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Abstract| Knowledge of clusters and their

relations is important in understanding high-

dimensional input data with unknown distribu-

tion. Ordinary feature maps with fully connected,

�xed grid topology cannot properly reect the

structure of clusters in the input space|there are

no cluster boundaries on the map. Incremental

feature map algorithms, where nodes and connec-

tions are added to or deleted from the map accord-

ing to the input distribution, can overcome this

problem. However, so far such algorithms have

been limited to maps that can be drawn in 2-D

only in the case of 2-dimensional input space. In

the approach proposed in this paper, nodes are

added incrementally to a regular, 2-dimensional

grid, which is drawable at all times, irrespective

of the dimensionality of the input space. The pro-

cess results in a map that explicitly represents the

cluster structure of the high-dimensional input.

I. Introduction

The self-organizing feature map's [6, 7] primary use as a
computational tool is in forming a mapping from a high-
dimensional input space to two dimensions. How useful
the map is for a given task depends on how accurately
it represents the input space. In general, the input space
may be arbitrarily nonconvex and discontinuous, and may
contain high-dimensional clusters. A good representa-
tion of the space should somehow capture such topolog-
ical properties. However, accurately representing high-
dimensional structure on a continuous, fully connected
n � m grid is problematic. Discontinuities in the input
space may appear bridged in the map. The map may
have connections that span the disjoint clusters, or it may
have nodes situated within the discontinuity where the
input probability is 0 (Fig. 1). In other words, the �nal
feature map sometimes misrepresents the topology of the
input data.

Real world data sets often contain distinct but non-

obvious subsets of data. Determining the set of classi�-
cations that optimally describes such subgroupings is a
primary goal of many standard clustering methods. Be-
cause gaps become bridged, the standard self-organizing
algorithm does not naturally delineate the boundaries of
such groupings. A feature map application that depends
on an accurate representation of neighborhood boundaries
would thus need to perform further analysis to determine
if discontinuities have been inaccurately spanned in the
map.
This paper describes an incremental grid-growing al-

gorithm for incorporating such information directly into
the structure of the map. During organization, non-
convexities, discontinuities and clusters in the data set
become explicitly represented in the 2-dimensional struc-
ture of the map. Thus the algorithm can yield an accu-
rate, low-dimensional description of the structure in high-
dimensional input.

II. An incremental approach

In order to develop an accurate representation of the
topology, the self-organizing algorithm must either rec-
ognize and correct misrepresentations that develop in the
map, or else prevent such incorrect topology from being
encoded in the �rst place. Completely preventing the
development of inaccurate structure is impossible with-
out a priori knowledge of the input space. On the other
hand, fully organizing a map and then modifying it so
that unwanted structures are removed may require much
extra computational e�ort. In general, an algorithm must
be equipped with some e�ective heuristics to accomplish
both ends: to guide the development of structure actu-
ally present in the data set, and to detect and correct any
\false" topology in the map as early as possible during
organization.
These considerations suggest an incremental approach

to building and organizing the map. Such an approach
would initially organize a small number of nodes in the
structure, then use a heuristic to �nd and remove any po-
tentially inaccurate nodes or connections. Another heuris-
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Fig. 1: Representing nonconvex input distributions
with ordinary feature maps. The input space consists of
2-dimensional vectors uniformly distributed in the shaded re-
gion. The black dots indicate locations of the feature map
weight vectors after the map has been organized. Weight vec-
tors of neighboring nodes in the map are connected with lines.
Note that nodes are allocated to areas where there is no input.
Similarly, connections sometimes span these areas, suggesting
that the connected nodes represent neighboring vectors in the
input space although in reality they belong to di�erent clusters.

tic could be used to add nodes to the structure. The new
structure would be re-organized, and the process contin-
ued. At every epoch, the algorithm would guide the map
toward representing the high-dimensional properties of the
data set accurately.

Approaches that employ such heuristics to some extent
include [1, 2, 3, 4, 5, 8, 10, 12, 13]. Fritzke's growing
cell structure algorithm [1, 2, 3] is particularly interesting
because it incorporates methods for both the incremen-
tal build-up and the periodic correction of the network
structure. The basic layout of the map, however, is not a
2-dimensional grid of nodes, but rather a structure whose
connections at all times de�ne a system of triangles (i.e.,
every node must always be a member of a triangle). Dur-
ing organization, a heuristic measure is used to determine
areas of the map that inadequately represent their cor-
responding areas of the input space, and new nodes are
added in these areas. Also, nodes that rarely respond
maximally to the input are periodically removed from the
map.

The algorithm results in a network structure that rep-
resents an arbitrarily connected graph G = (V;E), where
V is the set of nodes, and E is the set of connections be-
tween them. In the case of 2-dimensional input, it is easy
to verify that the network accurately represents the input
by plotting the weight vectors in 2-D. When the input
is high-dimensional, however, such an arbitrary structure

may not have a simple low-dimensional description (that
is, it cannot easily be drawn in 2 dimensions). Fritzke
[3] presents a drawing method based on a physical force
analogy that works reasonably well when the input space
is low-dimensional (e.g., 3-D), but is not guaranteed to
produce a planar drawing. Also, the arbitrary connectiv-
ity makes topological neighborhoods ambiguous beyond
directly connected nodes. Any node may be connected to
any number of neighbors, so a neighborhood of a given
radius in the structure (i.e., the number of connections
outward in any direction) has little topological meaning.
Thus, extracting the overall topological relationships of
the input space from this structure may not be easy. The
algorithm does explicitly represent clustering of the in-
put data by removing connections between the clusters in
the structure. However, the topology within clusters and
across continuous data sets may be di�cult to determine.

The incremental grid-growing algorithm described in
this paper is also based on the incremental approach, but
it avoids the di�culties of an arbitrarily connected graph
structure. The map retains a regular 2-dimensional grid
at all times. At any point during the organization, the
map has a simple 2-dimensional description, and topolog-
ical relations are easily examined by plotting the nodes
and connections of the map in 2-D.

III. The grid-growing algorithm

Initially, the feature map grid consists of four connected
nodes with weight vectors chosen at random from the in-
put (Fig. 2a). Each main iteration of the algorithm con-
sists of three steps:

1. Adapting the current grid to the input distribution
through the usual feature map self-organizing pro-
cess.

2. Adding nodes to those areas in the perimeter of the
grid that inadequately represent their corresponding
input area.

3. Examining the weight vectors of neighboring nodes
and determining whether a connection between the
nodes should be deleted from the map, or whether
a new connection should be added.

The new structure is re-organized, and the process con-
tinues until a predetermined maximum number of nodes
has been reached.
Each step will now be described in more detail. A

boundary node is de�ned as any node in the grid that
has at least one directly neighboring position in the 2-
dimensional grid space not yet occupied by a node. Each
boundary node of the current structure maintains an error
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Fig. 2: Growing the feature map grid. Figure (a)
shows the initial structure after the �rst organization stage;
the boundary node with the highest error value is marked.
(b) New nodes are \grown" into any open grid location that
is an immediate neighbor of the error node. (c) After orga-
nizing the new structure with the standard self-organization
process, a new error node is found. (d) Again, new nodes are
grown into any open grid location that is an immediate neigh-
bor of the error node. (e) During self-organization of this new
structure, the algorithm detects that the circled nodes have
developed weight vectors very close in Euclidean distance. (f)
These \close" nodes are connected. (g) After further organi-
zation, the algorithm discovers connected neighboring nodes
whose weight vectors occupy distant areas of the input (i.e.,
the nodes have a large Euclidean distance). (h) These \dis-
tant" nodes are then disconnected in the grid.

value E over its organizational stage. During each itera-
tion within the organizational stage, whenever a bound-
ary node wins an input presentation (i.e., the Euclidean
distance between the node's weight vector and the input
vector is minimum for the map), the square of the dis-
tance between its weight vector and the input is added to
the error value:

E(t) = E(t � 1) +
X
k

(xk � wk)
2; (1)

where E is the cumulative error and w the weight vector
of the winning unit, and x is the input vector.
At the end of each iteration, the boundary node with

the greatest cumulative error can be said to represent the
area of the input space most inadequately represented in
the map. This node \grows" new nodes in all unoccupied
grid locations in its immediate neighborhood (Figures 2a-
d). New nodes are directly connected to the error node. If
any other directly neighboring grid spots are occupied (as
in Fig. 2d), the new node's weight vector is initialized to
be the average value of all the neighboring weight vectors:

wNEW;k = 1=n
X
i2N

wi;k; (2)

where wNEW;k is the kth component of the new unit's
weight vector and N is the set of the n neighboring nodes
of the new unit. Otherwise (as in Fig. 2b), the new node's
weight vector is initialized so that the weight vector of
the error node is the average of the new node's vector and
the vectors of any already existing neighbors of the error
node:

wERR;k = 1=(m+ 1)

 
wNEW;k +

X
i2M

wi;k

!
; (3)

where wERR;k is the kth component of the error node's
weight vector and M is the set of the m already existing
neighbor units of the error node.
Initially, the new nodes are connected to the structure

only through the error node. As the structure continues
to organize, these new nodes may develop weight vectors
that are close to the weight vectors of neighbors to which
they have not been connected. If this is the case, it is
desirable to add a new connection joining these nodes.
An adjustable threshold parameter is used to decide if a
new connection should be grown. After each organiza-
tional iteration, the Euclidean distance between uncon-
nected neighboring nodes in the map is examined. If the
distance is below the \connect" threshold parameter, a
connection between the nodes is added to the structure
(Figures 2e-f).
Similarly, a \disconnect" threshold parameter is used to

determine if there are two nodes in the map that are con-
nected even though they represent points that are distant
in the input space. Exceeding such a threshold may indi-
cate that a connection spans a discontinuity in the input,
and should be removed from the map (Figures 2g-h).
If the input distribution forms a connected area (as do

the four arms of the cross in Fig. 1), in practice it is rarely
necessary to delete connections from the grid. But it is
possible to have disjoint input clusters in the data set|for
example, the four arms might be separated by gaps. In



general, Euclidean distances between clusters are greater
than the intra-cluster distances. The clusters become sep-
arated from each other when the connections that span
the inter-cluster gaps are removed by the algorithm. If the
disconnect threshold is selected properly, distinct clusters
will become separated in the map. The portions of the
grid representing the independent clusters will continue
to develop according to the topologies of the individual
data clusters.
Adding nodes only at the perimeter allows the map to

develop an arbitrary topology. Further, adding nodes only
to areas that inadequately represent the input encourages
the map to develop only those topological structures that
are actually present in the data. Disconnecting nodes that
span an apparent discontinuity allows clusters to separate
and to continue to develop independently. The clusters
that automatically develop this way may represent cat-
egories or sub-sets within the data set. Capturing such
properties of the input space in the 2-dimensional struc-
ture of the map can greatly assist the interpretation of the
input data.

IV. Examples

The topology of an arbitrary high-dimensional space is dif-
�cult to visualize without a dimensionality-reducing tool
such as a feature map. On the other hand, the topology
of a 2-dimensional data set is trivial to visualize. Thus,
for illustrative purposes, an experiment where the incre-
mental grid-growing algorithm developed a feature map
of a 2-dimensional input space is presented in Fig. 3. As
in Fig. 1, 2-dimensional vectors were chosen with uni-
form probability from the cross-shaped shaded area. The
grid developed four arms connected through an area that
represents the central portion of the cross. Each arm is
represented by approximately the same number of nodes,
and the central region is represented by a proportionately
lower number of nodes. The clusters in this input space
are joined in the central region; this structure is duly re-
ected by the continuity of the resulting grid. Note that
the grid structure itself, even without any labelling of
nodes, follows the overall topology of the input space. The
structure of the data set and its overall probability density
are encoded in the structure of the map.
Let us now extend this example to higher-dimensional

input. Consider the case where each of the arms is a 4-
dimensional \box" along one of 4 coordinate axes. Three
of these arms are connected to a 4-dimensional area sur-
rounding the origin, while the fourth region is separated
from the origin by a gap. That is, the input vectors
(x1; x2; x3; x4) are uniformly distributed within the 4-
dimensional area de�ned by the union of the following
5 areas:

200 epochs

800 epochs

500 epochs

1500 epochs

Fig. 3: Snapshots of the grid evolution for a 2-
dimensional cross input. On the left, the weight vectors
are plotted on the 2-d input space. On the right, the corre-
sponding grid structure is shown. Shading of the area around
a node indicates the arm of the cross where that node's weight
vector is located. The four arms are separated in the grid, with
a common center.



Weights (w1;w2 ; w3; w4) : 0 � w1 ; w2; w3;w4 < 1

Weights (w1;w2 ; w3; w4) : 0 � w2; w3; w4 < 1; 1 � w1 < 5

Weights (w1;w2 ; w3; w4) : 0 � w1; w3; w4 < 1; 1 � w2 < 5

Weights (w1;w2 ; w3; w4) : 0 � w1; w2; w4 < 1; 1 � w3 < 5

Weights (w1;w2 ; w3; w4) : 0 � w1 ; w2; w3 < 1; 2 � w4 < 6

Fig. 4: Final grid structure for 4-dimensional, disjoint
input space. The common center (the �rst area) and the
�rst three arms are connected, while the fourth arm is fully
separated.

Area 1 = f(x1; x2; x3; x4) : 0 � x1; x2; x3; x4 < 1g
Area 2 = f(x1; x2; x3; x4) : 0 � x2; x3; x4 < 1; 1 � x1 < 5g
Area 3 = f(x1; x2; x3; x4) : 0 � x1; x3; x4 < 1; 1 � x2 < 5g
Area 4 = f(x1; x2; x3; x4) : 0 � x1; x2; x4 < 1; 1 � x3 < 5g
Area 5 = f(x1; x2; x3; x4) : 0 � x1; x2; x3 < 1; 2 � x4 < 6g

The �nal map representing this structure is shown in
Fig. 4. As in the 2-dimensional case above, the �rst three
arms are connected through the central region and ex-
tend outward. The fourth arm is fully separated from
the �rst three. The relative numbers of nodes throughout
the structure reect the uniform distribution of the input.
Again, the overall topology and distribution of the input
space is apparent in the simple 2-dimensional structure of
the grid.

The �nal example, the \spanning tree" of [7], demon-
strates the algorithm's ability to develop arbitrarily com-
plex topologies for discrete inputs. In this example, the in-
put consists of the 5-dimensional vectors listed in Fig. 5a.

ABCDEFGH IJKLMNOPQRSTUVWXYZ123456

1 2 3 4 5 3 3 3 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 333333
0 0 0 0 0 1 2 3 45 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 333333
0 0 0 0 0 0 0 0 00 1 2 3 4 5 6 7 8 3 3 3 3 6 6 6 6 666666
0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 1 2 3 4 1 2 3 4 222222
0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 123456
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Fig. 5: (a) The input set for Kohonen's spanning tree
example [7]. (b) The minimal spanning tree of the
data. Although the example may seem arti�cial, it illustrates
the self-organizing feature map's capacity to represent the gen-
eral topology of di�cult-to-describe data sets. The data has
no obvious or easily discernible description, but the minimal
spanning tree is one relational description that might be de-
rived.

The high-dimensional topology of this data set is di�cult
to describe, but a minimum spanning tree is one possible
structure that could be used to represent it (Fig. 5b). In-
deed, if one knows what to look for, it is easy to see that
the map developed through the standard self-organizing
algorithm displays the spanning tree (Fig. 6a). However,
the full connectivity of the map makes it di�cult to dis-
cern a true tree or graph structure from the map alone.
The incremental grid-growing algorithm applied to the

same data set derives a map that makes the arrangement
much clearer (Fig. 6b). The arms of the spanning tree
are clustered in delineated regions of the map. Also, the
relationships between the clusters are narrowly speci�ed
by the limited connectivity between them. The structure
of the map obviates the need for a priori knowledge of
the spanning tree. Interestingly, \conventional" clustering
methods (e.g., merge clustering) do not naturally derive
such graph-like relationships in this type of data.

V. Conclusion and future work

The incremental grid-growing algorithm constructs 2-D
drawable feature maps of arbitrary nonconvex and dis-
continuous high-dimensional input distributions. The al-
gorithm addresses a primary shortcoming of the standard
SOFM: deciding where the boundaries of clusters and spe-
ci�c regions are on the map. The overall topology of the
input space is encoded in the continuity of the network
structure alone, before any node labelling has been done.
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Fig. 6: Feature map representation for the spanning
tree data. (a) Map derived by the standard self-organizing al-
gorithm [7]. The map is hexagonally connected. The spanning
tree structure is clearly present in the map; however, the full
connectivity makes it di�cult to extract exact neighborhood
relations between units. (b) Map derived by the grid growing
algorithm. The limited connectivity between clusters in the
map closely resembles the structure of the spanning tree.

Because the 2-dimensional clusters that develop can be
interpreted as categories, the grid is a useful tool for data
classi�cation. Furthermore, it can extract and represent
tree- and graph-like structures, which makes it useful in
visualizing the relationships in complex high-dimensional
data sets.

Our ongoing work on grid growing includes �ne-tuning
the basic algorithm and applying it to real-world prob-
lems. Like any other feature map algorithm, the incre-
mental grid algorithm could be improved by a method for
setting the threshold values automatically (removing the
need for parameter tuning). It would also be desirable to
develop a computational measure that could be used de-
cide when a map has developed a good representation for
an arbitrary data set.

In addition, the application of the algorithm to various
complex high-dimensional data sets is being investigated.
For example, the algorithm should be useful in develop-
ing clusters for the representation of semantic features of
words (e.g. [9, 11]). Data interpretation and knowledge
representation in general is a most promising application
of feature map algorithms, and incremental grid growing
should prove particularly useful in such tasks.
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