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Abstract - A novel reinforcement learning algorithm, 

Symbiotic Memetic Neuro-Evolution (SMNE), is presented 

for neurocontroller development in non-linear processes. A 

highly non-linear bioreactor process is used in a learning 

efficiency case study. The use of implicit fitness sharing 

maintains genetic diversity and induces niching pressure, 

which enhances the synergetic effect between the global 

(symbiotic evolutionary algorithm) and the local (particle 

swarm optimisation) search. SMNE's synergetic effect 

accelerates learning, which translates to greater 

economic return for the process industries. 

 

I.  INTRODUCTION 

 

Non-linear processes are prevalent in the chemical and 

metallurgical process industries. Non-linear dynamic 

characteristics may be intrinsic to the physics or chemistry 

of a process (i.e., distillation), or may arise in the coupling 

of simpler processes (i.e., heat exchangers). These 

dynamic characteristics are often complex and 

unpredictable, making autonomous control difficult to 

achieve. A controller's autonomy is reflected by its ability 

to maintain high and robust performance, despite an 

assortment of unexpected occurrences over a wide process 

operating range [1]. 

 

Linear controllers are often used in the process industries; 

despite the knowledge that linear controllers are unable to 

match the autonomy of rationally designed non-linear 

controllers in non-linear processes. Linear controllers thus 

incur an economic opportunity cost, as a consequence of 

sub-optimal performance in non-linear processes. 

Conversely, conventional non-linear control design 

necessitates extensive mathematical analysis, a significant 

degree of engineering judgement and expert process 

knowledge. Prior to commencing the non-linear controller 

design, the process engineer needs to have a clear 

understanding of how the control strategy will be 

implemented. Conventional non-linear control design 

methods are difficult to automate which hampers 

widespread implementation [2].  

 

These difficulties can be surmounted by means of 

intelligent control techniques, such as reinforcement 

learning. Reinforcement learning is a computational 

framework, which requires minimal prior process 

knowledge for designing effective control strategies. 

However, reinforcement learning requires effective 

learning methodologies to extract control strategies from 

sparse learning information.  

 

 

 This paper introduces a novel learning methodology, 

Symbiotic Memetic Neuro-Evolution (SMNE), for 

developing neural network controllers in a reinforcement 

learning framework. A symbiotic genetic algorithm 

oversees the global search for an optimal neurocontrol 

strategy, while a Particle Swarm Optimisation (PSO) 

algorithm facilitates local search refinements to the 

neurocontrol strategy. This way, SMNE maintains a 

synergetic effect between the global and local search. 

Compared to other evolutionary approaches, this 

synergetic effect accelerates and improves the automated 

acquisition of process control knowledge from non-linear 

dynamic models.  

 

II.  LEARNING METHODOLOGIES 

 

A.  Reinforcement learning 

 

Reinforcement learning is a computational framework that 

allows automation of the learning process. It is 

distinguished from supervised learning by not requiring 

exemplary training sets or even complete models of the 

dynamic environment. Reinforcement learning defines the 

interaction between a learning controller and its dynamic 

environment in terms of cause and effect information. 

Reinforcement learning therefore provides a means to 

program controllers without needing to specify how the 

control objectives should be reached. The control strategy 

is thus developed implicitly. This implicit learning 

characteristic sets reinforcement learning apart from 

conventional non-linear control techniques that require 

explicit process knowledge [3].    

 

Reinforcement learning relies heavily on the learning 

methodology that uses controller performance evaluations 

to direct the learning process. Evolutionary algorithms 

(EA) are robust global optimisation methods for solving 

complicated combinatorial tasks, such as determining 

optimal controller parameters. Evolutionary algorithms 

have been used effectively as learning methodologies in 

reinforcement learning frameworks. In neurocontrol, 

evolutionary reinforcement learning searches in a 

population of possible neural network controllers for a 

strategy that encompasses effective control actions in the 

chemical process. Neurocontrollers are comprised of 

collections of neurons, with each neuron specifying the 

weights from the input layer (sensor readings) to output 

layer (control actions). In an EA framework, effective 

neurocontrollers produce offspring, which propagates 

effective neurons (genetic material) in the population. This 

genetic propagation of effective neuron structures is key to 



solving the combinatorial nature of neurocontroller 

parameter estimation [4].  

 

B.  Memetic  algorithms 

 

EA's propagate effective neuron structures by varying the 

sample distribution in the solution space, depending upon 

the evaluation of the objective (fitness) function. This 

selection biases the search towards regions of the solution 

space where near optimal solutions have been discovered. 

Local refinements to these near optimal solutions could 

significantly accelerate arriving at an optimal solution. 

However, EA's are not suited to focusing local 

refinements in large combinatorial tasks.  Genetic 

evolution may be augmented to facilitate local 

(neighbourhood) search via cultural evolution [5].  

 

Analogous to genetic propagation, cultural transmission 

(i.e., bird song) is the evolutionary flow of information. 

However, there are significant differences between 

cultural and genetic evolution. In cultural evolution, 

improvements are seldom a result of copying errors or the 

exchange of co-adapted units of information. Clear-cut 

combination of exact ideas does not generally lead to 

innovation. An idea is rather blended with other similar 

ideas based upon perception and understanding. This 

blending process is the driving force towards innovation. 

Genetic evolution does not incorporate an innovative 

component, as experimentation (reproduction) with new 

information is governed by biased selection. A gene is not 

changed based on the quality of other similar genes. The 

individuals in cultural evolution are conscious entities that 

use one another's ideas in the search process, subject to 

cooperation and competition. Genetic evolution has no 

concern for individual genes, but focuses on improving the 

population by propagating effective gene combinations 

[5].  

 

Memetic algorithms (MA) are evolutionary algorithms 

that use cultural evolution for local search (LS). The local 

search is applied to solutions in each generation of the EA, 

creating a process of lifetime learning. The EA searches 

globally for regions containing significant optima, while 

the LS searches these regions for the local optimum. The 

EA is thus responsible for exploration, whilst the LS 

governs exploitation. A balance between exploration and 

exploitation ensures that the minimum number of 

evaluations is employed in finding the global optimum. 

This balance is dependent on the synergy between lifetime 

learning and evolution [5].  

 

LS aids the evolutionary process by smoothing the fitness 

landscape. LS exploits the local fitness landscape, which 

absolves the EA from devoting resources to searching in 

areas of local complexity on the fitness surface. This 

smoothing essentially involves a discretisation of the 

fitness landscape. Consider the optimisation of the fitness 

landscape in figure I. 
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Figure I - Smoothing of the fitness landscape by local search, thereby 

reducing the complexity of the EA's solution space.  
 

Assume that any EA solution, located on one of the slopes 

on the three peaks, is able to locate the local maximum 

through LS. The EA's task is simplified considerably, in 

that it only needs to locate three regions of the search 

space. The dashed lines in figure I indicate these three 

discrete regions. With the added local search capability, 

the complexity of the EA's solution space is reduced 

significantly. The plasticity afforded by lifetime learning 

makes it easier for the EA to climb to peaks in the fitness 

landscape [5].   

 

Therefore, the EA of a memetic algorithm should not 

generate multiple solutions in the neighbourhood of a 

single optimum, but should maintain a diverse (wider) 

search in the solution space. Thereby, the EA aids the LS 

by bordering regions (sub-spaces) of the fitness landscape 

that contain significant optima. Such regions become 

prime candidates for exploitation by local search 

algorithms. A synergetic effect, which accelerates 

evolution, thus exists in an evolving population of 

individuals, where the individuals are also exposed to 

learning during their lifetime [5]. 

 

A key element to maintaining such synergy is a 

diversification mechanism in the EA. Genetic diversity is 

required to continue a global search. Global reliability, 

which promises convergence to the global optimum, is 

required to ensure that every region of the solution space 

is effectively explored [5].  

 

III.  NOVEL COMBINATORIAL SEARCH 

 

A.  Effective genetic diversification 

 

Genetic diversity prevents convergence to a local optimum 

and allows continued genetic search, assuring global 

reliability. The continued introduction of informational 

variety is critical for effective exploitation by cultural 

evolution. Numerous methods for maintaining genetic 

diversity have been proposed; such as crowding, 

distributed sub-populations with migration, local mating 

and explicit fitness sharing. These methods are effective in 

slowing convergence, but have been unable to sustain a 

diverse dynamic equilibrium in the EA's population [1].  
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Figure II - Flow diagram for a single generation in the Symbiotic 

Memetic Neuro-Evolution algorithm. 
 

Implicit fitness sharing entails the search for partial 

solutions, which cooperate to encode the complete 

solution. In neuro-evolution, individual neurons are partial 

solutions to the complete solution (neural network).  

Neurons that compete to perform the same task, compete 

for the same rewards, namely weak cooperation. Neurons 

that do not overlap in their tasks, are cooperating in an 

indirect manner, namely strong cooperation. Strong 

cooperation is symbiotic in nature [6]. 

 

Strong cooperation maintains high quality diversity in the 

face of significant selection pressure, by balancing 

convergence with the restorative force of niching pressure. 

A niching phenomenon also implies several parallel 

searches for partial solutions, which should prove more 

effective than a single search for the complete solution [6]. 

 

B.  Symbiotic Memetic Neuro-Evolution 

 

Implicit fitness sharing and the synergetic effect of 

memetic algorithms, may be combined to enhance global 

reliability and accelerate evolution in complex 

combinatorial tasks. A novel memetic algorithm, 

Symbiotic Memetic Neuro-Evolution (SMNE), is 

introduced for developing neurocontrollers in a 

reinforcement learning framework. A symbiotic genetic 

algorithm (figure II) is employed to ensure global 

reliability, while performing an aggressive explorative 

search. Particle Swarm Optimisation (PSO), a cultural 

evolution method, is used for local exploitative search 

after each EA generation.   

 

1) Symbiotic evolutionary algorithm 

 

Similar to the SANE algorithm [4], the symbiotic EA 

(dashed box in figure II) maintains both a neuron and a 

network population. Each member of the neuron 

population encodes a hidden neuron, with weights from 

the input layer to the output layer. While SANE maintains 

a single neuron population, SMNE's neuron population is 

comprised of a number of sub-populations. The network  

 population is constructed from the neuron population. 

Each network is a collection of pointers to the neuron sub-

populations. Each position in a network's hidden layer is 

filled from a different neuron sub-population.  

 

Competing conventions is avoided in the SMNE's network 

population, as each network position points to a particular 

sub-population. Competing conventions is also avoided in 

the neuron population, as each weight connects to a fixed 

input or output throughout evolution. Real-value encoding 

of neuron weights also ensures that the crossover location 

is at the gene (weight) boundaries. This causes less gene 

disruption during crossover. Unchanged genes are thus 

carried into the next generation, focusing the search. 

 

Each network is evaluated in the reinforcement learning 

task (i.e., process control) and assigned a fitness value 

based on the control performance criteria. High network 

fitness reflects superior performance in the control task. 

The network population is ranked after evaluation. The 

neuron fitness assignment implements implicit fitness 

sharing. Each neuron is assigned a fitness value, based on 

the fitness values of the five best networks in which it 

participated [4]. High neuron fitness reflects a neuron's 

ability to cooperate with other neurons in different sub-

populations. Rewarding neuron cooperation with high 

fitness values, induces niching pressure in the sub-

populations. Strong cooperation between sub-populations 

facilitates the search for partial solutions that comprise the 

complete solution. Each sub-population thus serves as a 

container in which a niche may emerge. The niching 

pressure retains genetic diversity in the neuron population, 

allowing the genetic search to continue. The neuron 

population is ranked after evaluation. Recombination and 

reproduction is based on the network and neuron ranking 

[4]. 

 

One-point crossover is applied to the elite neuron 

population (top 20%). The elite neurons breed across the 

sub-populations, thereby exploring the solution space 

between current niches. Each elite neuron randomly 

selects (on rank) a mate that has a higher fitness than 

itself. Two effective parents should produce offspring with 

similar or superior performance. As the best elite neurons 

are more likely situated in different sub-populations 

(strong cooperation), their offspring attempt combining 

two functionalities into a single neuron. This may free 

sub-populations to pursue other niches. Crossover in the 

poorer elite neurons has a greater probability of selecting a 

parent from the same sub-population, which focuses the 

genetic search (weak cooperation). Each offspring neuron 

is copied to a neuron sub-population, depending on the 

gene contribution from each parent. The offspring neurons 

replace the worst neurons in each sub-population. 

Mutation is applied, with low probability (2%), to the 

remainder of the neuron population.  

 

 



An elite network population (top 20%) retains knowledge 

of effective neuron combinations [4]. The elite network 

population's reproduction operator replaces a neuron 

pointer with one of its offspring that was copied to the 

same sub-population. This reproduction operator applies, 

with 25% probability, to all the neuron pointers in the elite 

network population. The offspring networks replace the 

worst networks. The remaining networks are constructed 

randomly from the sub-populations, with a propensity for 

selecting offspring neurons of the elite neuron population. 

This scheme ensures that neurons not selected in the 

previous generation, obtain pointers and therefore a fitness 

evaluation.  

 

2) Particle Swarm Optimisation 

 

A local refinement search, Particle Swarm Optimisation 

(PSO), augments SMNE's symbiotic EA. PSO is 

implemented after each EA generation, as illustrated in 

figure II, thereby inducing lifetime learning. PSO is a 

population based optimisation method loosely based on 

the social behaviour of flocks (swarms) of birds. PSO 

updates each individual based on the collective experience 

of the swarm individuals in the solution space [7]: 

 

idididid xprandcvv (): 1  

                         idgd xprandc ()2             (1)      

ididid vxx :                                    (2) 

 

where vid is a particle's velocity vector,  is the inertia 

weight, c1 and c2 are constant parameters and xid is a 

particle's position vector. Each particle retains partial 

knowledge of its own best position, pid, and the position of 

the best swarm particle, pgd (equation 1). Based on these 

two knowledge components, each particle updates its 

velocity vector to determine its next position (equation 2) 

[7]. PSO shares numerous characteristics with cultural 

algorithms. The swarm's movement in the solution space 

is akin to cultural transmission and the innovative 

blending of ideas. Also, each particle's momentum 

protects against entrapment in a local optimum.  

 

Each particle thus blends its own experience and that of 

the best swarm particle in a unique manner. PSO's 

assumes that the best swarm particle is located in a region 

of the solution space that contributes to solving the control 

task. Each particle moves uniquely in the general direction 

of the best swarm particle. This may lead to the discovery 

of superior, adjacent regions of the solution space. A new 

best swarm particle consequently moves the swarm in a 

new direction. PSO thereby involves cooperation as a 

result of shared experience and competition for superior 

fitness [7].  

 

SMNE's particle swarm implementation incorporates a 

small inertia weight (  = 0.4 in equation 1) to facilitate  

 local search. The parameters c1 and c2 (equation 1) are 

also equal to 0.5 (conventionally 2.0), which ensures an 

exploitative search. Each neuron sub-population contains a 

separate PSO implementation. The PSO's neuron weight 

changes are Lamarckian, that is, the weight changes 

update the genes. The best neuron in a sub-population is 

the best particle in its swarm. PSO refines each partial 

solution search, by sharing the best neuron's control 

knowledge with other neurons in its sub-population.  

 

Local search (LS) should only be applied to evolutionary 

solutions where it will be the most beneficial. A 

Lamarckian LS may also begin to dominate the genetic 

population, causing a loss in diversity. LS should thus 

only be applied to a sub-set of the total population [5]. 

Therefore, the neurons of the elite network population 

constitute the candidates for LS. These neurons are 

presumably located in close proximity to the regional sub-

spaces that contribute to the search for partial solutions. 

Complete LS may also involve a large number of 

evaluations. The LS is only applied for the limited number 

of five steps. This ensures that evaluations are effectively 

utilised, after each evolutionary step. This partial local 

optimisation is in keeping with cultural evolution, 

ensuring that each particle modifies the swarm knowledge 

uniquely. Applying LS for a limited number of steps, also 

avoids a loss of diversity in the elite network population's 

neurons.  

 

As discussed in section II, the symbiotic EA and the PSO 

of SMNE result in a synergetic search algorithm that 

allows effective discovery and refinement of partial 

solutions. The SMNE algorithm was subsequently applied 

to a challenging real world problem. 

 

IV.  COMPARATIVE BIOREACTOR CASE STUDY 

 

The SMNE algorithm was use to develop an optimal 

neurocontroller for a simulated bioreactor. Stochastic hill 

climbing, the SANE algorithm [4], SMNE's symbiotic EA 

and complete SMNE were tested in a comparative study of 

these learning methodologies. 

 

A.  Bioreactor benchmark 

 

A bioreactor is a continuous stirred tank fermenter. It 

contains a biomass of micro-organism that grow by 

consuming a nutrient substrate that is continuously fed 

into the reactor. The biomass is filtered and sold as the 

product. Fermentation control presents a challenging 

control problem, as the bioreactor's dynamic behaviour is 

invariably highly non-linear and model parameters vary in 

an unpredictable manner. The biochemical processes are 

complex and create a multitude of steady state attractors, 

which may be stable, chaotic or periodic depending on the 

residence time in the bioreactor. The process state is 

difficult to quantify, owing to unreliable biosensors and 

long sampling periods [2]. 
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Figure III - Average normalised venture profit for the learning 

methodologies. 
TABLE I 

ANOVA ANALYSIS 

ANOVA analysis P-Value 

Stochastic hill climbing vs. SANE 

SANE vs. SMNE's symbiotic EA 

Symbiotic EA vs. SMNE   

8.9·10-6 

5.1·10-4 

2.1·10-3 

 

The control objective is to maximise the venture profit of 

the process. This entails locating the operating region with 

the maximum venture profit and ensuring effective control 

actions. The operating region with maximum venture 

profit requires stabilising a chaotic attractor. No process 

information is provided with regard to the execution of the 

control task. The bioreactor constitutes a significant real-

world process control task for testing reinforcement 

learning methodologies [2].   

 

B.  Experimental set-up  

 

A comparative study was undertaken to test the 

contribution of the SMNE algorithm in developing 

neurocontrollers. SMNE was compared to three other 

methods: (1) multi-start stochastic hill climbing (SHC) as 

a reduced model, augmented with an initial random search 

for suitable initial starting points, (2) the SANE algorithm 

[4] as a symbiotic EA with a single population of neurons, 

and (3) the symbiotic sub-population EA used in SMNE 

without PSO. The neurocontrollers received the 

bioreactor's three sensor readings as inputs, and generated 

the positions of its four valves as outputs. Twenty learning 

simulations, each for a total of 30 000 evaluations, were 

run for each learning method. Each evaluation was 

initialised to a random process state and run for 300 

sample periods. The fitness for each evaluation was 

calculated as: 
300

0

)( dttptf      (3) 

 

where f is the fitness value and p(t) is the instantaneous 

profit at sample period, t. The statistical significance of the 

performance differences was measured using ANOVA 

analyses.  
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Figure IV - Principle components of the weight vectors of each 

neuron weights in the elite network population.   
 

C.  Results 

 

The average normalised venture profit for each method is 

shown in figure III. The ANOVA results are tabulated in 

table I.  Stochastic hill climbing could not learn an 

effective control strategy for the bioreactor (figure III). 

SHC could not reliably progress beyond the initial basin of 

attraction for any of the twenty simulation runs. This 

demonstrates the complexity of the bioreactor's dynamics 

and justifies using more complex algorithms in solving the 

control task.  

 

The EA algorithms proved more successful in progressing 

towards the global optimum (venture profit = 1). Although 

SANE and SMNE's symbiotic EA are similar in 

implementation, SMNE's symbiotic EA deals more 

effectively with competing conventions and focuses the 

niching phenomenon. The ANOVA analysis indicates that 

the sub-population treatment is statistically superior 

(ANOVA p  < 0.01) to the single neuron population 

SANE algorithm. 

 

SMNE, with its local search refinement operator (PSO), 

both accelerated and produced a higher average venture 

profit than the EA implementations alone (figure III). The 

ANOVA analysis (ANOVA p < 0.01) also indicates that 

the PSO treatment in SMNE is statistically superior to the 

EA implementations alone.  

 

Figure IV presents a principal component analysis (first 

three principal components, explain 77% of the variance). 

Each marker represents a neuron in the elite network 

population. The key elements of SMNE are illustrated: (1) 

the observed clusters illustrate the niching pressure 

induced by implicit fitness sharing, (2) genetic diversity 

has been maintained, allowing continued exploratory 

search, (3) each neuron cluster represents a swarm, which 

refines the promising sub-space regions identified by the 

symbiotic EA. 

 



V.  DISCUSSION AND FUTURE WORK 

   

The ANOVA analyses (table I) prove that the synergy 

between evolution (symbiotic EA) and learning (PSO) in 

SMNE significantly enhances learning efficiency. This 

synergy relies on an effective balance between exploratory 

(genetic search) and exploitative (lifetime learning) search 

in the solution space. Implicit fitness sharing preserves 

this synergetic balance by maintaining genetic diversity 

through induced niching pressure. Genetic diversity allows 

a continued exploratory search, without which lifetime 

learning could not exploit the solution space effectively. 

Niching pressure bounds the solution space into distinct 

sub-space regions (clusters in figure IV), which are partial 

solutions to the complete task. These sub-space regions 

are prime candidates for a local search (learning). The 

symbiotic EA's niching phenomenon thus aids learning by 

creating good conditions for lifetime learning (i.e. initial 

weights). Learning guides evolution by absolving it from 

exploring neighbouring solutions to the current 

evolutionary solutions. Evolution only needs to find 

appropriate regions in the solution space, rather than 

specific points in the solution space. A synergetic effect 

thus motivates the learning efficiency in the SMNE 

algorithm.  

 

In the SMNE algorithm, evolution is learning at the level 

of the neuron population, while lifetime learning (PSO) is 

learning at the level of each individual neuron. The 

evolutionary task searches for cooperative neurons, while 

the learning task seeks to improve each neuron's partial 

solution to the complete task. The evolutionary and 

learning tasks are thus quite different. What the neurons 

are required to learn (learning task) and which neurons are 

selected during evolution (evolutionary task), are 

indirectly related. The evolutionary fitness surface and the 

learning fitness surface are correlated, i.e. superior 

neurons tend to have high fitness values on both the 

fitness surfaces [8]. A superior neuron cooperates 

effectively and also represents a good partial solution to 

the control task. Effective synergy results once high 

correlations between the learning and the evolutionary 

fitness surfaces are found.        

 

However, the fitness landscapes of the learning and 

evolutionary tasks are continuously changing, relative to 

one another, during evolution. This continuous change 

depends on the population's current location in the 

solution space. This suggests a dynamic correlation 

between the two fitness surfaces [8]. Consider a novel 

neuron, with high learning task (partial solution) fitness. 

High partial solution fitness improves the likelihood of 

selection for genetic reproduction. Over several 

generations, the neuron is thus likely to obtain additional 

pointers from the network population. A greater number of 

neuron pointers translates into a higher cooperation 

(evolutionary) fitness. For effective synergy, a search for 

 high dynamic correlation between the fitness surfaces 

must be maintained.     

 

Future work will focus on further variations of the SMNE 

algorithm, including sub-population migration and culling 

in the particle swarms. In addition, the method will be 

tested in other real-world tasks that require both an 

efficient exploration and an accurate fine-tuning of the 

solutions.  

                 

VI.  CONCLUSION 

 

The Symbiotic Memetic Neuro-Evolution (SMNE) 

algorithm is effective at developing neurocontrollers for 

use in highly non-linear process environments. Implicit 

fitness sharing maintains genetic diversity. Implicit fitness 

sharing's niching pressure accelerates the evolutionary 

search for solution sub-spaces that may be exploited by 

local search. Particle swarm optimisation effectively 

absolves the EA from devoting its resources to local 

refinements. The synergy between the symbiotic EA and 

PSO accelerates learning from dynamic process models. 

SMNE's efficient learning translates to greater economic 

return for the process industries. 

 

ACKNOWLEDGEMENTS 

 

This work was supported in part by the South African 

Foundation for Research and Development, the Harry-

Crossley Scholarship Fund, the National Science 

Foundation under grant IIS-0083776 and by the Texas 

Higher Education Coordinating Board under grant ARP-

003658-476-2001.. 

 

REFERENCES 

 
[1]   A.v.E. Conradie,"Neurocontroller development for nonlinear   

       processes utilising evolutionary reinforcement learning",  

       M.Sc. thesis, University of Stellenbosch, South Africa, 2000. 

[2]  D.D. Brengel and W.D. Seider, "Cooridnated design and control   

       optimization of nonlinear processes", Computers and Chemical  

       Engineering, 16(9), pp. 861-886, 1992. 

[3]  L.P. Kaelbling, M.L. Littman and A.W. Moore, "Reinforcement  

       Learning: A Survey", Journal of Artificial Intelligence Research, 4,  

       pp. 237-285, 1996. 

[4]  D.E. Moriarty and R. Miikkulainen, "Forming Neural Networks  

       through Efficient and Adaptive Coevolution", Evolutionary  

       Computation, 5(4), pp. 373-399, 1998. 

[5]  P. Merz, "Memetic algorithms for combinatorial optimization  

       problems", Ph.D. thesis, University of Siegen, Germany, 2000. 

[6]  J. Horn, D.E. Goldberg and K. Deb, "Implicit niching in the learning  

       classifier system: Nature's way", Evolutionary Computation, 2(1),  

       pp. 37-66, 1994. 

[7] Y. Shi and R.C. Eberhart, "Empirical study of particle swarm  

      optimization", Proceedings of the 1999 Congress on Evolutionary  

      Computation, IEEE Service Center, Piscataway, NJ, pp. 1945-1950, 

      1999.   

[8]  S. Nolfi, J.L. Elman and D. Parisi, "Learning and evolution in neural  

       networks", Adaptive Behavior, (3), 1: 5-28, 1994. 


