorithm optimises the weights of the one-step ahead neural network 
predictor for T(t+1).. The final result is a neural network structure that is equivalent to 
equation 6-20 for the process variable T.   
 
Neural network models are not grounded in physical theory and are most frequently 
employed to capture non-linearities in process data. The validity of the model remains 
closely related to the quality and number of data samples in the time series. The time 
series must contain ample dynamic information and therefore cover an adequate 
region of the state space, particularly the region where the process is controlled. 
Although neural networks interpolate successfully between data samples, 
extrapolation may prove inaccurate. Model reliability is thus not only determined by 
the accuracy of the regression fit (i.e., interpolation ability), but also by whether or not 
the model is extrapolating. The simplest extrapolation indicator involves bounding the 
model's prediction range to the upper and lower limits of each of the independent 
variables. However, with multiple correlated inputs, this method will frequently 
overestimate the region of model validity. Leonard et al. (1992) constructed radial 
basis function neural networks that compute their own reliability based on a density 
measure. This density measure determines whether sufficient training data was 
available in a particular region of the state space to make an accurate prediction. 
Furthermore, Leonard et al. (1992) calculated a confidence limit for each model 
prediction based on the individual confidence limit of each radial basis function in the 
hidden, weighted by the contribution of each node in making that particular 
prediction. These two validity measures thus raised caution flags when extrapolating 
or when interpolating to regions of the state space where training data was sparse. The 
inherent localised modelling of radial basis functions was exploited effectively..  
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Sigmoidal feedforward neural networks, due to the more global impact of each hidden 
neuron, are less prone to the curse of dimensionality than radial basis networks. 
Though extrapolation of sigmoidal networks is seldom reliable, generally 
extrapolation is better than for radial basis networks (Sjöberg et al., 1995). Generally, 
sigmoid networks thus have fewer hidden nodes than radial basis function networks, 
though this generality is highly dependent on the nature of the process data. Although, 
the validity measures of Leonard et al. (1992) hold significant merit, the SSA dynamic 
models in this work have been limited to sigmoidal activation functions. Note that 
SSA is not limited to the structure of the model, since SSA only optimises the input 
space to the model. SSA could be implemented with equal effect to neural networks 
with radial basis activation functions or any other regression model structure (e.g. 
multiple linear regression).      
 
It remains critical to have a measure of model validity for sigmoidal neural network 
models. Since SMNE learns directly for interactions with these neural networks, 
SMNE needs to have an indicator of whether the predictive capability of the dynamic 
model has been exceeded. To ensure that SMNE confines the neurocontroller's 
learned behaviour within the model's validity, the control actions must confine the 
predictions (i.e., model outputs) to the 95 [%] confidence limit. The confidence limit 
for the dynamic model is dictated by how efficiently the time series has sampled the 
underlying state space. In this thesis, the t-statistic for the first two principal 
components for the model inputs determines the model validity, provided the first two 
principal components explain sufficient variability (e.g., 75 [%]) in the model input 
space. The 95 [%] confidence limit of the first two principal components borders an 
elliptic region in the two-dimensional input space. A transformed model input that lies 
outside the elliptic region has significant statistical uncertainty.  
 
The dynamic non-linear modelling technique described in section 6.3 has been 
applied to data from lysine fed-batch bioreactors.  
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6.4 LYSINE BIOREACTOR DYNAMIC MODELLING 

6.4.1 Prior bioreactor modelling approaches 
 
Fermentation processes utilise micro-organisms to synthesise a variety of products 
that include amino acids, antibiotics, fuels and various foods from suitable substrate 
nutrients. Advances in genetic engineering have underpinned the importance of 
bioprocess routes as an alternative to chemical synthesis. In fed-batch bioreactors, the 
batch starts from an initial volume, initial substrate concentrations (e.g., carbon and 
nitrogen sources) and micro-organism inoculum. The batch progresses as substrates 
are continuously fed into the bioreactor until a final total volume is reached. The 
control objective is to maintain an optimal metabolic state trajectory for the micro-
organisms, thereby ensuring maximum overproduction of the desired product. 
Deviating from the optimal operating trajectory could produce by-products that may 
be deleterious to the fermentation, affect the final fermentation purity and complicate 
downstream processing. Likewise, small improvements in performance could result in 
substantial economic benefits. Conventional industrial control (e.g., PID control) is 
generally unsuited to the non-linear dynamics and the widely varying operating 
conditions that are encountered during a fermentation fed-batch.  
 
Controller development techniques that rely on the availability of non-linear dynamic 
models are suited to controlling such fed-batch bioprocesses. However, non-linear 
dynamic model development remains an obstacle to widespread application of model-
based control techniques (Narenda, 1996). Most frequently, open loop control 
strategies are employed for fed-batch fermentations, which allow for no corrective 
action during process disturbances. Although first principles modelling has been 
demonstrated for fermentation (Potgieter et al., 2001), the complexity of industrial 
substrates reduces the utility of such models in industrial practice. For example, 
fundamental models are frequently derived using pure substrates of known 
composition, resulting in poor predictions when applied to complex and unquantified 
industrial substrates. Narenda (1996) concluded that for accuracy and robustness, 
neural networks offer unique opportunities to bio-processing production routes. 
 
Fed-batch fermentations require a multi-input multi-output control strategy. The 
process variables are typically dissolved oxygen, oxygen uptake rate, carbon dioxide 
emission rate, pH, cell density and temperature. The manipulated variables in fed-
batch fermentations are typically aeration, agitation speed, chilling rate, carbon source 
feed rate and nitrogen source feed rate. The process variables reflect the metabolic 
state of the micro-organisms, which over time determines the final yield, productivity, 
product titre and by-product titre of the batch. A large amount of operational data is 
generated during a batch, with which the observed (process) variables may be related 
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to particular metabolic state (Raju & Cooney, 1998). Raju & Cooney (1998) showed 
that pattern recognition techniques could be employed to infer metabolic states, such 
as DO limitation (i.e. anaerobic growth), nutrient limitation, production phases and 
growth phases. Such pattern recognition routines serve as simplified models that label 
the dynamic state of the fermentation, but do not include cause-effect information for 
moving from one metabolic state to another (i.e., state transition information). 
  
Similarly, Willis et al. (1991 & 1992) incorporated neural networks in inferential 
estimation for an industrial penicillin bioreactor. In 1992, existing sensor technology 
did not allow direct on-line analysis of primary controlled variables such as biomass 
concentration. Typically, biomass concentrations remain at-line analyses, sampled at 
infrequent intervals of 4 hours. Such infrequent sampling presented operational 
difficulties in penicillin production. The production of penicillin G by Penicillum 
chrysogenum was run fed-batch in two distinct operating phases. Initially, the 
fermentation produces large quantities of biomass, predominantly using the substrate 
in initial charge media. As the substrate in the initial charge becomes the limiting 
nutrient, substrate is fed to the bioreactor keeping the reactor substrate concentration 
low. Owing to the low reactor substrate concentration, the growth rate decreases and 
this switches the metabolic state of the organism to penicillin production. The yield of 
penicillin is maximised at a true optimum biomass growth rate. Higher biomass 
growth rates reduce the yield of penicillin drastically. Lower growth rates induce lysis 
conditions. The optimum growth rate is located in close proximity to the lysis 
operating constraint. Owing to the infrequent biomass analyses, a conservative feed 
strategy is employed that rather accepted lower productivity than lysis conditions. 
Closer operating to the optimal growth rate is thus desired. Three on-line process 
variables provided pertinent information regarding the progress of the fermentation, 
viz. carbon dioxide emission rate (CER), the batch age and the feed rates of the two 
components that served as substrate feed. Willis et al. (1992) demonstrated that a 
neural network could infer the biomass concentration, providing accurate estimates 
using the on-line process variables. This inferential model for biomass was used 
subsequently to control biomass concentration along a predefined biomass 
concentration trajectory. A neural network model thus allowed tight operation at the 
economic optimum of the non-linear bioreactor process.        
  
Zhu et al. (1996) used neural networks for predicting the total lysine production 
during a fed-batch Brevibacterium flavum fermentation. Figure 6-10 shows the neural 
network architecture comprised of a neural estimator and a neural predictor. The 
neural estimator inferred the total consumed sugar since the start of the batch, based 
on total CO2 emission and the current respiratory quotient (RQ). The inferred total 
consumed sugar formed the basis for predicting the total produced lysine. Essentially, 
Zhu et al. (1996) established an accurate carbon balance, i.e. the sugar represented 
"carbon in", the total CO2 "carbon out" and the lysine production "carbon 
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accumulated". The RQ(t) and the lagged consumed total sugar provided sufficient 
dynamic information to predict future lysine production at (t+1) and (t+2). Zhu et al. 
(1996) concluded that neural networks present encouraging opportunities as soft-
sensors in bioprocessing. 
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Figure 6-10 - A hierarchical neural network predictor for lysine fermentations proposed by Zhu 
et al. (1996). 

       

6.4.2 Lysine bioreactor dynamic model development using SSA 
 
The approach by Zhu et al. (1996) involved trial-and-error testing of the inputs to the 
neural networks. Singular spectrum analysis may offer a more systematic approach to 
model identification, grounded in non-linear system theory. For industrial 
confidentiality, a thorough description of these lysine fermentations is omitted.  
Historical plant data was obtained from 28 lysine fed-batch fermentations run in large 
scale bioreactors. Each fermenter is initially charged with complex media and initial 
sugars. During the first phase of fermentation, large quantities of biomass are 
produced, until key nutrients in the initial charge are exhausted. Thereafter the micro-
organism switches the metabolic pathways to lysine overproduction. The fermentation 
is primarily controlled by feeding high-test molasses (HTM), ammonia (NH3) and 
ammonium sulphate (AS) into the bioreactor. The HTM serves as carbon source, 
while the NH3 feed serves as pH control and nitrogen source. The (NH4)2SO4 feed 
provides for residual NH4

+ as nitrogen source and sulphates that facilitates lysine 
efflux from the cells. The fed-batch is extended by removing partial volumes during 
fermentation that increases the total volume of the fermenter, but also removes 
biomass. The bioreactions for lysine production may be lumped into equation 6-21 to 
equation 6-23.  
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EiOHhCOgHfNOHCeONHCdNHcObOHCa ∆⋅+⋅+⋅+⋅+⋅+⋅→⋅+⋅+⋅ +++
222.05.08.1122156426126

 (6-21) 

−+ +→+ OHNHOHNH 423         (6-22) 

( ) ( ) ++ ⋅+→+⋅ 442424 22 NHSOLysSONHLys       (6-23) 

 
The objective of the modelling exercise was the development of a one-step ahead 
predictor for lysine concentration. Essentially, the underlying dynamics of the carbon 
balance in the bioreactor needed to be extracted from on-line time series data. Several 
time series were identified as possible candidates within a multi-channel SSA 
framework. The CER time series was included into the embedding matrix (LEM), 
since the CER contained both carbon balance and pertinent state information of the 
micro-organisms. The respiratory quotient (RQ) was included indirectly into the 
embedding, by adding the OUR time series into the LEM. Since partial volume drops 
impacted on the total biomass, the volume time series was added to the multi-channel 
embedding.  
 
The CER time series was considered the most important time series in reconstructing 
the state space from a carbon balance perspective, since the CER provides a measure 
of carbon source uptake rate and consequently lysine production (equation 6-21). 
Therefore, the window length, τw, in the embedding was determined from the CER 
time series. As seen in Figure 6-11, a linear autocorrelation analysis of the CER time 
series revealed that τw should be approximately 43 sample periods. Taking a non-
linear perspective on statistical independence, the average mutual information was 
calculated as in Figure 6-12. The first minimum in Figure 6-12 suggested a lag or 
window length of 9 sample periods. A lag of 9 sample periods corresponded to a time 
constant typically used by process operators to control the batch trajectory of the 
fermentation. The greater accuracy of AMI in predicting the embedding lag may be 
attributed to the non-linear nature of the fermentation and minimal sensor noise in the 
CER time series. 
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Figure 6-11 - Linear autocorrelation for lysine bioreactor CER data. 
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Figure 6-12 - Non-linear determination of window length using average mutual information on 
the CER time series. 
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The principal component analysis of multi-channel embedding showed that 97.5 [%] 
of the variance in the embedding may be explained by the first four principal 
components. The first four principal components were selected as the dominant state 
variables for a lysine fermentation. A non-linear dynamic model was constructed 
using these four state variables and time-delayed inputs of two manipulated variables, 
viz. the HTM and the AS feed rates, as inputs to the neural network (Figure 6-13). 
The cumulative CO2 emission input was included as a reference to the progress of the 
batch, since the fermentation has a wide operating range in state space. A neural 
network with 8 sigmoidal hidden nodes was trained using the Levenberg-Marquart 
algorithm to predict CER(t+1), OUR(t+1), Volume(t+1) and Lysine(t+1). The training 
set comprised 50 [%] of the available data (randomly selected), while the balance 
comprised the validation set.  
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Figure 6-13 - Neural network model structure for lysine concentration. State variables for the 
carbon-balance empirical differential equation were extracted primarily from CER data.  
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Table 6-3 summarises the R2-statistics for the one-step ahead predictor on validation 
data. The high R2-statistics for all the model outputs indicates the neural network 
model generalises to inputs not included in the training set and accurately predicts the 
lysine titre. Figure 6-14 and Figure 6-15 illustrate the accuracy of the model 
prediction as compared to the actual plant data. Note that such a neural network is 
only a partial model for the fermentation, assuming that set points for aeration, pH 
and agitation speed are uniformly applied from batch to batch. Partial pseudo-
empirical models are also limited by the sampled range in each time series, as shown 
in Figure 6-16.  Figure 6-16 shows the batch initial condition in the bottom left-hand 
quadrant. The elliptical 95 [%] confidence limit for the first two principal components 
encompass the majority of the batch data, but the start-up period remains outside the 
area of model validity. Importantly, model validity is purely a guide for 
neurocontroller development with the SMNE algorithm. The validity of the model 
input space limits the search of the SMNE algorithm for an optimal neurocontroller as 
described in chapter 7.  

Table 6-3 - R2-statistics for the one-step ahead lysine bioreactor model predictor.  

Process variable R2-statistic 
CER 
OUR 
Level 

Lysine titre 

0.93 
0.91 
0.97 
0.95 
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Figure 6-14 - Randomised actual (markers) and one-step ahead predicted (line) data for carbon 
emission rate (CER), level (L) and lysine concentration (LYS). Randomised and normalised data 
protects the proprietary nature of the fermentation process.  
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Figure 6-15 - Regression fit for carbon emission rate (CER), level and lysine concentration, 
plotting actual versus predicted, over the normalised data range. Deviations from a 45° line show 
inaccurate predictions. 

 

Figure 6-16 - Model validity of a lysine fed-batch bioreactor.  Dashed lines indicate the 95 [%] 
confidence limit with the first two principal components describing 62 [%] of the variability in 
the model input space. 
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6.5 CONCLUDING REMARKS FOR CHAPTER 6 

 
Developing phenomenological models is both time-consuming and costly and may be 
infeasible for poorly understood processes. Modern process management systems log 
vast quantities of historical process information to data warehouses. The SSA 
methodology outlined in chapter 6 provides a power tool for rapid pseudo-empirical 
model development from historical input-output data. The general applicability of 
SSA to dynamic process modelling is demonstrated for a non-linear batch process, 
viz. a lysine fed-batch fermentation. SSA allows the construction of partial models 
from dominant state variables. Such dynamic models are ideal for use in the SMNE 
neurocontroller development framework.



 Copyright University of Stellenbosch, 2004 187

 

7 NEUROCONTROL OF A MULTI-EFFECT BATCH 
DISTILLATION PILOT PLANT 

 

OBJECTIVES OF CHAPTER 7  

• Demonstrate neurocontroller development from pseudo-empirical neural network 
dynamic models using the SMNE algorithm.    

 
New control algorithms are most frequently evaluated within the confines of 
simulation studies. Even though these simulated processes may have demanding 
process control requirements, new control algorithms often show significant promise. 
Yet, few reports of such new control algorithms describe a real industrial application. 
Simulation studies are predominant, since simulated processes offer the advantages 
listed in Table 7-1 (Kershenbaum, 2000). 
 
Table 7-1 - Advantages of simulated studies (Kershenbaum, 2000). 
Advantages of simulated control testing 
The utility of testing a new algorithm under clearly defined conditions. 
The impact of disturbances and measurement error may be tested in isolation. 
Robustness to plant-model mismatch may be evaluated under controlled conditions. 
The sensitivity of the algorithm's tuning parameters may be related directly to well-
defined process conditions. 
Rapid method of evaluation. 

 
Despite these advantages, simulation studies offer limited guidance on how a new 
control algorithm will perform faced with unknown process conditions that may exist 
in industrial application. Experimental studies offer all the benefits listed in Table 7-1, 
also validating the new algorithm under poorly defined, more realistic conditions that 
lack the artificial niceties of simulated environments. Kershenbaum (2000) found that 
experimental evaluation leads to striking differences in performance with regard to 
measurement noise, variable time delays, process lags and unforeseen non-linearities. 
On-line control experiments generally reveal additional complications that were not 
envisaged or duplicated in a simulation. Even the most meticulous modelling effort 
cannot include all constraints and process dynamics uncertainties. The law of 
diminishing returns is soon prevalent in lengthy modelling exercises that also coincide 
with rapidly escalating costs (Kershenbaum, 2000).  
 
Control studies of batch processes suffer most acutely from discrepancies between 
simulated and experimental evaluation.  
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7.1 BATCH PROCESSING CASE STUDY 

 
Batch processing is a challenging control problem suited to non-linear control, since a 
typical batch operates over a wide operating range and the process dynamics change 
significantly due to non-linearities. The control objective is fundamentally different 
from continuous processing, rather posed as an optimal tracking of non-stationary 
states. Obtaining an accurate batch model is difficult, making a conventional model-
based control system susceptible to tracking errors. As a result, few applications of 
MPC exist for batch processing. An MPC approach may need to be tailored to the 
specific requirements and characteristics of batch processing, making generic tools 
difficult to implement (Morari and Lee, 1998). 
 
Batch distillation is frequently employed to purify high added value products in the 
fine, pharmaceutical and biochemical industries. Batch distillation columns are 
broadly classified as rectifying, stripping and emerging columns. Emerging columns 
are comprised of a rectifying column and several stripping columns, depending on the 
number of components, connected via vessels for product hold-up. Batch distillation 
is flexible and a single batch distillation unit can separate a variety of feed mixtures of 
uncertain initial composition. Thereby, batch distillation units are able to respond 
swiftly to market demands. Emerging column designs separate a mixture of B 
components with (B-1) columns into pure components without off-cut products. 
Emerging columns also have promise in extractive and reactive batch distillation. 
Although batch rectifiers require far less capital investment than a continuous column, 
batch rectifiers are less energy efficient than continuous distillation columns (Kim and 
Diwekar, 2001).  
 

7.2 MULTI-EFFECT BATCH DISTILLATION COLUMNS 

 
An emerging configuration, viz. multi-effect batch distillation (MEBAD) or multi-
vessel column, has bridged the divide between the energy efficiency of rectifiers and 
continuous columns. The MEBAD column's heat integration allows optimal use of the 
reboiler's heat duty in the train of stripper columns. Simulation studies have 
confirmed that such emerging columns typically consume 50 [%] less energy than a 
conventional rectifier for the same initial charge (Furlonge et al., 1999). The energy 
efficiency of MEBAD columns approach that of continuous columns (Kuroka et al., 
2001). 
 
The greater flexibility of MEBAD columns complicates optimal operation. Possible 
control policies may include: (1) optimal distribution of the initial charge to the 
product vessels, (2) optimal hold-up in each intermediate vessel during operation, (3) 
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optimal reflux in each column section, (4) variable heat duty, (5) product withdrawal 
to accumulator vessels during operation and (6) adaptive tuning of controller 
parameters. The more complex process dynamics, as a result of significant process 
interactions between column sections, compounds the selection of an operating 
policy. Considering the large number of decision variables, a control strategy should 
be multi-input multi-output (MIMO) and determined from a plant-wide control 
perspective (Furlonge et al., 1999).    
 
An appropriate performance index for optimal MEBAD control minimises the mean 
rate of energy consumption until steady state is reached in the intermediate vessels:  
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where ε is the minimum mean energy consumption rate, QR(t) is the instantaneous rate 
of energy consumption in the reboiler, tf is the processing time and ts is the set-up time 
for each batch. Minimising ε is related directly to maximising the profit from the 
batch (Furlonge et al., 1999). 
 

7.2.1 Existing control policies 
 
Noda et al. (2000) investigated the operational policy of an on-line optimisation 
system for the MEBAD column. In the proposed variable policy (V-policy), the initial 
and operational hold-ups in each intermediate vessel are optimised as a function of 
time. The optimisation is undertaken using a dynamic model of the MEBAD 
configuration and is implemented in open loop operation.  However, the plant and the 
mathematical model are invariably mismatched. Even though the vessels follow the 
optimal hold-up profiles, the vessel compositions failed to track the optimal 
composition profiles. This discrepancy requires an on-line optimisation system in 
which the optimal operation profile is re-evaluated based on the error between the 
current process condition and the optimal condition. Re-evaluation of the optimal 
hold-up profile requires solving the non-linear programming problem periodically. 
This provides a degree of feedback control, which also requires a near infra-red (NIR) 
analyser to measure the compositions in the intermediate vessels. The need for a NIR 
analyser makes the control scheme expensive. Furthermore, the NIR analyser needs to 
be calibrated using many known samples, collected over a wide range of temperatures 
and compositions. The re-evaluated hold-up profiles serve as set points for the 
controllers that control the reflux rates from each vessel. The tuning parameters of 
these SISO controllers also need optimisation and decoupling. The control scheme 
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was verified in a pilot plant MEBAD column. The complete initial charge was fed to 
the reboiler and a constant heat duty was maintained throughout the batch. The 
experimental results confirmed that the vessel compositions track the optimal 
trajectory. 
 
Wittgens and Skogestad (2000) proposed a closed loop total reflux control policy. A 
constant temperature in the middle of each column is maintained by controlling the 
reflux rate to each column. As the batch progresses, the separation in each column 
section becomes pseudo-binary and the temperature measurement serves as inferential 
estimate for composition control. With a fixed temperature in each column section, 
the column and vessel temperature profiles are fixed thermodynamically. The degrees 
of freedom for a MEBAD column, with constant heat duty and no product 
withdrawal, is equal to the number of columns.  With the entire initial charge in the 
reboiler and constant heat duty, the hold-up in each intermediate vessels increases 
gradually to the final hold-up. Linear proportional-integral (PI) controllers maintain 
the desired column temperatures. Wittgens and Skogestad (2000) proposed that the 
temperature set point in each column is the boiling point mean of the two components 
separated in that column section. The control strategy was verified in a laboratory 
scale multi-vessel column. This robust control policy is simple and the indirect control 
of vessel hold-ups reaches the final product compositions regardless of the initial 
charge composition. Though robust to process uncertainties and process disturbances, 
this control policy is not optimal. Furlonge et al. (1999) found that the temperature 
control strategy (i.e., total reflux) does not relate directly to the economic objective of 
minimising the batch time or energy consumption. In simulations, the mean energy 
consumption for the total reflux control strategy was greater than for the open-loop 
optimisation of the composition and hold-up profiles. Also, the mean energy 
consumption increased as the set point tracking performance of the temperature 
controllers was improved. Furthermore, the use of two SISO controllers without 
decoupling neglected the process interaction between the columns.  
 
Furlonge et al. (1999) considered optimal operation of the MEBAD column in a 
simulation study that considered all the possible control degrees of freedom. In this 
open loop control policy, distributing the initial charge, product withdrawal during 
operation and variable heat duty was considered. Charging the entire feed to the 
reboiler resulted in better operation than distributing the feed by composition to the 
intermediate vessels. Also, product withdrawal offered no significant benefit over 
total reflux operation. However, the simulation results confirmed that the optimal 
hold-up scheme suggested by Noda et al. (2000) may be improved by optimising both 
the heat duty and the vessel hold-ups over time.  
The optimal hold-up control strategies (Noda et al. (2000) & Furlonge (1999)) have 
entailed both a complex phenomenological batch modelling and the use of expensive 
analytical equipment. In contrast, the control strategy by Wittgens & Skogestad 
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(2000) is sub-optimal but industrially robust. The gap between the total reflux and the 
optimal hold-up strategies may be bridged with SSA and SMNE. Such a neurocontrol 
strategy allows for rapid pseudo-empirical model development and a model-based 
controller that relied on cost-effective temperature measurement. A model-based 
control strategy provides for optimal temperature profiles throughout the batch.  
 

7.3 EXPERIMENTAL SET-UP 

 
A MEBAD column was constructed on pilot plant scale to demonstrate the use of 
SMNE with a SSA model (Figure 7-1). The MEBAD column was operated at 
atmospheric pressure to separate a ternary system of n-pentane, n-hexane and n-
heptane. The two insulated stainless steel columns have an inner diameter of 0.068 
[m] with Montz BSH 400 structured packing. Structured packing has low liquid hold-
up and pressure drop, with large surface area and excellent wetting characteristics. 
Column A has a length of 2 [m] with 1.9 [m] of structured packing, while column B 
has a length of 2.6 [m] with 2.5 [m] of structured packing. Each column has a high 
performance orifice distributor to ensure maximum packing wetting. However, the 
available structured packing is insufficient to separate the components with high 
purity. A 50 [dm3] spherical glass reboiler, a 30 [dm3] glass intermediate vessel and a 
20 [dm3] glass reflux drum comprise the MEBAD unit's vessels. The vapour from 
column A is fed directly into the liquid hold-up of the intermediate vessel, heating the 
liquid hold-up through this heat integration. The reboiler has a 1.5 [kW] stab-in 
heating element and a 3 [kW] heating mantle that is controlled using a solid state 
relay. A glass coiled vertical condenser provides a cooling duty of 3 [kW]. Two 
positive displacement pumps, each with a maximum flow rate of 60 [dm3⋅h-1], provide 
the reflux to the columns. The reflux rates are controlled using variable speed drives. 
 
The MEBAD unit has 11 PT100 temperature sensors, 3 hydraulic pressure level 
sensors and 2 column differential pressure sensors (Figure 7-1). Analogue-to-digital 
conversion cards convert the sensor signals with a sampling frequency of 0.25 [s]. A 
median filter (i.e., non-linear filter) reduces measurement noise, by taking the median 
of the past four and the current signal reading. A Delphi MMI (man-machine 
interface) interfaces with the plant's sensors and final control elements, executes the 
control laws and logs the sensor readings to a database.  
 
The entire initial charge was fed to the reboiler.  A PI controller ensured a constant 
heat duty throughout the batch, by maintaining a temperature difference of 100 [°C] 
between the heating mantle and the reboiler's liquid hold-up. The PI controller set the 
time interval during which the heating mantle was powered within a 10 [s] window. 
The stab-in heating coil was always powered. This resulted in a mean heat duty of 2.5 
[kW] in all the control experiments. 
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Start-up involved establishing total reflux in each column with minimal hold-up in the 
intermediate vessel (i.e., 5 [%]) and the reflux drum (i.e., 9 [%]). The desired product 
temperatures were specified as 93 [°C] in the reboiler and 66 [°C] in the intermediate 
vessel, thereby also fixing the product composition in the reflux drum. Thereafter the 
control laws were activated and the batch run until steady state was reached.  
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Figure 7-1. Pilot plant MEBAD set-up. 

 

7.4 COLUMN DYNAMIC BEHAVIOUR 

 
For a MEBAD unit with two columns and constant heat duty, the optimal control 
strategy involves two degrees of freedom. This results in a 2x2 control system. 
However, the control strategies proposed by Wittgens and Skogestad (2000) and Noda 
et al. (2000) are essentially multi-loop SISO control systems. The process-
manipulated variable pairings are simple, but the two distillation columns display 
process interaction. This complicates SISO control, where no consideration is given to 
decoupling the controllers. A MIMO control design is thus preferable. 
 
The process interaction is illustrated in Figure 7-2 to Figure 7-4.  After total reflux 
was established in the MEBAD columns, a step change was made at 0.09 [h] in the 
reflux rate to column A (i.e., F1), while maintaining the constant reflux rate in column 
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B (i.e., F2). In column A, T4 began to decrease as a result of the increased reflux from 
the intermediate vessel (Figure 7-3). The composition in the intermediate vessel 
became more volatile as the n-hexane was returned to the reboiler (i.e., T1 and T6 
decreased), reflected by the increase in L1 and the decrease in L2 after 0.15 [h] 
(Figure 7-4). At 0.15 [h], T9 in column B also started to decrease due to the change in 
T6, until T9 had decreased significantly by 0.3 [h] (Figure 7-3). The level in the reflux 
drum stayed constant due to the total reflux operation in column B. Clearly, a change 
in F1 not only affects the temperature profile in column A, but also the temperature 
profile in column B. A similar argument follows for a step change in column B. The 
column temperature responses are coupled, which implies that two SISO controllers, 
without decoupling, interact.  
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Figure 7-2. Step change in the reflux rate to column A, while maintaining constant reflux to 
column B.  
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Figure 7-3. Process variable responses to the step change in reflux rate to column A. T1 and T6 
are the temperatures in the reboiler and intermediate vessel respectively, whilst T4 is a 
temperature in column A and T9 a temperature in column B. The process interaction between 
the process variables is evident. 
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Figure 7-4.  Vessel level responses to a step change in reflux rate to column A.  
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7.4.1 Closed loop behaviour for total reflux multi-loop PI control strategy 
 
For variable impurities in the initial charge, it may be necessary to adjust the 
temperature set points for the MEBAD columns during a batch. This scenario 
illustrates controller interaction between two columns.  Consider a decrease in the 
temperature set point in column A from a steady state. During closed loop operation, 
F1 increases to decrease T4. A lower T4 is attained swiftly. However, T9 begins to 
decrease as T6 eventually decreases, whereby F2 decreases to keep the composition in 
the reflux drum constant. F1 also decreases as T6 decreases. As T6 subsequently 
increases, both F1 and F2 increase to maintain the set points in column A and B. This 
slight oscillation in T6 continues until T6 settles to a new steady state temperature (F1 
and F2 return to total reflux). This controller interaction delays the approach to steady 
state. 
 
Nevertheless, the PI control strategy (Figure 7-5) is robust, inexpensive and the 
implementation time short. More complex control strategies would have to improve 
performance considerably to justify their implementation. The PI control strategy by 
Wittgens and Skogestad (2000) was implemented to serve a base line or reduced 
model for comparison with the more complex neurocontrol strategy.  
 
 Selecting the temperature set points for PI control requires a single experiment to 
establish which column temperature set points match the temperatures specified in the 
reboiler and intermediate vessel. The steady state product temperatures were set as 93 
[°C] and 66 [°C] in the reboiler and intermediate vessel respectively. At steady state, 
the column temperature set points were changed appropriately until the desired 
product temperatures (i.e., inferred compositions) were obtained.  
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Figure 7-5. PI temperature control scheme as proposed by Wittgens and Skogestad (2000). 

 
Temperatures T5 and T10 were the most appropriate column locations for PI control, 
since these temperature sensors responded soonest to changes in the reflux rates. No 
significant lag time in these temperature responses was observed, with sufficient 
structured packing above the sensors for temperature profile development. The PI 
controller parameters were selected to ensure high performance servo and regulatory 
responses during the batch.  
 
Figure 7-6 and Figure 7-7 show the temperature and level responses for the PI control 
batch over a 7 [h] period, after activating the PI control. Figure 7-8 shows the reflux 
rates set by the PI controllers during the batch. The low initial reflux rates allowed the 
column temperatures T5 and T10 to increase rapidly towards their set points (Figure 
7-6c & Figure 7-6d), increasing the liquid hold-ups L2 and L3 significantly. The 
overdamped response in T5 and the slight overshoot in T10 were deemed appropriate 
servo responses. The PI tuning parameters also ensured high performance set point 
tracking. 
 
However, Figure 7-6a shows the slow approach of T1 to the desired reboiler 
temperature. At 7 [h], T1 was ± 2 [°C] below the desired temperature, while T6 was 
slightly above the desired temperature. The vessel temperatures (i.e., inferentially the 
compositions) are the process variables that reflect the true progress of the batch. The 
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batch only attained steady state at a batch time of 11 [h], due to slow purification of 
the reboiler volume. T1's slow settling time suggested sub-optimal temperature and 
hold-up profiles in the column.  
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Figure 7-6. Process variable control responses for PI temperature control over a 7 hour period. 
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Figure 7-7. Vessel level responses for PI temperature control over a 7 hour period. 
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Figure 7-8. Manipulated variable control actions dictated by the PI temperature controllers. 

 
As the operating cost of a batch distillation unit is determined largely by the energy 
consumption and therefore the batch time, control improvements could substantially 
reduce the unit cost per volume of product. A non-linear process model was 
constructed using SSA for neurocontroller developed with SMNE.  
 

7.5 CLOSED LOOP IDENTIFICATION OF MEBAD COLUMN 

 
Batch distillation is an inherently unsteady state process. The process' state variables 
cross a large region of the state space during operation. Obtaining sufficient dynamic 
information is thus more complex than for a steady state process, where operation is 
limited to a region around a set point. To ensure adequate dynamic information in the 
time series, the columns must be perturbed during the course of the batch, thereby 
exploring a wider region of the state space. 
 
The PI control strategy by Wittgens and Skogestad (2000) was used to gather data for 
process identification. Each PI controller's integral action was changed to allow for a 
sample period of 5 [s], which allowed for pseudo open-loop step changes for the 
sample period. The process data was also logged at 5 [s] intervals. Sufficient dynamic 
information was obtained by perturbing both the temperature set points independently 
every 3 [min] during the course of the batch. The perturbation had a gaussian 
distribution around the nominal set point in each column, with a maximum deviation 
of ± 3 [°C]. Each new perturbation set points could generally be attained within 3 
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minutes. The stochastic nature of the set point perturbations introduced no 
determinism into the logged data. All the set point changes were thus independent of 
prior perturbations. The perturbations allowed data logging over a wide region of 
column temperatures and reflux rates, from which the column dynamics and the 
causal effect of reflux rates could be extracted. Figure 7-9 and Figure 7-10 show the 
variation in the temperature responses and reflux rates, introduced by the stochastic 
set point perturbations. Approximately 9000 data points were collected over a 12 hour 
period of operation, which was deemed sufficient for finding the determinism inherent 
in the system.  
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Figure 7-9. Process variable response owing to perturbations to the set points of the temperature 
controllers. 
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Figure 7-10. Manipulated control actions to accommodate the perturbations to the set points of 
the temperature controllers. 

 
T1 and T6 contained unique information regarding the slower temperature dynamics 
in the reboiler and the intermediate vessel. T4 and T9 contained information regarding 
the faster column dynamics. F1 and F2 formed the manipulated variable time series. 
The SSA implementation was thus multi-channel, whereby the state variables were 
extracted from the four temperature time series.  
 
A delay time of 1 (i.e., τL =  τS) captured the fastest dynamics in the system, since 
changes in the column temperatures generally required more than 5 [s]. The window 
length was selected using an estimated process time constant for temperature changes 
in the two columns (section 6.3). A window length τw = 10 was deemed sufficient to 
capture the most significant column dynamics, since large temperature changes could 
generally be induced in 50 [s]. Therefore, the phase portrait is initially assumed to fit 
within a 10 dimensional state space. PCA of the lagged embedding matrix extracted 
the true state variable representation, with 4 state variables explaining more than 95 
[%] of the variance in the multiple time series (section 6.3). The dominant column 
dynamics are thus described by 4 state variables, barring the state space reconstruction 
enforced by the non-stationary trend.  
 
The 4 state variables and time lagged reflux rates (i.e., lagged over 10 sample periods) 
for F1 and F2 formed the 22 inputs to a feedforward neural network predictor (Figure 
7-11a). F1 and F2 were lagged over 10 sample periods to allow for transport delays.  
A hidden layer with 10 sigmoidal neurons and 4 linear output neurons completed the 
one-step ahead predictor for T1(t+1), T4(t+1), T6(t+1) and T9(t+1). Training 
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comprised 80 [%] (i.e., randomised) of the available data and the remainder was used 
for validation. The neural network weights were trained using the Levenberg-
Marquart algorithm. The R2

 statistics for the validation data are summarised in Table 
7-2. The neural network model predicted accurately for a separate perturbation batch 
generated with different PI tuning parameters. The closed loop control thus had 
minimal impact on the identification of the open-loop plant model (section 6.3). A 
non-linear process model for the MEBAD column was thus created.     
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Figure 7-11. (a) Structure of neural network model and (b) structure of neurocontroller. 

 

Table 7-2 - R2 statistic for neural network model. 

Predicted variable R2 statistic 
T1(t+1) 
T6(t+1) 
T4(t+1) 
T9(t+1) 

0.99 
0.99 
0.84 
0.99 

 
Although the non-linear model predicts accurately and neural networks interpolate 
effectively, the extrapolation ability of the neural network may be poor. The model's 
validity is thus limited to the regions of the state space in which the data was gathered. 
PCA revealed that 74 [%] of the variance in the input vector space of the neural 
network model was explained by the first two principal components. The t-statistic for 
the first two principal components borders an elliptic region of the 2-dimensional 
input space as seen in Figure 7-12. This elliptic region is the 95 [%] confidence limit 
for the first two principal components of the model's input space. The model's 
validity, with some additional uncertainty in the unexplained variance, lies within this 
elliptic region (section 6.3). The model input vectors at the start of a batch fall outside 
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this bounded region, since few data vectors are collected in regions of the state space 
that were crossed rapidly during the batch. At best, the model is thus a partial model 
of the MEBAD column, largely limited to regions of the state space where a large 
number of data vectors were collected. This knowledge of the model's validity is 
essential to developing the neurocontroller from the model. Figure 7-13 shows the 
batch trajectory for the total reflux control strategy by Wittgens & Skogestad (2000). 
A comparison of Figure 7-12 and Figure 7-13 demonstrates the exploration of the 
state space by perturbing the PI controller set points. This validity boundary ensures 
that SMNE searches regions of the input space for which minimal data have been 
collected. 
 

 
Figure 7-12 - Plot of first two principal components for the model input vectors, which shows the 
exploration of the state space by the perturbation batch. The initial condition for the model 
identification batch was ( PC1, PC2) = (-50,10). 
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Figure 7-13 - The process trajectory for the first 7 [h] of the PI temperature control strategy. The 
initial condition for the total reflux batch was ( PC1, PC2) = (-65, 35). 

 

7.6 NEUROCONTROLLER DEVELOPMENT 

 
Two experimental runs were required for neurocontroller development using SMNE. 
Like for the total reflux strategy, the column temperatures that corresponded with the 
desired product temperatures (i.e., compositions) needed to be determined. For a 
steady state reboiler temperature of 93 [°C] the temperature at T4 was 76 [°C]. The 
steady state intermediate vessel temperature of 66 [°C] corresponded to T9 at 50.5 
[°C]. An additional PI control temperature perturbation run was necessary to 
determine the MEBAD column dynamics for model development (section 7.5). Given 
the neural network model developed with SSA and the steady state column 
temperatures, the SMNE algorithm was utilised to develop a neurocontroller for the 
MEBAD pilot plant. 
 
Each neurocontroller in the SMNE genetic population was comprised of the same 22 
inputs as in the SSA model, 10 sigmoidal hidden neurons and two sigmoidal output 
neurons that determined the reflux rates  F1(t+1) and F2(t+1) (Figure 7-11b). For 
each reinforcement evaluation, the model was initialised randomly from the first 150 
training data vectors obtained during the perturbation batch. Each neurocontroller 
evaluation was required to interact with the SSA model and learn to reach steady state 
from a typical initial condition within 3000 time steps. A reward was assigned to each 
new state st+1 (i.e, each time step) based on the absolute error from the desired set 
points in the columns and the vessels. A smaller error thus corresponds to a larger 
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reward. For linear systems, an integral-time-absolute-error (ITAE) response results in 
minimal overshoot. The absolute error from each set point, multiplied by the time t at 
each sample, was thus integrated over the specified 3000 samples. These integrals are 
minimised within the overall fitness function. Recall that the SSA model is strictly a 
partial model (section 7.5), therefore the reward at each time step was penalised in the 
overall fitness function when the model confidence limit was exceeded. The penalty 
per sample was large enough so that effective neurocontrollers would learn to remain 
within the confidence limit. A penalty was assigned to a sample when the first two 
principal components (i.e., the empirical orthogonal functions, E ) of a 
neurocontroller's input vector lay outside the elliptical region (i.e., Ellipse > 1):  
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where α and β are the major and minor axis for the confidence limit ellipse 
respectively. The overall fitness function assigned a reward to each neurocontroller 
based on a simulation evaluation: 
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The fitness is maximised when the errors in the vessel and column set points are 
minimised in the shortest possible time. The implied driving force in the evolutionary 
search is thus to reduce the processing time to steady state. Since the MEBAD pilot 
plant was operated with constant heat duty, the fitness function thus related indirectly 
to minimising the mean energy consumption as in equation 7-1.  
 
Figure 7-14 and Figure 7-15 plot the simulated temperature responses and the learned 
reflux rates for the best neurocontroller that SMNE developed from the SSA model. 
The process reached steady state in approximately 1.5 [h]. The errors at each sample 
after 1.5 [h] were thus near-zero. From Figure 7-14, the temperature response in the 
reboiler (i.e., T1) was overdamped as would be expected for the larger hold-up of the 
reboiler. The remaining temperature responses were slightly underdamped, giving an 
approximate ITAE (integral-time-absolute error) response. SMNE thus attempted to 
reproduce an ITAE response in each process variable, within the confines of 
maximising the overall fitness for each neurocontroller. Analogous to modern linear 
control pole placement, SMNE is thus an approximate means of non-linear pole 
placement for non-linear process models.  
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From Figure 7-12, it is evident that the initialisation for each neurocontroller 
evaluation lay outside the confidence limits for the model. A neurocontroller thus 
needed to establish reflux rates that drove the SSA model into the elliptic area as soon 
as possible (Figure 7-15). For the best neurocontroller, Figure 7-15c shows that the 
model's confidence limit was exceeded only at the beginning of an evaluation. 
Learning penalties were thus incurred only during the initial stage of the batch. Figure 
7-16 shows the neurocontroller's input space, transformed by the same projection 
coefficient matrix obtained for model validity, during the batch. A similar plot to 
Figure 7-13 thus results, showing the batch trajectory proposed by the neurocontroller. 
A neurocontrol strategy was developed largely within the validity confines of the 
available process model.  
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Figure 7-14. Determined process variable responses for the neurocontroller as learned from the 
neural network model  
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Figure 7-15. Manipulated variable control actions based on the response of the neural network 
model. The penalty assigned for exceeding the model validity boundaries is indicated in (c). 

 

 
Figure 7-16. First two principal components of the neurocontroller input vectors during an 
evaluation of the best neurocontroller. 
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7.7 ON-LINE NEUROCONTROL 

 
The developed neurocontroller was implemented on-line to control the MEBAD pilot 
plant as in Figure 7-17. The neurocontroller's sample rate conformed to the sample 
rate of 5 [s] in the SSA model. The state variables were calculated on-line using the 
projection coefficients matrix PC  determined during model identification. This 
ensured that the neurocontroller inputs from the MEBAD sensors were transformed to 
state variables in the same manner as during reinforcement learning.  
 
Given the partial nature of the SSA model, the neurocontrol strategy relied on a 
similar heat duty as in the model identification batch. Therefore, a constant heat duty 
was maintained at the same set point as during the model identification batch. The 
neurocontroller was thus only required to reject minor disturbances in heat duty. 
Clearly, the SSA model is specific to a ternary system of n-pentane, n-hexane and n-
heptane. However, the composition and volume of the initial charge was substantially 
different from the initial charge composition and volume used in the model 
identification batch. The neurocontroller would thus be confronted with an initial 
condition substantially different from the initial condition during the reinforcement 
learning process. Sensor noise, absent in the SSA model, would also test the robust 
performance of the neurocontroller. Experimental validation thus established whether 
the neurocontroller generalised to process uncertainty; only relying on the calculated 
state variable representations and past reflux rates to control the pilot plant.  
 
The settling time to steady state for the on-line neurocontroller response (Figure 7-18) 
is considerably longer than for the simulated neurocontroller (Figure 7-14). This was 
due to the larger volume charged to the reboiler. The on-line temperature responses in 
Figure 7-18 and the simulated temperature responses in Figure 7-14 are also 
dissimilar. T1's on-line response is slightly underdamped, which is contrary to the 
overdamped response in the simulated neurocontrol response. This may be expected 
due to the substantial difference in composition and volume of the reboiler charge. 
The other on-line temperature responses are similar to the simulated controller 
responses. The reflux rate policies in column A and column B (Figure 7-20) are also 
similar to the learned responses (Figure 7-8), except that the on-line control actions 
overshot the final reflux rates whereas the simulated reflux control actions increased 
gradually to the final reflux rates. These discrepancies between the simulated and on-
line neurocontrol actions are due to plant/model mismatch. Markedly, the on-line 
hold-up profiles (Figure 7-19) were different than for total reflux control (Figure 7-4), 
particularly in L3. The robust performance attests to the generalisation of the 
neurocontroller. Neurocontrol established the steady state between 6 [h] and 7 [h], 
which resulted in a batch time considerably shorter than for total reflux control 
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(Figure 7-6). The neurocontrol strategy thus established more optimal temperature and 
hold-up profiles than PI control. 
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Figure 7-17. Neurocontrol scheme for MEBAD pilot plant. 
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Figure 7-18. Process variable responses for SMNE neurocontrol strategy. 
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Figure 7-19. Vessel level responses for SMNE neurocontrol strategy. 
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Figure 7-20. Manipulated variable control actions for SMNE neurocontrol strategy. 

 
Figure 7-21 shows the input vectors to the neurocontroller during the on-line batch, 
transformed with the same projection coefficients matrix determined for model 
validity. The ellipse in Figure 7-21 reflects the region in which the model is 
considered valid. The neurocontroller operated the MEBAD pilot plant outside the 
region of model validity for a significant period of time. The initial condition for the 
neurocontrol batch (Figure 7-21) is similar to the total reflux batch (Figure 7-13), but 
vastly different to the initial condition for the model identification batch (Figure 
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7-12). The number of sample periods spent outside the region of model validity 
reflected the greater batch time required to separate a larger initial volume. The 
neurocontroller's robust performance, despite extensive operation outside the model 
validity, also reflects the generalisation of the neurocontroller to uncertain process 
conditions.     
       

 
Figure 7-21- First two principal components of the neurocontroller input vectors during on-line 
control of the MEBAD pilot plant. The initial condition for the on-line neurocontrol was ( PC1, 
PC2) = (-60,50). 

 

7.8 DISCUSSION 

 
Sections 7.8.1 and 7.8.2 compare the total reflux control strategy in section 7.4.1 
(Wittgens & Skogestad, 2000) and the on-line neurocontrol strategy in section 7.7. 

7.8.1 Total reflux PI control 
 
The PI control strategy solves the control task by maintaining constant temperature set 
points at a single location in each column. The batch terminates when the steady state 
temperature in each vessel is reached at total reflux. A batch was started at total 
reflux. With the entire charge in the reboiler, total reflux prevented the accumulation 
of product in the intermediate vessel and the reflux drum. After activating PI control, 
the PI controllers set (L/V) << 1 in both columns, allowing the temperatures in the 
columns to rise to set point (Figure 7-6) and for liquid to accumulate in the vessels 
(Figure 7-7). As soon as the set points were reached, constant temperature control was 
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established near total reflux, which provided for maximum fractionation in each 
column (Figure 7-8). With the intermediate vessel and the reflux drum not at their 
final hold-ups, continuous total reflux operation would prevent further component 
separation. However, the initial hold-ups in the intermediate and reflux drum vessels 
did not have the desired product composition. As the hold-up in each vessel is turned 
over, while maintaining constant column temperatures, each vessel's hold-up is 
progressively purified. The temperature at the top of each column is highly dependent 
on the composition in the vessel from which that column's reflux is pumped. At near 
total reflux, these vessel compositions became inconsistent thermodynamically with 
the temperature set points in the columns. The PI controllers thus momentarily 
suspend near total reflux, so that the column temperatures don't drift from the set 
points. A (L/V) < 1 reduced the reboiler hold-up and distributed this vapour as liquid 
hold-up between the intermediate vessel and the reflux drum.  
 
As the vessel compositions became inconsistent with the column temperature set 
points, near total reflux is re-established. This slowed an increase in the vessel hold-
ups, while the volume turn-over purified each vessel towards steady state. This 
process is repeated on a micro-scale throughout the batch. Cyclic operation between 
(L/V) ≈ 1 (i.e., purification) and (L/V) < 1 (i.e., rectification) thus ensued, which 
gradually reduced the reboiler hold-up. The larger the hold-up in the intermediate and 
reflux drum vessels, the greater the turn-over (i.e., purification) time to optimally 
distribute the components in the vessels. 
  
Figure 7-6 to Figure 7-8 reveal this PI control strategy throughout the batch. At 3 [h], 
near total reflux was established in both columns (Figure 7-8). Even though L2 and L3 
are below their final hold-up volumes (Figure 7-7), the PI controllers maintain T5 and 
T10 at constant temperature (Figure 7-6) thereby approximating total reflux operation. 
The constant purification of the vessel compositions at pseudo-constant hold-up, 
required the PI controllers to abandon purification for rectification, which ensured that 
the hold-ups L2 and L3 could increase.  
 
The slow settling time in T1 attested to significant amounts of batch time spent 
purifying large vessel hold-ups at near total reflux, resulting in a slow increase to the 
intermediate vessel hold-up. The process interaction between the columns also delays 
effective redistribution of the liquid hold-up at near total reflux (section 7.4). Ideally, 
near total reflux should be attained only once the final vessel hold-ups have been 
reached. The temperature profiles and vessel hold-ups should thus be controlled so 
that total reflux coincides closely with attaining the final product compositions and 
vessel hold-ups. More importantly, PI temperature control only uses a single column 
to separate two components, whereas a more optimal batch trajectory may utilise 
more than one column (i.e., more theoretical stags) to separate two components. The 
slow purification in the reboiler, is indicative of slow rectification owing to limited 



 Copyright University of Stellenbosch, 2004 212

theoretical stages. Constant temperature set point and the pure feedback nature of PI 
temperature control was thus detrimental to optimising the batch time. For PI 
temperature control, the vessel hold-ups can only change once the compositions 
changes in the intermediate vessels and an error from set point is perceived by the 
temperature controllers. A combined feedforward and feedback strategy should be 
used to optimise the (L/V) ratio in each column as in the V-policy used by Noda et al. 
(2000) in section 7.2.1. 
 

7.8.2 SMNE Neurocontrol 
 
The SMNE neurocontrol strategy is such a combined feedforward and feedback 
strategy. Neurocontroller development with a partial process model included 
knowledge of process dynamics as feedforward elements into the network structure, 
whilst the state inputs provided corrective feedback to the control strategy. This dual 
strategy suggested a mild cyclic operation of the MEBAD unit, as seen in the 
temperature responses in Figure 7-18. For the time interval between 0 - 1 [h] in 
column B the neurocontroller set F2 to a (L/V) << 1, which caused T9 to overshoot its 
set point significantly. This implies that excess n-hexane was allowed to accumulate 
in the reflux drum, which is reflected by the rapid increase in L3. Between 0 - 2 [h] in 
column A, F1 also had a (L/V) < 1 with T4 rising sharply with slight overshoot of the 
set point in column A. Excess heavy components began to accumulate in the 
intermediate vessel, as T6 overshot 66 [°C] and L2 increased sharply. The low reflux 
rates in both columns thus removed rapidly the light components from the reboiler, 
which is evident in the decrease in L1 (Figure 7-19) and the increase in T1 (Figure 
7-18). Between 1-2 [h], the neurocontroller set F2 to a (L/V) > 1 which dumped the 
excess n-hexane in L3 into L2, corresponding to a decrease in T9 and the decrease in 
L3. The accumulation of light components in the intermediate vessel, caused T6 to 
decrease between 2-3 [h] and approach its set point. Total reflux rate was reached in 
column B at 3.5 [h] with T9 and L3 at steady state. The slow increase in column A's 
(L/V) ratio from 0 - 2 [h] allowed T1 to overshoot its set point, with T4 remaining 
above its set points. The increase in lights in the intermediate vessel and the sharp 
increase in F1 between 2 - 3 [h] caused T4 to decease towards its set point. At 
approximately 3 [h], the neurocontroller set (L/V) > 1 in column A and dumped the 
contents in L2 to L1, thus decreasing T1 and increasing L1.  
 
Initially, n-pentane and n-hexane was separated in both columns, thus utilising the 
maximum number of stages for this initial separation. This aided in shortening the 
processing time. Both columns are thus used initially in rectification. The overshoot in 
the steady state hold-ups in the reflux and intermediate vessel indicates that both 
columns were utilised as stripper columns later in the batch. SMNE determined this 
two-step cyclic operation neurocontrol policy from the SSA model implicitly, as the 
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strategy is evident in the simulated neurocontrol overshoot responses for T4, T6 and 
T9 (Figure 7-14). However, though the neurocontrol policy proved more effective 
than PI control, it remained sub-optimal as seen in a comparison of the batch 
trajectories of Figure 7-16 and Figure 7-21.   
 
When the neurocontrol batch trajectory reached (PC1, PC2) = (-20,-10), the trajectory 
appeared off course. At 2 [h], the batch trajectory reached (PC1, PC2) = (5,-30) in 
Figure 7-21 and changed direction dramatically. This coincided with a greater 
sensitivity in F1's response to the neurocontroller inputs in Figure 7-20, where F1 
started to increase sharply and T1 overshot its set point. This indicates that a large 
number of the 10 hidden neurons mapped to regions of the state space encountered 
after this time in the batch. From (-60,50) to (5,-30) in Figure 7-21, the 
neurocontroller's performance is robust (i.e., the control actions are appropriate), but 
sub-optimal due to minimal mapping of these regions of the input space. Inadequate 
process model information was thus available in these regions of the state space for 
model identification. At (5,-30) the control actions became near-optimal until steady 
state was reached. The neurocontroller's trajectory in the input space lay well beyond 
the 95 [%] confidence limit, attesting to significant generalisation.  

 

7.9 CONCLUSIONS 

  
Wittgens and Skogestad (2000) suggested a multi-loop SISO linear control policy for 
the non-linear MEBAD control. A MEBAD pilot plant confirmed that the pure 
feedback PI control strategy established sub-optimal temperature and hold-up profiles 
in the columns and vessels, concurring with Furlonge et al. (1999). A combined 
feedforward and feedback control policy is preferable. In addition, a non-linear 
MIMO control policy that eliminates process interaction between controller pairings 
is desirable. Incorporating SSA for model identification and SMNE for neurocontrol 
development, efficient and practical non-linear control is achieved. SSA recreated a 
state variable representation for the MEBAD pilot plant from limited input-output 
plant data and created a one-step ahead neural network model. SMNE used this partial 
model of the MEBAD process to learn near-optimal temperature profiles in the 
columns and vessels without needing expensive analysers. SMNE included process 
knowledge from the process model into the neurocontroller, thereby including 
feedforward elements in the neurocontroller structure. The state variable inputs to the 
neurocontroller incorporated feedback elements into the non-linear control strategy. 
Experiments confirmed that the neurocontrol strategy is robust and established the 
product compositions from any initial composition or volume in the reboiler. 
Significant generalisation was evident, as the neurocontroller dealt effectively with 
process uncertainty during operation in regions not mapped effectively within the 
SSA model. Near-optimal control resulted once the process trajectory moved into 
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regions mapped by the SSA model. As a result of near optimal performance, the batch 
time for neurocontrol was significantly less than for PI temperature control.  
 
Batch process control is far more complex than continuous process control and more 
difficult to implement within an advanced control framework (section 7.1). Batch 
dynamic modelling remains a bottleneck in model-based control schemes. SSA 
bridges the gap to batch modelling, though large process data sets are clearly 
desirable. SSA is better suited to continuous processes where control is limited to a 
smaller region of the state space than encountered in batch processing. Nevertheless, 
SMNE complemented with SSA models in a general neurocontrol paradigm, finds 
particular utility where non-linear processes are poorly understood and reliable 
fundamental models have been difficult to attain. 
 
Future work will include variable heat duty as a manipulated variable for the MEBAD 
pilot plant, thus using additional degrees of freedom to improve control. 
 

7.10 SYMBOLS FOR CHAPTER 7 

 
Symbol Description Unit 

a interfacial area per unit volume packing [dm-1] 
B number of components for batch separation [-] 
C number principal components > 95% variance [-] 
d process disturbance [-] 
e error [-] 
E empirical orthogonal functions [-] 
f function  [-] 
g function  [-] 
G liquid volume hold-up [dm3] 
h function [-] 
H liquid mass hold-up [kg] 
I liquid enthalpy [kJ⋅kg-1] 
J vapour enthalpy [kJ⋅kg-1] 
k overall mass transfer coefficient [m-1⋅min-1] 
K equilibrium constant [-] 
L liquid flow rate [kg⋅min-1] 
M number of samples in window length [-] 
n sample number [-] 
N number of data samples [-] 
P pressure [kPa] 

PC principal components [-] 
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r reinforcement learning reward [-] 
S cross-section area [dm2] 
t time [min] 
tf batch processing time [min] 
ts batch set-up time [min] 
T temperature [°C] 
u manipulated variable [-] 
V vapour flow rate [kg⋅min-1] 
x liquid phase mass fraction [-] 
X lagged-covariance matrix [-] 
y vapour phase mass fraction [-] 

 
Greek symbols 
 

Symbol Description Unit 
α ellipse major axis [-] 
β ellipse minor axis [-] 
ε mean energy consumption [kW] 
ρ liquid density [kg⋅dm-3] 
τs sample period [min] 
τL lag time [min] 
τw window length [min] 
υ manipulated variable [-] 
ξ state variable [-] 
ψ process variable [-] 

 
Subscripts 
 

Symbol Description 
i component 
j unit volume of structured packing 
k state variable number 

 
Superscript 
 

Symbol Description 
* equilibrium 
m model 
p process 

SP set point 
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` 

8 PLANT-WIDE CONTROL OF THE TENNESSEE EASTMAN 
CONTROL CHALLENGE 

 

OBJECTIVES OF CHAPTER 8  

• Demonstrate plant-wide control with high dimensionality using a benchmark 
simulation model. 

• Contrast the SMNE approach to existing plant-wide control approaches. 

8.1 INTRODUCTION 

 
Plant-wide control seeks a systematic approach to identifying superior control 
architectures for processes with high dimensionality (chapter 2). Nevertheless, high 
dimensionality is frequently debilitating to plant-wide control methodologies. For 
example, a plant with 10 manipulated variables and 10 process variables has 184755 
possible square control systems. Incorporating the number of possible feedback 
connections, a total of 9.73·1013 candidate configurations exist, assuming SISO 
interconnections (Banerjee & Arkun, 1995).  
 
A number of benchmark simulation models exist for testing plant-wide control 
methodologies. The most prominent are the Tennessee Eastman (TE) control 
challenge, a vinyl acetate monomer process, a HDA plant and the Luyben & Luyben 
plant (Robinson et al., 2001). Of these available benchmarks, the TE model is a truly 
significant plant-wide control problem, incorporating a large number of interacting 
process and manipulated variables. The process model was developed on an actual 
industrial process so that the simulation closely approximates what may be expected 
in reality. The Tennessee Eastman control challenge offers numerous opportunities for 
control study purposes, of which the exploration of multivariate control, optimisation 
and non-linear control are most pertinent to this case study.  
 

8.2 TENNESSEE EASTMAN SIMULATION MODEL 

 
The Tennessee Eastman control challenge involves the control of five unit operations: 
(1) an exothermic 2-phase reactor, (2) a water-cooled condenser, (3) a centrifugal 
compressor, (4) a flash drum and (5) a reboiler stripper. The simulated plant has 41 
process variables and 12 manipulated variables as illustrated in Figure 8-1, which are 
modelled with 50 state variables. In this case study the control objective involved 
keeping the product compositions within a desired range, while maintaining 
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maximum production at minimal production cost (i.e., maximised contribution). This 
objective needed to be accomplished, while keeping the reactor pressure, reactor 
temperature and vessel levels within specified process constraints to avoid shutdown 
of production.    
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Figure 8-1 - Tennessee Eastman Control Challenge Process Flow Diagram. 

 
The twelve manipulated variables (Figure 8-1) are the four feed rates, the purge rate, 
the agitation rate, steam rate, condenser coolant rate, reactor coolant rate, compressor 
recycle, flash drum discharge rate and the stripper production rate. The 41 process 
variables include level, pressure, temperature, flow and composition indicators as 
illustrated in Figure 8-1 (Downs and Vogel, 1993). 
 
The chemical reactions are irreversible and occur in the vapour space of the reactor. 
The chemical reactions are: A(g) + C(g) + D(g) → G(l); A(g) + C(g) + E(g) → H(l); 
A(g) + E(g) → F(l) and 3D(g) → 2F(l). The formation of an inert byproduct, F, is 
determined by kinetic selectivity. The products G and H accumulate in the reactor and 
the reactor level must be controlled by equating the production rate to the vapour 
removal rate. Product may thus only be removed via the vapour stream to the 
condenser. The rate of exothermic heat removal is controlled by the agitation speed 
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and the cooling water flow rate to the cooling coils in the reactor. Should the liquid 
level in the reactor fall below 50 [%], the loss of heat-transfer surface area for cooling 
becomes pronounced. For the reactor pressure, Ricker (1995) has indicated that the 
optimal steady states for the various operating modes are in near proximity to the 
upper shutdown limit of 3000 [kPa]. The ability to operate in close proximity to the 
upper shutdown limit is determined by the ability of the controller to maintain high 
performance in the presence of disturbances.  
 
The vapour discharge from the reactor is fed to a partial condenser (Figure 8-1). The 
flash drum serves to separate the liquid and vapour phase fed from the condenser. The 
liquid fraction is fed to the reboiled stripper and the vapour fraction is returned to the 
reactor via a centrifugal compressor as a recycle stream. The liquid feed to the stripper 
is distilled to remove impurities in the bottoms product and the vapour stream is 
recycled to the reactor. A purge is necessary to prevent the accumulation of the inert B 
that is present in A+C feed. The compressor recycle valve adjusts of the net feed rate 
to the reactor.  
 
In this case study, the three desired set points are 50 [%] G and 50 [%] H, 90 [%] G 
and 10 [%] H, 10 [%] G and 90 [%] H on a mass basis. The maximum production rate 
must be maintained at minimal variable cost of production (VCOP). Byproduct F may 
be present in the product, provided 97.5 [%] of the product is composed of G and H. 
The product purity of either G or H must remain within 5 [%] of the desired set point.  
 
Highly interactive relationships exist between reactor temperature, reactor pressure 
and reaction rate. The chemical reaction reduces the number of moles, which tends to 
decrease the pressure as the reaction rate increases. The reaction rate is determined by 
Arrhenius temperature dependence and is approximately third-order in the reaction 
pressure. The liquid-vapour equilibrium also contributes to strong interactions. These 
interactions could destabilise the plant should incorrect control actions be taken (Price 
et al., 1994). The model contains both integrating (i.e., vessel levels) and self-
regulatory (i.e., plant pressures) subsystems. Also, the presence of a recycle stream 
compounds the control problem. The recycle flow makes up 64 [%] (m/m) of the feed 
to the reactor at the design conditions. Owing to the large recycle, slight variations in 
the reactor operating conditions may be amplified and returned to the reactor (Price et 
al., 1994). The model simulates a wide range of disturbances, from sticking valves to 
random process upsets to the loss of key feed steams. Plant dynamic behaviour is also 
extended to control valves, in that control valves also have a transient response. The 
process variables are comprised of continuous variables (i.e., temperatures, levels and 
pressures) and discrete variables (i.e., analysers' outputs) with different sample 
periods (Downs and Vogel, 1993).   
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Of greater interest than the shear scope of the TE control problem, is the opportunity 
that it offers to compare various plant-wide control methodologies. Various 
approaches have been considered in past work, such as multi-loop SISO control 
strategies, dynamic matrix control (DMC) and linear/non-linear MPC. Section 8.3 
describes and analyses both decentralised and centralised control methodologies that 
have been considered by other researchers.  
 

8.3 PRIOR TENNESSEE EASTMAN CONTROL SOLUTIONS 

8.3.1 Decentralised control 
 
This chapter focuses on the development of a centralised control system design, which 
is in sharp contrast to the decentralised approach taken in multi-loop SISO control 
designs (see section 2.1.1). In a multi-loop SISO design the problem needs to be 
decomposed into a number of design stages to make the design process manageable. 
For example, the optimal steady state for each operating mode needs to be located 
independently of the controller design. This requires solving a non-linear 
programming problem. Ricker (1995) used an augmented Lagrangian strategy for 
locating the optimal steady states.  The design approach also requires a degree of 
engineering judgement that results from experience with pairing process and 
manipulated variables. Intimate knowledge of the plant dynamics and relative 
proportions of expected flow rates and rates of change in process variables is required 
before any such design may be undertaken. For example, general consensus on the 
best throughput manipulator for the TE control challenge has not been forthcoming. A 
large number of different controllability analysis techniques need to be utilised. 
Moreover, loop tuning and the selection of appropriate process-manipulated variable 
pairings need to be considered in the presence and absence of noise and disturbances 
(McAvoy & Ye, 1994).  
 
For a multi-loop SISO design, several iterations on the design procedure may thus be 
required. Control loops may also need to be tailored to deal with expected or known 
disturbances. This gives no guarantee of the control system's performance in the 
presence of unknown or unexpected disturbances. Obtaining robust control by 
detuning generally results in a significant loss of loop performance. Further, only PI 
controllers are used throughout the design process. Although PI control is appropriate 
for a large proportion of control problems, severe non-linearities around set points 
may significantly degrade the performance of linear controllers. The tuning 
parameters may thus only be appropriate over a limited range of the desired operating 
range. 
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Recall from section 2.6 that McAvoy & Ye (1994) proposed a plant-wide control 
methodology based on the time-scales of certain process variables. First, fast inner 
loops (e.g., flow rates and temperatures) were closed based on process judgement, 
which allowed local disturbances to be rejected effectively. Second, McAvoy and Ye 
(1994) sought to reduce the maximum 12x12 controller design using a wide range of 
control analysis techniques, viz. Bristol's relative gain array, the Niederlinski Index 
and linear saturation analysis, non-linear disturbance and saturation analysis and 
dynamic simulation. Third, McAvoy and Ye (1994) configured the analyser loops for 
product composition control and throughput requirements. Fourth, PI controller tuning 
was accomplished by tuning the inner loops first followed by the outer loops on a 
trial-and-error basis. All the requirements set by Downs and Vogel (1992) were met, 
although the loss of feed A needed special provision to maintain pressure control. 
McAvoy (1999) proposed a different approach to plant-wide control synthesis that 
uses steady-state models and optimisation. Optimisation involved a mixed-integer 
linear programming (MILP) problem that minimises the absolute value of valve 
movements when a disturbance occurs. A system that requires large valve changes is 
deemed inferior to a system that requires smaller valve changes. The first such 
optimisation identifies candidate control architectures for controlled variables that 
must be held constant for safety and other reasons. These candidate control structures 
are screened using controllability tools. Similarly, candidate control architectures are 
identified for throughput and purity control using the MILP approach. Notable 
differences exist between the plant-wide control strategy proposed in McAvoy & Ye 
(1994) and that proposed by McAvoy (1999). Most notably, in McAvoy & Ye (1994) 
the reactor pressure is controlled by the flow rate of reagent A, whereas in McAvoy 
(1999) the reactor pressure is controlled by nested loops that finally control the 
reaction temperature. The optimisation analysis of McAvoy (1999) determined that 
the feed rate of reactant C controls the throughput of the TE plant. 
  
Price et al. (1994) provided plant-wide guidelines for throughput and inventory 
control in selecting candidate control architectures. Price et al. (1994) emphasised that 
decisions during the development of the throughput and inventory control structures 
impact the overall performance of the plant-wide control system. Internal throughput 
manipulators typically provide superior performance, particularly when the 
throughput manipulator is located near the centre of the process flow path. 
Consequently, production rate changes propagate in both directions speedily (i.e., 
self-consistent control strategies). The best throughput/inventory control structure 
resulted when the production rate was controlled by manipulating the duty of the 
reactor condenser, thereby adjusting the separation rate of product from the recycle 
(Price et al., 1994). Lyman and Georgakis (1995) proposed the same control strategy 
as Price et al. (1994).  
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Banerjee & Arkun (1995) decomposed the design problem into two tiers. The first tier 
controlled the critical variables that influenced the reactor stability. The second tier 
prioritised variables that affected the compositions of inlet and outlet streams to the 
reactor. The throughput was manipulated based on the participation of reactants D and 
E in the formation of G and H respectively. Since reactant D is required to form G, the 
feed rate of D was manipulated to control the mass flow rate of G in the product. 
Similarly, reactant E is required to form H and the mass flow rate of H was controlled 
by manipulating the feed rate of reactant E. This strategy required that the mole 
fraction of both C and A to the reactor feed remained constant using the respective 
feed, so as not to affect the reaction kinetics and consequently the composition and 
throughput of the product. The accumulation of by-product, F, was controlled using 
the purge valve. Both Price et al. (1994) and McAvoy (1999) used the purge valve to 
regulate the accumulation of by-product, B, in the purge.     
 
Ricker (1996) commented on the work by Banerjee & Arkun (1995) and McAvoy & 
Ye (1994), noting that heuristics needed to be employed, despite a quantitative 
approach. Also, direct numerical linearisation of the Downs & Vogel FORTRAN 
code, created unrealistically good models for quantitative analysis. Ricker (1996) 
followed a more industrial approach akin to that of Price et al. (1994). The TE process 
has 12 degrees of freedom. Six measured variables are paramount to the control 
objectives and need to be controlled at an optimum, viz. production rate, mole % in 
underflow, reactor pressure, reactor liquid level, separator liquid level and stripper 
liquid level. Setting the agitator at the maximum agitation speed, five degrees of 
freedom remain for economic optimisation. The design was structured around the 
throughput manipulator. Ricker assigned the variable most likely to impact on steady-
state operation for production rate control. Noting that plants are typically operated at 
full capacity, the feed rates of reagents D and E most likely constrain the production 
rate. Ricker (1996) recommended that the ratio of D/E control the throughput. 
Inventory control was developed around this ratio control strategy. A simple 
algorithm identified the active constraint on production rate, whereupon the 
composition was controlled at the active constraint. Simple static feedforward control 
provided excellent product composition and throughput control. Since the purge rate 
has a significant effect on the operating cost, Ricker (1996) proposed that the reactor 
pressure be controlled using the purge. Typically, the purge has been used to control 
the inert mole % of by-product B. A poor set point choice for the mole % of B in the 
purge could severely hamper the operating cost. By using the purge for pressure 
control, Ricker (1996) thus minimised the operating costs implicitly. 
 
Luyben et al. (1997) applied a process-orientated approach. Depending on the 
operating objective, the throughput was set either using the stripper bottoms product 
flow rate or a reactant feed rate, leading to completely different control strategies. As 
for most decentralised control strategies, overrides were incorporated to deal with 
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special operating circumstances. Luyben et al. (1997) presented no dynamic 
simulation verification of the proposed control system. 
 
Larsson et al. (2001) considered decentralised control at the base case. Contrary to 
most other methodologies, the design was driven by steady-state economic 
considerations. Using the concept of self-optimisation (see section 2.4.5), process 
insight and heuristics, the possible candidate control variables (ignoring variable 
combinations such as ratios) were reduced from 2.67·1011 to 165 possible 
combinations of three controlled variables. Self-optimisation dictated that controlling 
reactor temperature, mole % C in the purge and either recycle flow or compressor 
work resulted in the lowest economic self-optimising loss. Larsson et al. (2001) 
proposed using the feed rate of reactant C as the throughput manipulator. After 
stabilising the TE plant, a 7x7 control system was paired using the RGA. The loops 
were tuned using the Ziegler-Nichols method, thereby only addressing decoupling 
through the RGA. However, retuning was required using trial-and-error methods. 
Larsson et al. (2001) found that this self-optimised scheme remained highly 
interactive and reverted to a decoupled pairing structure similar to Ricker (1996). 
Although self-optimisation addressed the selection of controlled variables in a 
systematic though partially heuristic manner, appropriate pairing and tuning of 
decentralised control structures remained daunting. As shown by other authors (Price 
et al., 1994) the throughput manipulator is a critical decision in the design process. 
Larsson et al. (2001), using self-optimisation, initially chose the feed rate of reactant 
C to set the production rate. In an improved control structure, the throughput 
manipulator was chosen as the total feed flow with a notably different design (Table 
8-1). Larsson et al. (2001) made no mention of how the improved control structure 
was designed, nor was the reason for the differences between the initial design and the 
improved design explained. The selection of the controlled variables remains largely 
consistent (Table 8-1), but the pairing with manipulated variables shows the 
shortcomings of the RGA for non-linear systems. 

Table 8-1  - Two control structures proposed by Larsson et al. (2001), using self-optimisation and 
insight from Ricker (1996).       

Controlled variables Initial manipulated variable Improved manipulated variable 
separator level 
separator temperature 
stripper level 
production rate 
product ratio G/H 
reactor level 
reactor pressure 
reactor temperature 
cooling water outlet temperature 
mole % C in purge 
recycle flow 

separator liquid flow 
Not used 
stripper liquid product flow 
C feed flow 
D feed flow 
E feed flow 
purge flow 
set point cooling water outlet T 
reactor cooling water flow 
A feed flow 
condenser cooling water flow 

separator liquid flow 
condenser cooling water flow 
stripper liquid product flow 
total feed flow 
D/E feed flow ratio 
set point separator temperature 
purge flow 
C feed flow 
Not used 
C feed flow 
A feed flow 
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8.3.2 Multivariate control 
 
As suggested by McAvoy & Ye (1994), their multi-loop SISO control system may 
serve as a platform for an advanced predictive control system. It has been 
demonstrated that multi-loop SISO and linear MPC-type algorithms are unable to deal 
with the full range of possible process conditions, unless overrides and logic operators 
are added to the design process. Creating such overrides may comprise a large portion 
of the design effort. In essence, multi-loop SISO strategies are not appropriate for 
dealing with multiple, interacting constraints as posed by the TE problem. A non-
linear model predictive control (NMPC) approach may be considered to overcome 
these shortcomings (Ricker and Lee, 1995). 
 
The TE process is open loop unstable. Although NMPC is possible for unstable 
processes, the complexity of the design procedure escalates considerably, making 
stabilisation of the plant using SISO controllers necessary. Before NMPC may thus be 
considered, the multi-loop SISO control problem first needs to be solved. As 
described, the multi-loop SISO design that stabilises the open loop plant is non-trivial. 
Advanced control thus adds an additional layer of complication to a control system. In 
the NMPC scheme by Ricker & Lee (1995), the manipulated variables are set points 
of lower level control loops. Poorly tuned PI loops may impact negatively on the 
performance of the NMPC controller, as the SISO loops change the dynamics of the 
system on which the NMPC controller is designed. Should the SISO controllers slow 
the dynamics of the process, the settling times for set point changes by the NMPC 
controller may be unnecessarily sluggish (Ricker and Lee, 1995).  
 
A NMPC design entails significant design effort. Particular care needs to be taken in 
the modelling and NMPC formulation. The main stumbling block to NMPC is model 
development, as the formulation of a useful (i.e., simplified) non-linear model for on-
line implementation in the control loop is relatively difficult and time consuming. 
Though analytical tools are available to support multi-loop SISO loop pairings, these 
tools have far less value to NMPC designs. The critical process-manipulated variable 
pairings require substantial engineering judgement and experimentation. This 
introduces some uncertainty as to whether an optimal choice of control pairings has 
been made, which impacts on the rest of the design (Ricker and Lee, 1995).  For the 
NMPC development by Ricker & Lee (1995), determining the optimal steady state 
played an important part in selecting the manipulated variables. Based on the steady 
state optimisation, only 8 of the possible 12 manipulated variables were used (Ricker, 
1995).  
 
Ricker (1996) claimed that the TE control challenge hampers the transparency of a 
NLMPC design by requiring overrides for special operating conditions. Ricker (1996) 
compared the decentralised PI control approach and centralised NMPC based on three 
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years of experience with both methodologies. Both NMPC and decentralised control 
strategies required critical decisions without quantitative justification. The selection of 
controlled variables from a large set of process variables was the most important 
qualitative decision process. Ricker (1996) indicated that in a MPC design, controlling 
only the process variables with defined set points, leaving the remainder to on-line 
optimisation, fails in the TE process. Existing quantitative methods for control 
structure selection are mostly inadequate for the TE control challenge. NLMPC 
control provided excellent set tracking and the prediction horizons and penalty 
weights were easy to specify. Individual tuning of PI controllers was more time-
consuming, but with equal performance. Although MPC should provide better 
constraint handling than decentralised control, Ricker (1996) found that the TE 
problem had too many multi-objective goals and special cases. Conventional MPC 
formulations could not cope with this complexity and decentralised control had better 
constraint handling. Furthermore, in simple MPC applications the set point tracking 
weights prioritise the importance of variables based on high weight values. For the TE 
problem, the importance of a controlled variable depends on the process conditions. 
Overrides in the form of SISO control loops were required in the most thorough MPC 
design, although a similar number of overrides were also necessary in decentralised 
designs. Finally, coordination of the numerous system elements was non-trivial. 
Experience and engineering judgement alone proved insufficient and dynamic 
simulation essential. Time-consuming trial-and-error tuning was a feature of both 
MPC and decentralised control strategy designs (Ricker, 1996). 
 
Sriniwas & Arkun (1997) used the PID structure of Banerjee & MacAvoy (1995) to 
stabilise the TE plant. A MPC controller was developed using input-output models to 
provide supervisory control by manipulating the set points of the PID controllers. 
Mode changes around the base case were facilitated through this supervisory layer. 
The MPC control structure was kept small, using only the set points of the reactor 
pressure, reactor level, product flow rate and the mass ratio of G/H in the MPC 
design. The indirect manipulated variables were the feed rate of reactants D and E, the 
compressor recycle valve and the reactor cooling water flow rate. The first step in 
creating the supervisory layer was generating the identification data. The lower PID 
controllers were uniformly excited with input sequences to all four manipulated 
variables and the controlled variable responses were recorded. Certain PID loops were 
closed during the identification process, which masked the non-linearities inherent in 
the open-loop dynamics. Linear input-output models were deemed sufficient for MPC 
development. The reactor level and reactor pressure were modelled as SISO models, 
where the time-lagged set points of the reactor level and pressure were the model 
inputs. The product flow rate and product mass ratio were modelled as MISO models, 
where the set points for reactor level, reactor pressure and the flow rates of reactants 
D and E were the model inputs. Using these linear models, Dynamic Matrix Control 
(i.e., linear MPC) was implemented. Excellent servo responses with short rise times 
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were obtained. However, the MPC design does not explicitly include economic 
criteria (Sriniwas & Arkun, 1997).     
 
Many of the difficulties associated with conventional decentralised and centralised 
control system design are circumvented in an evolutionary reinforcement learning 
(ERL) framework as outlined in section 8.4.         
 

8.4 NEUROCONTROLLER DEVELOPMENT AND PERFORMANCE 

8.4.1 Neurocontroller development 
 
Three neurocontrollers were developed for the TE problem using the SANE algorithm 
(section 4.3). Each neurocontroller was required to learn to reach one of the three 
desired set points at the maximum possible production rate and minimum production 
cost. Although set point changes can be accommodated by a single neurocontroller 
(section 5.4.2), it was found that the genetic search progressed faster (i.e., more 
focused) when the goal was limited to a single steady state of high economic return. 
As each neurocontroller was able to control the plant from a wide range of initial 
conditions, simple boolean logic allowed for the three neurocontrollers to perform the 
necessary set point changes in unison.  
 
Each neurocontroller consisted of 63 input nodes, with 12 hidden nodes and 12 output 
nodes. Each neuron in the hidden layer (sigmoidal activation functions) was allowed 
60 connections, which connected the input and output nodes. Each neuron was thus 
unable to connect to all the input and output nodes, which reduced the dimensionality 
of each partial solution (i.e., each single neuron) and required neuron cooperation to 
solve the control task. The 63 input nodes were comprised of the 41 process variables 
at time, t, and the 22 continuous process variables at time, (t-1). Temporal information 
may be exploited via such time delay lines. The TE process model has 50 state 
variables. To ensure a Markov control problem (i.e., all states available for learning) 
as described in section 3.2.1, the neurocontroller needs to represent the 50 state 
variables in its internal structure. Although ERL deals effectively with weakly non-
Markov control problems, the discrepancy between the number of states and the 
number of process variables necessitated historical inputs that may have contained 
state information. Also, the time delay inputs of the continuous process variables 
allowed for the development of integrating structures in the neural network. The 
sample period for each neurocontroller was selected as 0.055 [Hz]. This sample 
frequency allowed for valve transients to pass within half the sample period and for 
time delay lines to contain pertinent state information.  
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Table 8-2 - Ranges of process and manipulated variables, normalised between 0 and 1 as inputs 
and outputs of neurocontrollers. 

Neurocontroller 
inputs & outputs 

Process& manipulated 
variables 

Unit Minimum 
normalisation 

Maximum 
normalisation 

y1 A feed [kscmh] 0 1 
y2 D feed [kg/h] 0 6000 
y3 E feed [kg/h] 0 8500 
y4 A & C feed [kscmh] 0 15 
y5 Recycle flow [kscmh] 0 100 
y6 Reactor feed rate [kscmh] 0 100 
y7 Reactor pressure [kPa] (g) 2000 3000 
y8 Reactor level [%] 0 150 
y9 Reactor temperature [°C] 100 145 
y10 Purge rate [kscmh] 0 1 
y11 Product Sep temperature [°C] 40 160 
y12 Product Sep level [%] 0 150 
y13 Product Sep pressure [kPa] (g) 2000 3500 
y14 Product Sep underflow [m3/h] 0 48 
y15 Stripper level [%] 0 15 
y16 Stripper pressure [kPa] (g) 2000 3500 
y17 Stripper underflow [m3/h] 0 40 
y18 Stripper temperature [°C] 40 120 
y19 Stripper steam flow [kg/h] 0 450 
y20 Compressor work [kW] 100 400 
y21 Reactor coolant 

temperature 
[°C] 30 160 

y22 Separator coolant 
temperature 

[°C] 0 100 

y23 Component A to reactor [mole %] 0 100 
y24 Component B to reactor [mole %] 0 100 
y25 Component C to reactor [mole %] 0 100 
y26 Component D to reactor [mole %] 0 100 
y27 Component E to reactor [mole %] 0 100 
y28 Component F to reactor [mole %] 0 100 
y29 Component A in purge [mole %] 0 100 
y30 Component B in purge [mole %] 0 100 
y31 Component C in purge [mole %] 0 100 
y32 Component D in purge [mole %] 0 100 
y33 Component E in purge [mole %] 0 100 
y34 Component F in purge [mole %] 0 100 
y35 Component G in purge [mole %] 0 100 
y36 Component H in purge [mole %] 0 100 
y37 Component D in product [mole %] 0 100 
y38 Component E in product [mole %] 0 100 
y39 Component F in product [mole %] 0 100 
y40 Component G in product [mole %] 0 100 
y41 Component H in product [mole %] 0 100 
u1 D feed flow [%] 2.5 100 
u2 E feed flow [%] 2.5 100 
u3 A feed flow [%] 2.5 100 
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u4 C feed flow [%] 2.5 100 
u5 Compressor recycle flow [%] 1 100 
u6 Purge flow [%] 1 100 
u7 Separator liquid flow [%] 1 100 
u8 Stripper liquid product 

flow 
[%] 1 100 

u9 Stripper steam flow [%] 1 100 
u10 Reactor cooling water 

flow 
[%] 1 100 

u11 Condenser cooling water 
flow 

[%] 1 100 

u12 Agitator speed [%] 1 100 

 
Except for the mole fractions of G and H, the initial plant state for each evaluation 
was calculated using a gaussian distribution around the TE base case, with a standard 
deviation of 10 [%] from the nominal value (Downs and Vogel, 1993). The mole 
fractions of product G and H were allowed to vary over their full composition range. 
The process variables were normalised between 0 and 1 (Table 8-2). The 12 
neurocontroller outputs were scaled to the full range of the 12 manipulated variables 
(Table 8-2). Once an initial condition was calculated that fell within the TE process 
constraints, a neurocontroller was evaluated over a fixed period of 20 simulated hours. 
An error value was calculated at each sample interval as indicated in equation 8-1: 
 

( ) ( ) ( ) ( ) ( )tCSPtCSPtFtVCOPtError HCGCST HG
−+−+−⋅= 1

1000
  (8-1) 

 
where, VCOP(t) is the normalised variable cost of production, FST is the stripper 
bottoms flow rate, CG and CH are the mole fractions of G and H respectively. The 
fitness function that represented the RL reward from each neurocontroller evaluation 
is expressed in equation 8-2:  
 

( )∫ ⋅⋅
= 20

0

1

dttErrort
Fitness       (8-2) 

 
The integration of the error signal results in an ITAE (integral-time-absolute-error) 
characteristic response in the error signal for each neurocontroller. This ERL 
implementation thus allows for non-linear pole placement with an approximate ITAE 
response. As the TE process model is open loop unstable, premature failure of an 
evaluation typically violated the process constraints during the 20 hour evaluation. 
Addition process constraints were placed on the reactor pressure and temperature to 
terminate the evaluation of ineffective neurocontrollers. For example, a reactor 
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pressure below 1800 [kPa] was deemed ineffective, although this condition does not 
result in shutdown. The search for an optimal reactor temperature was also limited 
between 90 [°C] and 140 [°C]. Such pressure and temperature range information is 
assumed available from any catalyst vendor. Additional search constraints reduced the 
processing time during the early evolutionary generations. The remaining sample 
periods after premature failure were assigned the highest possible error.  
 
By assigning the highest possible error to the remaining sample periods of an 
evaluation, a greater emphasis was placed on attaining stability during the early stages 
of the evolution as per equation 8-2. In later generations, as more neurocontrollers 
attained stable control over the entire evaluation period, the highest reward became 
the dominating factor (equation 8-2). When the fitness emphasis shifted from stability 
to high performance, implicit fitness sharing (section 3.5.5) ensured the continued 
dynamic optimisation towards the global steady state optimum by maintaining genetic 
diversity.  
 

8.4.2 Economic optimum and operating mode changes 
 
The NMPC approach by Ricker & Lee (1995) was simplified by first stabilising the 
open loop unstable TE process model. The SANE algorithm did not need to 
discriminate between an initially open loop stable or unstable plant. From results 
published by Ricker and Lee (1995), a set point change required from 10 to 20 hours 
to settle to the final steady state. As seen in Figure 8-2, a typical neurocontrol settling 
time for a change in operating mode was less than 5 hours. The poor settling time for 
NMPC may have been the result of detuned controller parameters in either the 
stabilising or supervisory control layer, thereby ensuring robust performance.  
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Figure 8-2 – SANE neurocontroller transient response of selected process variables for set point 
changes from 10/90 to 50/50 to 90/10 G/H. Only sensor noise was included as disturbance during 
these set point changes. 

 
As indicated in section 8.3.2, an NMPC implementation required the explicit 
optimisation of the steady state for each operating mode. Ricker (1995) solved the 
non-linear programming using all 50 state variables, though complete state variable 
information is seldom available in practice. The optimisation thus served as a 
benchmark for more realistic optimisation strategies that do not depend on complete 
state information (Ricker, 1995). The SANE algorithm was not provided with any set 
point information. In sharp contrast to previously proposed algorithmic approaches 
(section 8.3), SANE was required to find the states with the highest possible reward as 
per equation 8-2. The final steady state was determined implicitly by simultaneous 
dynamic optimisation and neurocontroller development. For example, the SANE 
algorithm implicitly learned that the region around 120 [°C] was optimal for the 
reactor temperature and that a higher reactor pressure reduced the operating cost 
(Figure 8-2). The vessel level limits were held within the shutdown constraints. 
Significantly, the SANE approach learned to maintain the reactor level above 50 [%], 
ensuring that sufficient heat transfer area was available for cooling. The SANE 
algorithm thus eliminated the need for an optimisation step that first determined the 
optimal economic steady states (i.e., set points).  
 
From an economic perspective the final operating cost attained by each SANE 
neurocontroller is of great interest. The state variable optimisation by Ricker (1995) 
served as a benchmark for the more realistic SANE optimisation with knowledge of 
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the only process variables. The operating cost for each set point is also compared in 
Table 8-3. From Table 8-3 it is evident that the SANE optimisation was sub-optimal 
to the state variable optimisation. For mode 10/90 and mode 50/50 the operating cost 
is a fair approximation to the optimal operating cost (Table 8-3). The SANE 
optimisation thus had attempted to balance the operating cost with attaining the 
desired product purities without full state information.  
 
Although the SANE algorithm afforded a highly robust search, it may become stalled 
in local optima. This is illustrated for the SANE neurocontroller that established the 
90/10 operating mode change (Figure 8-2). The low reactor pressure and high total 
operating cost (Table 8-3) reflected a sub-optimal neurocontroller. The insensitivity of 
the economic objective to large changes in the states may have caused a lack of 
convergence (Ricker, 1995). The high dimensionality of the TE process also 
challenged the effectiveness of SANE. 
 

Table 8-3 - Economic optimisation comparison of total operating cost. 

Operation mode State variable 
optimisation [$/m3] 

SANE optimisation 
[$/m3] 

Mode 10/90 8.26 10.36 
Mode 50/50 6.77 7.66 
Mode 90/10 2.44 6.05 

 
In contrast, the SMNE algorithm developed a neurocontroller ( for the 90/10 mode 
with far greater economic return than the SANE algorithm. Within the same number 
of RL evaluations, SMNE attained the transient responses in Figure 8-3. The process 
variables were in close approximation to the state variable optimisation by Ricker 
(1995), with higher reactor pressure and stripper throughput than the SANE 
neurocontroller. From Figure 8-4, the SMNE neurocontrol had an operating cost of 
2.93 [$/m3], which compared favourably with the global optimum defined by Ricker 
(1995) and was a considerable improvement on the SANE neurocontroller.  
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Table 8-4 - SMNE neurocontroller for the Tennessee Eastman process at the 90/10 operating 
mode. 
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Figure 8-3 – SMNE neurocontrol transient response of selected process variables settling to the 
set point 90/10 G/H. Only sensor noise was included as disturbance during the set point change. 
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Figure 8-4 – Operating cost of SMNE neurocontroller settling to set point 90/10 G/H. Only sensor 
noise was included as disturbance during the set point change. 
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8.4.3 Robust performance and disturbance rejection 
 
High dimensional processes are typically subject to numerous disturbances. The 
ability of a neurocontroller to reject sensor noise and significant load disturbances 
reflects the ability of biological models to maintain performance despite uncertain 
process conditions. Efficient disturbances rejection is solely attributed to the 
generalisation of the neural network. In conventional plant-wide control, special 
consideration is given to known disturbances that may occur in the process. The 
algorithmic control strategy thus incorporates knowledge of known disturbances. 
Though the inclusion of known disturbances to the reinforcement learning process 
would have been simple, no explicit knowledge of disturbances was assumed. No 
disturbances were introduced during RL evaluation, thus no disturbance identification 
was undertaken (section 2.4.3). The ability of a controller to reject unknown 
disturbances is a true indication of performance, since unknown (i.e., unmodelled) 
disturbances are considered a more common real scenario.  
 
Figure 8-5 illustrates the SANE neurocontroller performance in attaining the 50/50 
mode from a difficult initial condition with sensor noise and numerous disturbances. 
The disturbances in Table 8-5 were simultaneously introduced from the start of the 
simulation, thus requiring the neurocontroller to reject these disturbances during a 
large process state change. From Figure 8-5, the disturbance rejection was effective 
and robust performance of the neurocontroller is maintained. The number of 
simultaneous disturbances rejected by the neurocontroller was far more than required 
by Down and Vogel (Table 8-5). 
 

Table 8-5 - Simultaneous disturbances rejected by neurocontroller. 

Disturbance 
code 

Disturbance description Type 

IDV 8 A, B, C feed composition Random variation 
IDV 9 D feed temperature Random variation 
IDV 10 C feed temperature Random variation 
IDV 11 Reactor cooling water inlet temperature Random variation 
IDV 12 Condenser cooling water inlet temperature Random variation 
IDV 13 Reaction kinetics Slow drift 
IDV 14 Reactor cooling water valve Sticking 
IDV 15 Condenser cooling water valve Sticking 
IDV 16 Unknown Unknown 
IDV 17 Unknown Unknown 
IDV 18 Unknown Unknown 
IDV 19 Unknown Unknown 
IDV 20 Unknown Unknown 
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Figure 8-5 – SANE neurocontroller transient response of process variables to the numerous 
simultaneous disturbances (Table 8-5). 

Effective disturbance rejection is directly related to the appropriate pairing of process 
and manipulated variables. Implicit to both the SANE and SMNE was the decoupling 
and appropriate pairing of interacting process and manipulated variables. The 
neurocontroller was provided with all the process variables as inputs and all the 
manipulated variables as outputs. No information was provided to the either ERL 
algorithm regarding appropriate process-manipulated variable pairings. As the 
selection of appropriate pairings was a significant design consideration in previous 
algorithmic approaches (e.g., NMPC and multi-loop SISO), effective pairing within a 
high dimensional state space is a major advantage of an ERL design methodology. 
Only neurons that made connections between appropriate process (inputs) and 
manipulated (outputs) variables were able to cooperate effectively. Appropriate 
connections were propagated as effective genetic material from one generation to the 
next. Almost no engineering judgement or explicit process knowledge was required 
by the control engineer. The disturbance rejection in Figure 8-5 attests to successful 
pairing and robust generalisation for a high dimensional process. 
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8.4.4 Loss of critical feed A to the TE process 
 
The most difficult disturbance to reject in the TE process is a loss in component A's 
feed. No special provision in the form of high reactor pressure overrides was provided 
and the disturbance was not presented during reinforcement learning. This disturbance 
proved highly detrimental to the neural network's control strategy. A loss in A's feed 
was initiated at time 15 [h]. As seen in Figure 8-6, the reactor pressure ramped until 
the shutdown process was activated. The neurocontroller was thus reliant on A's feed 
rate for reactor pressure control. Of note, the pairing of reactor pressure and A's feed 
rate was used by McAvoy & Ye (1994) in their multi-loop SISO design, which was 
implicitly discovered by the SANE algorithm.  
 
From Figure 8-6, the TE plant was controlled within product specification at slightly 
reduced production rate for 10 hours. During this 10 [h] period, it is assumed that the 
feed problem could be resolved on an actual plant. Should this not be the case and the 
disturbance is a likely occurrence, this disturbance may be incorporated during 
reinforcement learning. By including a loss in A's feed within each evaluation, the 
neurocontroller would learn to deal with this known disturbance. Consequently, the 
ERL algorithm may pair the reactor pressure primarily with the reactor temperature or 
the purge rate (Ricker & Lee, 1995).  
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Figure 8-6 -Transient response of selected process variables to a loss in A feed at 15 [h] for SANE 
neurocontroller. 
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8.5 CONCLUSIONS 

 
In comparison to the conventional plant-wide control (chapter 2), an ERL 
methodology required only an understanding of advanced genetic algorithms. A large 
number of different techniques needed to be mastered by the control engineer in an 
algorithmic plant-wide control design. An ERL methodology also required no 
iteration on the design procedure, as would be required in multi-loop SISO designs. 
SANE attained all the design objectives in a single comprehensive step. 
 
From section 8.4, evolutionary reinforcement learning provides significant benefits 
for the development of plant-wide control strategies. In this case study, numerous 
difficulties associated with conventional plant-wide control (chapter 2) are 
surmounted by a coordinated dynamic optimisation and neurocontroller design 
methodology. All available process and manipulated variables were used in the 
controller design, since an ERL approach dealt effectively with the high 
dimensionality of the TE plant-wide control problem. The economic optimum was 
implicitly determined, which reduced the design effort in that no prior steady state 
optimisation was required. The ERL algorithm implicitly solved the non-trivial 
pairing of process and manipulated variables in high dimensional state space, which 
required considerable engineering judgement and iterative experimentation in the 
algorithmic approaches. Effective pairing allowed for superior disturbance rejection 
through generalisation. 
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9 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 
WORK 

 

9.1 CONCLUSIONS  

 
Several criteria exist for evaluating process control methodologies. These are (1) 
generality, (2) applicability to non-linear systems, (3) controller independent, (4) 
quantitative, (5) method simplicity, effectiveness and efficiency and (6) the degree of 
theoretical development (Larsson & Skogestad, 2000). For neural network control, 
these criteria beg answers to the questions posed by Ydstie (1990): (1) How non-
linear, robust controllers based on connectionist networks may be devised and (2) how 
the tuning algorithm should be modified to ensure global parameter convergence. The 
neurocontrol paradigm in this thesis addresses these criteria as follows: 
 
• SMNE offers generality with no limitation on dynamic model structure. SMNE 

has been applied to both phenomenological and semi-empirical models of varying 
non-linearity. Unlike other non-linear control methodologies, SMNE is applicable 
to any class of non-linear system.  

• SSA offers robust non-linear model development from historical and experimental 
plant data. Using SSA, state estimation is forthcoming without resorting to 
fundamental models. SMNE has equal applicability to partial models as confirmed 
by experimental verification for a MEBAD pilot plant. 

• The non-linear structure of a SMNE neurocontroller effectively maps state 
representations to control actions for highly non-linear processes. Implicit fitness 
sharing and the synergetic nature of SMNE provide for global tuning of 
neurocontroller weights. SMNE imparted significant generalisation in the face of 
process uncertainty. 

• Multi-input multi-output (MIMO) SMNE neurocontrollers deal with severe 
process interaction through optimal pairing of process variables with manipulated 
variables. 

• SMNE and SSA offer a non-heuristic, quantitative approach that requires minimal 
engineering judgement or knowledge, making the methodology free of subjective 
design input. 

• Both the SMNE and SSA methods are rapid development methods, incorporating 
a great deal of design simplicity. Coordinated flow sheet design, steady state 
optimisation and non-linear controller development encompass a comprehensive 
methodology. 

• The SMNE methodology is not confined to set point regulation, but incorporates 
any control objective such as economic objectives. 
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• SMNE allows for control strategy design beyond single unit operations. SMNE is 
equally applicable to processes with high dimensionality, developing plant-wide 
control strategies. Many of the difficulties in conventional plant-wide control may 
be circumvented in the biological approach of the SMNE algorithm.  

• In addition, ANS allows adaptation to drifting process conditions and tracking of 
the economic optimum on-line, providing robust performance in the face of 
significant process uncertainty. 

 
Evolutionary reinforcement learning thus offers significant advantages for developing 
high performance control strategies for the chemical, mineral and metallurgical 
industries. Symbiotic memetic neuro-evolution (SMNE), adaptive neural swarming 
(ANS) and singular spectrum analysis (SSA) present a response to Foss' critique.  
 

9.2 RECOMMENDATIONS FOR FUTURE WORK 

 
• Future work will focus on variations of the SMNE algorithm, including sub-

population migration and culling in the particle swarms.  
• Though the neurocontrol paradigm has been tested on both simulated and real 

processes, the method will be tested in other real-world tasks that require both 
an efficient exploration and an accurate fine-tuning of the controller solutions.  

• Future work on SSA will consider the advantages of non-linear principal 
component analysis using auto-associative neural networks.  

• The current incarnation of this neurocontrol paradigm has used sigmoidal 
activation functions exclusively. Several clear benefits of radial basis 
functions exist for adaptive neurocontrol and the validity of SSA models.  

 

9.3 FINAL CONCLUDING REMARKS 

   
In a broader sense this thesis has been about discovering the meaning of a moment. 
Yet, a moment is largely about the present, with almost no consideration for the 
distant past or the far future. A moment in time, even with a causal understanding of 
the underlying state variables, tells us almost nothing about living and dying; or about 
being born. 
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