Exploiting Sensor Symmetries in Example-based Training
for Intelligent Agents

Bobby D. Bryant Risto Miikkulainen
Department of Computer Sciences Department of Computer Sciences
The University of Texas at Austin The University of Texas at Austin

bdbryant@cs.utexas.edu risto@cs.utexas.edu

Abstract—Intelligent agents in games and simulators often it has been programmed or trained to manage only certain
operate in environments subject to symmetric transformations cases.
that produce new but equally legitimate environments, such as If an agent’s controller operates by mapping sensory inputs

reflections or rotations of maps. That fact suggests two hypotheses to behavioral the desired tri b
of interest for machine-learning approaches to creating intelligent onto behavioral responses, the desired Ssymmetries can be

agents for use in such environments. First, that exploiting identified by analyzing the structure of the agent and its
symmetric transformations can broaden the range of experience sensors. For example, if the agent and its sensors are both

made available to the agents during training, and thus result in pjlaterally symmetrical then it will be desirable for the agent’s
improved performance at the task for which they are trained.  ogh0nges to be bilaterally symmetrical as well. However, if

Second, that exploiting symmetric transformations during train- th t trical f tructi bot with
ing can make the agents’ response to environments not seen €y are not symmetrical — e.g. for a construction robot with a

during training measurably more consistent. In this paper the 9rip on one side and a tool on the other — then its optimal
two hypotheses are evaluated experimentally by exploiting sensor behavior is asymmetrical. Thus the desirable symmetry of
symmetries and potential symmetries of the environment while pehavior depends critically on the symmetry of the agent and
training intelligent agents for a strategy game. The experiments its sensors.

reveal that when a corpus of human-generated training examples , L I
is supplemented with artificial examples generated by means of When an agent's controller is dlrgctly prog.rammed itis a
reflections and rotations, improvement is obtained in both task Straightforward task to ensure that its behavior observes the
performance and consistency of behavior. desired symmetries. However, when a controller is trained
Keywords: Agents, Multi-Agent Systems, Adaptive Teanmby machine learning there is no guarantee that it will learn
of Agents, Games, Simulatodsggion Il, Sensors, Symmetries,symmetrical behavior. Therefore it will be useful to devise
Human-generated Examples machine learning methods that encourage behavioral invariants
across relevant symmetries in agents trained by those methods.
This paper reports initial results on solving the symmetry
Intelligent agents in games and simulators often operatedhallenge with supervised learning. A controller is trained for
geometric environments subject to reflections and rotatioragents that operate in an environment that supports multiple
For example, a two dimensional map can be reflected acrossgmmetries of reflection and rotation. Human-generated ex-
explorer agent or rotated about it, providing new and differeainples of appropriate contextual behavior are used for the
but still reasonable maps. Similarly, the visible universe caraining, and artificial examples are generated from the human
be reflected or rotated on any of the three axes of a robotikamples to expose the learner to symmetrical contexts and
construction worker in deep space. A well trained generdile appropriate symmetrical moves. This training mechanism
purpose agent for deployment in such environments showlddresses both of the motivations for symmetrical behavioral
be able to operate equally well in a given environment aridvariants, i.e. it improves the agents’ task performance and
its symmetric transformations. In general it is desirable faiso provides measurable improvements in the symmetry of
intelligent agents to exhibit symmetrical behavior as well. Thateir behavior with respect to their environment, even in
is, if the optimal action in a given environment is to move tenvironments not seen during training.
the left, then the optimal action in a mirror image of that The learning environment and the structure of the agents’
environment would be to move to the right. sensors and controller are described in the following section,
Symmetry of behavior is desirable for two reasons. First, fien the training methodology and experimental results are
a correct or optimal move can be defined for a given contexixplained in section Ill. The experimental results are discussed
failing to choose the symmetrical move in the symmetricah section IV, along with a look at future directions for the
context will be sub-optimal behavior, and will degrade aresearch.
agent's overall performance if it ever encounters such a
context. Second, if the agent operates in an environment ob-
servable by humans, such as a game or a simulator, the humarhe use of artificial examples generated by exploiting
will expect to see “visibly intelligent” behavior, i.e., they will symmetries was tested in a game/simulator calledion I,
expect the agent to always do the right thing because itvidich is a slight modification of theegion | game described
smart, rather than intermittently doing the right thing because [1]. Legion Il is a discrete-state strategy game designed

I. INTRODUCTION

II. THE LEARNING ENVIRONMENT

Copyright 2006 IEEE. To appear Proceedings of the IEEE 2006 Symposium on Computational Intelligence and Games (CIG'06)



as a test bed for multi-agent learning problems, with legiomge taken in sequential turns. During a turn each legion makes
controlled by artificial neural networks acting as the intelligerd move, and then each barbarian makes a move. All moves

agents in the game. are atomic, i.e. during a game agent’s move it can either elect
) ) to remain stationary for that turn or else move into one of the
A. The Legion Il game/simulator six hexagons of the map tiling adjacent to its current position.

The Legion Il game/simulator is played on a map that Only one agent, whether legion or barbarian, can occupy
represents a province of the Roman empire, complete wRy map cell at a time. A legion can bump off a barbarian by
several cities and a handful of legions for its garrison (figuf@oving into its cell as if it were a chess piece; the barbarian is
1). Gameplay requires the legions to minimize the pillagéen removed from play. Barbarians cannot bump off legions:
inflicted on the province by a steady stream of randomij€y can only hurt the legions by running up the pillage score.
appearing barbarian warbands. The barbarians collect a srhiither legions nor barbarians can move into a cell occupied
amount of pillage each turn they spend in the open countrysidRy, one of their own kind, nor can they move off the edge of

but a great deal each turn they spend in one of the cities. the map. _ _ N
A game is started with the legions and cities placed at

random positions on the map; the combinatorics allow a vast
number of distinct game setups. The barbarians enter play
at random unoccupied locations, one per turn. If the roving
legions do not eliminate them they will accumulate over time
until the map is almost entirely filled with barbarians, costing
the province a fortune in goods lost to pillage.

Fig. 1. The Legion Il game.A large hexagonal playing area is tiled with
smaller hexagons in order to quantize the positions of the game objec
Legions are shown iconically as close pairs of men ranked behind lar
rectangular shields, and barbarians as individuals bearing an axe and a sm
round shield. Each icon represents a large body of men, i.e. a legion or
warband. Cities are shown in white, with any occupant superimposed. A
non-city hexes are farmland, shown with a mottled pattern. The game is PR T
test bed for multi-agent learning methods, whereby the legions must leal B ———
to contest possession of the playing area with the barbarians. (An animation . . o . .
of the Legion Il game can be viewed #itp://nn.cs.utexas.edu/ F_|g. 2.A Iegl_ons sensor fieldsA legion’s sensor ar_ray_leldes the w_orld into
keyword?ATA .) six symmetrical “pie slices”, centered on the legion itself (black lines). The
objectss falling within a slice are detected as the scalar aggredaje /d;,
] ] ] ) whered is the hexagonal Manhattan distance to the object (white arrow). For
The game is parameterized to provide enough legions dgy given sensory input the symmetries in the sensor architecture allow a set

garrison all the cities and have a few left over, which catf six 60° rotations about the legion, plus a reflection of each rotation, for
b d to disperse an arbands thev find prowling t total of twelve isomorphic sensory views of the world. If a legion makes
€ use i ISp > y W ) AL p. W.| 9 optimal move in all circumstances, then a reflection and/or rotation of
countryside. The original purpose of this parameterization w&ssensory inputs produces a corresponding reflection and/or rotation in its
to require the Iegions to learn an on-line division of labgihoice of moves. This behavioral invariant allows artificial training examples
. ; . . . {0 be constructed from reflections and rotations of human-generated training
between garrisoning the cities and patrolling the countrysﬁ&amples_
in a multi-agent cooperative architecture called Aahaptive
Team of Agentfl]. The game is used here to test the use of Play continues for 200 turns, with the losses to pillage
training examples generated from symmetries, because it iactumulated from turn to turn. At the end of the game the
challenging learning task that offers multiple symmetries ilegions’ score is the amount of pillage lost to the barbarians,
its environment. rescaled to the rangl@, 100] so that the worst possible score
The Legion Il map is in the shape of a large hexagoris 100. Lower scores are better for the legions, because they
divided into small hexagonal cells to discretize the placemempresent less pillage. The learning methods described in this
of game objects such as legions and cities (figure 1). Movpaper allow the legions to learn behaviors that reduce the score



http://nn.cs.utexas.edu/keyword?ATA
http://nn.cs.utexas.edu/keyword?ATA

Sensor Inputs (39 elements)

to around 6 when tested on a random game setup never seen
during training (i.e. to reduce pillage to about 6% of what the —
province would suffer if they had sat idle for the entire game). }0&

2
QQOCIC)
3=

Hidden
Layer
Neurons

c “'
The barbarians are programmed to follow a simple strateg§'

of approaching cities and fleeing legions, with a slight prefer<: ‘I’l

ence for the approaching. The are not very bright, which suitg

the needs of the game and perhaps approximates the behavgdr Output N Key:
of barbarians keen on pillage. Neurons ‘ ‘ ‘ ‘ ‘ ‘ [JScalar

O Neuron

B. Agent sensors and controllers i

The legions must be trained to acquire appropriate behav-
iors. They are provided with sensors that divide the map . 4. A legion’s controller network. During play the values obtained by a

into six pie slices centered on their own location (figJ’e 2legion’s sensors are propagated through an artificial neural network to create
n activation pattern at the network’s output. This pattern is then interpreted as

All the relevant objects in a pie S"C? are ;ensed _as a singlg choice of one of the discrete actions available to the legion. When properly
scalar value, calculated s, 1/d;. This design provides only trained, the network serves as the controller for the legion as an intelligent

a fuzzy, alias-prone sense of what is in each sector of thent
legion’s field of view, but it works well as a threat/opportunity

indicator: a few barbarians nearby will be seen as a sensory . .
signal similar to what would be seen of a large group &@n be implemented by swapping the northwest (NW) sensor
barbarians further away values with the southwest (SW), and the NE with the SE.
Similarly, a 60° clockwise rotation can be implemented by

T T TTTTT T TTTTToooomomoomomoomoes | moving the sensor values for the eastern (E) sector to the
! Local Sense Adjacent Sense Distant southeastern (SE) sensor, for the SE to the SW, etc., all the
! ne| e [se|sw|w nw| [ne| e |se]sw|w |nw] way around the legion. The legions’ choices of action for a
o Sensor Array - - -~~~ -~~~ - - reflected or rotated sensory input can be reflected or rotated

by the same sort of swapping. For examplé0a clockwise

Fig. 3. Alegion’s sensor architecture Each sensor array for a legion consistJOtauon _WOUId CO“V?rt the_ch0|ce. of a NE move to an E mPVG-
of three sub-arrays as shown here. A single-element sub-array (left) detétiie option to remain stationary is not affected by reflections
objects colocated in the map cell that the legion occupies. Two six-eleme§t rotations: if a legion correctly chooses to remain stationary
sub-arrays detect objects in the six radial fields of view; one only detects . . t it should al . tati
adjacent objects, and the other only detects objects farther away. The Iegi\%gﬁI a given S_ensory |np_u LS Ou_ also remain stationary
are equipped with three complete sensor arrays with this structure, one eb@h any reflection or rotation of that input.
for detecting cities, barbarians, and other legions. The three 13-element arrays

are concatenated to serve as a 39-element input layer for an artificial neural

network that controls the legion’s behavior (figure 4). Artificial reflections I1l. EXPERIMENTAL EVALUATION

and rotations of a Ieglon_’s view of the \_/vor!d can be generated on demand Experiments were designed to test two hypotheses: first, that
by appropriate permutations of the activation values of the sensors in the , ... . .

sub-arrays. exploiting symmetric transformations can broaden the range of

experience made available to the agents during training, and

There is a separate sensor array for each type of objeclﬂlws result in improved performance at their task; and second,
play: cities, barbarians, and other legions. There are additioff2@t exploiting symmetric transformations during training can
sensors in each array to provide more detail about what isNke the agents’ response to environments not seen during
the map cells adjacent to the sensing legion, or colocatedti@ining measurably more consistent. These hypotheses were
the legion’s own cell (figure 3). In practice only a city cafested by training sets of networks with human-generated
be in the legion’s own cell, but for simplicity the same senséamples, with or without supplementary examples created by
architecture is used for all three object types. reflecting and/or rotating them, and then applying appropriate

The scalar sensor values, 39 in all, are fed into a feegletrics to the trained agents’ performance and behavior during
forward neural network with a single hidden layer of tefUns on a set of test games.
neurons and an output layer of seven neurons (figure 4). ThéAfter a summary of the experimental methodology in sec-
output neurons are associated with the seven possible actiofi§ !ll-A, the first hypothesis is examined in sect on [1I-B and
legion can take in its turn: remain stationary, or move into or{ge second in secticn IlI-C.
of the six adjacent map cells. This localettion unit coding
is decoded by selecting the action associated with the outﬁlt
neuron that has the highest activation level after the sensoExamples of human play were generated by providing
signals have been propagated through the network. Legion Il with a user interface and playing 12 games, with the

The Legion Il sensor architecture allows reflections andame engine recording the sensory input and associated choice
rotations of the world about a legion’'s egocentric viewpoinbf action for each of the 1,000 legion moves during a game.
The transformations can be represented by permutations of Bech game was played from a different randomized starting
values in the sensors. For example, a north-south reflect®etup in order to provide a greater diversity of examples.

Controller Outputs

Experimental methodology



In an Adaptive Team of Agents all of the agents havelearly defined median performer if ever a single run needs to
identical control policies 11]. This design is implemented ifbe singled out as “typical” for plotting or analysis.
Legion Il by using the same neural network to control each After training, each network was tested by play on set of 31
legion. Such uniform control means that all the exampldsst games, created randomly like the validation sets, but using
recorded for the various legions during play can be pooleddifferent seed to ensure independence from them. Unlike
into a single set for training a controller network. the validation games, the same 31 test games were used to

Artificial examples were created by the training program &valuate every network. The test score for a training run was
run time, by permuting fields in the human-generated exampliafined as the average score its network obtained on those 31
according to the patterns described in section 1I-B above. Sirga@mes. Thus there were 31 independent training runs for each
the legions inLegion Il have no distinguished orientation, allparameterization, and the network produced by each training
the reflections were generated by flipping the sensory inpuin was tested on a constant set of 31 games. The results of
and choice of move from north to south. When both reflectiotisese tests are presented in the following sections.
and rotations were used, the N-S reflection was applied to e%ph

rotation, to create a full set of twelve distinct training examples i ] i ) -
from each original. The first experiment illustrates the effect of adding artifi-

The four possibilities of using vs. not using reflection§ially generated training examples on the performance of the
and/or rotations define four sets of training examples. Tig@ntroller networks. Networks were trained by each method on
choice between these sets defines four training methods @M one to twelve games’ worth of examples. As described
comparison. The four methods were used to train the standitection Ill-A, each game provided 1,000 human-generated
Legion II controller network (figure 4) with backpropagatior?xamples' and the reflections and rotations greatly increased

[2]. Training was repeated with from one to twelve gamedhis number.
worth of examples for each method. Due to the relatively large
number of examples available, the learning rateas set to

the relatively low value of 0.001. On-line backpropagation

Effect on performance

n

was applied for 20,000 iterations over the training set, to =

. —— Human examples only
ensure that none of the networks were undertrained, and the -~~~ Human + reflections
presentation order of the examples was reshuffled between | _ fuman +otations

each iteration.

After every tenth iteration of backpropagation across the
training set the network in training was tested against @ =
validation set, and saved if its performance was better thanat
any prior test on that set. At the end of the 20,000 iterations the
most recently saved network was returned as the output of the
training algorithm; this network provides better generalizatio%
than the network at the end of the training run, which may
suffer from overtraining.

Validation was done by play on a set of actual games
rather than by classifying a reserved set of test examples,
so all the example moves were available for use in training. o
The validation set consisted of ten games with randomly { w w w w *
generated setup positions and barbarian arrival points; they
were reproduced as needed by saving the internal state of a Number of Example Games
random number generator at the start of training and restoring
it each time it was necessary to re-create the validation sig§: 5- Effect of generated examples on performancelines show the

. . average test score for 31 runs of each method vs. the number of example
Strict accounting on the number of random numbers consu es used for training. (Lower scores are better.) Each game provided 1,000

during play ensured that the same validation set was creabechan-generated examples; reflections increased the number of examples to
each time. 2,000 per game, rotations to 6,000, and both together to 12,000. All three

. . . . symmetry-exploiting methods provided significant improvement over the base
Each differently parameterized training regime — methQgetnog throughout the range of available examples, albeit by a diminishing

x number of games’ examples used — was repeated &tount as more human examples were made available.

times with a different seed for the random number generator

each time, producing a set of 31 networks trained by eachThe results of the experiment, summarized in figue 5,
parameterization. The seed controlled the randomization of thiow that an increase in the number of example games gen-
network’s initial weights and generation of the validation sedrally improved learning when the human-generated examples
for that run. The 31 independent runs satisfy the requiremezibne were used for training, although with decreasing returns
of a sample size of at least 30 when using parametric statistiaal more games were added. The three methods using the
significance tests [3], plus one extra so that there is alwaysdificially generated examples improved learning over the




use of human examples alone, regardless of the number|0f12| examples and multiplied the count by twelve by
games used; each of the three provided statistically significaeflecting and rotating. Since each method drew its randomly
improvement at the 95% confidence level everywhere. Thelected examples from the full set of the 12,000 available
improvement was very substantial when only a few exampheiman-generated examples, each sampled the full structural
games were available, and the best performance obtainvadiety of the examples. The divisions equalized the counts,
anywhere was when both reflections and rotations were ugedwithin rounding errors.
with only five games’ worth of examples.

Rotations alone provided almost as much improvement as
reflections and rotations together, and at only half the training
time, since it only increased the number of exmples per game , _

to 6,000 rather than 12,000. Thus in some circumstances — Human examples only
. . . --- Human with reflections

using rotations alone may be an optimal trade-off between Human with rotations

performance and training time. Reflections alone increased -~ Human with both

training only to 2000 examples per gani¢3 of what rotations
alone provided, but with substantially less improvement in per- ¢ - X
formance when fewer than six example games were availal:ge.

It is worthwhile to understand how much of the improved
performance resulted from the increased number of trainir§g
examples provided by the reflections and rotations, vs. haw
much resulted from the fact that the additional examples were =
reflections and rotationper se A second experiment exam-
ined this distinction by normalizing the number of examples
used by each method. For example, when a single example
game was used in the first experiment, the human-example-
only method had access to 1,000 examples, but the method® |
using both reflections and rotations had access tx 12000 2 4 6 8 10 12
examples. For this second experiment the various methods
were only allowed access to the same number of examples,
rega_rdless of how many could be created by reflections agg 6. Efect of reflections and rotations on performance Lines show the
rotations. average test score for 31 runs of each method vs. the number of examples used

It was also necessary to control for the structural varie training, when the examples used b_y the four _methods were controlled

. . count and structural variety. The tight clustering of the performance

of the examples. Such variety arises from the fact that e es shows that most of the improvements obtained by using reflections
training game is played with a different random set-up — mostd rotations in the the first experiment (figure 5) were the result of the
importantly, with randomized locations for the cities. In somi@creased number of training examples they provided, rather than being the

L. L. result of the use of reflections and rotati se
games the cities are scattered, while in other games they are e

placed near one another. This sort of variety is very beneficialrhe results of the experiment, shown in figure 6, show

to generalization: the games in the test set may not be simifgfie gitference in the performance of the four methods when
to any of the individual games in the human-generated trainigehir training examples are controlled for count and structural
set, but agents exposed to a greater variety of set-ups dufgiery Thus most of the improvements obtained in the first
training learn to manage previously unseen situations betiggseriment were the result of the increased number of training

Thus if the training example count is normalized by using tgamples generated by the reflections and rotations, rather than
12,000 human-generated examples from the twelve examp|e the fact that the additional examples were reflections or
games, to be compared against training with the 12,00 ationsper se

examples generated by applying reflections and rotations to
the 1,000 human-generated examples from a single examfple Effect on behavioral consistency
game, the latter method will have less structural variety in its Further experiments reveal the effect of artificially generated
training examples, and its generalization will suffer. examples on the detailed behavior of the legions. As described
So the second experiment controlled for both count amd section I, a perfectly trained legion will show behavior that
structural variety by selecting examples at random, withoig invariant with respect to reflections and rotations. That is, if
replacement, from the full set of 12,000 human-generatéd sensory view of the world is reflected and/or rotated, then
examples available for use. When the method of using humats- response will be reflected and/or rotated the same way.
generated examples alone selecteeixamples at random, the Although legion controllers trained by machine learning
method using reflections selected2 examples and doubledtechniques are not guaranteed to provide perfect play, training
the count by reflecting, the method using rotations selectdeem with reflected and/or rotated examples should make them
n/6] examples and multiplied the count by six by rotatingyehave more consistently with respect to reflections and rota-
and the method using both reflections and rotations select&hs of their sensory input. This consistency can be measured

Number of Examples (thousands)



20

— Human examples only — Human examples only
--- Human + reflections --- Human with reflections

Human + rotations Human with rotations
---  Human + both ---  Human with both

15
|
15

10

Average Consistency Error Rate (%)
10
!
Average Consistency Error Rate (%)

Number of Example Games Number of Examples (thousands)

Fig. 7. Effect of generated examples on consistencyines show the Fig. 8. Effect of reflections and rotations on consistencyLines show the

average consistency error rates for 31 runs of each method, vs. the nun@h@rage consistency error rates for 31 runs of each method vs. the number

of example games used for training. (Lower rates are better.) All threé examples used for training, when the examples used by the four methods

symmetry-exploiting methods provided a significant improvement in consigere controlled for count and structural variety. The substantial gaps between

tency throughout the range of available examples. the lines show that much of the improvement obtained by using reflections
and rotations in the the third experiment (figure 7) were the result of the use
of reflections and rotationper se rather than merely being a result of the

. . . . increased number of training examples they provided.
when playing against the test set by generating reflections and

rotations of the sensory patterns actually encountered during

the test games, and making a side test of how the legiafshsistency was obtained when both reflections and rotations
respond to those patterns. These responses are discarded @#fs used, and as with the performance experiment (ficure 5),
testing, so that they have no effect on play. For each moyeipcal minimum was obtained when relatively few training
in a test game a count is made of how many of the twelygymes were used (six in this case). The consistency error rate
possible reflections and rotations result in a move that does g this optimal method is approximately flat thereafter.
conform to the desired behavioral invariant. Each such failureAgain, it is worthwhile to understand how much of the
is counted as @onsistency errgrand at the end of the test areduced consistency error rate resulted from the increased
consistency error rate can be calculated. number of training examples provided by the reflections and
Since the perfect move for a legion is not actually knowRotations, vs. how much resulted from the fact that the addi-
the consistency errors are counted by deviation from a majoriiynal examples were reflections and rotatigrey se Thus
vote. That is, for each reflection and/or rotation of a sensofiye networks from the normalization experiment were also
input, a move is obtained from the network and then umested for behavioral consistency. The results, shown in figure
reflected and/or un-rotated to produce an “absolute” mo\g:. show the familiar trend of improvement as the number of
The 12 absolute moves are counted as votes, and the winfigining examples increases, but also show very substantial
of the vote is treated as the “correct” move for the current ganggiferences between the four methods, even when their training
state |4]. The reflections and rotations that do not producesgamples are controlled for count and structural variety. Thus
move that corresponds to the same reflection or rotation of thg,ch of the improvement in the consistency error rate in the
“correct” move are counted as consistency errors. uncontrolled experiment (figue: 7) can be attributed to the fact
All of the networks produced by the performance experihat the generated examples used reflections and/or rotations

ments described in section 1lI-B were tested to examine tb@r se rather than S|mp|y resumng from the increased number
effect of the various training regimes on behavioral consigf training examples.

tency. The results, summarized in figure 7, show that the three

methods using reflections and rotations reduce consistency IV. DISCUSSION AND FUTURE WORK

errors substantially in comparison to the base method of usingThe experiments show that training intelligent agents for
only the human-generated examples, regardless of how maaynes and simulators can benefit from the extra examples
example games are used. In every case the improvements vegtificially generated from reflections and rotations of available
statistically significant at the 95% confidence level. The belstman-generated examples. In accord with the hypotheses



stated in section lll, the technique results in agents that sctheee-dimensional environments, such as under water or in
better in the game and behave more consistently. outer space, may have a greater number of symmetries to be
The improved performance scores were shown to resekploited, offering even greater advantage for these methods.
primarily from the increased number of training exampleButure work will also investigate the effect of exploiting
provided by the reflections and rotations, but the improvexymmetries in boardgames with symmetrical boards, such
behavioral consistency resulted largely from the fact that thoas Go, where an external player-agent manipulates passive
examples were reflections and rotatiqmer se In principle, playing pieces on the board.
reflections and rotationper secould improve performance Supervised learning is not always the best way to train
scores as well, by providing a more systematic coverage of thgents for environments such asgion Il. Work in progress
input space. However, ihegion Il, the base method alreadyshows that training with neuroevolution ([6]. [7]. [8]. [5]),
provided over 80% consistency with respect to reflections anding on-line gameplay for fitness evaluations, can produce
rotations when only a single game’s examples were used famtroller networks that perform somewhat better than those
training (figure 7). The agents quickly learned the symmetrigsoduced by backpropagation in the experiments reported here.
necessary for the situations that had the most impact on thidmwever, evolutionary results can sometimes be improved
game scores. Further improvements in behavioral consistefagy combining evolution with supervised learning. Thus an
provided polish, but had no substantial impact on the scores.dovious avenue of future work is to use examples artificially
other domains the base coverage may be more idiosyncragienerated from sensor symmetries with methods such as
so that reflections and rotatiommer sewould significantly Baldwinian or Lamarckian evolution ([9]. ['L0]) in order to
improve performance. improve performance and behavioral consistency, the way
The combination of both reflections and rotations provideatiey benefited ordinary backpropagation in the experiments
the best results throughout. That method provided the best peported in this paper.
formance and consistency when relatively few example games
were made available for training, five and six games respec-
tively. This is a very promising result, because it suggests thatintelligent agents with sense-response controllers often have
good training can be obtained without excessive human eff§mmetries in their sensor architecture, and it is then possible
at generating examples. Rapid learning from relatively fel@ define behavioral invariants that would be observed across
examples will be important for training agents in a Machinf0se symmetries by perfectly trained agents. This observa-
Learning Game 5], where a player trains game agents g9n suggests that symmetrical invariants of sense-response
example at run time, and for simulations where agents md&havior can be exploited for training the agents, making
be re-trained to adapt to changed environments, doctrinesR§ir responses more symmetrical and effective. This paper
opponent strategies. Future work will thus investigate wheth@fows that both types of improvement are obtained in a game-
rapid learning from relatively few examples is seen in othdiKe test environment, and suggests that further attempts to
applications, and also whether a greatly increased number€PIOit sensor symmetries may provide similar benefits in
human-generated examples will ever converge to the saffBer environments and with other learning methods.

optimum. ACKNOWLEDGMENTS

The number of e_xgmples that can be generated from Sym_'I'his research was supported in part by the Digital Media
metries depends critically on the sensor geometry of the ag?Lnotllaboratory at the I€ Institute at the University of Texas
being trained. The number of radial sensors may vary with tg?

2 . . - Austin. The images used iregion II's animated display
application and implementation, providing a greater or Iesserre derived from aranhics supplied with the gafeeciv
number of rotations. However, if radial sensors do not a?! . grap PP 9 '

. . QtR:/Iwww . freeciv.org/
encompass equal arcs then rotations may not be possible &

all. For example, the agents in the NERO video game [5] also REFERENCES
use “pie slice” sensors, but W'th narrower arcs to the f_ronfl] B. D. Bryant and R. Miikkulainen, “Neuroevolution for adaptive teams,”
than to the rear, in order to improve their frontal resolution. in Proceeedings of the 2003 Congress on Evolutionary Computation

There is therefore no suitable invariant for the rotation of the (CEC 2003) vol. 3.  Piscataway, NJ: IEEE, 2003, pp. 2194-2201.
NERO ) [Online]. Available: http://nn.cs.utexas.edu/keyword?bryant:cec0O3

agents’ sensors. . [ZI] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning in-
However, the NERO agents, and probably most mechanical ternal representations by error propagation,” Rarallel Distributed

robots as well, have a bilateral symmetry that allows applying Processing: Explorations in the Microstructure of Cognition, Volume 1:

he behavi li . £ flecti heir | itudinal Foundations D. E. Rumelhart and J. L. McClelland, Eds. Cambridge,
the behavioral invariant for reflections across their longitudinal - \a. w7 press, 1986, pp. 318-362.

axis. The results presented in this paper show that artificiallg] R. R. Pagano,Understanding Statistics in the Behavioral Sciences
generated examples provide significant training benefits even 2nd ed. St. Paul, MN: West Publishing, 1986. )

. . . J\?l] B. D. Bryant, “Virtual bagging for an evolved agent controller,” 2006,
when only reflections are used, especially when relatively feW" ,anuscript in preparation.
human-generated examples are available (figures 5 and P K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-time

Thus the methods examined here should prove useful even neuroevolution in the NERO video gamelEEE Transactions on
Evolutionary Computation Special Issue on Evolutionary Computation

in_situations with far more restrictive symmetries tha_m iN" and Gamesvol. 9, no. 6, pp. 653-668, 2005. [Online]. Available:
the Legion Il game. On the other hand, agents operating in http://inn.cs.utexas.edu/keyword?stanley:ieeetec05

V. CONCLUSIONS


http://www.freeciv.org/
http://nn.cs.utexas.edu/keyword?bryant:cec03
http://nn.cs.utexas.edu/keyword?stanley:ieeetec05

(6]

J. Branke, “Evolutionary algorithms for neural network design
and training,” in Proceedings 1st Nordic Workshop on Genetic
Algorithms and Its Applications]. T. Alander, Ed. Vaasa, Finland: [9]
University of Vaasa Press, 1995, pp. 145 — 163. [Online]. Available:
http://citeseer.nj.nec.com/branke95evolutionary.html

[7] X. Yao, “Evolving artificial neural networks,’Proceedings of the

(8]

IEEE, vol. 87, no. 9, pp. 1423-1447, 1999. [Online]. Available{10]
ftp://lwww.cs.adfa.edu.au/pub/xin/yae3proconline.ps.gz

F. Gomez, “Learning robust nonlinear control with neuroevolution,”
Ph.D. dissertation, Department of Computer Sciences, The University

of Texas at Austin, 2003. [Online]. Availablz: http://nn.cs.utexas.edu/
keyword?gomez:phd3

R. K. Belew and M. Mitchell, Eds., Adaptive Individuals in
Evolving Populations: Models and Algorithms Reading, MA:
Addison-Wesley, 1996. [Online]. Availabl2: http://www.santafe.edu/sfi/
publications/Bookinforev/ipep.html

D. Whitley, V. S. Gordon, and K. Mathias, “Lamarckian evolution,
the Baldwin effect and function optimization,” iRroceedings of the
International Conference on Evolutionary ComputatidhDavidor, H.-

P. Schwefel, and R. Maenner, Eds., vol. 866, Jerusalem, Israel, October
1994.


http://citeseer.nj.nec.com/branke95evolutionary.html
ftp://www.cs.adfa.edu.au/pub/xin/yao_ie3proc_online.ps.gz
http://nn.cs.utexas.edu/keyword?gomez:phd03
http://nn.cs.utexas.edu/keyword?gomez:phd03
http://www.santafe.edu/sfi/publications/Bookinforev/ipep.html
http://www.santafe.edu/sfi/publications/Bookinforev/ipep.html

	I Introduction
	II The learning environment
	II-A The Legion II game/simulator
	II-B Agent sensors and controllers

	III Experimental evaluation
	III-A Experimental methodology
	III-B Effect on performance
	III-C Effect on behavioral consistency

	IV Discussion and future work
	V Conclusions
	References

