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Abstract

Integrate-and-!re neurons have been used widely to model large-scale networks with temporal
dynamics. Previous work has focused on temporal delays in modulating synchronization behavior;
not much attention has been given to the postsynaptic potential (PSP) decay rate. In this paper,
we show that varying the PSP decay rate has the same e"ect as adjusting the axonal conduction
delay. The decay rate can be adjusted independently at di"erent locations in the neuron, allowing
precise !ne tuning of synchronization behavior. Also, because the adjustments can be local and
small, this process can be more e#cient than adjusting the larger-scale axonal delays.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Integrate-and-!re neurons; Decay adaptation; Synchronization

1. Introduction

Experimental evidence suggests that temporally correlated activity contributes to
binding and segmenting features in sensory input [4,10]. Thus, temporal information
may be very important for neural function. Integrate-and-!re neurons have been studied
extensively in this role because their simplicity makes it possible to study synchroniza-
tion behavior in large-scale networks [2,8,11,13].
Some of this work assumes that spikes are transmitted instantaneously [2], but

others take into account axonal conduction delays [11,13]. It turns out that the delay
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characteristic of di"erent types of connections (e.g. excitatory and inhibitory) deter-
mine the synchronization behavior in a highly interconnected network of neurons. The
main results are: (1) excitatory connections with no delay cause synchrony [2,9,11],
(2) excitatory connections with delay cause desynchrony [13], (3) inhibitory connec-
tions without delay cause desynchrony [11,13], and (4) inhibitory connections with
delay cause synchrony [11–13,17]. Previous models of spiking neurons have either
adapted or selected the axonal delays to regulate synchronization behavior [7,16].
Although delay can be adapted by changing the axonal morphology (length, thickness,
and myelination; [6]), the !ne degree of delay tuning needed in the above models may
not be easy to achieve in a macrostructure as an axon in biological neurons.
An alternative to delay adaptation is to change the decay rate of the postsynap-

tic potential. Decay may be easier to alter in biological neurons since ion channels
can be added or removed to tune the leakage of currents through the cell membrane.
The number and distribution of ion channels can change through various mechanisms
including activity-dependent gene expression and activity-dependent modulation of as-
sembled ion channels (see [1] for a comprehensive review). Nowak and Bullier [14]
studied various mechanisms of decay (or integration time), and further investigations
of these mechanisms may well reveal how decay rate can be controlled. Some models
already utilize synaptic decay [5,15], but the in$uence of di"erent levels of decay on
synchronization has not been fully tested.
Can decay rate a"ect synchronization behavior just as delay does? This paper shows

that di"erent decay rates can indeed cause greatly di"erent synchronization behavior
even for the same type of connections (i.e. excitatory or inhibitory). The results suggest
that PSP decay rates should be studied in more detail in order to understand how
synchronization is modulated in biological neural networks.

2. Model

The neuron model used in this paper is a generalization of the popular integrate-and-
!re neuron. Instead of a single integration mechanism per neuron, each individual
postsynaptic membrane has a separate integration term with independent PSP decay
rates (Fig. 1).
Each connection between neurons is a leaky integrator that continuously calculates

an exponentially decayed sum of incoming spikes: 1

s(t) = x(t) + s(t − 1)e−!; (1)

where s(t) and s(t−1) are the current and the previous decayed sum (i.e. at time step t
and t−1), x(t) is the input spike (either 0 or 1), and ! is the decay rate. The excitatory
connections and inhibitory connections have separate decay rates !e and !i. Such a leaky
integrator models the post-synaptic potential (PSP) that decays exponentially over time
in biological neurons. The formulation is a !nite di"erence approximation of the leaky
integrate-and-!re neuron when ! is the same for all synapses.

1 This equation has the same form as the one derived from convolution equations in [5].
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Fig. 1. The Neuron Model: Leaky integrators at each synapse perform decayed summation of incoming
spikes, and the outgoing spikes are generated by comparing the sum of weighted sums to the dynamic
spiking threshold. The dynamic threshold consists of the base threshold "base and the "rel that represents the
refractory period.

Each cortical neuron in the model is connected to one input neuron and to all other
cortical neurons through excitatory or inhibitory lateral connections. The weighted sum
of the a"erent and lateral leaky synapses are calculated and passed through a squashing
function: 0 if sum ¡ #; 1 if sum ¿ $, and sum − #=$ − # otherwise. The resulting
activation %(t) is compared to the dynamic threshold:

"(t) = "base + &"rel(t); (2)

where "base is the base threshold, "rel(t) represents the refractory period, and & is a
scaling constant. The term "rel(t) is also a leaky integrator as in Eq. (1), but with a
di"erent decay rate !rel. If %(t) is greater than "(t), an output spike is generated.

3. Experiments and results

Thirty fully connected neurons were simulated for 500 iterations. Each neuron re-
ceived a constant input of value 1.0 throughout the simulation, and the connection
weights were uniform with a value of 1=30. A"erent input was scaled by 0.8 and
lateral input by 0.01 prior to passing through the squashing function to make the
total a"erent vs. lateral contributions to have a similar range. The squashing function
parameters were #=0:0 and $=3:0. The threshold parameters were "base=0:1, &=0:65,
and !rel = 0:05. Membrane voltage of each neuron was randomly initialized.
Four separate experiments were conducted to test the e"ect of altered decay rate

on synchronization behavior: (1) excitatory lateral connections alone with slow decay
(!e = 0:1), (2) inhibitory lateral connections alone with slow decay (!i = 0:1), (3)
excitatory lateral connections alone with fast decay (!e=1:0), and (4) inhibitory lateral
connections alone with fast decay (!i = 1:0). The results are summarized in Fig. 2a–d,
respectively.
Two conditions, excitatory connections with fast decay and inhibitory connections

with slow decay, resulted in synchrony. In contrast, excitatory connections with slow
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Fig. 2. E!ect of connection type and decay rate on synchronization: Thirty neurons with full lateral connec-
tions were simulated for 500 iterations. Four separate experiments were conducted to determine how decay
in inhibitory and excitatory lateral connections a"ects synchronization. The x-axis represents the simulation
iteration, and y-axis the neuron index. The membrane voltage is plotted in grayscale, from low to high
(black to white). (a) Excitatory connections with slow decay result in desynchronized activity, (b) excitatory
connections with fast decay result in synchronized activity, (c) inhibitory connections with slow decay result
in synchronized activity and (d) inhibitory connections with fast decay result in desynchronized activity. The
results show that synchronization behavior can vary greatly even for the same connection type if the decay
rate di"ers.

decay and inhibitory connections with fast decay resulted in desynchrony. These results
are similar to the results with conduction delays as reported in [11,13]. Since decay
rate may be easier for neurons to adjust than conduction delay, neurons may indeed
employ this process to !ne-tune their synchronization behavior.

4. Discussion

Besides PSP decay, several other factors a"ect synchronization behavior in a network
of integrate-and-!re neurons. For example, (1) noisy initialization of membrane voltage,
or on-going addition of noise helps desynchronization between di"erent populations
[3,11,18], (2) higher levels of excitation can overcome moderate levels of noise to
synchronize activity, and (3) longer absolute refractory period can help overcome noise
and help synchronize neurons. All of these factors were systematically tested with the
same model presented in this paper, but because of limited space the results are not
presented here (see [3] for the full data).
An interesting future direction is to see whether adjusting the decay rate can counter

the e"ects of conduction delays. A combined model with both adjustable PSP decay
rate and adjustable conduction delay can be developed and the interaction of the two
processes can be studied. It is possible that adjusting the decay rate can help overcome
various side-e"ects such as unintended desynchronization introduced by conduction
delay by resynchronizing the neurons.
Biological experiments can be done to verify whether the dendritic membrane po-

tential can decay at di"erent rates at di"erent locations, and also whether there is such
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a di"erence between di"erent types of synapses (e.g. glutaminergic vs. GABA-ergic
synapses). If there is a di"erence, that data can be compared to the results presented in
this paper, and it can help us understand the role of these di"erent kinds of connections
in modulating synchrony.

5. Conclusion

In this paper, we have shown that synchronization behavior can be modulated by
adjusting the PSP decay rate for di"erent types of synapses. Adjusting the decay rate
at a local scale can allow a !ner degree of synchronization behavior tuning, and it
may be a more e#cient process than adjusting axonal conduction delays which may
require a macro-level change. The computational results presented in this paper calls
for further investigations into the role of PSP decay rate in modulating neural behavior.
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