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Abstract—Most successful examples of Reinforcement 

Learning (RL) report the use of carefully designed features, 

that is, a representation of the problem state that facilitates 

effective learning. The best features cannot always be known in 

advance, creating the need to evaluate more features than will 

ultimately be chosen. This paper presents Temporal Difference 

Feature Evaluation (TDFE), a novel approach to the problem 

of feature evaluation in an online RL agent. TDFE combines 

value function learning by temporal difference methods with 

an evolutionary algorithm that searches the space of feature 

subsets, and outputs a ranking over all individual features. 

TDFE dynamically adjusts its ranking, avoids the sample 

complexity multiplier of many population-based approaches, 

and works with arbitrary feature representations. Online 

learning experiments are performed in the game of Connect 

Four, establishing (i) that the choice of features is critical, (ii) 

that TDFE can evaluate and rank all the available features 

online, and (iii) that the ranking can be used effectively as the 

basis of dynamic online feature selection. 

Keywords—Reinforcement Learning; online learning;  

Evolutionary Algorithms; feature selection; Connect Four. 

I. INTRODUCTION 

Reinforcement Learning (RL) [1] is a potentially 
powerful way to discover effective behavior in games. An 
RL agent attempts to change its policy in order to maximize 
its rate of reward. RL takes place online if the agent must 
learn from playing real games, and the quality of its 
performance in those games matters. Therefore an online 
agent must balance exploitation of what it has learned so far 
with effective exploration of alternative actions. 

Typically, an RL agent perceives the state of the game as 
a one-dimensional array of real numbers called features. A 
feature is any intrinsic state-variable of the game, or any 
real-valued function taking some subset of the state-variables 
as its domain. An important challenge for RL is that of 
feature selection, in which some available features are 
ignored because they would harm the agent's performance, 
not help it. Feature selection can be further decomposed into 
two sub-problems: First, evaluate the available features for 
their potential utility and, second, apply some decision 
process based on the evaluations to pick which features will 
be ignored. This paper presents a novel approach to the first 
of these sub-problems, called Temporal Difference Feature 

Evaluation (TDFE). TDFE ranks features from best to worst, 
but does not specify a decision process for picking which 
features will be ignored. Although a decision process must 
be implemented in order to use TDFE as part of an agent, 
this paper does not advocate for any particular decision 
process or agent design. Instead, it demonstrates that feature 
evaluation matters, and that TDFE is an effective way to do 
it. 

TDFE is intended for use in an online RL agent that uses 
features as inputs to a value function which it updates by 
temporal difference algorithms [1]. TDFE evaluates multiple 
feature subsets in parallel and uses an evolutionary algorithm 
to find combinations of features that work well together. 
Statistical estimates about each subset are combined to 
generate a ranking over the available features. TDFE is 
unique in that it combines three useful properties. 

First, TDFE is scalable: The ranking induced includes all 
the features that are available to the agent, which is typically 
more features than the agent is actually using to learn its 
policy in the game. Moreover, increasing the number of 
available features does not increase the number of game-
states that the agent needs to sample in order to compute the 
ranking. This property is desirable for online learning 
because the speed of improvement with respect to the 
number of games played matters. Although the cost per 
sampled state of computing the ranking does increase with 
the number of available features, the issue can be mitigated 
because TDFE is amenable to distribution across parallel 
hardware. 

Second, the ranking induced by TDFE is dynamic: All 
the statistics needed to compute the ranking are updated 
incrementally after each sampled game-state, which allows 
the ranking to be adjusted at arbitrary time intervals. A 
dynamic ranking is desirable because the relative importance 
of the agent's available features can change over time. For 
example, as the agent learns to play better, it begins to 
encounter new game-states in which a previously irrelevant 
feature becomes useful. Alternatively, other players in the 
game could change their policies causing a similar effect. Or,  
if the agent attempts a search in the space of possible 
features, then some old features could be replaced with 
newly constructed ones which will then need to be included 
in the ranking. 



Third, TDFE makes no assumptions about the underlying 
function representation of any features. For example, TDFE 
can evaluate a set of features containing a mixture of Neural 
Networks, Decision Trees, and Genetic Programs on a level 
playing field, and include them all in the same ranking. 
Representation-agnostic feature evaluation is desirable 
because the best features in different games may be based on  
different function representations. 

Online learning experiments were performed in the game 
of Connect Four to test the benefit of TDFE. A simple RL 
agent's performance using TDFE was almost as good as 
when it was provided with the best possible choice of 
features in advance. 

II. RELATED WORK 

Some recent RL algorithms have adapted techniques 
from Supervised Learning to the RL problem. LARS-TD [2] 
combines LARS (Least Angle Regression) and LSTD for 
finding the l1-regularized fixed point value function. EGD 
(Equi-Gradient Descent) [3] adapted LARS for minimizing 
the Bellman residual for temporal difference learning. OMP 
(Orthogonal Matching Pursuit) is a greedy feature-selection 
algorithm for regression which uses the correlation between 
the residual and the candidate features to decide which 
feature to add next. OMP has been adapted to RL in OMP-
BRM and OMP-TD [4]. 

Unlike TDFE, the applicability of the above methods to 
online learning is limited by two factors: First, they rely upon 
batch updates, meaning that the agent does not modify its 
policy until a sufficient number of game states have been 
sampled, which increases the amount of time during which 
the agent's policy is fixed. Second, these methods assume a 
set of features that does not change while the agent learns, 
which is particularly significant for the greedy algorithms 
because they offer no natural way to backtrack and revise 
earlier feature selection decisions. 

Some methods attempt to obviate the problem of feature 
selection by constructing and/or tuning only a minimal set  
features and simply using all of them. Examples include 
Proto-Reinforcement Learning (PRL)[5], Bellman Error 
Basis Functions  [6], and Adaptive Bases[7]. Unlike TDFE, 
these methods are tied to specific function representations for 
their features and hence are not representation-agnostic. 

Evolutionary algorithms are typically applied to feature 
evaluation as an offline method. That is, the learning task is 
used as a wrapper to provide the fitness function for evolving 
features and feature subsets. Examples include FS-NEAT 
[8], and variants of Genetic Programming [9]. These offline 
methods have been adapted to RL by using the performance 
of an RL agent as the wrapper. Examples include Pittsburgh-
style Learning Classifier Systems [10], and agents that use 
Genetic Programming [11]. 

Unlike TDFE, the wrapper approaches are of limited use 
for online RL because they are based on a population of 
policies each of which needs to be independently evaluated. 
This requirement causes the overall sample complexity to be 
multiplied by the population size. NEAT+Q [12] attempts to 

mitigate this problem but must still evaluate a population of 
policies.  

A Michigan-style Learning Classifier System [10] avoids 
the sample multiplier by being a complete RL agent in which 
feature evaluation is an integral part of the value function. In 
contrast, TDFE is not an agent, it is a method for performing 
feature evaluation as a separate module from the agent's 
value function. 

III. TEMPORAL DIFFERENCE FEATURE EVALUATION 

Fig. 1 depicts the four-stage process that TDFE iterates 
over to evaluate features. Stages A-D are described in the 
next four sub-sections. 

A. Feature Subset Population (FSP) 

The benefit of any particular feature may depend upon 
which other features it is used in conjunction with. For 
example, consider a feature that only has predictive power in 
some subset of the agent's state space. Whether or not those 
states are even reached by the agent depends upon its policy, 
which in turn depends upon all the features it is using. 
Furthermore, temporal difference learning's ability to address 
the temporal credit assignment problem relies on features 
whose contributions can reduce the magnitude of the 
temporal difference error in sequences of states that lead to 
reward. Therefore some feature subsets may support one path 
to reward while other feature subsets support a different path. 
For these reasons, feature evaluation and selection in online 
RL are intertwined with the exploration-exploitation problem 
[1], and evaluating only a single feature subset is insufficient. 

Initialization of the FSP is controlled by three system 
parameters. PopSize sets the number of subsets to be created, 
and InitSubsetMean and InitSubsetSD set the mean and 
standard deviation of a normal distribution that is sampled to 
choose the cardinality of each subset. Each subset is 
initialized by uniform randomly picking features without 
replacement from the available feature universe until the 
target cardinality is reached. 

B. Feature Subset Evaluation 

In TDFE, each feature subset in the FSP is connected to 
its own value function approximator, called a Feature Subset 
Evaluator (FSE). So if there are 100 feature subsets in the 
FSP, then there are 100 FSEs, and they are all updated in 
parallel along with the agent's value function. All the FSEs 
use the same kind of function approximator as the agent's 
value function, and they are updated using the same 
algorithm. The motivation for these similarities is to evaluate 
features in a way that is directly relevant to the agent. In this 
paper the agent is assumed to be using a linear value function 
with gradient descent weight updates guided by Q-Learning 
[1] and state-action pairs represented as after-states. 
Extending TDFE to more sophisticated RL agents and/or 
value function approximators is left for future work.  

The FSEs do not participate in the agent's action selection 
(i.e. policy); their sole purpose is to evaluate features. 
Consequently, each feature subset is evaluated in the context 
of the same policy, i.e. the agent's policy, whatever that 
happens to be. Therefore the FSE must be updated by an off- 



 

Fig. 1. TDFE. (A) Consider multiple different feature subsets in parallel. (B) Evaluate each feature subset in the setting of the learning algorithm used by the agent, 
updating statistical estimates incrementally. (C) Combine all statistical estimates into a single feature-quality score and rank all features (FSPi is the set of feature 
subsets that include fi and ��� is the mean weight for fi in FSEj). (D) Search the space of feature subsets to find better combinations of features for the next iteration.

policy RL algorithm [1]. That is, an algorithm that can (in 
theory) learn the optimal value function while the agent 
continues to follow a sub-optimal policy. Although this 
limits the choice of algorithm, the benefit is that the number 
of states the agent needs to experience in order to update the 
FSEs is independent of the number of FSEs. By distributing 
FSEs across parallel hardware, the number of features that 
TDFE can evaluate simultaneously can be further scaled up. 

For each after-state s selected by the agent's policy, the 
weight updates reduce the difference between an FSE's value 
estimate and a target value. The target value depends on 
information from the next time step. Hence the term 
temporal difference error, or TDE: 

TDE��	 = TargetValue��	 − 	CurrentEstimate��		
= reward + � ∙ max ′

!��′	 − !��			. 
 

(1) 

The extent to which TDE can be minimized is dependent 
upon the quality of the features fi . Hence a measure of the 
magnitude of the TDE can be interpreted as a measure of the 
quality of the feature subset in the context of the policy that 
induced the agent's state trajectory. In TDFE the measure 
chosen is the mean squared TDE: 

 

MSTDE	 = 	 1
&' − &( + 1 ) TDE��*	'

*+

*,*-
	, 

 

(2) 

where t1 and t2 denote the time interval of interest. 

TDFE uses the heuristic that within each FSE, the more 
important features will tend to have weights of greater 
magnitude and stability. The stability of a signal can be 

measured by its coefficient of variation which is the ratio 
between its standard deviation and mean: 

 CV�/	 = 01
/2 	. (3) 

All the statistics computed within each FSE are either 
means or can be calculated from means. Means are tracked 
incrementally using the exponentially decaying recency-
weighted average update rule [1]. Recency-weighting in the 
means is important because they all change with time as the 
weights in the FSE are updated under learning.  

C. Feature Evaluation 

The formula defined in Fig. 1(C) is used to assign a score 
to every feature. For feature fi, the summation includes one 
term for each subset that includes fi. Each term is the product 
of a subset-score and three penalty functions, p1, p2 and p3. 
The subset-score is defined as: 

 SubsetScore�678	 = 9|67;| − Rank�678		, (4) 

where Rank(FSE) is zero for the best FSE (lowest MSTDE) 
and the cardinality of the FSP for the worst. The square-root 
is chosen only because it is a slow-growing function. The 
three penalty functions (equations 5-7) are used to normalize 
into [0, 1] the penalties for features having too constant 
values, unstable weights, and smaller weights, respectively: 

 p(�?	 = @|?|, |?| < 0.5
1, otherwise E (5) 

 p'�?	 = 	MAX�0, 1 − |?|	 (6) 

 pH�?	 = MIN�1, |?|/LM�NOPLNQRM		, (7) 
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where RewardRange is the difference between the most 
extreme rewards the agent has experienced. All the features 
are then sorted by their scores, and the resulting ranking is 
the output of TDFE. 

D. Subset Search GA 

Algorithm 1 implements one generation of evolution, and 
is run at a regular interval set by the system parameter 
GamesPerGeneration. TDFE evolves subsets of features, not 
value functions or policies. Each newly created subset 
always gets a new FSE with weights initialized to zero. In 
short, TDFE uses Darwinian evolution, not Lamarckian. The 
fitness of a feature subset is the MSTDE of its FSE, which 
measures how self-consistently and accurately its value 
function makes predictions about long-term future reward 
given the agent's policy. The benefit of the GA is to find 
combinations of features that work well together, which 
improves the quality of TDFE's feature ranking in stage (C). 

TDFE employs a steady-state population model, i.e.  only 
a small fraction of the population are replaced in each 
generation. Consequently the population contains individuals 
of different ages: Some FSEs have undergone more 
generations of weight optimization than others, and a fair 
comparison of their MSTDE is difficult. Algorithm 1  
resolves this in line 4 by applying a fixed survivor rate within 
each age group. In increasing order of age, the sizes of the 
age groups form a simple geometric series with the survivor 
rate as the common ratio. The final age group combines all 
ages from which the expected number of survivors is less 
than one, and forms a natural hall of generation champions. 
This scheme delays the need to distinguish between the best 
subsets until their MSTDE estimates are more refined, and 
allows evolution to remove the worst subsets meanwhile. 

Recombination and mutation are both implemented by 
the EDIT_WALK function, which performs a random walk 
in the space of subsets with a sequence of edit operations. 
Starting at the first parent, each edit is either the removal or 
addition (equally likely) of a feature chosen at random. The 
system parameters EditsMean and EditsSD set the mean and 
standard deviation of a normal distribution that is sampled to 
choose the number of edits. If a second parent is specified, it 
serves as an attractor for the random walk by restricting the 
cuts and adds to those that reduce the edit distance between 
the two parents. EDIT_WALK has no bias towards subsets 
of any particular cardinality. 

IV. EXPERIMENTAL DOMAIN: CONNECT FOUR 

Connect Four has been a fun and interesting real world 
game since before personal computers were invented. Fig. 2 
outlines the rules of the game. Connect Four is suitable for 
testing TDFE for several reasons: First, the game is difficult 
enough to be an open problem for online RL, and also for 
human learners. Second, the state-space is small enough 
(~4.5e12 [13]) that is has been solved by exhaustive methods 
[14], and therefore it is possible to measure the quality of an 
agent's learned policy on an absolute scale between random 
and optimal play. Third, Connect Four strategy has been 
thoroughly studied [15], and many board features are known 
to be important for strong play. Such features should be 
highly ranked by any good system of feature evaluation. 

 

 

Fig. 2. The Connect Four implementation developed for this project. 

A. Features 

The most basic set of features is an enumeration of the 
contents of the 42 board cells. With respect to Fig. 2, a 1, -1 
or 0 denote black, gray or empty, respectively. Such a naive 
board-vector considers each board cell in isolation, yet 
success in the game depends upon exploiting patterns over 
adjacent board cells. Therefore there is no reason to expect 
the board-vector to facilitate learning a good policy by itself. 
In addition to the board vector, 26 hand-coded features were 
implemented as a best effort to generalize over board 
positions that are equivalently good.  

The hand-coded features are similar to those suggested 
by Allen [15] and are listed in Table I where the following 
terminology applies: A threat for a player is an empty cell 
that could be part of a four-in-a-row for that player. A level 

Algorithm 1: Makes the next generation of subsets: fixed survival rate 

within age groups, tournament selection (size 2) of parents from 
survivors, edit-walk crossover and mutation.  

 
 1. Evolve(): 

 2.   FSP.SORT_BY(fse.age, fse.MSTDE)  
 3.   for each fse in FSP: 
 4.     if fse.ELITE_IN_AGE_GROUP(survivorRate): 

 5.       .age += 1 
 6.     else: 

 7.       .age = 0 
 8.   Survivors = [FSP where .age > 0] 

 9.   Children = [FSP where .age == 0] 

10. 
11.   for i = 1 to |Children| - 1 step 2: 

12.     p1 = SELECT_PARENT_FROM(Survivors) 

13.     p2 = SELECT_PARENT_FROM(Survivors) 
14.     if RANDOM_REAL(0, 1) < probCrossover: 

15.       Child1Subset = EDIT_WALK(p1, p2) 
16.       Child2Subset = EDIT_WALK(p2, p1) 
17.     else: 

18.       Child1Subset = EDIT_WALK(p1, nil) 

19.       Child2Subset = EDIT_WALK(p2, nil) 
20.     Children[i - 1].initialize(Child1Subset) 

21.     Children[i].initialize(Child2Subset) 
22.   if i == |Children|: 

23.     pLast = SELECT_PARENT_FROM(Survivors) 

24.     LastSubset = EDIT_WALK(pLast, nil) 

25.     Children[i - 1].initialize(LastSubset) 

Two players take turns 

dropping their colored 

counter into one of seven 
columns on the board. 

Dropped counters fall 

down the column as if 
under gravity. The goal 

is to make four-in-a-row 

on a horizontal, vertical 
or diagonal line. In the 

game shown the second 

player to move has won 
with a diagonal . A draw 

occurs if neither player 

makes 4-in-a-row before 
the board becomes full. 



n-threat is a threat for which n members of the four-in-a-row 
are already present. The perimeter is all the cells in which 
the next counter could be placed. An on-perimeter threat is a 
threat in one of the perimeter cells. An off-perimeter threat is 
a threat not in one of the perimeter cells. A player controls a 
column if it has the lowest off-perimeter 3-threat. An 
adjacent threat is two vertically adjacent cells that are both 
threats for the same player. An adjacent threat score is the 
sum of the threat levels in an adjacent threat. A trap is an 
adjacent threat score of six. A playable trap is a trap in a 
column controlled by the player who has the trap. 

TABLE I. HAND-CODED FEATURES, COMPUTED FOR BOTH PLAYERS. 

Feature Description 

Number of on-perimeter 1-threats 

Number of on-perimeter 2-threats 

Number of on-perimeter 3-threats 

Number of off-perimeter 1-threats, each weighted by 1/(2^(h-1))* 

Number of off-perimeter 2-threats, each weighted by 1/(2^(h-1))* 

Number of off-perimeter 3-threats (max 1 per cell), weighted by 1/(2^(h-1)) 

Highest adjacent threat score on the board 

Sum over all adjacent threats of 1/(4^(6-adjacent threat score)) 

Maximum over all playable traps of 1-(h/8)* 

Number of controlled columns 

Win-next-move flag: 1 if player is guaranteed  to win next turn, 0 otherwise  

Four-in-a-row flag: 1 if player has four-in-a-row, 0 otherwise. 

Win-forced-by-turn flag: binary flag indicating that if no new 3-threats are 

created then opponent will be forced by turn taking to give player a win. 
* h is the height of a threat or trap above the perimeter 

B. Performance Measure 

Three fixed-policy agents are important for defining the 
performance measure that appears on the y-axis of all the 
learning curves presented in this paper: 

1) Random: always selects a move uniformly-randomly 

from among the legal moves. 

2) Simpleton: If a move to make four-in-a-row and win 

is present, the agent selects it. If no four-in-a-row move is 

present but a move is present to block the opponent from 

making four-in-a-row on its next turn, the agent selects it. 

Otherwise the agent selects a move uniformly-randomly, 

excluding any move that immediately presents the opponent 

with a move to make four-in-a-row on its next turn. 

3) Genius: Always selects an optimal move. An optimal 

move will lead to a game outcome (win, lose or draw) at 

least as good as any other move under the assumption of 

optimal play by both players until the end of the game. Ties 

between winning moves are broken uniformly randomly. 

Ties between drawing or losing moves are broken using a 

variant of the Expectimax algorithm [16], by computing the 

probability of a Simpleton opponent making a sub-optimal 

move thereafter. Using the Simpleton as an opponent model 

results in selecting moves that maximize the sub-optimal 

proportion of the opponent's responses, which is a sensible 

strategy in the absence of the true opponent model. 

A log containing nine million solved board positions was 
generated by recording games between two augmented 
Genius agents. An augmented Genius is forced to move as a 
Random player with probability p. Twelve values for p were 
used to create twelve Player1 Geniuses and twelve Player2 

Geniuses: 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 
0.45, 0.50, 0.55. Three thousand games were recorded for 
each of the 144 possible pairings of a Player1 with a Player2, 
making a total of 432,000 games in the log, comprised of 
about six million distinct board positions distributed over 
nine million played positions. The duplicate positions are 
desirable because they naturally attribute more weight to 
board positions that occur more often. For each board 
position, the legal moves were ranked by a Genius agent. 

To evaluate a candidate Connect Four policy using the 
log, the following procedure is followed: For each applicable 
position in the log (Player-1 or Player-2), the candidate is 
asked for its move, and the probability that a Random agent 
would have made a better move is computed from the move 
rankings. The average of these probabilities over all 
applicable positions in the log is denoted Pr(CandidateWTR), 
where WTR stands for Worse-Than-Random. Two moves are 
equal in rank with probability 0.3. Hence Pr(RandomWTR) @ 
0.35, and any candidate such that Pr(CandidateWTR) > 0.35 
is truly worse than a Random player. Consequently the value 
of Pr(CandidateWTR) is rescaled into a metric called WTR: 

WTR�aNQPbPN&M	 = Pr�LNQPdefgL	 − Pr�aNQPbPN&MfgL	
Pr�LNQPdefgL	 	. (8) 

By definition, WTR(Random) = 0, and WTR(Genius) = 1 
which is the best possible score. Even a highly random 
player such as a Simpleton receives a very consistent WTR 
score: 0.1624 ± 0.00011 as Player-1, 0.1829 ± 0.00016 as 
Player-2 (99% confidence intervals). 

V. EXPERIMENTS 

Experiments with TDFE require a decision process for 
picking which features will be ignored based on the TDFE 
feature ranking, and an online RL agent that uses the 
remaining features as inputs to its value function. These 
details are presented next, followed by the results obtained in 
two sets experiments: one with TDFE disabled as a baseline, 
and one with TDFE enabled. 

A. RL Agents 

A canonical RL agent is needed to serve as a platform for 
testing TDFE. The agent chosen is a Q-Learning agent, with 
after-states representing state-action pairs, a linear value-
function approximator trained by gradient descent weight 

updates, and ε-greedy action selection [1]. This formulation 
of an RL agent is one of the oldest and best understood and it 
has some limited convergence guarantees. Game features are 
normalized into the range [-1, 1] and used as inputs to the 
agent's value function. Fig. 3 shows how the Canonical RL 
agent (green box) was combined with TDFE.  

The Feature Selection module in Fig. 3 resets which 
features will be ignored at the start of each new game based 
on the dynamic feature ranking from TDFE: Features are 
selected greedily from the feature ranking. The initial 
number of features used by the agent is based on the average 
cardinality of the evolving feature subsets. In addition, a pool 
of candidate features is selected by continuing greedily down 
the feature ranking until a cost limit is reached. As the agent 



 

Fig. 3. System diagram for the online RL agent comprised of the Canonical 
Agent, a Feature Selection module, and TDFE. The models are used by the 
agent to obtain a list of legal moves in the current state, and to compute the 
after-state of any action. In this paper the Environment is Connect Four. On 
each discrete time-step in the game, the agent has access to the current state 
'S' and a reward signal 'r'. The agent executes its chosen action 'a'. When it is 
the agent's turn to act again, it sees the next state and reward, S' and r'. 

learns, estimates are made of the Pearson correlation 
coefficient between the agent's temporal difference error and 
each candidate feature's potential contribution to that error 
(which is similar to OMP-BRM [4]). If the most correlated 
candidate feature satisfies a selection condition it is added to 
the agent's value function and all correlation estimates are re-
estimated from scratch in the context of the new value 
function until the selection condition is satisfied again. If the 
MSTDE of the agent's value function exceeds that of any 
FSE then all features that were added by correlation are 
thrown out and the agent's feature selection is reset greedily 
with respect to the feature ranking only. Over multiple 
generations of evolution the average cardinality becomes a 
better indicator of how many features to use. However, that 
is a slow process, so the correlation-based selection 
mechanism is useful on shorter timescales. 

B. Baseline Experiments 

As a baseline for experiments with TDFE, the canonical 
agent's ability to learn a good Connect Four policy online 
was tested with TDFE and feature selection both disabled, 
i.e. the agent used all available features unconditionally. The 
same experiment was repeated three times varying only the 
set of features given to the agent: first with the board-vector 
only, second with the hand-coded features only, and third 
with the union of the board-vector and hand-coded features. 

All three experiments involve two canonical RL agents, 
one as Player-1 and a separate one as Player-2. The two 
agents learned while playing 8000 games against each other. 
Each game was treated as a separate learning episode with 
zero reward except in the terminal states which gave +100 
for a win, -100 for a loss, and 0 for a draw. The discount 

factor γ was set to 1 because the problem is episodic. The 
exploration rate ε was set to 0.1. The learning rate α was set  

 

Fig. 4. Performance comparison of the canonical RL agent using three 
different Connect-4 feature sets: (B42) 42 board-vector features, (H26) 26 
hand-coded features, and (All) the union of B42 and H26. Given only the 
hand-coded features, the policy learned is human-competitive. Given only 
the board-vector, the policy learned is worse than a random player. The 
union of all features results in worse learned policy than the hand-coded 
features alone. 

to 1/n, where n is the number of features. This makes the 
maximum rate by which the value function's output can 
change independent of n. The agents were saved every 200 
games, and every saved agent was evaluated to determine its 
WTR score. This setup was run 20 times for each feature set. 

The average learning curves for Player-1 are shown in 
Fig. 4 (results for Player-2 are similar and omitted). Each 
data-point and its accompanying error bars show the mean 
and standard deviation of WTR(Player-1). The top curve, 
using the 26 hand-coded features, demonstrates that the 
canonical RL agent is sufficient for effective learning in 
Connect Four. After 8000 games, both agents (Player-1 and 
Player-2) are consistently playing at a human-competitive 
level. That is, experienced adult human Connect-4 players 
have been defeated by these agents and/or reported 
substantial effort required to beat them. 

The bottom curve in Fig. 4 demonstrates that the 
canonical RL agent cannot learn a good policy at all when 
using only the board-vector as its feature set. Moreover, it 
appears that learning from the board-vector alone actually 
misleads the agent, causing its policy to be slightly worse 
than that of a random player. This is unsurprising because 
each board cell generalizes over states of unrelated value. 

The middle curve in Fig. 4 shows that the approach of 
adding good features to a set of bad ones, while better than 
having no good features at all, is worse than being selective 
about which features to use and avoiding the bad features. 

C. TDFE Experiments 

The baseline experiment in which the agent was given the 
union of all H26-B42 features was repeated with TDFE and 
feature selection enabled. An equivalent experiment was also 
performed in each of two additional feature universes, first 
with TDFE and feature selection disabled, and then enabled. 
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Fig. 5. Comparing the performance of the canonical RL agent with and 
without TDFE and Feature Selection enabled in three different feature sets. 
All three feature sets include the 26 hand-coded features (H26), and the 
learning curve of the canonical agent using only H26 is repeated  in each 
sub-plot as a referent. H26-B42 (a) is the same as in the baseline 
experiments. H26-U74 (b) includes 74 uniformly distributed random 
variables. H26-SN74 (c) includes 74 standard normally distributed random 
variables. 

In both additional feature universes, the 42 board-vector 
features were replaced with 74 independent identically 
distributed random variables, introduced as features that are 
pure noise, i.e. bearing no relation to the state of the game. In 
H26-U74, each random variable samples a uniform 
distribution on the interval [-1, 1]. In H26-SN74, each 
random variable samples a standard normal distribution. In 
all runs, the TDFE system parameters were set as follows: 
PopSize=100, GamesPerGeneration=100, SurvivorRate=0.8, 
InitSubsetMean=3.25, InitSubsetSD=1, ProbCrossover=0.5, 
EditsMean=10, EditsSD=3,. 

The average learning curves for Player-1 are shown in 
Fig. 5 (again the Player-2 curves are similar). All three sub-
plots include the canonical agent's performance when using 
only the hand-coded features (H26) as a referent for the best 
performance that the TDFE agent could hope to achieve. 

Fig. 5(a) shows that the agent's performance in H26-B42 
is significantly better with TDFE and feature selection 
enabled. In that case the agent's average final performance is 
6.9% worse than the level associated with selecting H26 
exclusively. However, its average best performance is within 
1.9% of the H26 level, indicating that the TDFE agent peaks 
close to the H26 level but is less stable. These differences are 
statistically significant at the 0.05 level. 

Fig. 5(b) shows that the agent's performance in H26-U74 
is significantly better with TDFE and feature selection 
enabled. The difference between the TDFE agent and the 
H26 level is not statistically significant. 

Fig. 5(c) shows that the agent's performance in H26-
SN74 is no better with TDFE and feature selection enabled. 
Interestingly, there is no statistically significant difference 
between the TDFE agent in H26-U74 and H26-SN74, 
showing that it is insensitive to the distribution of noise. 
However, the change from uniform to normal random 
variables greatly improves the canonical agent's baseline 
performance, such that the only negative impact of the 74 
normal variables is to slow down learning. This result is 
explained by feature normalization, but is useful for showing 
the effect of TDFE on the agent's performance in a feature 
universe that has relatively little need for feature selection. 

VI. DISCUSSION AND FUTURE WORK 

The experiments in Section V establish that the 
performance of online RL in Connect Four depends upon the 
available features. Given a well-engineered set of features 
based upon established heuristics, even a very basic RL 
agent can bootstrap itself up from an initially random policy 
to a human-competitive level guided only by a reward signal 
that is zero everywhere except states having 4-in-a-row. In 
contrast, given only the vector of board cells, the same 
canonical agent is unable to improve and actually performs 
worse than randomly due to the misleading nature of those 
features. These bad features are not irrelevant: They are a 
perfect noiseless encoding of the game-state, and indeed are 
the domain of all functions found to be good features. 
Despite their relevance, they significantly harm the agent's 
performance even when all the good features are present. 
The effect of irrelevant noisy features on the canonical agent 
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depends upon the distribution of the noise: Uniformly 
distributed random variables significantly harm the agent's 
learned policy, but normally distributed random variables 
only delay learning. 

TDFE was presented as a novel way to evaluate and rank 
all available features online, i.e. while the agent is learning in 
the actual game. The canonical agent was modified to 
dynamically adjust its feature selection at the start of each 
game based upon the current TDFE rankings. The resulting 
performance is close to that of using only the best available 
features and unaffected by whether the other available 
features are relevant yet harmful, irrelevant harmful noise, or 
irrelevant yet mostly harmless noise. In all cases, the good 
features were in the minority. An inspection of the TDFE 
feature-ranking (not shown) revealed that the hand-coded 
features for detecting winning moves and blocking the 
opponent's winning moves are always in the top-three ranked 
features by the end of every run. Although this evidence is 
anecdotal, it is encouraging that such domain-critical features 
are reliably identified by TDFE without the use of a domain-
specific heuristic. 

The primary line of future work is for the TDFE feature 
ranking to guide an evolutionary search over the space of 
possible features as part of an online RL agent. TDFE is 
representation-agnostic with respect to features, so any 
evolvable function representations can be used side-by-side. 
TDFE's feature ranking is dynamic, so newly constructed 
features can be naturally included. TDFE does not treat the 
game as a wrapper for evaluating multiple policies, and so it 
will avoid the sample complexity multiplier associated with 
most evolutionary methods. 

This paper has not attempted to show that TDFE is the 
only or even the best way to do feature evaluation in online 
RL. However, none of the other methods surveyed in Section 
II have all of the desirable properties explained in Section I. 
Those properties make TDFE of unique interest as a platform 
for this project's future work. 

VII. CONCLUSION 

This paper has shown that performing feature evaluation 
as part of an online RL agent matters, and that it can be 
performed in a way that is scalable, sample efficient, 
dynamic, and agnostic with respect to any feature's 
underlying function representation. The resulting method is 
called Temporal Difference Feature Evaluation or TDFE, 
and will serve as a stepping stone to future work on 
automatic feature construction in an online RL agent. 
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