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Abstract

In standard neuroevolution, the goal is to
evolve one neural network that would com-
pute the right answer most often. However,
it often turns out that the population as a
whole could perform even better, if we could
only choose the right network for each input.
One way to do this is to evolve networks that
output not only the answer, but also an es-
timate of that answer’s correctness. Experi-
ments in the handwritten character recogni-
tion domain show that such an evolutionary
process, combined with an effective technique
for speciation, can create a population of net-
works that collectively performs better than
any individual network.

1 Introduction

In a typical approach to problem solving with evolu-
tionary methods, a genetic algorithm is used to evolve
a population of individuals each attempting to solve
the task. The most fit individual found during the
evolution, the champion, is designated as the final re-
sult. For example, when neural networks are evolved
for a decision task, the champion is the neural network
that is most likely to produce the correct decision for
any given input. The rest of the population, and the
knowledge and expertise it encodes, is simply thrown
away.

However, an analysis of the final population shows that
there are often other individuals in the population that
are able to produce correct decisions for inputs that
the champion cannot handle. Figure 1 shows the fit-
ness of the final population in the handwritten char-
acter recognition task. Although the champion only
identifies 64% of the characters correctly, 98% of the
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Figure 1: Percent of correct decisions attain-
able from a standard neuroevolution popula-
tion. Three different measures are used, from top to
bottom: the best answer found in the entire population
(unrealizable in practice), the answer of the most fit
individual, and the population average. Fitness indi-
cates the percentage of correctly-identified test charac-
ters in the handwritten character recognition domain
(section 4).

characters are correctly identified by at least one indi-
vidual in the population.

We could obtain this level of accuracy by simply choos-
ing the best answer from those produced by the entire
population. But how can we determine which individ-
ual most likely has the right answer for a given input?
One solution is to evolve the individuals not only to
produce the answer, but also a level of confidence that
this answer is correct. The population’s answer can
be defined as the decision made by the most confident
individual.
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This idea is tested in the handwritten character recog-
nition task. For the method to work, it is essential to
maintain high diversity in the population. Several spe-
ciation methods are tested; the island model and its
continuous version, the spatial model, are found to be
the most effective. With such diversity, the method
leads to populations that collectively perform better
than any single individual. Confidence evolution of
expert neural networks therefore constitutes a promis-
ing approach to utilizing the entire population as the
result of the evolutionary algorithm.

2 The Method of Confidence
Evolution

Figure 1 suggests that in order to make use of the
knowledge and expertise in the entire population, the
champion might be determined separately for each in-
dividual input. Such a selection can be made correctly
only based on the correct answer, which is not avail-
able during performance. Therefore, although such a
high level of performance exists in the population, it
is unattainable in practice.

However, it is possible to approximate this selection
in various ways. For example, it may be possible to
train (or evolve) a meta-level neural network to de-
cide which individual in the population is most likely
to produce the right answer for a given input. This is
the approach taken for example in the Mixtures of Ex-
perts approach [Jacobs et al., 1991], which works well
in many supervised tasks. An interesting alternative
is to require each individual to rate the quality of each
answer it produces. If the population learns to do this
effectively, one would be able to outperform the cham-
pion by choosing the decision of an individual report-
ing the highest level of confidence for each decision.
This is the approach taken in this paper.

Confidence may be represented by an additional out-
put unit on the neural network. Confidence is that
unit’s activation when the network is presented with
an input. The range of confidence, therefore, is be-
tween 0 and 1. To encourage the network to output
useful estimates through this unit, the fitness evalua-
tion must be altered. Many fitness evaluations in deci-
sion tasks are sums of Booleans, counting the number
of correct decisions an individual makes in trials on a
training set:

f= Zs(ﬁz)a (1)

where s(7;) = 1 if the network’s answer on trial ¢ was
correct, 0 otherwise.

Training with confidence changes this evaluation in a

simple way. It treats each of these trials as a bet.
Instead of simply winning 1 each time it is correct, it
also stands to lose 1 if it is incorrect. Moreover, the
size of the bet is determined by its confidence output

c(7):

f= Zs(m)c(m), (2)

where s(v;) = 1if the answer is correct, s(¥;) = —1if it
is incorrect. So the network is penalized s(¥;)c(%;) for
a wrong decision on input ¥; and is awarded s(;)c(7;)
for a correct decision. This process allows the network
to unilaterally set the amount of the bet that its re-
sponse is correct. It encourages networks to output
high confidence only for decisions that are likely to be
correct.

The fundamental change to the standard way of evolv-
ing neural networks is that in an evolution with con-
fidence, the entire population is considered to be the
product of evolution. Answers may be obtained from
the population by simply choosing the answer provided
by the most confident individual. The specific method
for leveraging confidence to extract high-quality deci-
sions is problem-dependent. For example, for some
decision tasks the sum of the population’s outputs
weighted by their confidence might be a useful quan-
tity. But in other domains, such as robotic controllers,
it might be better to allow a single individual to pro-
vide each decision: weighted sums of different motor
outputs could easily lead to a disaster.

In order to use confidence, the population must be di-
verse enough so that significantly different decisions
are made by networks inhabiting distinct niches. A
strong method of diversity maintenance (also called
speciation or niching), is therefore crucial for suc-
cess. On the other hand, the restrictions imposed by
the speciation technique may adversely affect learn-
ing performance for all individuals in the population.
A proper speciation technique should strike a balance
between these two factors.

3 Methods of Speciation

Speciation is an important design principle in genetic
algorithms. Genetic algorithms lose diversity over the
course of evolution, converging to a point at which all
of the genomes in the population are essentially the
same. At this point, crossover operation between two
nearly identical genomes is unlikely to create a more
fit offspring, and the progress of the GA from that
point will be slow, mostly through mutation. A prop-
erly speciated population, containing several “niches”
of solutions to the task, can continue improving even



after some of the niches reach local maxima from which
they are unable to improve. It provides for a more re-
liable search, with many approaches being explored in
parallel throughout the evolution.

Speciation techniques are generally implemented in
terms of genomes, rather than the structure imple-
mented by the genomes, or that structure’s perfor-
mance, because a diversity of genomes is needed to
search the solution space in parallel. However, this
diversity of genomes also results in diversity of behav-
iors. A speciated population contains a wider range
of answers—and is more likely to contain at least one
correct response for a particular input—than a homo-
geneous population. Therefore, speciation can be used
to create a population where different individuals are
responsible for different inputs.

Methods for promoting diversity may involve changes
to different parts of the canonical genetic algorithm.
In this paper we will compare speciation techniques
that modify the GA’s selection scheme, the replace-
ment scheme, and the fitness evaluation function. Also
crucial to population diversity is the scaling scheme,
i.e. the algorithm that converts the individuals’ fit-
nesses into probabilities of being included in the next
generation, either unchanged or combined with an-
other genome by crossover. An aggressive scaling
scheme that rewards slightly fitter individuals with
much higher probabilities will quickly lead to conver-
gence, as genetic material possessed by moderately-fit
individuals will be lost in each generation. More sub-
tle scaling schemes are desirable (and also used in this
paper) to delay population convergence.

A very simple approach to speciation is to arbitrarily
divide the population into non-interacting subpopula-
tions, or islands. A genome cannot perform crossover
with any genome of another island, and a newly cre-
ated individual may replace only a genome in the is-
land of its parents. In some versions, the island model
provides for a small rate of migration between islands.
Without migration, this approach is equivalent to run-
ning a genetic algorithm independently on each of the
islands. Even this trivial approach to speciation can
be useful; if the genomes in one island reach a plateau
early, others may continue improving. This difference
is not directly promoted; it is simply allowed to occur
by chance. Under migration, populations on an island
are allowed time to make small adjustments before
competing with outside genomes [Miihlenbein, 1991].

A more general, continuous version of the island
method is the spatial, or topological, method. Each in-
dividual may inhabit a vertex of an undirected graph,
and it may only perform crossover with an individ-

ual connected to it through an edge. The resulting
offspring may only replace the least fit of its parents,
only if the offspring is more fit. This setup is more
biologically plausible than the usual “panmictic” pop-
ulations in which any individual may mate with any
other. It prevents premature convergence since a par-
ticular genome can spread only to immediate neigh-
bors in a single timestep [Kephart, 1994].

The implementation of a spatial population described
above also incorporates the more general speciation
strategy called preselection, which stipulates that a
newly created individual in a population may only re-
place one of its parents. This protects against prema-
ture convergence because it ensures that at least some
of an individual’s genetic material will survive into the
next generation [Goldberg, 1989).

Fitness sharing is a technique that penalizes genomes
that inhabit neighborhoods of many other genomes.
Generally, an individual’s fitness evaluation is divided
by a sharing factor that measures the genome’s prox-
imity to others in the population. Genomes in heavily
populated peaks receive a high penalty, which trans-
lates into a lower probability of propagating to the
next generation. This technique is intended to spread
the population across several peaks in the solution
space, with larger (wider or higher) peaks able to
support more individuals. Implicit sharing is a vari-
ation in which, for each input, only the individual
with the best response from a randomly-selected sub-
set of the population is awarded fitness for that input
[Darwen and Yao, 1996].

Crowding is a generalization of preselection, where an
individual only replaces a genome to which it is similar
(but not necessarily the parent). Under crowding, af-
ter a new genome is created, a subset of genomes is ran-
domly selected from the population. The genome in
the subset which is closest to the new genome is chosen
to be replaced by the new genome [Goldberg, 1989)].

The confidence method was tested in conjuction of
each of the above speciation methods. Interestingly,
their performance was found to differ a lot in the hand-
written character recognition domain, which will be
described next.

4 Experiments

The method of confidence evolution was applied to the
standard benchmark task of recognizing handwritten
digits. There are many methods developed specifically
for this task. The present goal is not to compete with
them, but rather to test the viability of the method
and to refine it further. This task is well-suited for



such analysis because the correct decisions are readily
available. After the method has been tested and re-
fined, it will be possible to apply it to other task where
the correct performance is not known.

The data set used was the freely-available subset
of 2,992 examples of handwritten digits 0..9 in the
NIST database, scaled to an accuracy of 8 x 8 pixels
[Choe et al., 1996]. The networks had an input layer
of 64 units to encode the 8 x 8 input representing a
digit to be classified. The input layer was fully con-
nected to a hidden layer of 20 units, which was fully
connected to an output layer of 11 units, representing
each of the ten possible digit classifications, and an ad-
ditional unit to output the confidence in this classifica-
tion. The output unit with the highest activation was
chosen as the classification. The genome represented
the real values of the weights and biases of the net-
work. While the canonical GA operates only on binary
strings, analogous operations of crossover and muta-
tion were implemented for the real-valued genome: a
uniform crossover could take place between weights,
and each weight was mutated with a 0.01 probability
by adding a normally distributed random value of 0
mean and 1.0 standard deviation to the weight.

The genetic algorithm proceeded on a population of
100 individuals for 5,000 generations. During each
generation, the fitness for each network was calculated
according to equation 2 (and equation 1 for those ex-
periments where confidence was not used) on a train-
ing set of 2,000 patterns, selected randomly among the
2,992 for each experiment. Fitness scaling was done
by sigma truncation scaling [Goldberg, 1989], which
tolerates negative fitness values. Selection was fitness-
proportionate. Throughout evolution, each population
was tested on a randomly-chosen test set of 200 pat-
terns not part of the training set.

Notice that a more accurate fitness evaluation could
easily be designed, such as the sum of squared er-
rors between the outputs and the target output. Such
an evaluation would capture more information about
the differences between individuals; however, Boolean
values were chosen in order to emulate less well-
understood decision tasks for which such detailed
information is not available. Furthermore, the fit-
ness evaluation seeks to reward only the desired out-
come (the correct classification in the winner-takes-
all sense), not any specific way of attaining the out-
come. Having such an open-ended fitness evalua-
tion allows the network to implement its own, pos-
sibly unexpected, method for achieving the result
[Floreano and Urzelai, 2000].

The different speciation techniques outlined in Sec-

Average distance

Population diversity

T T T T T T T T
Island model
Spatial model
100 - Crowding

Preselection -—---
L Control -------
e

60

aoF i B

20 | . ]

L L L L L
2500 3000 3500 4000 4500

Generation

0 L L L L
0 500 1000 1500 2000 5000

Figure 2: Population diversity under different
speciation methods. The plots (from top to bot-
tom) show the maximum, average and minimum Eu-
clidean distances between genomes in the population
as evolution progresses. Plots are each averaged over
10 independent evolutions.

tion 3 were each tested as part of the confidence evo-
lution method. The island method was implemented
by splitting the 100 genomes into 10 noninteracting
islands of size 10, with no migration. A spatial popu-
lation was laid out on a 10 x 10 grid with edges folded
back to create a torus; an individual could mate only
with one of its four neighbors, with the offspring re-
placing the parent with lower fitness, only if the off-
spring’s fitness was higher. Fitness sharing was imple-
mented by penalizing genomes according to Euclidean
proximity to others in the population. Crowding was
implemented such that a new individual was placed in
the population in place of the closest Euclidean neigh-
bor in a random subset of 10 from the population. In
preselection, an offspring replaced the parent with the
lowest fitness if the offspring was more fit than that
parent.

5 Results

To varying degrees, each speciation method was able to
maintain diversity in the evolution. For each of these
methods, the average Euclidean distance between the
100 genomes in the population throughout an evolu-
tion without confidence is plotted in figure 2. The is-
land model and the spatial model, i.e. those methods
that directly restrict mating to a local neighborhood,
resulted in particularly good genomic diversity. A con-
trol evolution with no speciation is shown as well. The
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Figure 3: Accuracy of confidence evolution with
islands. On top, the fitness obtained by choosing
(through an unrealizable oracle) the best answer in
the entire population is plotted. In the middle, the
fitness obtained by choosing the answer of the most
confident individual is shown. The fitness of the most
fit individual is plotted in the bottom. The plots are
averages over 10 runs.

control evolution quickly lost much genomic diversity,
bottoming out at approximately generation 200. This
result highlights the need for speciation.

Evolutions with crowding, sharing, and preselection
each slowed convergence compared to the evolutions
with no speciation, but were considerably less effec-
tive. These techniques do not restrict replacement as
strongly as the island and the spatial models do; they
involve a high degree of randomization in the choice
of which population member a new genome should re-
place. Since this decision is randomized, sampling er-
ror can affect replacement, causing genetic drift. Mah-
foud (1992) cites this stochastic error as a difficulty
with crowding and preselection.

As expected, those speciation methods that main-
tained the highest diversity also provided the best ad-
vantage for confidence evolution. Populations evolved
using the island model and the spatial model were di-
verse enough so that choosing the answer of the most
confident individual resulted in better performance
than could be obtained from the population’s cham-
pion. Figure 3 compares the accuracy in the test set
of the (unattainable) best answers, answers selected by
confidence, and the most fit individual for the island
model.

The accuracy of the different methods in the test set
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Figure 4: Accuracy of confidence evolution with
different speciation methods vs. standard evo-
lution. The island method performs the best; the
other methods are weaker than the standard evolution,
labeled “Control”, in the order shown in the legend.
The plots are averages over 10 runs.

is compared in figure 4. The main result is that con-
fidence evolution with islands resulted in a slightly
higher level of performance than the control evolution.
The other methods were worse, underlining the impor-
tance of an effective speciation method in confidence
evolution. Crowding, in particular, did not perform
above chance; apparently one or more high-bidding
and wrong individuals persisted thoughout the evolu-
tion, never being replaced because they were too far
from the other genomes. This result demonstrates the
difference between random diversity (such as the popu-
lation before the first generation), and useful diversity
(niches of high-performing but different individuals).
Only the latter kind of diversity is useful for confidence
evolution.

Interestingly, when speciation methods were added to
the standard evolution, the performance either was not
affected or actually became worse. This result suggests
that making full use of speciation requires a technique
such as confidence. It also shows that the observed
improvement over standard evolution is indeed due to
confidence, and not speciation.

6 Discussion and Future Work

The experimental results in this paper show that confi-
dence evolution can improve performance of neuroevo-
lution in the handwritten digit recognition task. They
also show that effective speciation is crucial for this



technique. How general are these results?

Speciation is generally used in a genetic algorithm to
increase the overall rate of learning by slowing down
population convergence. However, when speciation is
used in conjunction with confidence evolution, the goal
is instead to increase the variation in answers made.
The existing speciation techniques used in this pa-
per may not be the best for this new, slightly differ-
ent goal. This issue is underscored by the fact that
confidence provided the greatest advantage in evolu-
tions with completely noninteracting subpopulations
— a technique that would tend to harm overall fitness
since small populations are being evolved in each is-
land, leading to cruder solutions.

In the extreme, a speciation technique that even sig-
nificantly decreases the overall fitness of the popula-
tion would work well with confidence evolution if it
maintains a large variety of correct answers. This is
a tradeoff that is not acceptable in a standard ge-
netic algorithm: if the goal of speciation is to increase
the overall rate of learning, a technique that lowered
the fitness of all individuals significantly would not
be useful. But given this new set of criteria, perhaps
such strong speciation techniques could be devised in
the future, gaining even more benefit from confidence
evolution than is possible with the current techniques
[Ackley, 1987, Katila, 1987].

It is also possible that domains other than character
recognition might be more amenable to the current
speciation techniques. This domain benefits from a
large number of individuals fine-tuning an approxi-
mate solution in a small space, which requires exactly
the convergence that speciation attempts to avoid. In-
stead, genetic algorithms in general and speciation
methods in particular are strongest at quickly find-
ing approximate solutions. Therefore, problems that
involve more global search may be more amenable to
the current techniques.

In particular, genetic algorithms are the method
of choice for sequential decision tasks where the
correct answers are not known and the feedback
is highly sporadic [Moriarty and Miikkulainen, 1997,
Moriarty et al., 1999]. Given the promising results in
the handwritten character recognition domain, confi-
dence evolution should work well in such tasks. For
example, imagine applying confidence to the training
of a robotic controller. Each neural controller in the
population would be presented with an encoding of the
robot’s sensory input, and it would output a motor ac-
tion and a confidence level. The action recommended
by the most highly confident controller would be se-
lected. After several decisions were made, a fitness

evaluation for the whole sequence of decisions would
be obtained. This fitness would then be distributed to
the controllers according to how confident they were
of their outputs and how often they were selected.

Although at first it seems that such fitness informa-
tion might be too noisy, the situation is very simi-
lar to those of SANE and ESP neuroevolution meth-
ods described in [Moriarty and Miikkulainen, 1997],
[Moriarty, 1997],  [Gomez and Miikkulainen, 1997],
and [Gomez and Miikkulainen, 1999], where popula-
tions of neurons are evolved to form good neural net-
works. Fach neuron receives a fitness based on how
well the whole neural network performed in the task:
in effect, the neurons are evolved to speciate into use-
ful subtask that work well together. In reinforcement
learning tasks with confidence evolution, similarly each
network is rewarded based on how well the whole pop-
ulation did in the sequence of decisions. Given how
powerful the SANE and ESP methods are, this same
approach may also work well in confidence evolution.

In other learning tasks, it may be useful for an agent to
express its confidence in a more direct form, by answer-
ing a more specific question about its performance. For
example, a neural robotic controller might estimate the
amount of time needed to reach a goal state, rather
than estimating its probability of success. Such fitness
functions might lead to more powerful evolution. Sim-
ilarly, instead of always selecting the most confident
individual’s answer, the answer might be constructed
by combining answers of the most fit individuals, or by
at least not considering the answers of those with the
lowest fitness. This method would for example solve
the problem that occurred with crowding in the above
experiments.

Different techniques of training individuals to output
confidence could also be considered. Evolving net-
works to provide answers and confidence estimates is
clearly a more difficult task than simply evolving net-
works to provide answers. Might this increased diffi-
culty be offset by using a combination of evolution and
learning, or by Lamarkian evolution? Might it be ben-
eficial to evolve the confidence neuron or network in a
separate phase of evolution? Or perhaps as a separate
network entirely? These are some of the issues that
will be explored in future work.

7 Conclusion

This paper shows how the knowledge and expertise en-
coded by the entire evolved population can be utilized
to obtain a high level of performance. High-quality
decisions may be extracted from the population if a



fitness evaluation rewards individuals that accurately
output estimates of the quality of their decisions. To
use this technique, a diverse population, capable of
producing many different correct answers, is needed.
This research motivates the development of techniques
to ensure a high level of diversity throughout evolu-
tion, possibly even at the expense of overall fitness.
The technique of confidence may have broad applica-
bility in the domain of reinforcement learning tasks,
which is the main direction of future work.
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