
Evolutionary Feature Evaluation for Online

Reinforcement Learning

Julian Bishop, Risto Miikkulainen

Department of Computer Science

The University of Texas at Austin

2317 Speedway, Stop D9500, Austin, TX, USA

{julian, risto}@cs.utexas.edu

Abstract—Most successful examples of Reinforcement

Learning (RL) report the use of carefully designed features,

that is, a representation of the problem state that facilitates

effective learning. The best features cannot always be known in

advance, creating the need to evaluate more features than will

ultimately be chosen. This paper presents Temporal Difference

Feature Evaluation (TDFE), a novel approach to the problem

of feature evaluation in an online RL agent. TDFE combines

value function learning by temporal difference methods with

an evolutionary algorithm that searches the space of feature

subsets, and outputs a ranking over all individual features.

TDFE dynamically adjusts its ranking, avoids the sample

complexity multiplier of many population-based approaches,

and works with arbitrary feature representations. Online

learning experiments are performed in the game of Connect

Four, establishing (i) that the choice of features is critical, (ii)

that TDFE can evaluate and rank all the available features

online, and (iii) that the ranking can be used effectively as the

basis of dynamic online feature selection.

Keywords—Reinforcement Learning; online learning;

Evolutionary Algorithms; feature selection; Connect Four.

I. INTRODUCTION

Reinforcement Learning (RL) [1] is a potentially
powerful way to discover effective behavior in games. An
RL agent attempts to change its policy in order to maximize
its rate of reward. RL takes place online if the agent must
learn from playing real games, and the quality of its
performance in those games matters. Therefore an online
agent must balance exploitation of what it has learned so far
with effective exploration of alternative actions.

Typically, an RL agent perceives the state of the game as
a one-dimensional array of real numbers called features. A
feature is any intrinsic state-variable of the game, or any
real-valued function taking some subset of the state-variables
as its domain. An important challenge for RL is that of
feature selection, in which some available features are
ignored because they would harm the agent's performance,
not help it. Feature selection can be further decomposed into
two sub-problems: First, evaluate the available features for
their potential utility and, second, apply some decision
process based on the evaluations to pick which features will
be ignored. This paper presents a novel approach to the first
of these sub-problems, called Temporal Difference Feature

Evaluation (TDFE). TDFE ranks features from best to worst,
but does not specify a decision process for picking which
features will be ignored. Although a decision process must
be implemented in order to use TDFE as part of an agent,
this paper does not advocate for any particular decision
process or agent design. Instead, it demonstrates that feature
evaluation matters, and that TDFE is an effective way to do
it.

TDFE is intended for use in an online RL agent that uses
features as inputs to a value function which it updates by
temporal difference algorithms [1]. TDFE evaluates multiple
feature subsets in parallel and uses an evolutionary algorithm
to find combinations of features that work well together.
Statistical estimates about each subset are combined to
generate a ranking over the available features. TDFE is
unique in that it combines three useful properties.

First, TDFE is scalable: The ranking induced includes all
the features that are available to the agent, which is typically
more features than the agent is actually using to learn its
policy in the game. Moreover, increasing the number of
available features does not increase the number of game-
states that the agent needs to sample in order to compute the
ranking. This property is desirable for online learning
because the speed of improvement with respect to the
number of games played matters. Although the cost per
sampled state of computing the ranking does increase with
the number of available features, the issue can be mitigated
because TDFE is amenable to distribution across parallel
hardware.

Second, the ranking induced by TDFE is dynamic: All
the statistics needed to compute the ranking are updated
incrementally after each sampled game-state, which allows
the ranking to be adjusted at arbitrary time intervals. A
dynamic ranking is desirable because the relative importance
of the agent's available features can change over time. For
example, as the agent learns to play better, it begins to
encounter new game-states in which a previously irrelevant
feature becomes useful. Alternatively, other players in the
game could change their policies causing a similar effect. Or,
if the agent attempts a search in the space of possible
features, then some old features could be replaced with
newly constructed ones which will then need to be included
in the ranking.

Third, TDFE makes no assumptions about the underlying
function representation of any features. For example, TDFE
can evaluate a set of features containing a mixture of Neural
Networks, Decision Trees, and Genetic Programs on a level
playing field, and include them all in the same ranking.
Representation-agnostic feature evaluation is desirable
because the best features in different games may be based on
different function representations.

Online learning experiments were performed in the game
of Connect Four to test the benefit of TDFE. A simple RL
agent's performance using TDFE was almost as good as
when it was provided with the best possible choice of
features in advance.

II. RELATED WORK

Some recent RL algorithms have adapted techniques
from Supervised Learning to the RL problem. LARS-TD [2]
combines LARS (Least Angle Regression) and LSTD for
finding the l1-regularized fixed point value function. EGD
(Equi-Gradient Descent) [3] adapted LARS for minimizing
the Bellman residual for temporal difference learning. OMP
(Orthogonal Matching Pursuit) is a greedy feature-selection
algorithm for regression which uses the correlation between
the residual and the candidate features to decide which
feature to add next. OMP has been adapted to RL in OMP-
BRM and OMP-TD [4].

Unlike TDFE, the applicability of the above methods to
online learning is limited by two factors: First, they rely upon
batch updates, meaning that the agent does not modify its
policy until a sufficient number of game states have been
sampled, which increases the amount of time during which
the agent's policy is fixed. Second, these methods assume a
set of features that does not change while the agent learns,
which is particularly significant for the greedy algorithms
because they offer no natural way to backtrack and revise
earlier feature selection decisions.

Some methods attempt to obviate the problem of feature
selection by constructing and/or tuning only a minimal set
features and simply using all of them. Examples include
Proto-Reinforcement Learning (PRL)[5], Bellman Error
Basis Functions [6], and Adaptive Bases[7]. Unlike TDFE,
these methods are tied to specific function representations for
their features and hence are not representation-agnostic.

Evolutionary algorithms are typically applied to feature
evaluation as an offline method. That is, the learning task is
used as a wrapper to provide the fitness function for evolving
features and feature subsets. Examples include FS-NEAT
[8], and variants of Genetic Programming [9]. These offline
methods have been adapted to RL by using the performance
of an RL agent as the wrapper. Examples include Pittsburgh-
style Learning Classifier Systems [10], and agents that use
Genetic Programming [11].

Unlike TDFE, the wrapper approaches are of limited use
for online RL because they are based on a population of
policies each of which needs to be independently evaluated.
This requirement causes the overall sample complexity to be
multiplied by the population size. NEAT+Q [12] attempts to

mitigate this problem but must still evaluate a population of
policies.

A Michigan-style Learning Classifier System [10] avoids
the sample multiplier by being a complete RL agent in which
feature evaluation is an integral part of the value function. In
contrast, TDFE is not an agent, it is a method for performing
feature evaluation as a separate module from the agent's
value function.

III. TEMPORAL DIFFERENCE FEATURE EVALUATION

Fig. 1 depicts the four-stage process that TDFE iterates
over to evaluate features. Stages A-D are described in the
next four sub-sections.

A. Feature Subset Population (FSP)

The benefit of any particular feature may depend upon
which other features it is used in conjunction with. For
example, consider a feature that only has predictive power in
some subset of the agent's state space. Whether or not those
states are even reached by the agent depends upon its policy,
which in turn depends upon all the features it is using.
Furthermore, temporal difference learning's ability to address
the temporal credit assignment problem relies on features
whose contributions can reduce the magnitude of the
temporal difference error in sequences of states that lead to
reward. Therefore some feature subsets may support one path
to reward while other feature subsets support a different path.
For these reasons, feature evaluation and selection in online
RL are intertwined with the exploration-exploitation problem
[1], and evaluating only a single feature subset is insufficient.

Initialization of the FSP is controlled by three system
parameters. PopSize sets the number of subsets to be created,
and InitSubsetMean and InitSubsetSD set the mean and
standard deviation of a normal distribution that is sampled to
choose the cardinality of each subset. Each subset is
initialized by uniform randomly picking features without
replacement from the available feature universe until the
target cardinality is reached.

B. Feature Subset Evaluation

In TDFE, each feature subset in the FSP is connected to
its own value function approximator, called a Feature Subset
Evaluator (FSE). So if there are 100 feature subsets in the
FSP, then there are 100 FSEs, and they are all updated in
parallel along with the agent's value function. All the FSEs
use the same kind of function approximator as the agent's
value function, and they are updated using the same
algorithm. The motivation for these similarities is to evaluate
features in a way that is directly relevant to the agent. In this
paper the agent is assumed to be using a linear value function
with gradient descent weight updates guided by Q-Learning
[1] and state-action pairs represented as after-states.
Extending TDFE to more sophisticated RL agents and/or
value function approximators is left for future work.

The FSEs do not participate in the agent's action selection
(i.e. policy); their sole purpose is to evaluate features.
Consequently, each feature subset is evaluated in the context
of the same policy, i.e. the agent's policy, whatever that
happens to be. Therefore the FSE must be updated by an off-

Fig. 1. TDFE. (A) Consider multiple different feature subsets in parallel. (B) Evaluate each feature subset in the setting of the learning algorithm used by the agent,
updating statistical estimates incrementally. (C) Combine all statistical estimates into a single feature-quality score and rank all features (FSPi is the set of feature
subsets that include fi and ��� is the mean weight for fi in FSEj). (D) Search the space of feature subsets to find better combinations of features for the next iteration.

policy RL algorithm [1]. That is, an algorithm that can (in
theory) learn the optimal value function while the agent
continues to follow a sub-optimal policy. Although this
limits the choice of algorithm, the benefit is that the number
of states the agent needs to experience in order to update the
FSEs is independent of the number of FSEs. By distributing
FSEs across parallel hardware, the number of features that
TDFE can evaluate simultaneously can be further scaled up.

For each after-state s selected by the agent's policy, the
weight updates reduce the difference between an FSE's value
estimate and a target value. The target value depends on
information from the next time step. Hence the term
temporal difference error, or TDE:

TDE��	 = TargetValue��	 − 	CurrentEstimate��		
= reward + � ∙ max ′

!��′	 − !��			.

(1)

The extent to which TDE can be minimized is dependent
upon the quality of the features fi . Hence a measure of the
magnitude of the TDE can be interpreted as a measure of the
quality of the feature subset in the context of the policy that
induced the agent's state trajectory. In TDFE the measure
chosen is the mean squared TDE:

MSTDE	 = 	 1
&' − &(+ 1) TDE��*	'

*+

,-
	,

(2)

where t1 and t2 denote the time interval of interest.

TDFE uses the heuristic that within each FSE, the more
important features will tend to have weights of greater
magnitude and stability. The stability of a signal can be

measured by its coefficient of variation which is the ratio
between its standard deviation and mean:

 CV�/	 = 01
/2 	. (3)

All the statistics computed within each FSE are either
means or can be calculated from means. Means are tracked
incrementally using the exponentially decaying recency-
weighted average update rule [1]. Recency-weighting in the
means is important because they all change with time as the
weights in the FSE are updated under learning.

C. Feature Evaluation

The formula defined in Fig. 1(C) is used to assign a score
to every feature. For feature fi, the summation includes one
term for each subset that includes fi. Each term is the product
of a subset-score and three penalty functions, p1, p2 and p3.
The subset-score is defined as:

 SubsetScore�678	 = 9|67;| − Rank�678		, (4)

where Rank(FSE) is zero for the best FSE (lowest MSTDE)
and the cardinality of the FSP for the worst. The square-root
is chosen only because it is a slow-growing function. The
three penalty functions (equations 5-7) are used to normalize
into [0, 1] the penalties for features having too constant
values, unstable weights, and smaller weights, respectively:

 p(�?	 = @|?|, |?| < 0.5
1, otherwise E (5)

 p'�?	 = 	MAX�0, 1 − |?|	 (6)

 pH�?	 = MIN�1, |?|/LM�NOPLNQRM		, (7)

(A)Feature

Subset

Population

(B) Feature

Subset

Evaluation

U = {f1(S), f2(S), f3(S), f4(S), f5(S), f6(S), f7(S), f8(S), �, fm(S)}
Feature

Universe

(C) Feature

Evaluation

TD(0) Q-Learning updates weights wi (off-policy)

∑
i

ii fw ∑
i

ii fw ∑
i

ii fw ∑
i

ii fw ∑
i

ii fw

MSTDE <= MSTDE <= MSTDE <= MSTDE <= <= MSTDE

, , , ,, ��

(D) Subset

Search

GA

Subset

Fitness

f7f5f1 f7 f8

f1

f4f3f1
f8

f9f1

f7f6f1

f9f5f2

��

Score�S�	 =) SubsetScoreT678�U ⋅ p(WCVTS��UX ⋅ p' WCVT���UX ⋅ pHT���U
YZ[\∈	YZ^_

where RewardRange is the difference between the most
extreme rewards the agent has experienced. All the features
are then sorted by their scores, and the resulting ranking is
the output of TDFE.

D. Subset Search GA

Algorithm 1 implements one generation of evolution, and
is run at a regular interval set by the system parameter
GamesPerGeneration. TDFE evolves subsets of features, not
value functions or policies. Each newly created subset
always gets a new FSE with weights initialized to zero. In
short, TDFE uses Darwinian evolution, not Lamarckian. The
fitness of a feature subset is the MSTDE of its FSE, which
measures how self-consistently and accurately its value
function makes predictions about long-term future reward
given the agent's policy. The benefit of the GA is to find
combinations of features that work well together, which
improves the quality of TDFE's feature ranking in stage (C).

TDFE employs a steady-state population model, i.e. only
a small fraction of the population are replaced in each
generation. Consequently the population contains individuals
of different ages: Some FSEs have undergone more
generations of weight optimization than others, and a fair
comparison of their MSTDE is difficult. Algorithm 1
resolves this in line 4 by applying a fixed survivor rate within
each age group. In increasing order of age, the sizes of the
age groups form a simple geometric series with the survivor
rate as the common ratio. The final age group combines all
ages from which the expected number of survivors is less
than one, and forms a natural hall of generation champions.
This scheme delays the need to distinguish between the best
subsets until their MSTDE estimates are more refined, and
allows evolution to remove the worst subsets meanwhile.

Recombination and mutation are both implemented by
the EDIT_WALK function, which performs a random walk
in the space of subsets with a sequence of edit operations.
Starting at the first parent, each edit is either the removal or
addition (equally likely) of a feature chosen at random. The
system parameters EditsMean and EditsSD set the mean and
standard deviation of a normal distribution that is sampled to
choose the number of edits. If a second parent is specified, it
serves as an attractor for the random walk by restricting the
cuts and adds to those that reduce the edit distance between
the two parents. EDIT_WALK has no bias towards subsets
of any particular cardinality.

IV. EXPERIMENTAL DOMAIN: CONNECT FOUR

Connect Four has been a fun and interesting real world
game since before personal computers were invented. Fig. 2
outlines the rules of the game. Connect Four is suitable for
testing TDFE for several reasons: First, the game is difficult
enough to be an open problem for online RL, and also for
human learners. Second, the state-space is small enough
(~4.5e12 [13]) that is has been solved by exhaustive methods
[14], and therefore it is possible to measure the quality of an
agent's learned policy on an absolute scale between random
and optimal play. Third, Connect Four strategy has been
thoroughly studied [15], and many board features are known
to be important for strong play. Such features should be
highly ranked by any good system of feature evaluation.

Fig. 2. The Connect Four implementation developed for this project.

A. Features

The most basic set of features is an enumeration of the
contents of the 42 board cells. With respect to Fig. 2, a 1, -1
or 0 denote black, gray or empty, respectively. Such a naive
board-vector considers each board cell in isolation, yet
success in the game depends upon exploiting patterns over
adjacent board cells. Therefore there is no reason to expect
the board-vector to facilitate learning a good policy by itself.
In addition to the board vector, 26 hand-coded features were
implemented as a best effort to generalize over board
positions that are equivalently good.

The hand-coded features are similar to those suggested
by Allen [15] and are listed in Table I where the following
terminology applies: A threat for a player is an empty cell
that could be part of a four-in-a-row for that player. A level

Algorithm 1: Makes the next generation of subsets: fixed survival rate

within age groups, tournament selection (size 2) of parents from
survivors, edit-walk crossover and mutation.

 1. Evolve():

 2. FSP.SORT_BY(fse.age, fse.MSTDE)
 3. for each fse in FSP:
 4. if fse.ELITE_IN_AGE_GROUP(survivorRate):

 5. .age += 1
 6. else:

 7. .age = 0
 8. Survivors = [FSP where .age > 0]

 9. Children = [FSP where .age == 0]

10.
11. for i = 1 to |Children| - 1 step 2:

12. p1 = SELECT_PARENT_FROM(Survivors)

13. p2 = SELECT_PARENT_FROM(Survivors)
14. if RANDOM_REAL(0, 1) < probCrossover:

15. Child1Subset = EDIT_WALK(p1, p2)
16. Child2Subset = EDIT_WALK(p2, p1)
17. else:

18. Child1Subset = EDIT_WALK(p1, nil)

19. Child2Subset = EDIT_WALK(p2, nil)
20. Children[i - 1].initialize(Child1Subset)

21. Children[i].initialize(Child2Subset)
22. if i == |Children|:

23. pLast = SELECT_PARENT_FROM(Survivors)

24. LastSubset = EDIT_WALK(pLast, nil)

25. Children[i - 1].initialize(LastSubset)

Two players take turns

dropping their colored

counter into one of seven
columns on the board.

Dropped counters fall

down the column as if
under gravity. The goal

is to make four-in-a-row

on a horizontal, vertical
or diagonal line. In the

game shown the second

player to move has won
with a diagonal . A draw

occurs if neither player

makes 4-in-a-row before
the board becomes full.

n-threat is a threat for which n members of the four-in-a-row
are already present. The perimeter is all the cells in which
the next counter could be placed. An on-perimeter threat is a
threat in one of the perimeter cells. An off-perimeter threat is
a threat not in one of the perimeter cells. A player controls a
column if it has the lowest off-perimeter 3-threat. An
adjacent threat is two vertically adjacent cells that are both
threats for the same player. An adjacent threat score is the
sum of the threat levels in an adjacent threat. A trap is an
adjacent threat score of six. A playable trap is a trap in a
column controlled by the player who has the trap.

TABLE I. HAND-CODED FEATURES, COMPUTED FOR BOTH PLAYERS.

Feature Description

Number of on-perimeter 1-threats

Number of on-perimeter 2-threats

Number of on-perimeter 3-threats

Number of off-perimeter 1-threats, each weighted by 1/(2^(h-1))*

Number of off-perimeter 2-threats, each weighted by 1/(2^(h-1))*

Number of off-perimeter 3-threats (max 1 per cell), weighted by 1/(2^(h-1))

Highest adjacent threat score on the board

Sum over all adjacent threats of 1/(4^(6-adjacent threat score))

Maximum over all playable traps of 1-(h/8)*

Number of controlled columns

Win-next-move flag: 1 if player is guaranteed to win next turn, 0 otherwise

Four-in-a-row flag: 1 if player has four-in-a-row, 0 otherwise.

Win-forced-by-turn flag: binary flag indicating that if no new 3-threats are

created then opponent will be forced by turn taking to give player a win.
* h is the height of a threat or trap above the perimeter

B. Performance Measure

Three fixed-policy agents are important for defining the
performance measure that appears on the y-axis of all the
learning curves presented in this paper:

1) Random: always selects a move uniformly-randomly

from among the legal moves.

2) Simpleton: If a move to make four-in-a-row and win

is present, the agent selects it. If no four-in-a-row move is

present but a move is present to block the opponent from

making four-in-a-row on its next turn, the agent selects it.

Otherwise the agent selects a move uniformly-randomly,

excluding any move that immediately presents the opponent

with a move to make four-in-a-row on its next turn.

3) Genius: Always selects an optimal move. An optimal

move will lead to a game outcome (win, lose or draw) at

least as good as any other move under the assumption of

optimal play by both players until the end of the game. Ties

between winning moves are broken uniformly randomly.

Ties between drawing or losing moves are broken using a

variant of the Expectimax algorithm [16], by computing the

probability of a Simpleton opponent making a sub-optimal

move thereafter. Using the Simpleton as an opponent model

results in selecting moves that maximize the sub-optimal

proportion of the opponent's responses, which is a sensible

strategy in the absence of the true opponent model.

A log containing nine million solved board positions was
generated by recording games between two augmented
Genius agents. An augmented Genius is forced to move as a
Random player with probability p. Twelve values for p were
used to create twelve Player1 Geniuses and twelve Player2

Geniuses: 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40,
0.45, 0.50, 0.55. Three thousand games were recorded for
each of the 144 possible pairings of a Player1 with a Player2,
making a total of 432,000 games in the log, comprised of
about six million distinct board positions distributed over
nine million played positions. The duplicate positions are
desirable because they naturally attribute more weight to
board positions that occur more often. For each board
position, the legal moves were ranked by a Genius agent.

To evaluate a candidate Connect Four policy using the
log, the following procedure is followed: For each applicable
position in the log (Player-1 or Player-2), the candidate is
asked for its move, and the probability that a Random agent
would have made a better move is computed from the move
rankings. The average of these probabilities over all
applicable positions in the log is denoted Pr(CandidateWTR),
where WTR stands for Worse-Than-Random. Two moves are
equal in rank with probability 0.3. Hence Pr(RandomWTR) @
0.35, and any candidate such that Pr(CandidateWTR) > 0.35
is truly worse than a Random player. Consequently the value
of Pr(CandidateWTR) is rescaled into a metric called WTR:

WTR�aNQPbPN&M	 = Pr�LNQPdefgL	 − Pr�aNQPbPN&MfgL	
Pr�LNQPdefgL	 	. (8)

By definition, WTR(Random) = 0, and WTR(Genius) = 1
which is the best possible score. Even a highly random
player such as a Simpleton receives a very consistent WTR
score: 0.1624 ± 0.00011 as Player-1, 0.1829 ± 0.00016 as
Player-2 (99% confidence intervals).

V. EXPERIMENTS

Experiments with TDFE require a decision process for
picking which features will be ignored based on the TDFE
feature ranking, and an online RL agent that uses the
remaining features as inputs to its value function. These
details are presented next, followed by the results obtained in
two sets experiments: one with TDFE disabled as a baseline,
and one with TDFE enabled.

A. RL Agents

A canonical RL agent is needed to serve as a platform for
testing TDFE. The agent chosen is a Q-Learning agent, with
after-states representing state-action pairs, a linear value-
function approximator trained by gradient descent weight

updates, and ε-greedy action selection [1]. This formulation
of an RL agent is one of the oldest and best understood and it
has some limited convergence guarantees. Game features are
normalized into the range [-1, 1] and used as inputs to the
agent's value function. Fig. 3 shows how the Canonical RL
agent (green box) was combined with TDFE.

The Feature Selection module in Fig. 3 resets which
features will be ignored at the start of each new game based
on the dynamic feature ranking from TDFE: Features are
selected greedily from the feature ranking. The initial
number of features used by the agent is based on the average
cardinality of the evolving feature subsets. In addition, a pool
of candidate features is selected by continuing greedily down
the feature ranking until a cost limit is reached. As the agent

Fig. 3. System diagram for the online RL agent comprised of the Canonical
Agent, a Feature Selection module, and TDFE. The models are used by the
agent to obtain a list of legal moves in the current state, and to compute the
after-state of any action. In this paper the Environment is Connect Four. On
each discrete time-step in the game, the agent has access to the current state
'S' and a reward signal 'r'. The agent executes its chosen action 'a'. When it is
the agent's turn to act again, it sees the next state and reward, S' and r'.

learns, estimates are made of the Pearson correlation
coefficient between the agent's temporal difference error and
each candidate feature's potential contribution to that error
(which is similar to OMP-BRM [4]). If the most correlated
candidate feature satisfies a selection condition it is added to
the agent's value function and all correlation estimates are re-
estimated from scratch in the context of the new value
function until the selection condition is satisfied again. If the
MSTDE of the agent's value function exceeds that of any
FSE then all features that were added by correlation are
thrown out and the agent's feature selection is reset greedily
with respect to the feature ranking only. Over multiple
generations of evolution the average cardinality becomes a
better indicator of how many features to use. However, that
is a slow process, so the correlation-based selection
mechanism is useful on shorter timescales.

B. Baseline Experiments

As a baseline for experiments with TDFE, the canonical
agent's ability to learn a good Connect Four policy online
was tested with TDFE and feature selection both disabled,
i.e. the agent used all available features unconditionally. The
same experiment was repeated three times varying only the
set of features given to the agent: first with the board-vector
only, second with the hand-coded features only, and third
with the union of the board-vector and hand-coded features.

All three experiments involve two canonical RL agents,
one as Player-1 and a separate one as Player-2. The two
agents learned while playing 8000 games against each other.
Each game was treated as a separate learning episode with
zero reward except in the terminal states which gave +100
for a win, -100 for a loss, and 0 for a draw. The discount

factor γ was set to 1 because the problem is episodic. The
exploration rate ε was set to 0.1. The learning rate α was set

Fig. 4. Performance comparison of the canonical RL agent using three
different Connect-4 feature sets: (B42) 42 board-vector features, (H26) 26
hand-coded features, and (All) the union of B42 and H26. Given only the
hand-coded features, the policy learned is human-competitive. Given only
the board-vector, the policy learned is worse than a random player. The
union of all features results in worse learned policy than the hand-coded
features alone.

to 1/n, where n is the number of features. This makes the
maximum rate by which the value function's output can
change independent of n. The agents were saved every 200
games, and every saved agent was evaluated to determine its
WTR score. This setup was run 20 times for each feature set.

The average learning curves for Player-1 are shown in
Fig. 4 (results for Player-2 are similar and omitted). Each
data-point and its accompanying error bars show the mean
and standard deviation of WTR(Player-1). The top curve,
using the 26 hand-coded features, demonstrates that the
canonical RL agent is sufficient for effective learning in
Connect Four. After 8000 games, both agents (Player-1 and
Player-2) are consistently playing at a human-competitive
level. That is, experienced adult human Connect-4 players
have been defeated by these agents and/or reported
substantial effort required to beat them.

The bottom curve in Fig. 4 demonstrates that the
canonical RL agent cannot learn a good policy at all when
using only the board-vector as its feature set. Moreover, it
appears that learning from the board-vector alone actually
misleads the agent, causing its policy to be slightly worse
than that of a random player. This is unsurprising because
each board cell generalizes over states of unrelated value.

The middle curve in Fig. 4 shows that the approach of
adding good features to a set of bad ones, while better than
having no good features at all, is worse than being selective
about which features to use and avoiding the bad features.

C. TDFE Experiments

The baseline experiment in which the agent was given the
union of all H26-B42 features was repeated with TDFE and
feature selection enabled. An equivalent experiment was also
performed in each of two additional feature universes, first
with TDFE and feature selection disabled, and then enabled.

Models

S → P(A)

S × A → S (s´)

Linear Value Function ε-greedy

Action

Selection

Policy π

RL

Agent

Environment

Features

f1 f3 fm

Canonical RL: TD(0) Q-Learning Algorithm updates weights w
i

F = {f1(S), �, fm(S)}

S = State vector, r = Reward, a = Agent’s action

S´r´

Sr

a

Fr a

∑
=

m

i

ii fw
1

S × A → after-state → ℝ

TDFE

Feature Selection

Discrete Time Steps

f4 f5 f6f2

0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0
Games Played (1000s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Po
lic

y
 Q

u
a
lit
y:
 W

T
R

Feature Universe H26-B42, 20 Runs, Player1

CANON-H26
CANON-All
CANON-B42

(a)

(b)

(c)

Fig. 5. Comparing the performance of the canonical RL agent with and
without TDFE and Feature Selection enabled in three different feature sets.
All three feature sets include the 26 hand-coded features (H26), and the
learning curve of the canonical agent using only H26 is repeated in each
sub-plot as a referent. H26-B42 (a) is the same as in the baseline
experiments. H26-U74 (b) includes 74 uniformly distributed random
variables. H26-SN74 (c) includes 74 standard normally distributed random
variables.

In both additional feature universes, the 42 board-vector
features were replaced with 74 independent identically
distributed random variables, introduced as features that are
pure noise, i.e. bearing no relation to the state of the game. In
H26-U74, each random variable samples a uniform
distribution on the interval [-1, 1]. In H26-SN74, each
random variable samples a standard normal distribution. In
all runs, the TDFE system parameters were set as follows:
PopSize=100, GamesPerGeneration=100, SurvivorRate=0.8,
InitSubsetMean=3.25, InitSubsetSD=1, ProbCrossover=0.5,
EditsMean=10, EditsSD=3,.

The average learning curves for Player-1 are shown in
Fig. 5 (again the Player-2 curves are similar). All three sub-
plots include the canonical agent's performance when using
only the hand-coded features (H26) as a referent for the best
performance that the TDFE agent could hope to achieve.

Fig. 5(a) shows that the agent's performance in H26-B42
is significantly better with TDFE and feature selection
enabled. In that case the agent's average final performance is
6.9% worse than the level associated with selecting H26
exclusively. However, its average best performance is within
1.9% of the H26 level, indicating that the TDFE agent peaks
close to the H26 level but is less stable. These differences are
statistically significant at the 0.05 level.

Fig. 5(b) shows that the agent's performance in H26-U74
is significantly better with TDFE and feature selection
enabled. The difference between the TDFE agent and the
H26 level is not statistically significant.

Fig. 5(c) shows that the agent's performance in H26-
SN74 is no better with TDFE and feature selection enabled.
Interestingly, there is no statistically significant difference
between the TDFE agent in H26-U74 and H26-SN74,
showing that it is insensitive to the distribution of noise.
However, the change from uniform to normal random
variables greatly improves the canonical agent's baseline
performance, such that the only negative impact of the 74
normal variables is to slow down learning. This result is
explained by feature normalization, but is useful for showing
the effect of TDFE on the agent's performance in a feature
universe that has relatively little need for feature selection.

VI. DISCUSSION AND FUTURE WORK

The experiments in Section V establish that the
performance of online RL in Connect Four depends upon the
available features. Given a well-engineered set of features
based upon established heuristics, even a very basic RL
agent can bootstrap itself up from an initially random policy
to a human-competitive level guided only by a reward signal
that is zero everywhere except states having 4-in-a-row. In
contrast, given only the vector of board cells, the same
canonical agent is unable to improve and actually performs
worse than randomly due to the misleading nature of those
features. These bad features are not irrelevant: They are a
perfect noiseless encoding of the game-state, and indeed are
the domain of all functions found to be good features.
Despite their relevance, they significantly harm the agent's
performance even when all the good features are present.
The effect of irrelevant noisy features on the canonical agent

0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0
Games Played (1000s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Po
lic
y
 Q
u
a
lit
y:
 W
T
R

Feature Universe H26-B42, 20 Runs, Player1

CANON-H26
TDFE-ALL
CANON-ALL

0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0
Games Played (1000s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Po
lic
y
 Q
u
a
lit
y:
 W
T
R

Feature Universe H26-U74, 20 Runs, Player1

CANON-H26
TDFE-ALL
CANON-ALL

0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0
Games Played (1000s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Po
lic
y
 Q
u
a
lit
y:
 W
T
R

Feature Universe H26-SN74, 20 Runs, Player1

CANON-H26
TDFE-ALL
CANON-ALL

depends upon the distribution of the noise: Uniformly
distributed random variables significantly harm the agent's
learned policy, but normally distributed random variables
only delay learning.

TDFE was presented as a novel way to evaluate and rank
all available features online, i.e. while the agent is learning in
the actual game. The canonical agent was modified to
dynamically adjust its feature selection at the start of each
game based upon the current TDFE rankings. The resulting
performance is close to that of using only the best available
features and unaffected by whether the other available
features are relevant yet harmful, irrelevant harmful noise, or
irrelevant yet mostly harmless noise. In all cases, the good
features were in the minority. An inspection of the TDFE
feature-ranking (not shown) revealed that the hand-coded
features for detecting winning moves and blocking the
opponent's winning moves are always in the top-three ranked
features by the end of every run. Although this evidence is
anecdotal, it is encouraging that such domain-critical features
are reliably identified by TDFE without the use of a domain-
specific heuristic.

The primary line of future work is for the TDFE feature
ranking to guide an evolutionary search over the space of
possible features as part of an online RL agent. TDFE is
representation-agnostic with respect to features, so any
evolvable function representations can be used side-by-side.
TDFE's feature ranking is dynamic, so newly constructed
features can be naturally included. TDFE does not treat the
game as a wrapper for evaluating multiple policies, and so it
will avoid the sample complexity multiplier associated with
most evolutionary methods.

This paper has not attempted to show that TDFE is the
only or even the best way to do feature evaluation in online
RL. However, none of the other methods surveyed in Section
II have all of the desirable properties explained in Section I.
Those properties make TDFE of unique interest as a platform
for this project's future work.

VII. CONCLUSION

This paper has shown that performing feature evaluation
as part of an online RL agent matters, and that it can be
performed in a way that is scalable, sample efficient,
dynamic, and agnostic with respect to any feature's
underlying function representation. The resulting method is
called Temporal Difference Feature Evaluation or TDFE,
and will serve as a stepping stone to future work on
automatic feature construction in an online RL agent.

ACKNOWLEDGMENT

Thanks to James D. Allen and John Tromp for providing
a C++ program that functions as a Connect-4 oracle capable
of solving the game from any board position. Thanks to
Matthew Hausknecht for multiple supporting references.

REFERENCES

[1] R. S. Sutton, and A. G. Barto, Introduction to Reinforcement

Learning: MIT Press, 1998.

[2] J. Z. Kolter, and A. Y. Ng, “Regularization and feature selection in

least-squares temporal difference learning,” in Proceedings of the

26th international Conference on Machine Learning (ICML'09),

2009, pp. 521-528.

[3] M. Loth, M. Davy, and P. Preux, “Sparse temporal difference

learning using LASSO,” in Proceedings of IEEE international

Symposium on Approximate Dynamic Programming and

Reinforcement Learning, 2007, pp. 352-359.

[4] C. Painter-Wakefield, and R. Parr, “Greedy Algorithms for Sparse

Reinforcement Learning,” in Proceedings of the Twenty-Ningth

International Conference on Machine Learning (ICML-2012), 2012.

[5] S. Mahadevan, “Proto-value functions: developmental reinforcement

learning,” in Proceedings of the 22nd International Conference on

Machine learning (ICML'05), Bonn, Germany, 2005, pp. 553-560.

[6] R. Parr, C. Painter-Wakefield, L. Li, and M. Littman, “Analyzing

feature generation for value-function approximation,” in Proceedings

of the 24th international conference on Machine learning, Corvalis,

Oregon, 2007, pp. 737-744.

[7] D. Di Castro, and S. Mannor, “Adaptive bases for reinforcement

learning,” in Proceedings of the 2010 European conference Machine

Learning and Knowledge Discovery in Databases, 2010, pp. 312-

327.

[8] S. Whiteson, P. Stone, K. O. Stanley, R. Miikkulainen, and N. Kohl,

“Automatic Feature Selection via Neuroevolution,” in Genetic and

Evolutionary Computation Conference, 2005.

[9] M. G. Smith, and L. Bull, “Genetic programming with a genetic

algorithm for feature construction and selection,” Genetic

Programming and Evolvable Machines, vol. 6, no. 3, pp. 265-281,

2005.

[10] J. Holland, L. Booker, M. Colombetti, M. Dorigo, D. Goldberg, S.

Forrest, R. Riolo, R. Smith, P. Lanzi, W. Stolzmann, and S. Wilson,

"What Is a Learning Classifier System?," Learning Classifier

Systems, Lecture Notes in Computer Science, Lecture Notes in

Computer Science P. Lanzi, W. Stolzmann and S. Wilson, eds., pp.

3-32: Springer Berlin / Heidelberg, 2000.

[11] S. Girgin, and P. Preux, “Feature discovery in reinforcement

learning using genetic programming,” in Proc. 11th European

Conference on Genetic Programming (EUROGP), 2008, pp. 218-

229.

[12] S. Whiteson, and P. Stone, “Evolutionary Function Approximation

for Reinforcement Learning,” Journal of Machine Learning

Research, vol. 7, pp. 877-917, 2006.

[13] S. Edelkamp, and P. Kissmann, "Symbolic Classification of General

Two-Player Games," KI 2008: Advances in Artificial Intelligence,

Lecture Notes in Computer Science A. Dengel, K. Berns, T. Breuel,

F. Bomarius and T. Roth-Berghofer, eds., pp. 185-192: Springer

Berlin Heidelberg, 2008.

[14] V. Allis, “A knowledge-based approach of connect-four,” The game

is solved: White wins. Master's thesis, Faculty of Mathematics and

Computer Science, Free University, Amsterdam, 1988.

[15] J. Allen, The Complete Book of Connect 4: Sterling, 2011.

[16] S. Russell, and P. Norvig, Artificial Intelligence: A Modern

Approach: Prentice Hall, 2003.

