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Automated machine learning (AutoML) methods improve upon existing models by

optimizing various aspects of their design. While present methods focus on hyperparameters

and neural network topologies, other aspects of neural network design can be optimized

as well. To further the state of the art in AutoML, this dissertation introduces techniques

for discovering more powerful activation functions and establishing more robust weight

initialization for neural networks. These contributions improve performance, but also provide

new perspectives on neural network optimization. First, the dissertation demonstrates that

discovering solutions specialized to specific architectures and tasks gives better performance

than reusing general approaches. Second, it shows that jointly optimizing different components

of neural networks is synergistic, and results in better performance than optimizing individual

components alone. Third, it demonstrates that learned representations are easier to optimize

than hard-coded ones, creating further opportunities for AutoML. The dissertation thus

makes concrete progress towards fully automatic machine learning in the future.
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Chapter 1

Introduction

We want AI agents that can discover
like we can, not which contain what we
have discovered.

Rich Sutton, The Bitter Lesson

Recursive self-improvement is hypothesized to be one means to artificial general

intelligence (AGI) [18, 206]. The idea is straightforward: if an AI is sophisticated enough,

it could design an improved version of itself. The improved AI, which is smarter than the

original, could then design an even more capable version of itself. This process could continue,

potentially indefinitely, resulting in an arbitrarily capable agent.

Currently, AI systems do not exhibit this kind of recursive self-improvement. In the

field of automated machine learning (AutoML), however, a single step of self-improvement is

possible. Research in AutoML could therefore conceivably lead to recursive self-improvement.

This dissertation improves upon the state of the art in AutoML, and thus provides a stepping

stone towards eventual AGI.

1.1 Motivation

Early machine learning approaches relied on human-engineered features in order to

learn representations of data. As computing power increased, these approaches gave way to
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more general methods that automatically extract relevant features from the data [180]. This

trend has persisted across subfields of machine learning.

For example, computer vision algorithms initially relied on detecting edges, corners,

and other human-inspired image features [125]. By leveraging additional compute and large

amounts of data, convolutional neural networks learn such features automatically, and result

in networks that surpass humans in image classification [41, 72, 105].

Similarly, in the field of natural language processing, manually crafted features like

bag-of-words or TF-IDF (term frequency-inverse document frequency) were initially useful

for rudimentary text understanding [166]. Later, techniques like word2vec captured more

nuanced word semantics by learning representations automatically from a billion word corpus

[139]. Today, large language models have pushed this trend even further, using enormous

amounts of compute and data in order to model long-range dependencies in text and handle

complex tasks such as question answering and machine translation [20, 96, 188].

To date, methods leveraging large amounts of compute for general feature learning

have been more successful than specialized approaches relying on human knowledge across a

broad range of tasks. Interestingly, this pattern extends beyond feature learning to algorithm

design itself: AI can design better AI than humans can [162, 176, 214].

However, even state-of-the-art AutoML algorithms still make use of human-inspired

designs in some areas [43, 197]. For example, many of these approaches will automate the

design of a neural network topology, but will reuse human designed activation functions or

weight initialization strategies. This situation is suboptimal, but also points to an opportunity

for improvement. Indeed, suboptimal human designs could function as a bottleneck that
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prevents single step self-improvement from progressing to recursive self-improvement. This

bottleneck can be avoided by automating the entire machine learning pipeline.

With this motivation, this dissertation introduces automated approaches to activation

function discovery and weight initialization, two areas where suboptimal human designs are

frequently used. Experiments show the contributions already improve upon the state of the

art. As more compute becomes available, the approaches can be scaled up, providing even

better solutions for machine learning problems in the future. This dissertation thus provides

concrete steps towards fully automatic machine learning.

1.2 Challenges

Automating activation function discovery and weight initialization introduces a number

of challenges, discussed below.

Evaluating new activation functions is computationally expensive. In order to do

it, a neural network must be trained from scratch. The training process is already costly,

and repeating this process for many different activation functions can become prohibitively

so. In order to make this research possible, Chapters 3 and 4 utilize distributed high

performance computing. The evaluation of different activation functions is parallelized across

multiple machines, and the results are later aggregated. However, Chapter 6 makes significant

contribution to this area: It introduces a surrogate that makes the search for new activation

functions orders of magnitude more efficient. The surrogate makes it possible to search for

new activation functions with more standard hardware, or alternatively search in larger spaces

with parallel hardware.
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In order for a weight initialization system to be general, it must be able to stabilize the

signal propagation for an arbitrary neural network. This is difficult, due to the wide variety

of neural network designs. In Chapter 5, a method is developed to address this obstacle by

analyzing neural network signal propagation at the level of individual layers. Although many

types of neural networks exist, modern architectures typically use similar kinds of layers. The

proposed method models signal propagation based on these layer types, and initializes the

weights accordingly. The method also provides fallback mechanisms in case unknown layer

types are encountered: The signal propagation can be derived manually, or using Monte

Carlo sampling.

Perhaps the biggest challenge of AutoML is overcoming previous human design biases,

especially when it comes to interactions between different neural network components. For

example, ReLU is an extremely popular activation function, and dropout was designed with

ReLU in mind [146, 175]. However, when using the SELU activation function, dropout has

to be modified because this activation function does not saturate to zero [99]. Indeed, neural

networks are famously brittle systems, and changing one component often ruins performance

if the changes are not made carefully. This dissertation addresses this challenge in two ways.

First, for activation functions, the dissertation discovers functions that are specialized to

individual tasks. Thus, even if a model has a set of hyperparameters that were tuned with a

different activation function in mind, a better function can still be discovered by treating

those hyperparameters as fixed and optimizing the activation function against them. Second,

the automated weight initialization system is designed to be as general as possible. Thus,

even if a neural network has suboptimal manual designs, the initialization algorithm still

takes them into account and improves performance. Indeed, experiments in Chapter 5 show
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that the initialization approach is more robust to suboptimal hyperparameters than previous

methods are. Thus, although the eventual goal of AutoML is to fully automate the entire

machine learning pipeline, the contributions in this dissertation are able to progress towards

this goal while still being compatible with suboptimal human designs that are often used in

practice.

1.3 Approach

This dissertation introduces automated methods for activation function discovery and

weight initialization. Four separate systems were created in order to thoroughly understand

these areas. Each system provides unique insights; the systems and discoveries are briefly

summarized next.

In the first system, called CAFE, novel activation functions are discovered with a

variety of approaches, namely exhaustive search in a smaller search space and random search

and evolution in a larger space. Evolution discovers activation functions that achieve high

accuracy and outperform baseline functions like ReLU and Swish, demonstrating its creativity

and ability to efficiently explore large spaces. CAFE reveals two key findings. The first is

that optimizing the design of the activation function is by itself a means to improving the

performance of neural networks. This discovery therefore elevates the importance of activation

functions in neural network design by showing that their design must be considered in order

to maximize performance. The second conclusion is that evolutionary search is creative,

discovering designs unlikely to be created by humans. It therefore provides a promising search

mechanism for activation functions and other aspects of neural network design in the future.

The second system, PANGAEA, combines evolution and gradient descent into one
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optimization process. PANGAEA extends CAFE by making it more flexible in several ways.

First, instead of using fixed tree structures, activation functions are represented as arbitrary

computation graphs, and more powerful mutation operators are introduced to explore the

larger search space efficiently. Second, while the first system used fixed activation functions,

PANGAEA utilizes parametric functions. This construction allows the activation functions to

change shape during the different stages of training and at different locations within a network.

Third, PANGAEA discovers specialized activation functions that are customized to specific

tasks, leading to even better performance. In conclusion, PANGAEA shows that better

performance can be found by removing human design biases and by giving the optimization

process more flexibility and freedom to be creative.

In order to automate weight initialization for different neural networks, a third system,

AutoInit, was developed. While many initialization strategies have been proposed in the

past, they usually apply only to neural networks with specific activation functions, topologies,

or layer types. This situation makes it difficult to evaluate new architectures or activation

functions, because it is hard to initialize them properly with existing techniques. AutoInit

addresses this issue by calculating analytic mean- and variance-preserving weight initial-

ization for neural networks automatically. It provides an appropriate default initialization

automatically, resulting in better and more reliable performance. Thus, in addition to bet-

ter performance from optimizing hyperparameters, architectures, and activation functions,

AutoInit shows that the weight initialization can also be optimized. It therefore provides

further evidence of the power of fully automatic machine learning. In addition to improving

performance on individual tasks, AutoInit accelerates neural architecture search and acti-

vation function discovery. This result is particularly illuminating: It shows that there is a
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synergistic effect when multiple aspects of neural network design are optimized in tandem.

This result should further motivate progress in AutoML in the future.

The fourth system, AQuaSurF, makes activation function AutoML practical and

scalable by introducing a surrogate approach. It also demonstrates that a surrogate can be

learned from the data, leading to fundamental insights into what activation functions are made

of. Note that early computer vision systems looked for human-designed features like edges

and corners, but eventually the features were automatically learned with convolutional neural

networks. Similarly, researchers often design new activation functions based on intuitive

characteristics like smoothness, groundedness, monotonicity, and limit behavior [6, 149], but

it should also be possible to learn automatically what features an activation function must

possess in order to be successful. To this end, AQuaSurF learns better representations of

activation functions in a data-driven way. Convolutional, residual, and vision transformer

based architectures are trained from scratch with 2,913 different activation functions, resulting

in three activation function benchmark datasets: Act-Bench-CNN, Act-Bench-ResNet, and

Act-Bench-ViT. Exploratory data analysis with these benchmark datasets reveals two acti-

vation function properties that are highly indicative of performance: (1) the spectrum of the

Fisher information matrix associated with the model’s predictive distribution at initialization,

and (2) the activation function’s output distribution. Based on these features, a metric space

is created where a low-dimensional representation of the activation functions can be learned.

This space is then used as a surrogate in the search for good activation functions. It turns

out that the space is so powerful that out-of-the-box regression algorithms discover good

activation functions in only tens of evaluations, improving performance on datasets as large

as ImageNet. Thus, AQuaSurF provides a unique perspective by showing that the underlying
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representation of the activation function is important. By moving away from human-inspired

encodings to automatically learned ones, AI is better able to improve itself. Learning new

representations for other aspects of neural network design may similarly be an important

step towards fully automated machine learning in the future.

Thus, the four systems automate the design of activation functions and weight ini-

tialization. Each system provides unique insights that will be useful in extending this work

towards fully automated machine learning. The first system, CAFE, provides a new per-

spective on neural network optimization, showing that performance can be improved by

optimizing the design of the activation function. The second system, PANGAEA, shows

that introducing flexibility across multiple dimensions in the search process is both possible

and beneficial, resulting in more creative and powerful solutions. The third system, Au-

toInit, shows that proper weight initialization helps to fairly evaluate novel architectures

and activation functions, thus accelerating research in these areas. AutoInit also shows that

optimizing multiple aspects of neural network design in tandem produces better results than

just focusing on one aspect alone. The fourth system, AQuaSurF, learns new representations

for activation functions in a data-driven way; the resulting surrogate approach is orders of

magnitude more efficient than previous work and may serve as a foundation for practical

optimization of other aspects of neural network design in the future.

1.4 Guide to the Reader

The remainder of this dissertation is organized as follows:

Chapter 2 details previous research that inspired the contributions in this dissertation.

Chapter 3 introduces CAFE, demonstrating that designing better activation functions is a
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new way to optimize neural networks. Chapter 4 presents PANGAEA, which combines evolu-

tionary search and gradient descent into one optimization process for optimizing parametric

activation functions. Chapter 5 automates weight initialization with AutoInit, and shows that

automating the design of both activation functions and weight initialization simultaneously

leads to better results. Chapter 6 introduces the activation function benchmark datasets,

and learns a new representation for activation functions. The new representation leads to

the AQuaSurF surrogate-based method for activation function optimization that is orders

of magnitude more efficient than existing work. Chapter 7 discusses the contributions of

this dissertation, and includes ideas for possible future research. The main conclusions are

reviewed in Chapter 8.
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Chapter 2

Background

This chapter reviews related research that motivates and provides a foundation for the

work in this dissertation. First, automated machine learning is discussed, since it provides

the main inspiration for this work. Next, research on activation functions is discussed, with

connections to Chapters 3 and 4. Then, weight initialization research is reviewed as inspiration

to the contributions in Chapter 5. Finally, the Fisher information matrix is introduced, which

informs the surrogate approach in Chapter 6.

2.1 Automated Machine Learning

Building a machine learning system requires making many design decisions: hyper-

parameters, neural architectures, data augmentation, and other components need to be

configured [87]. Instead of ad hoc decisions by human researchers, automated machine

learning (AutoML) serves to make one or more of these decisions in an automated, principled

manner. AutoML simultaneously makes machine learning accessible, since human expertise

is not required in every scenario.

AutoML is a broad research area. This section reviews the components of AutoML

that are most relevant to this dissertation.
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2.1.1 Hyperparameter Optimization

Neural networks have many hyperparameters that need to be chosen before learning

can proceed, and choosing suitable values can play a large role in how successful the learning

process is. There exist many approaches to hyperparameter optimization, including Bayesian

optimization, bilevel programming, evolution strategies, random search, and others [13, 14,

46, 47, 50, 89, 100, 122, 128, 203].

Hyperparameters can often be represented as a low-dimensional, real-valued vector,

making it straightforward to experiment with existing optimization methods. In contrast,

other aspects of neural network design, such as their topology, activation function, or weight

initialization strategy, are more complicated objects that require a more creative optimization

approach.

2.1.2 Neural Architecture Search

In neural architecture search [NAS; 21, 22, 25, 27, 43, 60, 119, 126, 191, 197, 212, 214,

215], the goal is to design a neural network architecture automatically. NAS approaches

typically focus on optimizing the type and location of the layers and the connections between

them. A popular NAS approach is neuroevolution, where neural networks are optimized with

evolutionary algorithms [4, 59, 133, 161, 162, 164, 173, 176–179, 196, 202, 205]. Reinforcement

learning [10, 53, 214], Monte Carlo tree search [147], gradient descent [120], and random

search [111] are also used. NAS approaches often use standard choices for other components

like the activation function, weight initialization, loss function, and so on. These components

have received less attention in AutoML, but can similarly be optimized, as demonstrated in

this dissertation.
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2.1.3 Other Aspects of Neural Network Design

Just like the topology of a neural network can be optimized, so too can other aspects

of neural network design. For instance, Gonzalez and Miikkulainen [61, 62] used a genetic

algorithm [102, 193] to construct novel loss functions, and then optimized the coefficients of

the loss functions with a covariance-matrix adaptation evolutionary strategy. They discovered

a loss function that results in faster training and higher accuracy compared to the standard

cross-entropy loss. Liu et al. [121] evolved normalization-activation layers. They searched

for a computation graph that replaced both batch normalization and the activation function

in neural networks. The design of components like the learning rate schedule [23, 39], data

augmentation strategy [32, 33, 118], optimization algorithm [3, 12, 28, 34], and other objects

can similarly be automated [81, 163].

2.1.4 Zero-Cost Proxies

A common drawback to AutoML is its computational cost. Candidate designs must

be evaluated in order to understand their performance, and this evaluation is often expensive.

In order to partially alleviate this issue, recent work has developed proxy measures that

approximate the final performance of neural networks [137, 168, 192]. Instead of training

the network, these proxies use only cheap surrogate calculations. These proxies inspired

the surrogate approach in Chapter 6, where the efficiency of activation function search was

dramatically improved.
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2.1.5 Meta-Learning

The field of meta-learning, also called learning to learn, is another related subfield of

AutoML [5, 40, 48, 49, 79, 80, 113, 141]. Rather than optimize the design of the model for a

single task, meta-learning approaches typically incorporate knowledge and experience from

multiple tasks in order to guide the learning algorithm on new, unseen tasks.

2.2 Activation Functions

Activation functions are a crucial component of neural networks. They are what

allow deep networks to learn complex, nonlinear relationships from the training data. As

such, various types of activation functions have been used in neural networks over the years,

including manually designed functions and automatically discovered ones [6, 56, 57, 90, 95,

149, 169, 186, 189].

2.2.1 Manually Designed Functions

Early on, sigmoid and tanh were often used as activation functions [24, 35]. These

functions have limited range, and thus were helpful in restricting the magnitude of signals

propagating through neural network layers. However, their asymptotic behavior often caused

optimization difficulty due to vanishing gradients. ReLU, being unbounded as x → ∞,

addressed this limitation, and to this day is arguably the most widely used activation function

[146]. Later, Leaky ReLU was introduced to address the dying neuron problem: with ReLU,

neurons often become stuck and always output zero [127]. The ELU activation function

contains a negative saturation regime which helps to control the forward propagated variance,

and the SELU activation function contributed subtle refinements to ELU for even better
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stable signal propagation [30, 99].

2.2.2 Automatically Discovered Functions

The activation functions above are some of the most widely known and illustrative

examples, but many more exist [6, 149]. In general, researchers often design activation

functions to have specific properties in order to increase performance. This practice works in

certain cases, but eventually new and better activation functions are needed as more difficult

tasks arise. This situation points to two opportunities. First, automating the design of

activation functions is a promising means to discovering better functions and avoiding human

design biases. Second, using one activation function for all tasks is likely suboptimal, while

leveraging different activation functions specialized to specific tasks can yield better results.

Fortunately, the two opportunities are complimentary: while it may be time-consuming for

researchers to manually design specialized activation functions for new tasks, the specialization

can be done easily through automated search.

Indeed, prior work on automatic activation function discovery has shown that it is a

promising research area. The approaches have been based on reinforcement learning (RL),

evolutionary computation, or gradient descent, and are summarized next.

Reinforcement Learning Ramachandran et al. [160] used RL to design novel activation

functions. They discovered multiple functions, but analyzed just one in depth: Swish(x) =

x · σ(x). Of the top eight functions discovered, only Swish and max{x, σ(x)} consistently

outperformed ReLU across multiple tasks, suggesting that improvements are possible but

often task specific. This hypothesis is confirmed in Chapter 4, where specialized activation
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functions are discovered for different tasks, yielding higher performance.

Evolutionary Computation Marchisio et al. [130] and Hagg et al. [66] used evolutionary

computation to select activation functions from predefined lists, but did not discover novel

functions. Basirat and Roth [11] used a genetic algorithm to discover novel task-specific

piecewise activation functions, but the functions did not outperform ELiSH and HardELiSH,

two hand-designed activation functions [11]. This dissertation scales up these approaches in

a number of meaningful ways in order to advance the state of the art, including using larger

search spaces and more powerful exploration methods.

Gradient Descent Learnable activation functions (LAFs) encode functions with general

forms such as polynomial, rational, or piecewise linear, and utilize gradient descent to

discover optimal parameterizations during training [2, 64, 143, 184]. The general forms allow

most LAFs to approximate arbitrary continuous functions. However, just because a LAF

can represent an activation function does not guarantee that the optimal function will be

discovered by gradient descent. In Chapter 4, evolutionary computation and gradient descent

are combined into a single optimization process that discovers activation functions that

outperform LAFs.

2.3 Weight Initialization

In order to ensure that a new activation function does not cause vanishing or exploding

signals, it is important to initialize the weights of the network appropriately. This section

reviews previous research in neural network weight initialization, which has focused on
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stabilizing signals by accounting for specific components of neural networks such as the

activation function, topology, layer types, and training data distribution. However, these

approaches fail to generalize to networks that do not meet certain design restrictions, limiting

their effectiveness. Chapter 5 introduces AutoInit, an adaptive weight initialization algorithm

designed to address these limitations.

2.3.1 Activation-Function-Dependent Initialization

As is common in the literature, fan in and fan out refer to the number of connections

feeding into and out of a node, respectively. LeCun et al. [108] recommend sampling weights

from a distribution with mean zero and standard deviation
√
fan in. This initialization

encourages propagated signals to have variance approximately one if used with an activation

function symmetric about the origin, like 1.7159 tanh
(
2
3
x
)

or tanh(x) + αx for some small

choice of α. The standard sigmoid f(x) = 1/(1 + e−x) induces a mean shift and should not

be used in this setting.

Glorot and Bengio [55] proposed one initialization strategy to ensure unit variance

in the forward-propagated signals and another to ensure unit variance for the backward-

propagated gradients. As a compromise between the two strategies, they initialized weights by

sampling from U
(
−

√
6√

fan in+fan out
,

√
6√

fan in+fan out

)
. They also avoided sigmoid, and instead

chose symmetric functions with unit derivatives at 0, such as tanh or Softsign(x) = x/(1+ |x|).

He et al. [72] introduced the PReLU activation function and a variance-preserving

weight initialization to be used with it that samples weights from N (0,
√

2/fan in). Similarly,

Klambauer et al. [99] introduced SELU, an activation function with self-normalizing properties.

These properties are only realized when SELU is used with the initialization scheme by LeCun
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et al. [108].

The above weight initialization strategies attempt to solve the same fundamental

problem: How can weights be scaled so that repeated applications of the activation function

do not result in vanishing or exploding signals? While these approaches solve this problem in a

few special cases, the issue is more general. Manually deriving the correct scaling is intractable

for complicated activation functions. One approach for an arbitrary function f is to sample

Gaussian inputs x and adjust the weights according to the empirical variance Var(f(x))

[19]. Chapter 5 proposes an alternative and potentially more accurate approach: integration

by adaptive quadrature [70, 156, 190]. The result is a weight initialization strategy that is

compatible with any integrable activation function. Indeed, previous activation-function-

dependent initializations are special cases of the AutoInit algorithm.

2.3.2 Topology-Dependent Initialization

The activation-function-dependent initializations discussed above were designed for

neural networks composed of convolutional or dense layers. After the introduction of residual

networks [ResNets; 73, 74], new weight initialization schemes had to be developed to account

for the effect of shortcut connections and various types of residual branches.

Taki [182] analyzed signal propagation in plain and batch-normalized ResNets. They

developed a new weight initialization to stabilize training, but did not consider modifications

like using deeper residual blocks or reordering components like the activation function or

batch normalization layers. In contrast, AutoInit is topology-agnostic: It adapts to any of

these changes automatically.

38



Zhang et al. [210] introduced Fixup, an initialization method that rescales residual

branches to stabilize training. Fixup replaces batch normalization in standard and wide

residual networks [73, 74, 88, 208] and replaces layer normalization [8] in transformer models

[188]. The disadvantages of this scheme are that it only applies to residual architectures,

needs proper regularization to get optimal performance, and requires additional learnable

scalars that slightly increase model size.

Arpit et al. [7] proposed a new initialization scheme for weight-normalized networks

[165] that relies on carefully scaling weights, residual blocks, and stages in the network. Like

related approaches, this technique improves performance in specific cases, but imposes design

constraints, like requiring ReLU activation functions and a specific Conv → ReLU → Conv

block structure.

Just as tanh-inspired weight initialization does not stabilize training of ReLU networks,

initialization schemes designed for non-residual networks fail with ResNets [9, 19, 68]. This

observation suggests that future classes of neural networks will again require developing new

weight initializations. Additionally, practitioners with models that do not fit neatly within

the restricted settings of existing weight initialization research are left to derive their own

initialization or use a suboptimal one. For example, many initialization schemes assume

that the activation function is ReLU [7, 38, 72, 182, 210]. Indeed, ReLU is currently the

most popular activation function [6, 149], but it is not the best choice in every case [69].

ReLU prevents dynamical isometry [155, 167], weakens adversarial training [201], and results

in poorer accuracy compared to other activation functions in certain tasks [15]. A general

weight initialization strategy that does not impose architectural constraints and achieves

good performance in diverse settings is needed. AutoInit is designed to meet this challenge.
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2.3.3 Layer-Dependent Initialization

Hendrycks and Gimpel [75] noted that dropout layers [175] also affect the variance of

forward-propagated signals in a network. To stabilize training properly, it is necessary to

take dropout layers and the specific dropout rate into account in weight initialization. In

fact, pooling, normalization, recurrent, padding, concatenation, and other layer types affect

the signal variance in a similar way, but current initialization schemes do not take this effect

into account. AutoInit is designed to adapt to each of these layer types dynamically, and can

be extended to include new layer types as they are introduced in the future.

2.3.4 Data-Dependent Initialization

Mishkin and Matas [140] fed data samples through a network and normalized the

output of each layer to have unit variance. Krähenbühl et al. [103] adopted a similar

approach, but opted to normalize along the channel dimension instead of across an entire

layer. Data-dependent weight initializations are most similar in spirit to AutoInit; they

rely on empirical variance estimates derived from the data in order to be model-agnostic.

However, data-dependent weight initializations introduce a computational overhead [140],

and are not applicable in settings where data is not available or its distribution may shift

over time, such as online learning or reinforcement learning. The quality of the initialization

is also dependent on the number of the data samples chosen, and suffers when the network is

very deep [210]. AutoInit instead uses an analytic approach for greater efficiency and higher

accuracy.
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2.3.5 Summary

Previous techniques solved the initialization problem for networks with specific acti-

vation functions, topologies, and layer types. In contrast, AutoInit does not impose design

constraints, depend on data samples, or incur a parameter overhead [37, 213] and is therefore

a good starting point especially in new settings.

2.4 Fisher Information Matrix

Proper initialization makes evaluating new activation functions more reliable; however,

this evaluation step is still computationally expensive. By providing an inexpensive prediction

of final performance, a surrogate model could accelerate the search for new functions. The

Fisher information matrix (FIM) makes this surrogate approach possible.

Consider a neural network f parameterized by weights θ and given inputs x drawn

from a training distribution Qx. This neural network defines the conditional distribution

Ry|f(x;θ). The FIM associated with this model is

F = E
x∼Qx

y∼Ry|f(x;θ)

[
∇θL(y, f(x;θ))∇θL(y, f(x;θ))⊤

]
, (2.1)

where the loss function L(y, z) represents the negative log-likelihood associated with Ry|f(x;θ).

The FIM and its eigenvalues λ(F) are important quantities in machine learning with

many uses. For example, in optimal experiment design [44], the cost of experimentation

is minimized by optimizing a chosen criterion. Different criteria with different statistical

guarantees are used, but they are typically functions of the eigenvalues of the FIM, such as

the maximum or minimum eigenvalue, or the trace of the FIM (sum of the eigenvalues) or

determinant of the FIM (product of the eigenvalues).
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Past work has also used the eigenvalues of the FIM to analyze the learning dynamics

of neural networks in order to infer optimal values of the batch size or learning rate [51, 52,

71, 94, 117]. Because the FIM is related to the optimization landscape at initialization, it

provides insights on the learning dynamics of SGD [92] and the dynamics of signal propagation

at different layers of neural networks [86]. This information can be used to inform network

design by identifying specific layers that are poorly conditioned and therefore difficult to

optimize. The FIM is also used in second-order optimization algorithms for neural networks

[65, 131, 132]. These approaches are more expensive but often require fewer iterations than

first-order methods.

Chapter 6 builds on this work by using the FIM in a surrogate approach to accelerate

activation function search. However, instead of choosing one optimality criterion or only

considering one summary statistic, all of the eigenvalues of the FIM are kept and an optimal

distribution is learned experimentally. These eigenvalues are then used as a feature vector to

predict the performance of different activation functions efficiently.

2.5 Conclusion

Work in AutoML has shown that it is possible to optimize the design of complex

structures. Previous work on activation function design and weight initialization strategies

shows that they are critical components for neural network performance, and that improving

upon them can lead to better results. These results suggest that automating activation

function design and weight initialization is a promising avenue towards improving the current

state of the art as well as an important step progressing towards fully automatic machine

learning.
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Chapter 3

CAFE: Evolutionary Optimization of Deep Learning

Activation Functions

This chapter demonstrates that novel activation functions can outperform baseline

functions by statistically significant margins. Because this chapter serves as a foundation for

other work in this dissertation, part of the motivation for this work is exploratory. To this end,

activation functions are discovered in both small and large search spaces using a variety of

search algorithms, including exhaustive search, random search, and evolution with two kinds

of fitness functions. The experiments show that evolutionary search is particularly effective

and creative [110]. This work, called CAFE (Creative Activation Function Evolution), was

done in collaboration with graduate student William Macke [17].

3.1 Evolving Activation Functions

This section presents the approach to evolving activation functions, introducing the

search space, mutation and crossover implementations, and the overall evolutionary algorithm.

3.1.1 Search Space

Each activation function is represented as a tree consisting of unary and binary

operators. Functions are grouped in layers such that two unary operators always feed into
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one binary operator. The following operators, modified slightly from the search space of

Ramachandran et al. [160], are used:

• Unary: 0, 1, x, −x, |x|, x2, x3,
√
x, ex, e−x

2
, log(1 + ex), log(|x+ ϵ|), sin(x), sinh(x),

arcsinh(x), cos(x), cosh(x), tanh(x), arctanh(x), max{x, 0}, min{x, 0}, σ(x), erf(x),

sinc(x);

• Binary: x1 + x2, x1 − x2, x1 · x2, x1/(x2 + ϵ), max{x1, x2}, min{x1, x2}.

Following Ramachandran et al., a “core unit” is an activation function that can be represented

as core unit = binary(unary1(x), unary2(x)). Let F be the set of balanced core unit

trees. S is then defined as a family of search spaces

Sd∈N = {f ∈ F | depth(f) = d}. (3.1)

For example, S1 corresponds to the set of functions that can be represented by one core unit,

S2 represents functions of the form: core unit1(core unit2(x), core unit3(x)), and so

on. Examples of functions in S2 are illustrated in Figures 3.1 and 3.2.

3.1.2 Mutation

In mutation, one node in an activation function tree is selected uniformly at random.

The operator at that node is replaced with another random operator in the search space.

Unary operators are always replaced with unary operators, and binary operators with binary

operators. An example of mutation is shown in Figure 3.1. Theoretically, mutation alone is

sufficient for constructing any activation function. However, preliminary experiments showed

that crossover can increase the rate at which good activation functions are found.
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x1 * x2

σ(x) → |x|x3

min{x1, x2} x1 + x2

1 cosh(x) ex arctan(x)

Figure 3.1: An example of activation function mutation. The tree represents the activation
function (min{1, cosh(x)})3 ∗ σ(ex + arctan(x)). One node in the tree is selected uniformly
at random and replaced with another operator in the search space, also uniformly at random.
The resulting activation function is (min{1, cosh(x)})3 ∗ |ex + arctan(x)|. By introducing
variability, mutation ensures evolution explores the search space sufficiently. It prevents
high-performing activation functions from overly skewing the early generations of the search
process.

Figure 3.2: In crossover, two parent activation functions exchange randomly selected subtrees
of equivalent depth, producing one new child activation function. Crossover enables the
best activation functions to pass on their characteristics to the rest of the population. This
mechanism is what enables evolution to discover better activation functions more quickly
than random search.
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3.1.3 Crossover

In crossover, two parent activation functions exchange randomly selected subtrees,

producing one new child activation function. The subtrees are constrained to be of the same

depth, ensuring the child activation function is a member of the same search space as its

parents. Crossover is depicted in Figure 3.2.

3.1.4 Evolution

Starting with a population of N activation functions, a neural network is trained with

each function on a given training dataset. Each function is assigned a fitness pi equal to the

softmax of an evaluation metric Li. This metric could be either accuracy or negative loss

obtained on the validation dataset. More specifically,

pi =
eLi∑

j=1..N

eLj
. (3.2)

The softmax operation converts the fitness values to a probability distribution, allowing

functions to be randomly sampled. From the N activation functions, 2(N −m) are selected

with replacement for reproduction with probability proportional to their fitness. Crossover

followed by mutation is applied to the selected activation functions to obtain a new population

of size N −m. In order to increase exploration, m randomly generated functions are added

to a population that will again be of size N . This process is repeated for several generations,

and the activation functions with the best performance over the history of the search are

returned as a result.
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3.2 Experiments

This section presents experiments with the WRN-28-10 and WRN-40-4 architectures

on the CIFAR-10 and CIFAR-100 datasets [104, 208]. In the experiments, the default ReLU

activation functions are replaced with candidate functions, and all other settings are kept to

default values. Implementation details are in Appendix A.1.

3.2.1 Search Strategies

Three different techniques are used to explore the space of activation functions:

exhaustive search, random search, and evolution. Exhaustive search evaluates every function

in S1, while random search and evolution explore S2. It is noteworthy that evolution is able

to discover high-performing activation functions in S2, where the search space contains over

41 billion possible function strings. In each experiment, the top three activation functions by

validation accuracy from the entire search are kept. These functions are then reevaluated on

the test set, and the median accuracy of five independent runs is reported.

Exhaustive Search Ramachandran et al. search for activation functions using reinforce-

ment learning and argue that simple activation functions consistently outperform more

complicated ones [160]. Although evolution is capable of discovering high-performing, com-

plex activation functions in an enormous search space, exhaustive search can be effective in

smaller search spaces. S1, for example, contains 3,456 possible function strings.

Random Search An illustrative baseline comparison with evolution is random search.

Instead of evolving a population of 50 activation functions for 10 generations, 500 random
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activation functions from S2 are grouped into 10 “generations” of 50 functions each.

Evolution As shown in Figure 3.3, evolution discovers better activation functions more

quickly than random search in S2, a search space where exhaustive search is infeasible. During

evolution, candidate activation functions are assigned a fitness value based on either accuracy

or loss on the validation set. Accuracy-based fitness favors exploration over exploitation:

activation functions with poor validation accuracy still have a reasonable probability of

surviving to the next generation. A hypothetical activation function that achieves 90%

validation accuracy is only 2.2 times more likely to be chosen for the next generation than a

function with only 10% validation accuracy since e0.9/e0.1 ≈ 2.2.

Loss-based fitness sharply penalizes poor activation functions. It finds high-performing

activation functions more quickly, and gives them greater influence over future generations.

An activation function with 0.01 validation loss is 21,807 times more likely to be selected for

the following generation than a function with a validation loss of 10. e−0.01/e−10 ≈ 21,807.

Both experiments begin with an initial population of N = 50 random activation

functions, and run through 10 generations of evolution. Each new generation of 50 activation

functions is comprised of the top five functions from the previous generation, m = 10 random

functions, and 35 functions created by applying crossover and mutation to existing functions

in the population.

3.2.2 Activation Function Specialization

An important question is the extent to which activation functions are specialized for

the architecture and dataset for which they were evolved, or perform well across different
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Figure 3.3: Top validation accuracy per generation for three search strategies in the S2

search space. There are 50 activation functions in each generation of a search. All activation
functions are trained with WRN-28-10 on CIFAR-10 for 50 epochs, and the highest validation
accuracy obtained among all activation functions in a given generation is reported. Evolution
with loss-based fitness finds better activation functions more quickly than evolution with
accuracy-based fitness or random search. The first generation of random search is poor due
to chance; since each generation is independent, the generations of random search could be
arbitrarily reordered.

architectures and datasets. To address this question, activation functions discovered for

WRN-28-10 on CIFAR-10 are transferred to WRN-40-4 on CIFAR-100. These activation

functions are compared with the best from a small search (1.9K activation functions from S1)

with WRN-40-4 on CIFAR-100.
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3.3 Results

This section presents the experimental results, which demonstrate that evolved activa-

tion functions can outperform baseline functions like ReLU and Swish.

3.3.1 Improving Performance

Table 3.1 lists the activation functions that achieved the highest validation set accu-

racies after 50 epochs of training with WRN-28-10 on CIFAR-10. The top three activation

functions for each search strategy are included. To emulate their true performance, a WRN-28-

10 with each activation function was trained for 200 epochs five times on both CIFAR-10 and

CIFAR-100 and evaluated on the test set. The median accuracy of these tests is reported in

Table 3.1. Although no search was performed on CIFAR-100 with WRN-28-10, the functions

that perform well on CIFAR-10 successfully generalize to CIFAR-100.

The best three activation functions discovered through exhaustive search in S1 out-

perform ReLU and Swish. This finding shows how important it is to have an effective search

method. There are good functions even in S1. It is likely that there are even better functions

in S2, but with billions of possible functions, a more sophisticated search method is necessary.

The activation functions discovered by random search have unintuitive shapes (Ta-

ble 3.1). Although they fail to outperform the baseline activation functions, it is impressive

that they still consistently reach a reasonable accuracy. One of the functions (marked with

(*) in Table 3.1) discovered by random search occasionally failed to train to completion due

to an asymptote at x = −ϵ.

Evolution with accuracy-based fitness is less effective because it does not penalize poor
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Table 3.1: The top three activation functions discovered by each search strategy, along
with the baseline activation functions ReLU and Swish. The functions achieved the highest
validation set accuracy after 50 epochs of training with WRN-28-10 on CIFAR-10. The final
test accuracies listed on the right are the median of five runs after training WRN-28-10 from
scratch for 200 epochs with each activation function on CIFAR-10 and CIFAR-100. Function
plots have domain x ∈ (−5, 5) but have different ranges. Functions marked with an asterisk
(*) occasionally did not train to completion due to asymptotes at x = −ϵ. Exhaustive search
finds multiple activation functions in a simple search space (S1) that consistently outperform
ReLU and Swish. Evolution with loss-based fitness was the only technique that was able to
discover such activation functions in a more complicated search space (S2), suggesting that it
is the most promising technique for scaling up in the future.

Accuracy
Function Plots CIFAR-10 CIFAR-100

Evolution with Loss-based Fitness (S2)• (e(min{erf(x),0})−(max{x,0})) ∗ (min{(arctan((x)3)) ∗ (max{|x|, 0}), 0}) 94.1 73.9
• (emax{min{erf(x),0},max{x,0}}) ∗ (min{(arctan((x)3)) ∗ (max{|x|, 0}), 0}) 10.0 01.0
• (−((arctan((x)3)) ∗ (cos(1)))) ∗ (−((arctan(min{x, 0})) ∗ (max{|x|, 0}))) 93.9 74.1

Evolution with Accuracy-based Fitness (S2)

• min{e−(min{(sinh(x))2,(0)2})2 ,min{min{erf(log(1 + ex)), arcsinh(x)}, 0}} 10.0 01.0

• min{cos(max{(min{x, 0})3, log(1 + e1)}), e−((|max{x,0}|)+(eσ(x)))2} 93.5 72.5
• max{max{(log(|(min{x, 0}) + ϵ|)) ∗ (σ(erf(x))), 0}, 0} (*) 92.5 72.3

Random Search (S2)• (min{max{(log(|(x) + ϵ|))3,−(log(|(x) + ϵ|))}, 0}) + (e(min{tanh(x),0})+(log(|(max{x,0})+ϵ|))) (*) 93.8 73.9
• (arctan(min{sinh(sin(x)), arctan(max{x, 0})})) ∗ (tanh((−(sin(x))) ∗ (arcsinh(x)))) 93.3 72.1

• (max{ min{(x)3,0}
max{sin(x),0}+ϵ , 0}) − (min{(x)2,max{x, 0}}) 93.9 73.2

Exhaustive Search (S1)• (arctan(x)) ∗ (min{x, 0}) 94.0 74.5
• (tanh(x)) ∗ (min{x, 0}) 94.1 74.3
• (min{x, 0}) ∗ (erf(x)) 94.0 74.2

Baseline Activation Functions
• ReLU(x) 94.0 73.3
• Swish(x) 93.8 71.1
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activation functions severely enough. One of the functions failed to learn anything better

than random guessing. It was likely too sensitive to random initialization or was unable to

learn with the slightly different learning rate schedule of a full 200-epoch training. Another

function (marked with (*) in Table 3.1) often did not train to completion due to an asymptote

at x = −ϵ. The one function that consistently trained well still failed to outperform ReLU.

Evolution with loss-based fitness is able to find good functions in S2. One of the

three activation functions discovered by evolution outperformed both ReLU and Swish on

CIFAR-10, and two of the three discovered outperformed ReLU and Swish on CIFAR-100.

Figure 3.4 shows the top activation function after each generation of loss-based evolution.

This approach discovered both novel and unintuitive functions that perform reasonably well,

as well as simple, smooth, and monotonic functions that outperform ReLU and Swish. It is

therefore the most promising search method in large spaces of activation functions.

The performance gains on CIFAR-10 are consistent but small, and the improvement

on CIFAR-100 is larger. It is possible that more difficult datasets provide more room for

improvement that a novel activation function can exploit.

To evaluate the significance of these results, WRN-28-10 was trained on CIFAR-100 for

200 epochs 50 times with ReLU, 50 times with the best function found by exhaustive search in

S1, (arctan(x)) ∗ (min{x, 0}), 25 times with Swish, and 15 times with the best function found

by evolution in S2, (−((arctan((x)3)) ∗ (cos(1)))) ∗ (−((arctan(min{x, 0})) ∗ (max{|x|, 0}))).

Table 3.2 shows 95% confidence intervals and the results of independent t-tests comparing

the mean accuracies achieved with each activation function. The results show that replacing

a baseline activation function with an evolved one results in a statistically significant increase

in accuracy.
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Figure 3.4: Best activation function by WRN-28-10 validation accuracy after 50 epochs
of training on CIFAR-10 using evolution with loss-based fitness. Top validation accuracy
improves from 92.2 in Generation 1 to 93.9 in Generation 10. Evolution is able to discover
effective activation functions that are not likely to be discovered by hand. In particular, the
top activation function discovered by evolution is smooth everywhere, unlike ReLU, which is
not smooth at x = 0. This difference is likely the reason for its superior performance.
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Table 3.2: Confidence intervals (95%) and independent t-tests comparing mean
accuracies after training WRN-28-10 on CIFAR-100 for 200 epochs with the
best function from S1, (arctan(x)) ∗ (min{x, 0}), the best function from S2,
(−((arctan((x)3)) ∗ (cos(1)))) ∗ (−((arctan(min{x, 0})) ∗ (max{|x|, 0}))), and baseline
functions ReLU and Swish. The discovered functions perform significantly better than both
baselines. WRN-28-10 was not trained 50 times with Best from S2 and with Swish due to
time constraints. In repeated trials, Swish occasionally caused the network to stall during
training, explaining its low mean accuracy.

Activation Function Mean Accuracy (95% C.I.) Repeats

Best from S1 74.2 (±0.1) 50
Best from S2 74.0 (±0.2) 15

ReLU 73.2 (±0.2) 50
Swish 49.6 (±11.6) 25

Activation Functions t-statistic; p-value

Best from S1 vs. ReLU 9.73; 4.64 × 10−16

Best from S1 vs. Swish 5.91; 9.91 × 10−8

Best from S2 vs. ReLU 4.51; 2.91 × 10−5

Best from S2 vs. Swish 3.17; 2.98 × 10−3

Among the top activation functions discovered, many are smooth and monotonic.

Hand-engineered activation functions frequently share these properties [149]. Two notable

exceptions were found by random search and evolution with accuracy-based fitness. Although

these functions do not outperform ReLU, the fact that WRN-28-10 was able to achieve such

high accuracy with these arbitrary functions raises questions as to what makes an activation

function effective. Ramachandran et al. [160] asserted that simpler activation functions

consistently outperformed more complicated ones. However, the high accuracy achieved with

activation functions discovered by evolution in S2 demonstrates that complicated activation

functions can compete with simpler ones. Such flexibility may be particularly useful in
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specialization to different architectures and datasets. It is plausible that there exist many

unintuitive activation functions which can outperform the more general ones in specialized

settings. Evolution is well-positioned to discover them.

3.3.2 Specialized Activation Functions

Since different functions are seen to emerge in different experiments, an important

question is: How general or specialized are they to a particular architecture and dataset?

To answer this question, the top activation function discovered for WRN-28-10 on CIFAR-

10, tanh(x) ∗ min{x, 0}, was trained with WRN-40-4 on CIFAR-100 for 200 epochs. This

result was then compared with performance achieved by σ(x) ∗ erf(x), an activation function

discovered specifically for WRN-40-4 on CIFAR-100. Table 3.3 summarizes the result: the

activation function discovered for the first task does transfer to the second task, but even

higher performance is achieved when a specialized function is discovered specifically for the

second task.

The specialized activation function, σ(x) ∗ erf(x), is shown in Figure 3.6c. It is similar

to σ(x) in that it tends towards 0 as x→ −∞, and approaches 1 as x→ ∞. It differs from

σ(x) in that it has a non-monotonic bump for small, negative values of x. A 50-epoch training

of WRN-40-4 on CIFAR-100 with activation σ(x) achieved validation accuracy of just 63.2.

The superior performance of σ(x) ∗ erf(x) suggests that the negative bump was important, as

the shapes of the two activation functions are otherwise similar. This result demonstrates

how evolution can discover specializations that make a significant difference.
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Table 3.3: Test set accuracy of WRN-40-4 with various activation functions after 200 epochs
of training on CIFAR-100. Results reported are median of five runs. The top activation
function discovered for WRN-28-10 on CIFAR-10, tanh(x) ∗ min{x, 0}, successfully transfers
to this new task, outperforming both baselines. However, a search designed specifically for
WRN-40-4 on CIFAR-100 discovers a novel activation function, σ(x) ∗ erf(x) that results
in even higher performance. This result demonstrates that the main power of activation
function metalearning is to be able to specialize the function to the architecture and dataset.

Activation Function Accuracy

σ(x) ∗ erf(x) 72.6
tanh(x) ∗ min{x, 0} 72.1

Swish(x) 71.1
ReLU(x) 71.0

3.4 Discussion

Among the top activation functions discovered, many are smooth and monotonic.

Hand-engineered activation functions frequently share these properties [149]. Two notable

exceptions were found by random search and evolution with accuracy-based fitness. Although

these functions do not outperform ReLU, the fact that WRN-28-10 was able to achieve such

high accuracy with these arbitrary functions raises questions as to what makes an activation

function effective. Ramachandran et al. [160] asserted that simpler activation functions

consistently outperformed more complicated ones. However, the high accuracy achieved with

activation functions discovered by evolution in S2 demonstrates that complicated activation

functions can compete with simpler ones. Such flexibility may be particularly useful in

specialization to different architectures and datasets. It is plausible that there exist many

unintuitive activation functions which can outperform the more general ones in specialized

settings. Evolution is well-positioned to discover them.

56



Activation functions discovered by evolution perform best on the architectures and

datasets for which they were evolved. Figure 3.5 demonstrates this principle. More generally,

it shows the performance of several activation functions when trained with WRN-28-10 for

50 epochs on CIFAR-10 and when trained with WRN-40-4 for 50 epochs on CIFAR-100.

Activation functions that perform well for one task often perform well on another task, but

not always. Therefore, if possible, one should evolve them specifically for each architecture

and dataset. However, as the results in Section 3.3 show, it is feasible to evolve using smaller

architectures and datasets and then transfer to scaled up architectures and more difficult

datasets within the same domain.

In the future, it may be possible to push such generalization further, by evaluating

functions across multiple architectures and datasets. In this manner, evolution may be able

to combine the requirements of multiple tasks, and discover functions that perform well in

general. However, the main power in activation function search is to discover functions that

are specialized to each architecture and dataset. In that setting most significant improvements

are possible.

3.5 Conclusion

Multiple strategies for discovering novel, high-performing activation functions were

presented and evaluated: namely exhaustive search in a small search space (S1) and random

search and evolution in a larger search space (S2). Evolution with loss-based fitness finds

activation functions that achieve high accuracy and outperform standard functions such

as ReLU and novel functions such as Swish, demonstrating the power of search in large

spaces. The best activation functions successfully transfer from CIFAR-10 to CIFAR-100
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Figure 3.5: Activation function accuracy across tasks. Each data point represents validation
accuracy when training with a given activation function from S1 with WRN-40-4 on CIFAR-
100 for 50 epochs, and with WRN-28-10 on CIFAR-10 for 50 epochs. Some activation
functions perform well when paired with a different architecture and dataset. Other functions
are specialized to a given architecture and dataset, and do not transfer. The results suggest
that reasonable performance can be expected from general evolved activation functions, but
that the best performance comes from evolving activation functions for a specific task.

and from WRN-28-10 to WRN-40-4. However, the main power of activation function search

is in finding specialized functions for each architecture and dataset, leading to significant

improvement. These results (summarized in Figure 3.6) provide a foundation for the next

chapter, where evolution and gradient descent explore a flexible search space and discover

activation functions that adapt to different network locations and stages of training.
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Figure 3.6: A summary of the best activation functions found in the first set of experiments.
(a): Exhaustive search in S1 discovers (tanh(x)) ∗ (min{x, 0}), and evolution in S2 discovers
(e(min{erf(x),0})−(max{x,0})) ∗ (min{(arctan((x)3)) ∗ (max{|x|, 0}), 0}). Both functions achieve
a median test accuracy of 94.1 with WRN-28-10 on CIFAR-10, outperforming that of
ReLU (94.0) and Swish (93.8). (b): The functions (arctan(x)) ∗ (min{x, 0}) in S1 and
(−((arctan((x)3))∗(cos(1))))∗(−((arctan(min{x, 0}))∗(max{|x|, 0}))) in S2 outperform ReLU
and Swish by statistically significant margins with WRN-28-10 on CIFAR-100, demonstrating
the power of novel activation functions. (c): Functions evolved for WRN-28-10 on CIFAR-10
perform well with WRN-40-4 on CIFAR-100, but a new function discovered specifically for
WRN-40-4 on CIFAR-100, σ(x) ∗ erf(x), achieves even higher performance. This result shows
that the biggest advantage of activation function search is the ability to discover functions
that are specialized to the architecture and dataset. (d): The baseline activation functions,
ReLU and Swish, are included for visual comparison.
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Chapter 4

PANGAEA: Discovering Parametric Activation

Functions

This chapter describes an extended approach for discovering activation functions called

PANGAEA (Parametric ActivatioN functions Generated Automatically by an Evolutionary

Algorithm) [15]. Chapter 3 explored activation function discovery with multiple search

algorithms and search spaces, and identified evolution in large spaces as a creative and powerful

approach. In order to understand the full potential of such a system, this chapter relaxes

design constraints and scales up in multiple ways. The activation function representation

is expanded to include arbitrary computation graphs, which allows for representing more

complex functional forms. Additional mutation operators are then introduced to allow for

more efficient exploration of this search space. The approach utilizes a synergy of two

different optimization processes: evolutionary population-based search discovers the general

form of the activation function, and gradient descent introduces further flexibility by fine-

tuning the shape of the function across locations in a network and over time as training

progresses. PANGAEA discovers general activation functions that improve performance

overall over previously-proposed functions. It also produces specialized functions for different

architectures, such as Wide ResNet, ResNet, and Preactivation ResNet, that perform even

better than the general functions, demonstrating its ability to customize activation functions

to architectures.
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4.1 The PANGAEA Method

Activation functions in PANGAEA are represented as computation graphs, which

allow for comprehensive search, efficient implementation, and effective parameterization.

Regularized evolution with reranking is used as the search method to encourage exploration

and to reduce noise.

4.1.1 Representing and Modifying Activation Functions

Activation functions are represented as computation graphs in which each node is a

unary or a binary operator (Table 4.1). All of these operators have TensorFlow [1] implemen-

tations, which allows for taking advantage of under-the-hood optimizations. Safe operator

implementations are chosen when possible (e.g. the binary operator x1/x2 is implemented

as tf.math.divide no nan, which returns 0 if x2 = 0). Operators that are periodic (e.g.

sin(x)) and operators that contain repeated asymptotes are not included; in preliminary

experiments they often caused training instability. All of the operators have domain R,

making it possible to compose them arbitrarily. The operators in Table 4.1 were chosen to

create a large and expressive search space that contains activation functions unlikely to be

discovered by hand. Indeed, all piecewise real analytic functions can be represented with a

PANGAEA computation graph (Theorem 1 of Section 4.8).

PANGAEA begins with an initial population of P random activation functions. Each

function is either of the form f(x) = unary1(unary2(x)) or f(x) = binary(unary1(x),

unary2(x)), as shown in Figure 4.1. Both forms are equally likely, and the unary and binary

operators are also selected uniformly at random. The computation graphs in Figure 4.1

represent the simplest non-trivial computation graphs with and without a binary operator.
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Table 4.1: The operator search space consists of basic unary and binary functions as well
as existing activation functions (Section 4.7). σ(x) = (1 + e−x)−1. The unary operators
bessel i0e and bessel i1e are the exponentially scaled modified Bessel functions of order 0 and
1, respectively.

Unary Binary

0 |x| erf(x) tanh(x) arcsinh(x) ReLU(x) Softplus(x) x1 + x2 xx21
1 x−1 erfc(x) ex − 1 arctan(x) ELU(x) Softsign(x) x1 − x2 max{x1, x2}
x x2 sinh(x) σ(x) bessel i0e(x) SELU(x) HardSigmoid(x) x1 · x2 min{x1, x2}
−x ex cosh(x) log(σ(x)) bessel i1e(x) Swish(x) x1/x2

f(x)

Unary

Unary

x

f(x)

Binary

Unary Unary

x x

Figure 4.1: Random activation function initialization. The initial population consists of
random samples of two kinds of computation graphs, randomly initialized with the operators
in Table 4.1. In this manner, the search starts with simple graphs and gradually expands to
more complex forms.

This design choice is inspired by previous work in neuroevolution, which demonstrated the

power of starting from simple structures and gradually complexifying them [176].

During the search, all ReLU activation functions in a given neural network are replaced

with a candidate activation function. No other changes to the network or training setup are

made. The network is trained on the dataset, and the activation function is assigned a fitness

score equal to the network’s accuracy on the validation set.

Given a parent activation function, a child activation function is created by applying
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one of four possible mutations (Figure 4.2). The possible mutations include elementary

graph modifications like inserting, removing, or changing a node. These mutations are

useful for local exploration. A special “regenerate” mutation is also introduced to accelerate

exploration. Other possible evolutionary operators like crossover are not used in this chapter.

All mutations are equally likely with two special cases. If a remove mutation is selected for

an activation function with just one node, a change mutation is applied instead. Additionally,

if an activation function with greater than seven nodes is selected, the mutation is a remove

mutation, in order to reduce bloat.

Insert In an insert mutation, one operator in the search space is selected uniformly

at random. This operator is placed on a random edge of a parent activation function

graph. In Figure 4.2b, the unary operator Swish(x) is inserted at the edge connecting the

output of tanh(x) to the input of x1 + x2. After mutating, the parent activation function

(tanh(x) + |erf(x)|)2 produces the child activation function (Swish(tanh(x)) + |erf(x)|)2. If a

binary operator is randomly chosen for the insertion, the incoming input value is assigned to

the variable x1. If the operator is addition or subtraction, the input to x2 is set to 0. If the

operator is multiplication, division, or exponentiation, the input to x2 is set to 1. Finally, if

the operator is the maximum or minimum operator, the input to x2 is a copy of the input to

x1. When a binary operator is inserted into a computation graph, the activation function

computed remains unchanged. However, the structure of the computation graph is modified

and can be further altered by future mutations.

Remove In a remove mutation, one node is selected uniformly at random and deleted. The

node’s input is rewired to its output. If the removed node is binary, one of the two inputs
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Figure 4.2: Evolutionary operations on activation functions. In an ‘Insert’ mutation, a new
operator is inserted in one of the edges of the computation graph, like the Swish(x) in (b).
In a ‘Remove’ mutation, a node in the computation graph is deleted, like the addition in
(c). In a ‘Change’ mutation, an operator at a node is replaced with another, like addition
with multiplication in (d). These first three mutations are useful in refining the function
locally. In contrast, in a ‘Regenerate’ mutation (e), every operator in the graph is replaced
by a random operator, thus increasing exploration.

is chosen at random and is deleted. The other input is kept. In Figure 4.2c, the addition

operator is removed from the parent activation function. The two inputs to addition, tanh(x)

and |erf(x)|, cannot both be kept. By chance, tanh(x) is discarded, resulting in the child

activation function |erf(x)|2.

Change To perform a change mutation, one node in the computation graph is selected at

random and replaced with another operator from the search space, also uniformly at random.

Unary operators are always replaced with unary operators, and binary operators with binary

operators. Figure 4.2d shows how changing addition to multiplication produces the activation
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function (tanh(x) · |erf(x)|)2.

Regenerate In a regenerate mutation, every operator in the computation graph is replaced

with another operator from the search space. As with change mutations, unary operators are

replaced with unary operators, and binary operators with binary operators. Although every

node in the graph is changed, the overall structure of the computation graph remains the

same. Regenerate mutations are useful for increasing exploration, and are similar in principle

to burst mutation and delta coding [58, 194]. Figure 4.2e shows the child activation function

−max{0, tanh(SELU(x))}, which is quite different from the parent function in Figure 4.2a.

Parameterization of Activation Functions After mutation (or random initialization),

activation functions are parameterized (Figure 4.3). A value k ∈ {0, 1, 2, 3} is chosen

uniformly at random, and k edges of the activation function graph are randomly selected.

Multiplicative per-channel parameters are inserted at these edges and initialized to one.

Whereas evolution is well suited for discovering the general form of the activation function

in a discrete, structured search space, parameterization makes it possible to fine-tune the

function using gradient descent. The function parameters are updated at every epoch during

backpropagation, resulting in different activation functions in different stages of training. As

the parameters are per-channel, the process creates different activation functions at different

locations in the neural network. Thus, parameterization gives neural networks additional

flexibility to customize activation functions.
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Figure 4.3: Parameterization of activation functions. In this example, parameters are added
to k = 3 random edges, yielding the parametric activation function ασ(β|x| − arctan(γx)).

4.1.2 Discovering Activation Functions with Evolution

Activation functions are discovered by regularized evolution [162]. Initially, P random

activation functions are created, parameterized, and assigned fitness scores. To generate a new

activation function, S functions are sampled with replacement from the current population.

The function with the highest validation accuracy serves as the parent, and is mutated to

create a child activation function. This function is parameterized and assigned a fitness score.

The new activation function is then added to the population, and the oldest function in the

population is removed, ensuring the population is always of size P . This process continues

until C functions have been evaluated in total, and the top functions over the history of the

search are returned as a result.
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Any activation function that achieves a fitness score less than a threshold V is discarded.

These functions are not added to the population, but they do count towards the total number

of C activation functions evaluated for each architecture. This quality control mechanism

allows evolution to focus only on the most promising candidates.

To save computational resources during evolution, each activation function is evaluated

by training a neural network for 100 epochs using a compressed learning rate schedule. After

evolution is complete, the top 10 activation functions from the entire search are reranked.

Each function receives an adjusted fitness score equal to the average validation accuracy from

two independent 200-epoch training runs using the original learning rate schedule. The top

three activation functions after reranking proceed to the final testing experiments.

During evolution, it is possible that some activation functions achieve unusually high

validation accuracy by chance. The 100-epoch compressed learning rate schedule may also

have a minor effect on which activation functions are optimal compared to a full 200-epoch

schedule. Reranking thus serves two purposes. Full training reduces bias from the compressed

schedule, and averaging two such runs lessens the impact of activation functions that achieved

high accuracy by chance.

4.2 Datasets and Architectures

The experiments in this chapter focus primarily on the CIFAR-100 image classification

dataset [104]. This dataset is a more difficult version of the popular CIFAR-10 dataset, with

100 object categories instead of 10. Fifty images from each class were randomly selected from

the training set to create a balanced validation set, resulting in a training/validation/test

split of 45K/5K/10K images.
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To demonstrate that PANGAEA can discover effective activation functions in various

settings, it is evaluated with three different neural networks. The models were implemented

in TensorFlow [1], mirroring the original authors’ training setup as closely as possible (see

Appendix A.2 for training details and Appendix A.2.2 for code that shows how to train with

custom activation functions).

Wide Residual Network [WRN-10-4; 208] has a depth of 10 and widening factor of

four. Wide residual networks provide an interesting comparison because they are shallower and

wider than many other popular architectures, while still achieving good results. WRN-10-4

was chosen because its CIFAR-100 accuracy is competitive, yet it trains relatively quickly.

Residual Network [ResNet-v1-56; 73], with a depth of 56, provides an important

contrast to WRN-10-4. It is significantly deeper and has a slightly different training setup,

which may have an effect on the performance of different activation functions.

Preactivation Residual Network [ResNet-v2-56; 74] has identical depth to ResNet-

v1-56, but is a fundamentally different architecture. Activation functions are not part of

the skip connections, as is the case in ResNet-v1-56. Since information does not have

to pass through an activation function, this structure makes it easier to train very deep

architectures. PANGAEA should exploit this structure and discover different activation

functions for ResNet-v2-56 and ResNet-v1-56.

4.3 Main Results

This section demonstrates that PANGAEA is able to discover good activation func-

tions for various architectures. General activation functions that perform well on multiple
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architectures are found, but the best performance comes from activation functions that are

specialized to a given neural network.

4.3.1 Overview

Separate evolution experiments were run to discover novel activation functions for

each of the three architectures. Evolutionary parameters P = 64, S = 16, C = 1,000, and

V = 20% were used since they were found to work well in preliminary experiments.

Figure 4.4 visualizes progress in these experiments. For all three architectures, PAN-

GAEA quickly discovered activation functions that outperform ReLU. It continued to make

further progress, gradually discovering better activation functions, and did not plateau during

the time allotted for the experiment. Each run took approximately 1,000 GPU hours on

GeForce GTX 1080 and 1080 Ti GPUs (see Appendices A.2 and B for implementation and

compute details).

Table 4.2 shows the final test accuracy for the top specialized activation functions

discovered by PANGAEA in each run. For comparison, the accuracy of the top general

functions discovered in this process are also shown, as well as the accuracy of several baseline

activation functions (see Section 4.7 for baseline activation function details and Section 4.6

for additional results with learnable baseline functions). In sum, PANGAEA discovered the

best activation function for each of the three architectures.

4.3.2 Specialized Activation Functions

For all three architectures, there are baseline activation functions that outperform

ReLU by statistically significant margins. This result already demonstrates that activation
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Figure 4.4: Progress of PANGAEA with three different neural networks. The plots show the
best accuracy achieved among all activation functions evaluated so far. The stars on the
plot specify the time when notable activation functions were discovered during evolution; the
expression for each such function is written next to the star. Evolution quickly discovered
activation functions that outperform ReLU (accuracy with ReLU shown at x = 0), and
continued to improve throughout the experiment. Note that this figure shows validation
accuracy, while Table 4.2 lists test set accuracy.
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Table 4.2: CIFAR-100 test set accuracy aggregated over ten runs, shown as mean ± sample
standard deviation. Asterisks indicate a statistically significant improvement in mean
accuracy over ReLU, with * if p ≤ 0.05, ** if p ≤ 0.01, and *** if p ≤ 0.001; p-values are
from one-tailed Welch’s t-tests. The top accuracy for each architecture is in bold. Baseline
activation function details and references are given in Section 4.7.

WRN-10-4 ResNet-v1-56 ResNet-v2-56

Specialized for WRN-10-4
log(σ(αx)) · βarcsinh(x) 73.20±0.37 ∗∗∗ 18.63±21.04 45.88±30.70

log(σ(αx)) · arcsinh(x) 73.16±0.41 ∗∗∗ 19.34±20.14 64.30±21.32

−Swish(Swish(αx)) 72.49±0.55 ∗∗∗ 58.86±2.88 74.71±0.20 ∗

Specialized for ResNet-v1-56
αx− β log(σ(γx)) 70.28±0.37 71.01±0.64 ∗∗∗ 74.35±0.45

αx− log(σ(βx)) 70.47±0.53 70.30±0.58 ∗ 74.70±0.23 ∗
max{Swish(x), 0} 72.10±0.33 ∗∗ 69.43±0.69 74.97±0.25 ∗∗

Specialized for ResNet-v2-56
Softplus(ELU(x)) 71.36±0.34 69.96±0.39 75.61±0.42 ∗∗∗
min{log(σ(x)), α log(σ(βx))} 72.04±0.34 ∗∗ 69.56±0.48 75.19±0.39 ∗∗∗
SELU(Swish(x)) 01.00±0.00 01.00±0.00 75.02±0.35 ∗∗

General Activation Functions
max{Swish(x), α log(σ(ReLU(x)))} 72.54±0.26 ∗∗∗ 69.91±0.37 75.20±0.41 ∗∗∗
min{Swish(x), αELU(ReLU(βx))} 72.39±0.29 ∗∗∗ 69.82±0.40 75.27±0.38 ∗∗∗
log(σ(x)) 72.33±0.32 ∗∗∗ 69.58±0.35 75.53±0.37 ∗∗∗

Fixed Baseline Functions
ReLU 71.46±0.50 69.64±0.65 74.39±0.44

ELiSH 01.00±0.00 01.00±0.00 75.20±0.31 ∗∗∗
ELU 72.30±0.32 ∗∗∗ 69.67±0.46 74.95±0.30 ∗∗
GELU 71.95±0.35 ∗ 70.19±0.40 ∗ 74.86±0.33 ∗∗
HardSigmoid 54.99±1.00 32.55±4.06 64.90±0.69

Leaky ReLU 71.73±0.33 69.78±0.33 74.73±0.35 ∗
Mish 71.95±0.41 ∗ 69.88±0.54 75.32±0.29 ∗∗∗
SELU 70.53±0.42 68.52±0.29 73.79±0.36

sigmoid 56.10±0.98 36.47±3.32 66.45±0.92

Softplus 72.27±0.26 ∗∗∗ 69.71±0.36 75.46±0.52 ∗∗∗
Softsign 56.30±2.16 58.38±0.96 69.33±0.39

Swish 72.26±0.28 ∗∗∗ 69.68±0.38 75.08±0.36 ∗∗∗
tanh 56.52±1.53 63.88±0.38 70.44±0.40

Parametric Baseline Functions
PReLU 72.23±0.37 ∗∗∗ 69.77±0.40 75.10±0.53 ∗∗
PSwish = x · σ(βx) 72.40±0.31 ∗∗∗ 70.16±0.46 ∗ 75.39±0.28 ∗∗∗

Learnable Baseline Functions
APL 72.88±0.32 ∗∗∗ 70.81±0.20 ∗∗∗ 75.02±0.28 ∗∗∗
PAU 41.46±22.66 01.00±0.00 02.38±4.36

SPLASH 72.16±0.81 ∗ 01.00±0.00 73.45±0.43
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functions should be chosen carefully, and that the common practice of using ReLU by default

is suboptimal. Furthermore, the best baseline activation function is different for different

architectures, suggesting that specializing activation functions to the architecture is a good

approach.

Because PANGAEA uses validation accuracy from a single neural network to assign

fitness scores to activation functions, there is selective pressure to discover functions that

exploit the structure of the network. The functions thus become specialized to the architecture.

They increase the performance of that architecture; however, they may not be as effective

with other architectures. Specialized activation function accuracies are highlighted with the

gray background in Table 4.2. To verify that the functions are customized to a specific

architecture, the functions were cross-evaluated with other architectures.

PANGAEA discovered two specialized activation functions for WRN-10-4 that out-

performed all baseline functions by a statistically significant margin (p ≤ 0.05). The top

specialized function on ResNet-v1-56 also significantly outperformed all baseline functions,

except APL (for which p = 0.19). The top specialized activation function on ResNet-v2-56

similarly significantly outperformed all except Softplus (p = 0.25) and PSwish (p = 0.09).

These results strongly demonstrate the power of customizing activation functions to archi-

tectures. Indeed, specializing activation functions is a new dimension of activation function

search not considered by previous work [11, 160].

4.3.3 General Activation Functions

Although the best performance comes from specialization, it is also useful to discover

activation functions that achieve high accuracy across multiple architectures. For instance,

72



they could be used initially on a new architecture before spending compute on specialization.

A powerful albeit computationally demanding approach would be to evolve general functions

directly, by evaluating candidates on multiple architectures during evolution. However, it

turns out that each specialized evolution run already generates a variety of functions, many

of which are general.

To evaluate whether the PANGAEA runs discovered general functions as well, the

top 10 functions from each run were combined into a pool of 30 candidate functions. Each

candidate was assigned three fitness scores equal to the average validation accuracy from two

independent training runs on each of the three architectures. Candidate functions that were

Pareto-dominated, were functionally equivalent to one of the baseline activation functions, or

had already been selected as a specialized activation function were discarded, leaving three

Pareto-optimal general activation functions.

These functions indeed turned out to be effective as general activation functions. All

three achieved good accuracy with ResNet-v1-56 and significantly outperformed ReLU with

WRN-10-4 and ResNet-v2-56. However, specialized activation functions, i.e. those specifically

evolved for each architecture, still give the biggest improvements.

4.3.4 Shapes of Discovered Functions

Many of the top discovered activation functions are compositions of multiple unary

operators. These functions do not exist in the core unit search space of Ramachandran et al.

[160], which requires binary operators. They also do not exist in the S1 or S2 search spaces

in CAFE, which are too shallow. The design of the search space is therefore as important as

the search algorithm itself. Previous search spaces that rely on repeated fixed building blocks
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only have limited representational power. In contrast, PANGAEA utilizes a flexible search

space that can represent activation functions in an arbitrary computation graph (see Section

4.9 for an analysis on the size of the PANGAEA search space).

Furthermore, while the learnable baseline functions can in principle approximate

the functions discovered by PANGAEA, they do not consistently match its performance.

PANGAEA utilizes both evolutionary search and gradient descent to discover activation

functions, and apparently this combination of optimization processes is more powerful than

gradient descent alone.

Figure 4.5 shows examples of parametric activation functions discovered by PANGAEA.

As training progresses, gradient descent makes small adjustments to the function parameters

α, β, and γ, resulting in activation functions that change over time. This result suggests that

it is advantageous to have one activation function in the early stages of training when the

network learns rapidly, and a different activation function in the later stages of training when

the network is focused on fine-tuning. The parameters α, β, and γ are also learned separately

for the different channels, resulting in activation functions that vary with location in a neural

network. Functions in deep layers (near the output) are more nonlinear than those in shallow

layers (closer to the input), possibly contrasting the need to form regularized embeddings

with the need to form categorizations. In this manner, PANGAEA customizes the activation

functions to both time and space for each architecture.
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Figure 4.5: Adaptation of parametric activation functions over time and space. Top: The
parameters change during training, resulting in different activation functions in the early
and late stages. The plots were created by averaging the values of α, β, and γ across the
entire network at different training epochs. Bottom: The parameters are updated separately
in each channel, inducing different activation functions at different locations of a neural
network. The plots were created by averaging α, β, and γ at each layer of the network after
the completion of training.
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4.4 Diving Deeper: Experiments on Ablations, Variations, and
Training Dynamics

PANGAEA is a method with many moving parts. The main results from Section 4.3

already showed the power of PANGAEA, and the experiments from this section illuminate

how each component of PANGAEA contributes to its success. Evolutionary search and

gradient descent working in tandem provided a better strategy than either optimization

algorithm alone (Section 4.4.1). The top activation functions benefitted from their learnable

parameters (Section 4.4.2), but baseline functions did not (Section 4.4.3), showing how

PANGAEA discovered functional forms well-suited to parameterization. PANGAEA is

robust: the activation functions it discovers transfer to larger networks (Section 4.4.4) and

PANGAEA achieves impressive results with a new dataset and architecture (Section 4.4.5).

The activation functions discovered by PANGAEA improve accuracy by easing optimization

and implicitly regularizing the network (Section 4.4.6).

4.4.1 Additional Baseline Search Strategies

As additional baseline comparisons, two alternative search strategies were used to

discover activation functions for WRN-10-4. First, a random search baseline was established

by applying random mutations without regard to fitness values. This approach corresponds

to setting evolutionary parameters P = 1, S = 1, and V = 0%. Second, to understand the

effects of function parameterization, a nonparametric evolution baseline was run. This setting

is identical to PANGAEA, except functions are not parameterized (Figure 4.3). Otherwise,

both baselines follow the same setup as PANGAEA, including evaluating C = 1,000 candidate

functions and reranking the most promising ones (Section 4.1.2).
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Table 4.3: WRN-10-4 accuracy with different activation functions on CIFAR-100, shown as
mean ± sample standard deviation across ten runs. PANGAEA discovers better activation
functions than random search and nonparametric evolution.

PANGAEA
log(σ(αx)) · βarcsinh(x) 73.20±0.37

log(σ(αx)) · arcsinh(x) 73.16±0.41

−Swish(Swish(αx)) 72.49±0.55

Random Search
αSwish(x) 72.85±0.25

Softplus(x) · arctan(αx) 72.81±0.35

ReLU(αarcsinh(βσ(x))) · SELU(γx) 72.69±0.21

Nonparametric Evolution
cosh(1) · Swish(x) 72.78±0.24

(e1 − 1) · Swish(x) 72.52±0.34

ReLU(Swish(x)) 72.04±0.54

ReLU 71.46±0.50

Swish 72.26±0.28

Table 4.3 shows the results of this experiment. Random search is able to discover good

functions that outperform ReLU, but the functions are not as powerful as those discovered

by PANGAEA. This result demonstrates the importance of fitness selection in evolutionary

search. The functions discovered by nonparametric evolution similarly outperform ReLU

but underperform PANGAEA. Interestingly, without parameterization, evolution is not as

creative: two of the three functions discovered are merely Swish multiplied by a constant.

Random search and nonparametric evolution both discovered good functions that improved

accuracy, but PANGAEA achieves the best performance by combining the advantages of

fitness selection and function parameterization.
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Table 4.4: CIFAR-100 test set accuracy aggregated over ten runs, shown as mean ±
sample standard deviation. The parametric evolved functions tend to outperform their
nonparametric counterparts, demonstrating the value of parameterization.

WRN-10-4
log(σ(αx)) · βarcsinh(x) 73.20±0.37

log(σ(αx)) · arcsinh(x) 73.16±0.41

log(σ(x)) · arcsinh(x) 72.51±0.30

−Swish(Swish(αx)) 72.49±0.55

−Swish(Swish(x)) 71.97±0.22

ResNet-v1-56
αx− β log(σ(γx)) 71.01±0.64

αx− log(σ(βx)) 70.30±0.58

x− log(σ(x)) 69.29±0.45

ResNet-v2-56
min{log(σ(x)), α log(σ(βx))} 75.19±0.39

log(σ(x)) 75.53±0.37

4.4.2 Effect of Parameterization

To understand the effect that parameterizing activation functions has on their per-

formance, the specialized functions (Table 4.2) were trained without them. As Table 4.4

shows, when parameters are removed, performance drops. The function log(σ(x)) is the only

exception to this rule, but its high performance is not surprising, since it was previously

discovered as a general activation function (Table 4.2). These results confirm that the

learnable parameters contributed to the success of PANGAEA.

4.4.3 Adding Parameters to Fixed Baseline Activation Functions

As demonstrated in Tables 4.2 and 4.4, learnable parameters are an important compo-

nent of PANGAEA. An interesting question is whether accuracy can be increased simply

78



by augmenting existing activation functions with learnable parameters. Table 4.5 shows

that this is not the case: trivially adding parameters to fixed activation functions does not

reliably improve performance. This experiment implies that certain functional forms are

better suited to taking advantage of parameterization than others. By utilizing evolutionary

search, PANGAEA is able to discover these functional forms automatically.

4.4.4 Scaling Up to Larger Networks

PANGAEA discovered specialized activation functions for WRN-10-4, ResNet-v1-56,

and ResNet-v2-56. Table 4.6 shows the performance of these activation functions when paired

with the larger WRN-16-8, ResNet-v1-110, and ResNet-v2-110 architectures. Due to time

constraints, ReLU is the only baseline activation function in these experiments.

Two of the three functions discovered for WRN-10-4 outperform ReLU with WRN-16-

8, and all three functions discovered for ResNet-v2-56 outperform ReLU with ResNet-v2-110.

Interestingly, ReLU achieves the highest accuracy for ResNet-v1-110, where activation

functions are part of the skip connections, but not for ResNet-v2-110, where they are not.

Thus, it is easier to achieve high performance with specialized activation functions on very

deep architectures when they are not confounded by skip connections. Notably, ResNet-v2-110

with Softplus(ELU(x)) performs comparably to the much larger ResNet-v2-1001 with ReLU

(77.14 vs. 77.29, as reported by He et al. [74]).

Evolving novel activation functions can be computationally expensive. The results in

Table 4.6 suggest that it is possible to reduce this cost by evolving activation functions for

smaller architectures, and then using the discovered functions with larger architectures.
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Table 4.5: CIFAR-100 test set accuracy aggregated over ten runs, shown as mean ± sample
standard deviation. Trivially parameterizing existing fixed activation functions does not
substantially improve performance. PANGAEA, on the other hand, utilizes evolutionary
search to discover functional forms that are well suited to taking advantage of the parameters,
leading to better performance.

WRN-10-4 ResNet-v1-56 ResNet-v2-56

Best Specialized Functions
log(σ(αx)) · βarcsinh(x) 73.20±0.37

αx− β log(σ(γx)) 71.01±0.64

Softplus(ELU(x)) 75.61±0.42

Parameterized Functions
αReLU(βx) 71.96±0.31 68.93±0.22 73.52±0.37

αELiSH(βx) 01.00±0.00 01.00±0.00 73.94±0.33

αELU(βx) 71.98±0.24 69.06±0.37 73.97±0.45

αGELU(βx) 71.96±0.34 69.39±0.35 73.83±0.24

αHardSigmoid(βx) 66.70±0.64 34.33±6.53 65.10±0.40

αLeaky ReLU(βx) 71.74±0.39 69.11±0.47 73.44±0.29

αMish(βx) 72.11±0.31 69.51±0.67 73.72±0.32

αSELU(βx) 71.07±0.33 68.05±0.39 73.37±0.38

αsigmoid(βx) 66.98±0.66 44.40±2.62 66.98±0.85

αSoftplus(βx) 71.73±0.31 68.84±0.30 73.95±0.37

αSoftsign(βx) 62.12±0.83 09.18±13.75 68.87±0.38

αSwish(βx) 72.26±0.29 69.25±0.28 73.93±0.22

αtanh(βx) 63.55±0.56 02.92±6.07 69.55±0.62
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Table 4.6: Specialized activation functions discovered for WRN-10-4, ResNet-v1-56,
and ResNet-v2-56 are evaluated on larger versions of those architectures: WRN-16-8,
ResNet-v1-110, and ResNet-v2-110, respectively. CIFAR-100 test accuracy is reported as
mean ± sample standard deviation across three runs. Specialized activation functions
successfully transfer to WRN-16-8 and ResNet-v2-110, outperforming ReLU.

WRN-16-8
log(σ(αx)) · βarcsinh(x) 78.36±0.17

log(σ(αx)) · arcsinh(x) 78.34±0.20

−Swish(Swish(αx)) 78.00±0.35

ReLU 78.15±0.03

ResNet-v1-110
αx− β log(σ(γx)) 70.85±0.50

αx− log(σ(βx)) 70.34±0.60

max{Swish(x), 0} 70.36±0.56

ReLU 71.23±0.25

ResNet-v2-110
Softplus(ELU(x)) 77.14±0.38

min{log(σ(x)), α log(σ(βx))} 76.93±0.19

SELU(Swish(x)) 76.96±0.14

ReLU 76.34±0.11

4.4.5 A New Task: All-CNN-C on CIFAR-10

To verify that PANGAEA is effective with different datasets and types of architectures,

activation functions were evolved for the All-CNN-C [174] architecture on the CIFAR-10

dataset. All-CNN-C is quite distinct from the architectures considered above: It contains

only convolutional layers, activation functions, and a global average pooling layer, but it does

not have residual connections.

As shown in Table 4.7, PANGAEA improves significantly over ReLU in this setting as

well. The accuracy improvement from 88.47% to 92.77% corresponds to an impressive 37.29%
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Table 4.7: All-CNN-C accuracy with different activation functions on CIFAR-10, shown
as mean ± sample standard deviation across ten runs. PANGAEA improves performance
significantly also with this different architecture and task.

αReLU(β|ReLU(γx)|) 92.77±0.13

αSwish(x) · cosh(β) 92.66±0.08

αSwish(βx) 76.15±34.86

ReLU 88.47±0.14

reduction in the error rate. This experiment provides further evidence that PANGAEA can

improve performance for different architectures and tasks.

4.4.6 Training Dynamics of Evolved Activation Functions

PANGAEA discovers activation functions that improve accuracy over baseline func-

tions. An interesting question is: What mechanisms do these evolved functions use in order

to achieve better performance? By examining training and validation curves qualitatively for

different activation functions, it appears that some functions ease optimization, while others

improve performance through implicit regularization.

For instance, Figure 4.6 shows training and validation curves for the All-CNN-C

architecture and four discovered activation functions, plus ReLU. With All-CNN-C, the

learning rate starts at 0.01 and decreases by a factor of 0.1 after epochs 200, 250, and 300,

with training ending at epoch 350. With some discovered activation functions, the training

and validation curves are consistently higher than the curves from ReLU across all epochs of

training, indicating easier optimization (Figure 4.6a). With other activation functions, the

training and validation curves actually remain lower than those from ReLU until the final

stage in the learning rate schedule, suggesting implicit regularization (Figure 4.6b). In such
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cases, the network is learning difficult patterns in the early stages of training; in contrast, the

ReLU model memorizes simpler patterns, which leads to early gains but difficulty generalizing

later on [112].

Even more complex behavior can be observed in some cases. For example, some

discovered functions have training and validation curves that start out higher than those from

ReLU, plateau to a lower value, but then again surpass those from ReLU at later stages in

the learning rate schedule (Figure 4.6c). Others have curves that start out lower than those

from ReLU, but surpass it within a few dozen epochs (Figure 4.6d). Such diverse behavior

suggests that these mechanisms can be combined in complex ways. Thus, the plots in Figure

4.6 suggest that in the future it may be feasible to search for activation functions with specific

properties depending on the task at hand. For example, a larger network may benefit from

an activation function that implicitly regularizes it, while a smaller network may be better

suited to an activation function that eases optimization.

4.5 Evaluating Robustness: Experiments on Reliability, Flexibility,
and Efficiency

This section demonstrates robustness of PANGAEA with three experiments. In

the first experiment, two independent PANGAEA processes were run from scratch. The

processes discovered similarly powerful activation functions, demonstrating that PANGAEA

reliably discovers good activation functions each time it is run. In the second experiment,

variations of PANGAEA with per-layer and per-neuron learnable parameters were run, to

complement the original PANGAEA with per-channel parameters. The results show that

PANGAEA is effective with all three variations. Third, statistics from activation functions
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(a): ReLU(x) vs. α · ReLU(β · x) (b): ReLU(x) vs. SELU(α · tanh(β · x))

(c): ReLU(x) vs. |α · x| (d): ReLU(x) vs. max{Swish(α · x), log(σ(β · x))}

Figure 4.6: Training curves of All-CNN-C on CIFAR-10 with different activation functions.
Accuracy with ReLU is shown in gray, and accuracy with the discovered functions in different
colors. The training accuracy is shown as a solid line, and validation accuracy as a dashed
line. All of these discovered functions outperformed ReLU, but the training curves show
different behavior in each case. In (a) both curves are above those of ReLU the whole time,
suggesting ease of learning. In (b), they exceed those of ReLU only in the end, suggesting
early regularization. More complex profiles (such as those in (c) and (d)) are also observed,
suggesting that their combinations are possible as well.
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across the per-layer, two per-channel, and the per-neuron variations were aggregated to

demonstrate computational efficiency of PANGAEA. Every PANGAEA run discovers an

activation function that outperforms ReLU early on in the search process, before much

compute is spent; they also eventually discover activation functions that perform much better

and train almost as quickly as ReLU.

4.5.1 Reliability of PANGAEA

PANGAEA is inherently a stochastic process. Therefore, an important question is

whether PANGAEA can discover good activation functions reliably every time it is run.

To answer this question, PANGAEA was run from scratch on ResNet-v1-56 independently

two times. These runs utilized per-channel parameters, and were identical to the original

PANGAEA run, except they were allowed to evaluate up to C = 2,000 activation functions

instead of C = 1,000 from the original run. They were run on ResNet-v1-56 since it proved

to be the most difficult architecture to optimize (Table 4.2).

There are multiple ways to analyze the similarity of the two PANGAEA runs. First,

a simple and relevant metric is to look at the test accuracies of the functions discovered by

each search. Table 4.8 shows that both PANGAEA runs discovered multiple good activation

functions. The accuracies achieved by these functions are substantially higher than those

achieved by ReLU. Most importantly, although the functions themselves are different, they

resulted in similar accuracies as functions from the original PANGAEA run.

A second way is to compare the time course of discovery. To this end, Figure 4.7 shows

how the populations of P = 64 activation functions improved over time in the two PANGAEA

runs. In both cases, the initial functions are relatively poor. As evolution progresses, both
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Table 4.8: Performance of the best activation functions from multiple PANGAEA runs with
ResNet-v1-56. CIFAR-100 test accuracy is shown as the mean ± sample standard deviation
across three runs. The three independent per-channel runs produce activation functions of
similar performance, demonstrating the reliability of PANGAEA. PANGAEA also discovers
good activation functions with per-layer or per-neuron parameters, showing its flexibility.
The very best per-layer and per-neuron functions are difficult to find, suggesting that their
distribution is long-tailed.

Per-layer PANGAEA
max{Swish(x), x} 71.00±0.28

max{x, α · log(σ(SELU(x)))} 70.76±0.29

max{α · max{β · ReLU(arcsinh(x)), x},max{γ · ReLU(arcsinh(x)), x}} 70.63±0.35

Original Per-channel PANGAEA Run
αx− β log(σ(γx)) 71.01±0.64

αx− log(σ(βx)) 70.30±0.58

max{Swish(x), 0} 69.43±0.69

Additional Per-channel PANGAEA Run 1
max{min{α · x,ELU(x)}, 0} 70.53±0.31

α · max
{
β · ReLU

(
Swish(x)

γ

)
, x
}

70.52±0.39

max{ReLU(Swish(α · x)), β · x} 70.44±0.44

Additional Per-channel PANGAEA Run 2
max{Swish(α · x), x} 71.03±0.40

max{Swish(x), arcsinh(α · β · x)} 70.52±0.35

max{Swish(x), arcsinh(α · x)} 70.41±0.38

Per-neuron PANGAEA
α · max{β · Swish(γ · x), Swish(x)} 71.25±0.35

α · x− (β · Swish(γ · x)) 71.23±0.18

ELU(ELU(α · x) + log(σ(0))) 71.20±0.25

Random Sample (n = 500)
Per-layer max{α · Swish(β · x), Softplus(x)} 70.32
Per-channel α · x2 70.91
Per-neuron bessel i0e(|x|) + α · |x| 71.66

ReLU 69.64±0.65
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Figure 4.7: Average population fitness across time for four independent PANGAEA runs.
The plots show the average validation accuracy achieved with the 64 most recently evaluated
activation functions at any given time in the search process. All four PANGAEA runs
gradually discover better activation functions as they explore the search space, with the
per-layer run slightly below the others. Importantly, the two per-channel PANGAEA runs
progress at similar rates, demonstrating the reliability of PANGAEA.

runs discover better functions at similar rates. This result shows that in addition to the final

results, the PANGAEA process as a whole is stable and reliable.

A third way is to compare the complexity, i.e. time it takes to train the network with

the discovered functions. Figure 4.8 shows the cost of all of the activation functions considered

throughout each PANGAEA run. The runtimes of activation functions are comparable across

different validation accuracies, suggesting that both runs discovered functions of similar

complexity.
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Figure 4.8: Fitness (validation accuracy) and compute cost (runtime in hours) among all
activation functions considered in four independent PANGAEA processes on ResNet-v1-56.
Each point represents a different activation function. The distribution of fitness and compute
cost are shown in histograms on the top and right, respectively. All PANGAEA variants
explore activation functions of similar complexity and reliably discover many novel functions
that outperform ReLU.
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In sum, the two PANGAEA runs produced comparable final results, progressed at

comparable rates, and searched through functions of similar complexity. These results suggest

that PANGAEA is a reliable process that can consistently outperform baseline activation

functions.

4.5.2 Parameters: per-layer, per-channel, or per-neuron?

Learnable parameters in activation functions can be per-layer, per-channel, or per-

neuron. It is not clear which setting is the best. For example, per-neuron parameters are

the default setting in the TensorFlow implementation of PReLU [72]. However, He et al.

[72] also experimented with per-channel and per-layer implementations. Further preliminary

experiments for this chapter (Table 4.9) suggest that per-neuron PReLU is best for WRN-10-4

and ResNet-v2-56, but this setting is the worst for ResNet-v1-56, which benefits most from

per-layer parameters.

Similarly, no clear trends were observed in preliminary PANGAEA experiments. For

some activation functions and architectures per-neuron parameters were beneficial, presumably

due to the added expressivity of each neuron learning its own optimal activation function. In

other cases per-layer was better, possibly due to an implicit regularization effect caused by

all neurons within a layer using the same activation function. As a compromise between the

expressivity and regularization of these two strategies, per-channel parameters were utilized

in the main experiments. However, the preliminary results suggest that performance may be

further optimized by specializing the parameter setting to the activation function and to the

architecture.

To explore this idea further, per-layer and per-neuron versions of PANGAEA were
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Table 4.9: CIFAR-100 test accuracy with different architectures and PReLU variants
reported as mean ± sample standard deviation across ten runs. Per-neuron PReLU gets
the best performance on WRN-10-4 and ResNet-v2-56, but per-layer PReLU is the best for
ResNet-v1-56.

WRN-10-4 ResNet-v1-56 ResNet-v2-56

Per-layer PReLU 71.92±0.41 71.40±0.59 73.54±0.21

Per-channel PReLU 71.15±0.41 71.25±0.54 74.52±0.24

Per-neuron PReLU 72.23±0.37 69.77±0.40 75.10±0.53

run from scratch on ResNet-v1-56. Both of these PANGAEA runs produced good activation

functions that outperformed ReLU substantially (Table 4.8). Interestingly, although per-

layer PReLU outperformed per-neuron PReLU with ResNet-v1-56 (Table 4.9), PANGAEA

performed the best in the per-neuron setting (Table 4.8). Indeed, although the per-layer

PANGAEA runs still discovered good activation functions, their average performance during

search was often lower than that of the per-channel or per-neuron variants (Figure 4.7). These

findings suggest that the distribution of per-layer activation functions may be long-tailed:

Powerful per-layer activation functions do exist, but they may be more difficult to discover

compared to per-channel or per-neuron activation functions.

In order to separate the search space from the search algorithm, in a further experiment

500 per-layer, per-channel, and per-neuron activation functions were randomly created and

trained once with ResNet-v1-56 (the functions were first initialized randomly as shown in

Figure 4.1, and then mutated randomly three times as shown in Figure 4.2). The best

activation functions from these random samples are included in Table 4.8. The best per-

layer activation function outperformed ReLU by a large margin, but was not as powerful

as those discovered with PANGAEA; the best per-neuron function outperformed all other
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variants. These results thus suggest that the distribution of good per-neuron functions may

be long-tailed as well, but at a higher level of performance than per-layer and per-channel

functions.

In sum, although more research is needed to discover a principled way to select

per-layer, per-channel, or per-neuron parameters in a given situation, PANGAEA is flexible

enough to discover good functions for all three of these cases.

4.5.3 Efficiency of PANGAEA

PANGAEA’s computational efficiency needs to be evaluated from two perspectives.

First, how much compute is necessary to find good activation functions? Second, once a

good activation function is found, how much more expensive is it to use it in a network

compared to a baseline function like ReLU? This section aggregates data from the per-layer,

the two per-channel, and the per-neuron PANGAEA runs to demonstrate that PANGAEA is

surprisingly efficient in both respects.

First, Figure 4.9 shows how the four PANGAEA runs discovered better activation

functions with increasingly more compute. All four runs discovered an activation function

that outperformed ReLU relatively early in the search. Because some activation functions

are unstable and cause training to fail, they require negligible compute. Computational

resources can instead be focused on functions that appear promising. The implications of

Figure 4.9 are that in practice, PANGAEA can be used to improve over a baseline activation

function relatively cheaply. If better performance is needed, additional compute can be used

to continue the search until the desired performance is achieved.

Second, Figure 4.8 shows the distribution of accuracy and compute cost of all activation
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Figure 4.9: Computational efficiency of PANGAEA. The plot shows the performance of
the best activation function discovered so far (y-axis) after a given amount of compute was
spent (x-axis). All four PANGAEA runs discover activation functions that outperform ReLU
with relatively little compute, demonstrating the efficiency of PANGAEA. If even better
performance is needed, additional compute can be spent.

functions evaluated in all four PANGAEA runs on ResNet-v1-56. Each point in the scatter plot

represents a unique activation function discovered in one of the searches, and the distribution

of accuracies and compute costs are shown as histograms above and to the side of the main

plot. The results confirm earlier conclusions: All strategies find many activation functions

that beat ReLU, and per-neuron PANGAEA discovers more high-performing functions than

per-channel or per-layer PANGAEA. The total amount of time it took to train the architecture

with the given activation function is shown as “runtime” in the vertical axis. Interestingly,

there is a wide range in this metric: some activation functions are significantly more expensive

than ReLU, while others are essentially the same. Thus, the figure shows that there exist
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plenty of activation functions that significantly beat ReLU but do not incur a significant

computational overhead. This distribution also suggests that a multi-objective approach that

optimizes for both accuracy and computational cost simultaneously could be effective.

4.6 Additional Results with Learnable Activation Functions

PAU and SPLASH achieved worse-than-expected performance in Table 4.2, so addi-

tional experiments were run to investigate their behavior.

PAU Molina et al. [143] utilized a specialized training setup to achieve their results with

PAU. In particular, they used a constant learning rate and no weight decay for the PAU

layers, but used a learning rate decay of 0.985 per epoch and weight decay of 0.0005 for the

other weights. They also used a smaller batch size of 64, and trained for 400 epochs instead

of 200. Even though the paper does not mention it, it is possible that such a specialized

setup is necessary to achieve good performance with PAU. The experiments in this section

utilized this same training setup (but only trained for 200 epochs for fairness) to verify that

the PAU implementation was correct.

Unfortunately, some relevant hyperparameters were not included in the PAU paper

[143]. These settings include the fixed learning rate used for the PAU layers, whether Nesterov

momentum is utilized, and which approximation of Leaky ReLU is used to initialize the PAU

weights. This missing information makes it difficult to replicate the original performance

exactly. After significant trial-and-error, the following settings worked well: The learning

rate for the PAU layers was 0.01, the initial learning rate for other weights was also 0.01,

Nesterov momentum was not used, and the PAU weights were initialized to approximate
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Table 4.10: CIFAR-100 test accuracy with PAU using a specialized training setup.
Performance is comparable to other baseline activation functions, but some runs fail due to
training instability.

WRN-10-4 ResNet-v2-56

Accuracy 62.56±4.84 69.59±1.66

Failed Runs 3 of 10 7 of 10

Leaky ReLU with a slope of 0.01.

Table 4.10 shows the performance of WRN-10-4 and ResNet-v2-56 using these dis-

covered hyperparameters and the specialized training setup from Molina et al. [143]. The

performance is comparable to other baseline activation functions. In some cases, the runs

failed because of training instability (results were filtered out if the training accuracy was

below 0.5). For all hyperparameter combinations tested, PAU was unstable with ResNet-v1-56.

Thus, it is possible to get good performance with PAU, but the performance is highly sensitive

to the training setup and choice of hyperparameters.

Note that a standard, most commonly used setup was used throughout the main

experiments in the chapter for all baseline comparisons. The reason is that there are dozens

of such comparisons in this chapter, and it is possible that each one could benefit from a

specialized setup—a setup that may not even be fully known at this time. Therefore, a

standard setup was necessary to ensure that the comparisons are fair.

SPLASH In addition to ResNet-v1-56 in the main experiments, SPLASH was trained with

ResNet-v1-20, ResNet-v1-32, and ResNet-v1-44 for a more thorough characterization of its

performance. Each architecture was trained ten times, resulting in training curves shown in
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Figure 4.10: ResNet-v1-20 and ResNet-v1-32 test accuracy on CIFAR-100 with the SPLASH
activation function. SPLASH units work well in shallow networks, but become unstable with
increased depth. This result explains the success of SPLASH in the original work by Tavakoli
et al. [184], and also shows why SPLASH units fail with the architectures considered in this
work.

Figure 4.10.

With ResNet-v1-20, final test accuracy of the independent runs is between 0.661 and

0.684, which agrees with the results by Tavakoli et al. [184]. However, two of the ten runs

failed in the middle of training because the loss became undefined (Figure 4.10), suggesting

that SPLASH units can be unstable. Progressing to the deeper ResNet-v1-32, the effect was

more pronounced. As shown in Figure 4.10, only two of the ten runs progressed past epoch

30, while no run trained to completion. With ResNet-v1-44 and ResNet-v1-56, training failed

within the first epoch, so the training curves are not shown.

These results thus confirm that the implementation is correct, reproducing the results

of Tavakoli et al. [184]. However, they also lead to the interesting observation that SPLASH

units are effective with shallow networks but struggle with deeper ones, like the ones evaluated

in this chapter.
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4.7 Baseline Activation Function Details

The following activation functions were used as baseline comparisons in Table 4.2.

Some functions were also utilized in the search space (Table 4.1).

• ReLU = max{x, 0} [146].

• ELiSH = x
1+e−x if x ≥ 0 else ex−1

1+e−x [11].

• ELU = x if x ≥ 0 else α(ex − 1), with α = 1 [30].

• GELU = xΦ(x), with Φ(x) = P (X ≤ x), X ∼ N (0, 1), approximated as 0.5x(1 +

tanh[
√

2/π(x+ 0.044715x3)]) [76].

• HardSigmoid = max{0,min{1, 0.2x+ 0.5}}.

• Leaky ReLU = x if x ≥ 0 else 0.01x [127].

• Mish = x · tanh(Softplus(x)) [142].

• SELU = λx if x ≥ 0 else λα(ex − 1), with λ = 1.05070098, α = 1.67326324 [99].

• sigmoid = (1 + e−x)−1.

• Softplus = log(ex + 1).

• Softsign = x/(|x| + 1).

• Swish = x · σ(x), with σ(x) = (1 + e−x)−1 [42, 160].

• tanh = ex−e−x

ex+e−x .
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• PReLU = x if x ≥ 0 else αx, where α is a per-neuron learnable parameter initialized

to 0.25 [72].

• PSwish = x · σ(βx), where β is a per-channel learnable parameter [160].

• APL = max{0, x}+
∑S

s=1 as max{0,−x+bs}, where S = 7 and as and bs are per-neuron

learnable parameters [2].

• PAU =
∑m

j=0 ajx
j

1+|∑n
k=1 bkx

k| , where m = 5, n = 4, and aj and bk are per-layer learnable

parameters initialized so that the function approximates Leaky ReLU with a slope of

0.01 [143].

• SPLASH =
∑(S+1)/2

s=1 a+s max{0, x − bs} + a−s max{0,−x − bs}, where S = 7, b =

[0, 1, 2, 2.5], and a+s and a−s are per-layer learnable parameters initialized as a+1 = 1 and

all other a = 0 [184].

4.8 Scope of PANGAEA Search Space

This section shows that any piecewise real analytic function can be represented as a

PANGAEA computation graph containing operators from Table 4.1. In the main experiments,

PANGAEA computation graphs were restricted to having at most seven nodes and three

learnable parameters α, β, and γ for efficiency. Throughout this section the node and

parameter constraints are removed. Parameters take on the role of any real-valued constant,

and the set of functions in PANGAEA without node or parameter constraints is denoted as

G∞. Before proving the main result, the following two lemmas are needed.

Lemma 1. If f ∈ Cω is a real analytic function, then f ∈ G∞.
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Proof. As f is real analytic, it can be expressed in the form

f(x) =
∞∑
n=0

an(x− x0)
n, (4.1)

with parameters x0, a0, a1, . . . ∈ R. As PANGAEA contains the zero, one, addition, and

negation operators, the set of integers Z is contained in G∞. This accounts for the expo-

nent n in the expression above. All other operators (addition, subtraction, multiplication,

exponentiation) in Equation 4.1 are included in Table 4.1, and so f ∈ G∞.

Lemma 2. Given parameters a, b ∈ R where a < b, the indicator functions

1(−∞,b)(x) =

{
1 x < b

0 x ≥ b
(4.2)

1(a,∞)(x) =

{
1 x > a

0 x ≤ a
(4.3)

1(a,b)(x) =

{
1 x ∈ (a, b)

0 x /∈ (a, b)
(4.4)

1a(x) =

{
1 x = a

0 x ̸= a
(4.5)

are in G∞.

Proof. Recall that PANGAEA implements the binary division operator x1/x2 as

tf.math.divide no nan, which returns 0 if x2 = 0. The indicator function 1(−∞,b)(x)

can then be implemented as

1(−∞,b)(x) =
max{b− x, 0}

b− x
. (4.6)

There are three cases: if x < b, the expression evaluates to one. If x = b or x > b, the

expression evaluates to zero. By the same reasoning,

1(a,∞)(x) =
min{a− x, 0}

a− x
, (4.7)
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which evaluates to one if x > a and zero otherwise. Finally, note that

1(a,b) = 1(−∞,b)1(a,∞) (4.8)

and

1a = (1 − 1(−∞,a))(1 − 1(a,∞)). (4.9)

All operators in Equations 4.6-4.9 (maximum, minimum, subtraction, multiplication, division,

zero, one) are in the PANGAEA search space in Table 4.1, and so the indicator functions are

in G∞.

Theorem 1. If a function f is piecewise real analytic, then f ∈ G∞.

Proof. If a function f is piecewise real analytic, then it is representable by the form

f(x) =



f0(x) x ∈ (−∞, k1)

K1 x = k1

f1(x) x ∈ (k1, k2)

K2 x = k2
...

fn−1(x) x ∈ (kn−1, kn)

Kn x = kn

fn(x) x ∈ (kn,∞)

, (4.10)

where parameters K1, K2, . . . , KN , k1, k2, . . . , kn ∈ R are real-valued, k1 < k2 < · · · < kn are

increasing, and f0, f1, . . . , fn ∈ Cω are real analytic functions. An equivalent representation

of f is the following:

f(x) = 1(−∞,k1)(x)f0(x) + 1k1(x)K1 + 1(k1,k2)(x)f1(x) + 1k2(x)K2 + · · ·

+ 1(kn−1,kn)(x)fn−1(x) + 1kn(x)Kn + 1(kn,∞)(x)fn(x).
(4.11)
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By Lemmas 1 and 2, the real analytic functions fi and the indicator functions 1(·,·) are in

G∞. Beyond these functions, Equation 4.11 utilizes only addition and multiplication, both of

which are operators included in Table 4.1. Therefore, f ∈ G∞.

4.9 Size of the PANGAEA Search Space

This section analyzes the size of the PANGAEA search space as implemented in

the main experiments. Let g represent a general computation graph, and let f repre-

sent a specific activation function representable by g. For example, if we have g(x) =

binary(unary1(x), unary2(x)), then one possible activation function is f(x) = tanh(x) +

erf(x), and another could be f(x) = α|x| · σ(β · x).

Let U = 27 and B = 7 be the number of unary and binary operators in the PANGAEA

search space, respectively, and let E = 3 be the maximum number of learnable parameters

that can be used to augment a given activation function. Given a computation graph g, let

ug and bg be the number of unary and binary nodes and let eg be the number of edges in g.

For example, with the functional form g(x) = unary1(unary2(x)), we have ug = 2, bg = 0,

and eg = 3. With g(x) = binary(unary1(x), unary2(x)), we have ug = 2, bg = 1, and eg = 5.

The quantity eg includes the edges from the input nodes x and edges to the output node g(x)

(see Figure 4.1).

Let Fg denote the set of all activation functions f that can be represented within the

computation graph g. By enumerating the different choices of unary and binary operators,

as well as the locations for up to three learnable parameters α, β, and γ, we find the size of
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Table 4.11: The number of activation functions representable by a computation graph with a
given number of nodes. The PANGAEA search space contains over ten trillion activation
functions, and therefore provides a good foundation for finding powerful activation functions
with different properties.

Binary Nodes bg Unary Nodes ug Edges eg Arrangements Activation Functions

G1 0 1 2 1 108

G2 0 2 3 1 5,832

G3
0 3 4 1

427,923
1 2 5 1

G4
0 4 5 1

31,177,872
1 3 6 3

G5

0 5 6 1
2,210,558,3641 4 7 6

2 3 8 2

G6

0 6 7 1
152,059,087,5661 5 8 10

2 4 9 10

G7

0 7 8 1

10,015,741,690,785
1 6 9 15
2 5 10 30
3 4 11 1

the set to be

|Fg| = Uug ·Bbg ·
E∑
i=0

(
eg
i

)
. (4.12)

Let Gj denote the set of computation graphs g containing j nodes. For example,

G3 = {g(x) = unary1(unary2(unary3(x))), g(x) = binary(unary1(x), unary2(x))}. (4.13)

Table 4.11 shows the possible combinations of binary nodes bg, unary nodes ug, and edges eg

for each set Gj . Additionally, the table shows the number of computation graph arrangements
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possible for a given bg, ug, and eg. For example, if bg = 2, ug = 3, and eg = 8, the computation

graph could take one of two forms: either

g(x) = binary1(binary2(unary1(x), unary2(x)), unary3(x)) (4.14)

or

g(x) = binary1(unary1(x), binary2(unary2(x), unary3(x))). (4.15)

The number of activation functions in PANGAEA is therefore

7∑
j=1

∑
g∈Gj

|Fg| = 10,170,042,948,450. (4.16)

Naturally there exist duplicates within this space. The functions f(x) = ReLU(x)

and f(x) = max{x, 0} have different computation graphs but are functionally identical.

Nevertheless, this analysis still provides a useful characterization of the size and diversity

of the PANGAEA search space. It is orders of magnitude larger than spaces considered in

prior work [11, 17, 160], and yet PANGAEA consistently discovers functions that outperform

ReLU and other baseline functions.

4.10 Discussion

It is difficult to select an appropriate activation function for a given architecture because

the activation function, network topology, and training setup interact in complex ways. It

is especially promising that PANGAEA discovered activation functions that significantly

outperformed the baselines, since the architectures and training setups were standard and

developed with ReLU. A compelling research direction is to jointly optimize the architecture,

training setup, and activation function.
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More specifically, there has been significant recent research in automatically discovering

the architecture of neural networks through gradient-based, reinforcement learning, or neu-

roevolutionary methods [43, 162, 197]. In related work, evolution was used discover novel loss

functions automatically [61, 62, 115], outperforming the standard cross entropy loss. In the

future, it may be possible to optimize many of these aspects of neural network design jointly.

Just as new activation functions improve the accuracy of existing network architectures, it is

likely that different architectures will be discovered when the activation function is not ReLU.

One such example is EfficientNet [183], which achieved state-of-the-art accuracy for ImageNet

[41] using the Swish activation function [42, 160]. Coevolution [59, 144, 157, 204] of activation

functions, topologies, loss functions, and possibly other aspects of neural network design

could allow taking advantage of interactions between them, leading to further improvements

in the future.

Similarly, there can be multiple properties of an activation function that make it

useful in different scenarios. PANGAEA optimized for activation functions that lead to high

accuracy. Another promising area of future work is to search for activation functions that are

also efficient to compute (Figure 4.8), improve adversarial robustness [201], stabilize training

[99], or meet other objectives like easing optimization or providing implicit regularization

[112]. These functions could be discovered with multi-objective optimization, or through other

methods like a carefully designed search space or adding regularization to the parameters of

the activation functions.
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4.11 Conclusion

This chapter introduced PANGAEA, a technique for automatically designing novel,

high-performing, parametric activation functions. PANGAEA builds a synergy of two

different optimization processes: evolutionary population-based search for the general form,

and gradient descent-based fine-tuning of the parameters of the activation function. Compared

to previous studies [17, 160], the search space is extended to include deeper and more complex

functional forms, including ones unlikely to be discovered by humans. The parameters are

adapted during training and are different in different locations of the architecture, thus

customizing the functions over both time and space and resulting in improved performance

as a result. PANGAEA is able to discover general activation functions that perform well

across architectures, and specialized functions taking advantage of a particular architecture,

significantly outperforming previously proposed activation functions in both cases. It is thus

a promising step towards automatic configuration of neural networks. In order to continue

this progress, the next chapter develops an automatic weight initialization algorithm. This

algorithm provides a contribution to AutoML on its own, but also complements PANGAEA

by making the evaluation of novel activation functions more robust.
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Chapter 5

AutoInit: Analytic Signal-Preserving Weight

Initialization for Neural Networks

In order to ensure stable signal propagation in neural networks, it is crucial that the

weight initialization strategy takes the shape of the activation function into account. While

the previous chapters discovered new activation functions that improved the performance of

various neural networks, some activation functions evaluated during the searches turned out

to be ineffective. Many of these functions could have been effective if the network had been

properly initialized. Because current weight initialization algorithms to not automatically

adapt to novel activation functions, this chapter presents an approach that does, called

AutoInit. AutoInit adapts to novel activation functions and layer types in a neural network.

It thus constitutes progress in AutoML in its own right, and compliments the previous

chapters by making the evaluation of new activation functions more reliable. The AutoInit

package is available at https://github.com/cognizant-ai-labs/autoinit.

5.1 Motivation

Proper weight initialization is crucial to achieve high performance with deep networks.

A common motif in such networks is repeated layers or building blocks. Thus, if a given

layer amplifies or diminishes the forward or backward propagation of signals, repeated
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applications of that layer will result in exploding or vanishing signals, respectively [67, 77].

This phenomenon makes optimization difficult, and can even exceed machine precision. The

issue persists regardless of whether the weights are sampled to be uniform, normal, or

orthogonal [83, 167].

While many initialization strategies have been proposed in the past, these strategies

apply only to neural networks with specific activation functions, topologies, or layer types.

Thus, researchers designing new models or activation functions have two options. The first

option is to derive weight initialization strategies manually for every architecture considered,

which is generally difficult and time consuming. The second option is to use existing

initialization strategies in new settings, where they may be incorrect and therefore misleading:

A candidate model may appear poor when it is the suboptimal initialization that makes

training difficult.

To overcome this problem, this chapter proposes AutoInit, an algorithm that auto-

matically calculates analytic mean- and variance-preserving weight initialization for neural

networks. Since AutoInit is algorithmic, it relieves the researcher from a difficult but conse-

quential step in model design. It is no longer necessary to use existing weight initialization

strategies in incorrect settings: AutoInit provides an appropriate default initialization auto-

matically, resulting in better and more reliable performance.

5.2 Neural Network Signal Propagation

AutoInit aims to stabilize signal propagation throughout an entire neural network.

More precisely, consider a layer that shifts its input by α and scales the input by a factor of

β. Given an input signal with mean µin and variance νin, after applying the layer, the output
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signal will have mean µout = α + βµin and variance νout = β2νin. In a deep network in which

the layer is applied L times the effect is compounded and the signal at the final layer has

mean and variance

µout = βLµin + α(βL + βL−1 + · · · + β + 1), νout = β2Lνin. (5.1)

If |β| > 1, the network will suffer from a mean shift and exploding signals as it increases in

depth:

lim
L→∞

µout = ∞, lim
L→∞

νout = ∞. (5.2)

In the case that |β| < 1, the network will suffer from a mean shift and vanishing signals:

lim
L→∞

µout = α/(1 − β), lim
L→∞

νout = 0. (5.3)

AutoInit calculates analytic mean- and variance-preserving weight initialization so that α = 0

and β = 1, thus avoiding the issues of mean shift and exploding/vanishing signals.

5.3 The AutoInit Framework

AutoInit is a general framework that adapts to different layer types. Its implementation

is outlined in Algorithm 1. A given layer in a neural network receives as its input a tensor

x with mean µin and variance νin. After applying the layer, the output tensor has mean

µout = E(layer(x)) and variance νout = Var(layer(x)). The function glayer maps input mean

and variance to output mean and variance when the layer is applied:

glayer : (µin, νin) 7→ (µout, νout). (5.4)

Note that g in Equation 5.4 depends on the type of layer; e.g. gDropout and gReLU are different

functions. For layers with trainable weights, the mean and variance mapping will depend
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Algorithm 1: AutoInit

Input: Network with layers L, directed edges E
output layers = {l ∈ L | (l, l′) /∈ E ∀ l′ ∈ L}
for output layer in output layers do

initialize(output layer)

def initialize(layer):
layers in = {l ∈ L | (l, layer) ∈ E}
i = 1
for layer in in layers in do

µini , νini = initialize(layer in)
i = i+ 1

µin = (µin1 , µin2 , . . . , µinN )
νin = (νin1 , νin2 , . . . , νinN )
if layer has weights θ then

initialize θ s.t. glayer,θ(µin, νin) = (0, 1)
µout, νout = 0, 1

else
µout, νout = glayer(µin, νin)

return µout, νout

on those weights. For example, the function gConv2D,θ maps input mean and variance to

output mean and variance after the application of a Conv2D layer parameterized by weights

θ. Deriving g for all layers makes it possible to model signal propagation across an entire

neural network. Thus, if µin and νin are known, it is natural to calculate initial weights θ

such that the layer output will have zero mean and unit variance. For example, for Conv2D

layers, one possibility is

θ ∼ N
(

0, 1/
√
fan in(νin + µ2

in)

)
=⇒ gConv2D,θ(µin, νin) = (0, 1). (5.5)

The AutoInit framework includes mean and variance mapping functions g for the

majority of layers used in modern architectures. Section 5.4 details how these functions and
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the corresponding initialization strategies (e.g. Equation 5.5) are derived. New layers can be

included by deriving g manually, or by approximating it through Monte Carlo simulation.

This approach ensures that reliable estimates for µin and νin are available at all layers in a

network, which in turn allows for weight initialization that stabilizes the signals to have zero

mean and unit variance, avoiding the issues of mean shift and exploding/vanishing signals

(Equations 5.2 and 5.3).

The main advantage of AutoInit is that it is a general method. Unlike prior work, which

imposes design constraints, AutoInit adapts to different settings automatically in order to

improve performance. Sections 5.5 through 5.11 demonstrate this adaptability experimentally

from several perspectives: different classes of models (convolutional, residual, transformer),

hyperparameter settings (activation function, dropout rate, weight decay, learning rate,

optimizer), model depths (nine layer CNN to 812 layer ResNet), image sizes (ten-class 28× 28

grayscale to 1,000-class 160×160 RGB), and data modalities (vision, language, tabular, multi-

task, transfer learning). AutoInit also outperforms data-dependent initialization methods

and stabilizes convolutional, residual, and transformer networks without normalization layers.

This generality is shown to be particularly useful in neural architecture search and activation

function discovery, where thousands of new designs need to be evaluated robustly. AutoInit

produces specialized weight initialization strategies for each candidate, which allows for

measuring their performance more accurately. As a result, better solutions are discovered.

The experiments thus show that AutoInit is an effective initialization algorithm for existing

networks as well as a good starting point for networks that may be developed in the future.
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5.4 Mean and Variance Estimation for Different Layer Types

In the AutoInit framework of Algorithm 1, the mean and variance mapping function

g needs to be defined for each type of layer in a given neural network. This section presents

derivations for a majority of the most commonly used layers available in the TensorFlow

package [1] at time of writing. Extending AutoInit to support new layers in the future will

require deriving the function g for those layers. Monte Carlo sampling can also be used as an

approximation for g before it is manually derived.

In the following paragraphs, x denotes the input to a layer, and y is the output.

The incoming and outgoing means and variances are denoted as µin := E(x), µout := E(y),

νin := Var(x), and νout := Var(y). The notation Conv{1D,2D,3D} is used to refer to Conv1D,

Conv2D, and Conv3D, and analogously for other layer types. Inputs to each layer are assumed

to be independent and normally distributed. Although these assumptions may not always

hold exactly, experiments show that AutoInit models signal propagation across different types

of networks well in practice.

Convolution and Dense Layers The analysis in the next paragraph applies to Conv{1D,

2D,}, DepthwiseConv{1D,2D}, and Dense layers, since convolution layers are dense layers

with sparse connectivity. Notation and derivation are inspired by that of Glorot and Bengio

[55] and He et al. [72].

A feedforward layer can be written as y = Wx + b, where x is the input, W is a

fan out × fan in weight matrix, b is a vector of biases, and y is the result. Assume the

elements of W are mutually independent and from the same distribution, and likewise for

the elements of x. Further assume that W and x are independent of each other. The
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outgoing mean can then be written as µout = E(W )µin. For the outgoing variance, letting

W have zero mean and expanding the product of independent random variables yields

νout = fan inVar(W )(νin + µ2
in). Sampling the weights W according to

W ∼ N

(
0,

1√
fan in(νin + µ2

in)

)
(5.6)

or

W ∼ U

(
−

√
3√

fan in(νin + µ2
in)
,

√
3√

fan in(νin + µ2
in)

)
(5.7)

is sufficient to ensure that

µout = 0 and νout = 1. (5.8)

Activation Functions The analysis in the next paragraph accounts for all activation func-

tions in TensorFlow, including elu, exponential, gelu, hard sigmoid, LeakyReLU, linear,

PReLU, ReLU, selu, sigmoid, softplus, softsign, swish, tanh, and ThresholdedReLU [by

30, 31, 42, 72, 76, 99, 127, 146, 160, respectively], and in fact extends to any integrable

Activation function f .

Let pN (x;µ, σ) denote the probability density function of a Gaussian distribution with

mean µ and standard deviation σ. By the law of the unconscious statistician,

µout =

∫ ∞

−∞
f(x)pN (x;µin,

√
νin) dx, (5.9)

νout =

∫ ∞

−∞
f(x)2pN (x;µin,

√
νin) dx− µ2

out. (5.10)

These integrals are computed for an arbitrary activation function f with adaptive quadrature,

a well-established numerical integration approach that approximates integrals using adaptively

refined subintervals [70, 156, 190].
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Dropout Layers Dropout layers randomly set rate percentage of their inputs to zero

[175]. Therefore,

µout = µin(1 − rate) and νout = νin(1 − rate). (5.11)

However, this analysis only applies to SpatialDropout{1D,2D,3D} layers. For regular

Dropout layers, TensorFlow automatically scales the values by 1/(1 − rate) to avoid a mean

shift towards zero.1 Adjusting for this change gives

µout = µin and νout = νin/(1 − rate). (5.12)

Pooling Layers The same approach applies to all commonly used pooling layers, including

AveragePooling{1D,2D,3D}, MaxPooling{1D,2D,3D}, GlobalAveragePooling{1D,2D,3D},

and GlobalMaxPooling{1D,2D,3D}.

Let op(·) be the average operation for an average pooling layer, and the maximum

operation for a max pooling layer. Define K to be the pool size of the layer. For standard

1D, 2D, and 3D pooling layers, K would equal k, k × k, and k × k × k, respectively. The

global pooling layers can be seen as special cases of the standard pooling layers where the

pool size is the same size as the input tensor, except along the batch and channel dimensions.

Analytically, the outgoing mean and variance can be expressed as

µout =

∫
· · ·
∫
RK

op(x1, x2, . . . , xK) ·
K∏
i=1

pN (xi;µin,
√
νin) dx1 dx2 · · · dxK , (5.13)

νout =

∫
· · ·
∫
RK

op(x1, x2, . . . , xK)2 ·
K∏
i=1

pN (xi;µin,
√
νin) dx1 dx2 · · · dxK − µ2

out, (5.14)

1https://github.com/tensorflow/tensorflow/blob/v2.5.0/tensorflow/python/keras/layers/

core.py#L149-L150
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where the xi represent tensor entries within a pooling window. Unfortunately, even a

modest 3 × 3 pooling layer requires computing nine nested integrals, which is prohibitively

expensive. In this case, a Monte Carlo simulation is appropriate. Sample x1j , x2j , . . . xKj

from N (µin,
√
νin) for j = 1, . . . , S and return

µout =
1

S

S∑
j=1

op(x1j , x2j , . . . , xKj
), (5.15)

νout =
1

S

S∑
j=1

op(x1j , x2j , . . . , xKj
)2 − µout. (5.16)

Normalization Layers BatchNormalization, LayerNormalization, and

GroupNormalization normalize the input to have mean zero and variance one [8, 88, 198].

Thus,

µout = 0 and νout = 1. (5.17)

Arithmetic Operators Assume the input tensors x1, x2, . . . , xN with means

µin1 , µin2 , . . . , µinN and variances νin1 , νin2 , . . . , νinN are independent. The following mean

and variance mapping functions are derived. For an Add layer,

µout =
N∑
i=1

µini and νout =
N∑
i=1

νini . (5.18)

For an Average layer,

µout =
1

N

N∑
i=1

µini and νout =
1

N2

N∑
i=1

νini . (5.19)

For a Subtract layer,

µout = µin1 − µin2 and νout = νin1 + νin2 . (5.20)
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Finally, for a Multiply layer,

µout =
N∏
i=1

µini and νout =
N∏
i=1

(νini + µ2
ini

) −
N∏
i=1

µ2
ini
. (5.21)

Concatenation Layers Assume the inputs x1, x2, . . . , xN with means µin1 , µin2 , . . . , µinN

and variances νin1 , νin2 , . . . , νinN are independent, and let input xi have Ci elements. Then

for a Concatenate layer,

µout =
1∑
Ci

N∑
i=1

Ciµini , (5.22)

νout =
1∑
Ci

N∑
i=1

Ci(νini + µ2
ini

) − µ2
out. (5.23)

Recurrent Layers A Monte Carlo simulation can be used to estimate the outgoing mean

and variance for recurrent layers, including GRU, LSTM, and SimpleRNN [29, 78]. Recurrent

layers often make use of activation functions like sigmoid and tanh that constrain the scale

of the hidden states. Because of this practice, recurrent layers should be initialized with a

default scheme or according to recent research in recurrent initialization [26, 54]. AutoInit

will then estimate the outgoing mean and variance in order to inform appropriate weight

scaling elsewhere in the network.

Padding Layers ZeroPadding{1D,2D,3D} layers augment the borders of the input tensor

with zeros, increasing its size. Let z be the proportion of elements in the tensor that are

padded zeros. Then z = (padded size− original size)/padded size, and

µout = µin(1 − z) and νout = νin(1 − z). (5.24)
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Shape Adjustment Layers Many layers alter the size or shape of the input tensor but do

not change the distribution of the data. These layers include Flatten, Permute, Reshape,

UpSampling{1D,2D,3D}, and Cropping{1D,2D,3D} layers. The same is true of TensorFlow

API calls tf.reshape, tf.split, and tf.transpose. For these layers,

µout = µin and νout = νin. (5.25)

Input Layers An InputLayer simply exposes the model to the data, therefore

µout = µdata and νout = νdata. (5.26)

TensorFlow allows nesting models within other models. In this use case where the InputLayer

does not directly connect to the training data,

µout = µin and νout = νin. (5.27)

Matrix Multiplication A call to tf.matmul takes input tensors x1 and x2 of shape

· · · ×m× n and · · · × n× p and produces the output tensor xout of shape · · · ×m× p with

entries

xout··· ,i,j =
n∑
k=1

x1··· ,i,kx2··· ,k,j . (5.28)

Assuming independent matrix entries, the output statistics can then be calculated as

µout = nµin1µin2 , (5.29)

νout = n
(
(νin1 + µ2

in1
)(νin2 + µ2

in2
) − µ2

in1
µ2
in2

)
. (5.30)
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Reduction Operators A call to tf.reduce mean reduces the size of the input tensor by

averaging values along one or more axes. For example, averaging an input tensor of shape

128×8×8×256 along axes 1 and 2 would produce an output tensor of shape 128×1×1×256.

Let D represent the product of the length of the axes being averaged over (in the example

above, 8 × 8 = 64). The output tensor has

µout = µin and νout = νin/D. (5.31)

The function tf.reduce sum performs similarly, summing entries instead of averaging them.

In this case,

µout = Dµin and νout = Dνin. (5.32)

Maintaining Variance ̸= 1. In Algorithm 1, AutoInit initializes weights so that the

output signal at each layer has mean zero and variance one. Although signal variance ν = 1

is sufficient for stable signal propagation, it is not a necessary condition. Indeed, other values

for the signal variance ν could be utilized, as long as ν remains consistent throughout the

network. If a different ν is desired, weights can be initialized according to Equation 5.6 or

5.7 and then multiplied by
√
ν. For instance, such a modification was done for the CoAtNet

model in Section 5.7, resulting in slightly improved final performance.

5.5 Hyperparameter Variation in CNNs

Experiment Setup The first experiment tests AutoInit’s performance across a range of

hyperparameter values for CNNs. The experiment focuses on the All-CNN-C architecture

[174], which consists of convolutional layers, ReLU activation functions, dropout layers, and
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Figure 5.1: All-CNN-C test accuracy on CIFAR-10. AutoInit results in comparable or better
performance with different activation functions, better performance across all dropout rates
and weight decay settings, and is less sensitive to the choice of learning rate than the default
initialization.

a global average pooling layer at the end of the network. This simple design helps identify

performance gains that can be attributed to proper weight initialization. The network is

trained on the CIFAR-10 dataset [104] using the standard setup (Appendix A.3). In particular,

the baseline comparison is the “Glorot Uniform” strategy [also called Xavier initialization;

55], where weights are sampled from U
(
−

√
6√

fan in+fan out
,

√
6√

fan in+fan out

)
.

Hyperparameter Variation In separate experiments, the activation function, dropout

rate, weight decay, and learning rate multiplier were changed. While one hyperparameter

was varied, the others were fixed to the default values.

Results Figure 5.1 shows the performance of the network with the default initialization and

with AutoInit in these different settings. In sum, AutoInit improved performance in every

hyperparameter variation evaluated. As Figure 5.2 shows, AutoInit is adaptive. It alters the

initialization to account for different activation functions and dropout rates automatically.

AutoInit is also robust. Even as other hyperparameters like learning rate and weight

decay change, AutoInit still results in a higher performing network than the default initializa-

tion. The results thus suggest that AutoInit provides an improved default initialization for
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Figure 5.2: Signal propagation in All-CNN-C networks with different (a) activation functions
and (b) dropout rates. With the default initialization, signals often vanish with depth,
and their behavior is inconsistent across activation functions and dropout rates. With
AutoInit, the variance fluctuates naturally as each layer modifies its input. At layers with
weights (marked in red), AutoInit scales the weights appropriately to return the variance to
approximately 1.0, stabilizing training in each case.

convolutional neural networks.

5.6 Stability in Deep ResNets

This section expands the experimental analysis of AutoInit to residual networks,

focusing on preactivation residual networks of various depths [74]. The training setup is

standard unless explicitly stated otherwise (Appendix A.3). In particular, the initialization is

“He Normal” [72], where weights are sampled from N (0,
√

2/fan in).

Visualizing Signal Propagation Figure 5.3 shows how the signal variance changes with

depth. With ResNet-56, the variance increases where the shortcut connection and residual

branch meet, and the variance drops whenever ReLU is applied. Although the variance

increases exponentially with the default initialization and linearly with AutoInit (note the
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Figure 5.3: Signal propagation in residual networks. Gaussian input was fed to the networks
and empirical variance computed at each layer. Since ReLU, BatchNormalization, and Add

are counted as individual layers in this diagram, the total number of layers is different from
that in the architecture name (i.e. ResNet-164 has 164 convolutional layers but over 500 total
layers). The default initialization causes exploding signals, while AutoInit ensures signal
propagation is stable.

log scale on the y axis), training is still stable because batch normalization layers return

the signal to variance 1.0. Without batch normalization, the signal variance never stabilizes

under the default initialization. In contrast, removing batch normalization is not an issue

with AutoInit; the signal variance remains stable with depth.

With the deeper ResNet-164 and ResNet-812 networks, the conclusions are similar

but more pronounced. In the case of ResNet-812 without batch normalization, the signals

explode so severely that they exceed machine precision. AutoInit avoids this issue entirely.

Stable Initial Learning Rates Exploding or vanishing signals make optimization difficult

because they result in gradient updates that are too large to be accurate or too small to be
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Figure 5.4: ResNet accuracy on CIFAR-10 with different settings. (a) Accuracy of un-
normalized ResNet architectures after five epochs of training with different learning rates
and weight initializations. While default initialization makes training difficult in ResNet-56
and impossible at greater depths, AutoInit results in consistent training at all depths. (b)
Accuracy of ResNet-164 with a variety of learning rate schedules and initializations. AutoInit
is comparable to or outperforms the default initialization in every case.

meaningful. This phenomenon can be observed when the network does not exceed chance

accuracy. Therefore, a simple way to quantify whether a weight initialization is effective is to

observe a network’s performance after a few epochs.

Using this metric, AutoInit was compared against the default initialization by training

unnormalized versions of ResNet-56, ResNet-164, and ResNet-812 for five epochs with a

variety of learning rates. With the default initialization, ResNet-56 requires a learning rate

between 10−8 and 0.5× 10−3 to begin training, but training was not possible with ResNet-164

or ResNet-812 because of exploding signals (Figure 5.4a). AutoInit stabilizes training for

all three networks, and its effect does not diminish with depth. The networks remain stable

with higher learning rates between 10−4 and 0.05. Such rates speed up learning, and also

correlate with better generalization performance [91, 171, 172].

Full ResNet Training In the third residual network experiment, ResNet-164 was trained

to completion on CIFAR-10 with different learning rate schedules. All schedules included a

linear warm-up phase followed by a decay to zero using cosine annealing [123].
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Figure 5.4b displays the performance with a variety of such schedules. When the

best learning rate schedules are used, ResNet-164 achieves comparable performance with

the default initialization and with AutoInit. However, when a suboptimal schedule is used,

performance degrades more quickly with the default initialization than it does with AutoInit.

Without batch normalization, the network requires proper weight initialization for stability.

In this case, ResNet-164 with the default initialization fails to train regardless of the learning

rate schedule, whereas AutoInit results in high accuracy for the majority of them.

Together, the experiments in this section show that AutoInit is effective with deep

networks. It prevents signals from exploding or vanishing, makes it possible to use larger

learning rates, and achieves high accuracy, with and without batch normalization.

5.7 High-Resolution Images with Transformers

This section extends AutoInit to transformer architectures and applies them to high-

resolution image classification. Specifically, AutoInit is applied to CoAtNet, a model that

combines convolutional and attention layers [36]. The model is trained on Imagenette,

a subset of 10 classes from the ImageNet dataset [41, 82]. Imagenette allows evaluating

AutoInit in a high-resolution image classification task with a 132× smaller carbon foot-

print than the full ImageNet dataset would (Appendix B). As Table 5.1 shows, AutoInit

outperforms six commonly used initialization schemes as well as the default initialization,

which initializes convolutional layers from N (0,
√

2/fan out) and fully-connected layers

from U
(
−

√
6√

fan in+fan out
,

√
6√

fan in+fan out

)
. Furthermore, AutoInit stabilizes the network even

when normalization layers are removed, suggesting that it is a promising candidate towards

developing normalizer-free transformer architectures. Full details are in Appendix A.3.
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Table 5.1: CoAtNet top-1 accuracy on Imagenette, shown as median of three runs. The first
four experiments vary the activation function, while the fifth removes all normalization layers
from the architecture. A “-” indicates that training diverged. AutoInit produces the best
model in three of the five settings, and remains stable even without normalization layers.

CoAtNet w/ GELU w/ ReLU w/ SELU w/ Swish w/o Norm

Default Init. 89.38 89.22 86.09 88.69 -
Glorot Normal 91.44 91.54 87.59 90.42 85.89
Glorot Uniform 91.16 91.18 88.25 90.06 85.73
He Normal 88.48 88.05 86.11 88.36 -
He Uniform 88.66 87.87 86.37 88.41 -
LeCun Normal 91.11 90.57 87.80 90.83 -
LeCun Uniform 90.55 90.65 87.67 90.57 -
AutoInit 92.48 92.15 86.80 92.28 85.73

Table 5.2: ResNet-50 top-1 and top-5 validation accuracy on ImageNet. AutoInit improves
performance, even with large and challenging datasets.

top-1 top-5

Default Init. 74.33 91.60
AutoInit 75.35 92.03

5.8 Scaling up to ImageNet

In order to compliment the results from Section 5.7 and demonstrate that AutoInit

can scale to more difficult tasks, ResNet-50 was trained from scratch on ImageNet with the

default initialization and with AutoInit. As Table 5.2 shows, AutoInit improves top-1 and

top-5 accuracy in this task as well. Full training details are in Appendix A.3.
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Figure 5.5: Mean CIFAR-10 test accuracy for AutoInit vs. LSUV with different numbers of
samples S. Each evaluation is repeated 10 times; the shaded area shows the maximum and
minimum accuracy among all trials. AutoInit is consistent, but LSUV struggles when S is
small or the network is deep.

5.9 Contrast with Data-Dependent Initialization

The layer-sequential unit-variance (LSUV) algorithm is the most natural

data-dependent initialization comparison to AutoInit because both approaches aim to scale

the weights appropriately in an architecture-agnostic way. LSUV pre-initializes the weights

with an existing approach, feeds S training samples through the network, and adjusts the

scale of the weights so that each layer’s output variance is approximately one [140].

Data-dependent initialization is time-consuming for large S (indeed, even S = 1 is used

in practice [98]). However, if S is too small, the samples may not reflect the statistics of the

dataset accurately, leading to poor initialization. Figure 5.5 demonstrates this phenomenon.

In some training runs LSUV matches the performance of AutoInit, but in many instances

the randomly selected samples do not accurately reflect the overall dataset and performance

suffers. Since AutoInit is not data-dependent, it does not have this issue. Details of this
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experiment are in Appendix A.3.

5.10 Enabling Neural Architecture Search

Sections 5.5 through 5.9 demonstrated that AutoInit works well for convolutional,

residual, and transformer networks with a variety of hyperparameter values and depths. In

this section, the results are extended to a broader variety of network topologies and types of

tasks, for two reasons. First, whereas custom weight initialization may be developed by hand

for the most popular machine learning benchmarks, it is unlikely to happen for a variety of

architectures and tasks beyond them. Second, as new types of neural network designs are

developed in the future, it will be important to initialize them properly to reduce uncertainty

in their performance. This section evaluates the generality of AutoInit by applying it to the

variety of networks generated in a neural architecture search process with five types of tasks.

The CoDeepNEAT Architecture Search Method Neural networks are evolved using

CoDeepNEAT [114, 138]. CoDeepNEAT extends previous work on evolving network topologies

and weights [144, 176] to the level of evolving deep learning architectures. Utilizing a

cooperative coevolution framework [157], CoDeepNEAT evolves populations of modules and

blueprints simultaneously (Figure 5.6a). Modules are small neural networks, complete with

layers, connections, and hyperparameters. Blueprints are computation graphs containing

only nodes and directed edges. To create a candidate neural network, CoDeepNEAT chooses

a blueprint and replaces its nodes with selected modules. This mechanism makes it possible

to evolve deep, complex, and recurrent structures, while taking advantage of the modularity

often found in state-of-the-art models. In addition to the network structure, CoDeepNEAT
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x1 − x2
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arctan(x)
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x x(b)

Figure 5.6: (a) The CoDeepNEAT method. Modules replace nodes in the blueprint to
create a candidate neural network. (b) An example activation function created with the
PANGAEA method. The computation graph represents the parametric function f(x) =
α ·σ(β · |x|−arctan(γ ·x)). CoDeepNEAT and PANGAEA generate a variety of architectures
and activation functions that can be used to evaluate AutoInit’s generality and flexibility.

evolves hyperparameters like dropout rate, kernel regularization, and learning rate. The

network weights are not evolved, but instead trained with gradient descent. The generality

of CoDeepNEAT helps minimize human design biases and makes it well-suited to analyzing

AutoInit’s performance in a variety of open-ended machine learning settings.

Tasks Using CoDeepNEAT, networks are evolved for their performance in vision (MNIST),

language (Wikipedia Toxicity), tabular (PMLB Adult), multi-task (Omniglot), and transfer

learning (Oxford 102 Flower) tasks (Appendix A.3.2).

Results Figure 5.7a shows how CoDeepNEAT discovers progressively better networks over

time on the five tasks. Evolution often selects different weight initialization strategies for the

different layers in these networks, so this scheme is already a flexible and powerful baseline.
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Figure 5.7: Evaluation of AutoInit with neural architecture search. (a) Performance improve-
ment over generations in the five tasks. AutoInit outperforms the evolved initialization on four
tasks and matches it on one. (b) Representative networks evolved with AutoInit. Although
the networks are distinct, AutoInit initializes them properly, leading to good performance in
each case.

However, by accounting for each model’s unique topology and hyperparameters, AutoInit

outperforms the baseline in four of the five tasks, and matches it in the fifth.

Beyond performance, three interesting phenomena can be observed. First, the mean

population fitness varies greatly with the default initialization in each task, sometimes

dropping significantly from one generation to the next (Figure 5.8). Though some variation is

natural in a stochastic evolutionary process like CoDeepNEAT, AutoInit makes the discovery

process more reliable by stabilizing the performance of the entire population.

Second, hyperparameters play a large role in the final performance of the dense

networks, in particular in the “Oxford 102 Flower” task. While CoDeepNEAT discovers good

models with both initialization strategies, performance is consistently higher with AutoInit.

This finding agrees with Section 5.5, where AutoInit was shown to be robust to different

hyperparameter values.

Third, while many networks exhibit motifs popular in existing architectures, such
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Figure 5.8: Progress of neural architecture search in the five tasks. The data is the same
as that in Figure 5.7, but this plot also shows how AutoInit can stabilize mean population
performance, leading to more reliable discovery of powerful models.
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as alternating convolution and dropout layers and utilizing residual connections, other

phenomena are less common (Figure 5.7b). For example, the networks make use of different

activation functions and contain several unique information processing paths from the input to

the output. Because AutoInit provides effective initialization in each of these cases, it allows

for taking full advantage of unusual design choices that might otherwise hurt performance

under default initialization schemes.

The results in this section suggest that AutoInit is an effective, general-purpose

algorithm that provides a more effective initialization than existing approaches when searching

for new models.

5.11 Enabling Activation Function Discovery

As new activation functions are developed in the future, it will be important to

adjust weight initialization to maintain stable signal propagation. Since AutoInit makes

this adjustment automatically, it is well-suited to the task. Indeed, Figure 5.1 confirmed

that AutoInit improves performance with several existing activation functions. This section

presents a more challenging task. To simulate future research in activation function design,

hundreds of novel activation functions were generated as arbitrary computation graphs and

trained with a CNN. AutoInit’s ability to initialize each of these networks was then evaluated.

The method for creating such activation functions is described first, followed by experimental

details, and results on stability, performance, and generality.

Creating Novel Activation Functions An important area of automated machine learning

(AutoML) is to discover new, better activation functions [11, 17, 121, 160]. Among existing
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approaches, PANGAEA [15] has the most flexible search space and is therefore used to

generate new functions in this section.

PANGAEA represents activation functions as computation graphs containing unary

and binary operators (Figure 5.6b). Creating a novel activation function involves three steps.

First, a minimal computation graph is initialized with randomly selected unary and binary

operators. Second, the functional form of the activation function is modified by applying

three random mutations to increase diversity. Third, the function is augmented with up to

three learnable parameters. These parameters are analogous to those in other parametric

activation functions, such as PReLU [72]; they are initialized to one and learned during

training by gradient descent. Through this process, it is possible to understand to what extent

AutoInit can improve performance with activation functions that have yet to be discovered.

Experimental Setup An important insight in this domain is that in addition to modifying

the variance of the signals in a network, activation functions can induce mean shifts. Prior

work encouraged stability by reparameterizing the weights to have zero empirical mean

[19, 85, 158]. An alternative and more direct approach is to modify the activation function

itself so that it does not cause a mean shift in the first place. Given an activation function

f with Gaussian mean µf = 1√
2π

∫∞
−∞ f(x)e−x

2/2 dx, this goal can be accomplished with

f̃ := f − µf , which has zero Gaussian mean. To take advantage of this idea, a version of

AutoInit called AutoInit++ was created for this domain, thus extending AutoInit slightly

beyond weight initialization.

Thus, three initialization strategies were compared. With the default initialization,

weights were sampled from U
(
−

√
6√

fan in+fan out
,

√
6√

fan in+fan out

)
[55]. With AutoInit, the
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weights were sampled from N (0, 1/
√
fan inµf ) to account for an arbitrary activation function

f ; the dropout adjustment (Section 5.5) was not used. Finally, AutoInit++ takes advantage

of f̃ as described above, but is otherwise identical to AutoInit.

For each initialization strategy, 200 activation functions were created using the PAN-

GAEA process. Each activation function was used with the All-CNN-C architecture on the

CIFAR-10 dataset following the standard training setup. To avoid overfitting to the test set

when evaluating such a large number of activation functions, the accuracy with a balanced

validation set of 5000 images is reported instead.

Stability Achieving better-than-chance accuracy is a useful metric of training stability

(Section 5.6). As shown in Figure 5.9a, many activation functions result in chance accuracy

regardless of how the network is initialized. This phenomenon is not surprising; since the

activation functions are arbitrary computation graphs, many of them will turn out to be

poor. With the default initialization strategy, 149 activation functions caused training to fail

in this way. With AutoInit, the number of failed activation functions dropped to 130, and

with AutoInit++, it further decreased to 117. AutoInit and AutoInit++ thus make training

more stable, allowing it to succeed for a greater number of activation functions.

Performance Beyond training stability, a good weight initialization should also improve

performance. As a baseline, when trained with ReLU and the default initialization, All-CNN-

C achieved 89.10% test accuracy. Twenty-two of 200 activation functions from the PANGAEA

search space outperformed this accuracy with the default initialization. With AutoInit, this

number increased to 26, and with AutoInit++, to 50—a notable improvement. Thus, with
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Figure 5.9: Evaluation of AutoInit with activation function discovery. (a) Distribution of
accuracies achieved with 200 activation functions and different weight initialization strategies.
AutoInit and AutoInit++ make training more stable and allow more high-performing acti-
vation functions to be discovered than the default initialization does. (b) High-performing
activation functions. The red line shows the function at initialization, with α = β = γ = 1.
The blue lines show the shapes the activation function takes during training, created by
sampling α, β, γ from U(0.5, 2.0). AutoInit’s flexibility should turn out useful for developing
new activation functions in the future.
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the default initialization, one can naively create a randomly generated computation graph

activation function and have roughly a one in nine chance of outperforming ReLU, but with

AutoInit++, this probability increases to one in four.

Indeed, the Mann-Whitney U test [129] concludes that the distribution of accuracies

induced by AutoInit++ is stochastically larger than that from AutoInit (p < 0.05) or

the default initialization (p < 0.01). This result means that for any level of performance,

it is always more probable to discover an activation function that achieves that level of

performance when initializing with AutoInit++ versus AutoInit or the default initialization.

The result implies that activation function researchers who properly initialize their networks

are more likely to discover state-of-the-art activation functions, while staying with the default

initialization may hinder that research effort. More detailed statistical significance analyses

are included in Section 5.12.

Generality Figure 5.9b plots several activation functions from the PANGAEA search space.

Many discovered functions have similar shapes to existing functions. However, others are

nonmonotonic, have discontinuous derivatives, or saturate to nonzero values. These properties

are less common in existing activation functions. This observation suggests that AutoInit is

a general approach that does not depend on a specific type of activation function; it may

therefore serve as a useful tool in developing new such functions in the future.
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5.12 Statistical Significance of Results in Activation Function Meta-
Learning

Sampling activation functions from the PANGAEA search space results in a distribution

of possible models for each weight initialization strategy. Comparing the empirical distribution

functions (EDFs) induced by each initialization strategy makes it possible to quantify the

importance of the initialization [159].

Given n activation functions with errors {ei}, the EDF F (e) = 1
n

∑n
i=1 1[ei < e] gives

the fraction of activation functions that result in error less than e. Let Fdefault, FAutoInit, and

FAutoInit++ be the EDFs for the three initialization strategies. Figure 5.10 plots these EDFs

along with the Kolmogorov-Smirnov test statistic D = supe |F1(e) − F2(e)|, which measures

the maximum vertical discrepancy between two EDFs [134]. This statistic shows that (1)

AutoInit outperforms the default initialization (D = 0.105); (2) AutoInit++ delivers an even

greater boost in performance over the default initialization (D = 0.191); and (3) AutoInit++

is measurably better than AutoInit (D = 0.122), confirming that having zero Gaussian mean

is a useful property for activation functions to have.

Other ways of measuring statistical significance lead to similar conclusions. For

instance, consider the null hypothesis that Fdefault = FAutoInit. In other words, this null

hypothesis states that AutoInit provides no benefit and that the accuracies obtained come

from the same underlying distribution. With the Epps-Singleton test [45] this null hypothesis is

rejected with p < 0.05. Similarly, the test rejects the null hypothesis that Fdefault = FAutoInit++

with p < 0.001. Even stronger statements can be made in the case of AutoInit++. With

the Mann-Whitney U test [129], the null hypothesis that Fdefault(e) ≥ FAutoInit++(e) for some

e is rejected (p < 0.01) in favor of the alternative that Fdefault(e) < FAutoInit++(e) for all e.
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Figure 5.10: Error EDFs for PANGAEA activation functions when using different weight
initialization strategies. The Kolmogorov-Smirnov statistic D quantifies the maximum vertical
distance between the EDFs, and shows that proper initialization provides a measurable
increase in expected performance. Notice that the x-axis shows percent error, and not
accuracy as in Figure 5.9.

Similarly, the null hypothesis that FAutoInit(e) ≥ FAutoInit++(e) for some e is rejected (p < 0.05)

in favor of the alternative that FAutoInit(e) < FAutoInit++(e) for all e. As discussed above,

this result states that the distribution of accuracies induced by AutoInit++ is stochastically

larger than that from AutoInit or the default initialization.

5.13 Discussion

AutoInit is based on understanding and utilizing the training dynamics of neural

networks, leading to higher and more robust performance, and facilitating further advances
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in meta-learning. It can be improved and its scope broadened in several ways in the future,

as outlined below.

Experiments in Other Domains The experiments in this chapter demonstrate that

AutoInit can improve performance in a variety of settings, suggesting that it can be applied

to other domains as well. For instance in reinforcement learning, good estimates of activation

statistics are usually not available due to the online nature of the algorithm. It is not possible

to stabilize training using e.g. batch normalization, but it may be possible to do it with

AutoInit. Similarly, training of generative adversarial networks [63] is often unstable, and

proper initialization may help. Applying AutoInit to such different domains should not only

make them more reliable, but also lead to a better understanding of their training dynamics.

Accelerating Model Search In Sections 5.10 and 5.11, AutoInit was shown to facilitate

the discovery of better neural network designs and activation functions. This ability is possible

because AutoInit is a general method, i.e. not restricted to a single class of models, and it

could similarly augment other meta-learning algorithms [e.g. those reviewed by 43, 197].

However, this finding points to an even more promising idea. As model search

techniques become more prevalent in real-world applications, it will be most worthwhile to

derive general principles rather than specific instantiations of those principles. For example,

past weight initialization strategies improved performance with specific activation functions

through manual derivation of appropriate weight scaling (Section 2.3.1). In contrast, AutoInit

is a general method, leveraging Gaussian quadrature for any activation function. Similarly,

AutoInit resulted in better initialization than strategies discovered by CoDeepNEAT through
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evolution (Section 5.10). Further, AutoInit++ (Section 5.11), rather than producing a few

high-performing activation functions, introduces the general property that activation functions

with zero Gaussian mean (f̃ := f − µf) tend to perform well. This property discovered a

highly diverse set of powerful activation functions in the PANGAEA search space (Figure

5.9).

Thus, AutoInit is successful because it is not a single initialization strategy, but rather

a mapping from architectures to initialization strategies. Such mappings, whether focused on

initialization or some other aspect of model design, deserve increased attention in the future.

They can lead to performance gains in a variety of scenarios. They also accelerate model

search by focusing the search space to more promising regions. If one does not have to worry

about discovering a good initialization, compute power can instead be used in other areas,

like designing architectures and activation functions. Thus, general tools like AutoInit save

time and resources, and lead to better models as a result.

Initial Weight Distributions AutoInit calculates appropriate weight scaling, but it does

not impose a distribution from which weights are drawn (Equation 5.6). All experiments in

this Chapter used a truncated normal distribution. In preliminary experiments, AutoInit

also used untruncated normal, uniform, and orthogonal distributions, but no clear trends

were observed. Indeed, assuming weights are scaled appropriately, whether training is stable

depends only on the architecture and not the distribution from which weights are sampled

[67]. However, this conclusion applies only in limited theoretical settings; in other settings,

orthogonal initialization was found to be beneficial [83, 167]. Whether there is a single

distribution that is optimal in every case, or whether certain distributions are better-suited
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to different models, tasks, or layers, remains an open question, and a compelling direction for

future research.

Variations of AutoInit Several variations of the core AutoInit algorithm can be devised

that may improve its performance. For example, AutoInit stabilizes signals by analyzing

the forward pass of activations from the input to the output of the network. It is possible

to similarly model the backward pass of gradients from the output to the input. Indeed,

past weight initialization strategies have sometimes utilized signals in both directions [7, 55].

It would be interesting to find out whether AutoInit could similarly benefit from analyzing

backward-propagating signals.

Alternative objectives beyond mean and variance stabilization could also be considered.

Two promising objectives are tuning the conditioning of the Fisher information matrix [153]

and achieving dynamical isometry [200]. Mean field theory and nonlinear random matrix

theory [154] could potentially be used to implement these objectives into AutoInit.

Support for New Layer Types AutoInit calculates outgoing mean and variance estimates

for the majority of layer types available in current deep learning frameworks (Section 5.4). If

AutoInit encounters an unknown layer, the default behavior is to assume that the mean and

variance are not changed by that layer: glayer(µin, νin) = µin, νin. This fallback mechanism

tends to work well; if there are only a few unknown layers, then the variance estimation

will be incorrect only by a constant factor and training can proceed. However, mean and

variance estimation functions g can be derived for new types of layers as they are developed,

either analytically or empirically with Monte Carlo sampling, thus taking full advantage of

137



AutoInit’s ability to stabilize training in the future as well.

Tighter Integration with Deep Learning Frameworks Using AutoInit is simple in

practice. The AutoInit package provides a wrapper around TensorFlow models. The wrapper

automatically traverses the TensorFlow computation graph, calculates mean and variance

estimations for each layer, and reinstantiates the model with the correct weight scaling.

However, this implementation can be streamlined. The most effective approach would be to

integrate AutoInit natively with deep learning frameworks like TensorFlow [1] and PyTorch

[151]. Native integration would not just make AutoInit easier to use, it would also make it

more accessible to general machine learning practitioners. For example, TensorFlow provides

a few initialization strategies that can be leveraged by changing the kernel initializer

keyword in certain layers. However, implementing other weight initialization strategies

requires subclassing from the Initializer base class, which is both time-consuming and

complicated, especially for non-experts. Native integration would ensure that the benefits of

smarter initialization are available immediately to the wider machine learning community.

5.14 Conclusion

This chapter introduced AutoInit, an algorithm that calculates analytic mean- and

variance-preserving weight initialization for neural networks automatically. In convolutional

networks, the initialization improved performance with different activation functions, dropout

rates, learning rates, and weight decay settings. In residual networks, AutoInit prevented

exploding signals, allowed training with higher learning rates, and improved performance with

or without batch normalization. In transformers, AutoInit was scaled up to high-resolution

138



image classification, and improved performance with several activation functions with and

without normalization. AutoInit also improved accuracy on the ImageNet dataset. The

initialization is independent of data and is therefore efficient and reliable. AutoInit’s generality

proved instrumental in two types of AutoML. In neural architecture search, new architectures

were evaluated more accurately, resulting in better networks in vision, language, tabular,

multi-task, and transfer learning settings. In activation function discovery, AutoInit stabilized

training and improved accuracy with a large diversity of novel activation functions. Thus,

AutoInit serves to make machine learning experiments more robust and reliable, resulting in

higher performance, and facilitating future research in AutoML. Although AutoInit accelerated

activation function discovery, the process is still computationally expensive. To reduce this

cost, the next chapter learns better activation functions in a data-driven way, improving

efficiency by orders of magnitude.
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Chapter 6

AQuaSurF: Efficient Activation Function Optimization

through Surrogate Modeling

Activation functions are an important choice in neural network design [6, 149]. In order

to realize the benefits of good activation functions, researchers often design new functions

based on characteristics like smoothness, groundedness, monotonicity, and limit behavior.

While these properties have proven useful, humans are ultimately limited by design biases and

by the relatively small number of functions they can consider. On the other hand, automated

search methods can evaluate thousands of unique functions, and as a result, often discover

better activation functions than those designed by humans. However, such approaches do not

usually have a theoretical justification, and instead focus only on performance. This limitation

results in computationally inefficient ad hoc algorithms that may miss good solutions and

may not scale to large models and datasets.

This chapter addresses these drawbacks in a data-driven way through three steps.

First, in order to provide a foundation for theory and algorithm development, convolutional,

residual, and vision transformer based architectures were trained from scratch with 2,913

different activation functions, resulting in three activation function benchmark datasets:

Act-Bench-CNN, Act-Bench-ResNet, and Act-Bench-ViT. These datasets make it possible

to analyze activation function properties at a large scale in order to determine which are
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most predictive of performance.

The second step was to characterize the activation functions in these benchmark

datasets analytically, leading to a surrogate performance measure. Exploratory data analysis

revealed two activation function properties that are highly indicative of performance: (1) the

spectrum of the Fisher information matrix associated with the model’s predictive distribution

at initialization, and (2) the activation function’s output distribution. Both sets of features

contribute unique information. They are both predictive of performance on their own, but

they are most powerful when used in tandem. These features were combined to create a metric

space where a low-dimensional representation of the activation functions could be learned.

This space can then be used as a surrogate in the search for good activation functions.

In the third step, this surrogate was evaluated experimentally, first by verifying that

it can discover known good functions in the benchmark datasets efficiently and reliably,

and second by demonstrating that it can discover improved activation functions in new

tasks on CIFAR-100 and ImageNet. The representation turned out to be so powerful that

an out-of-the-box regression algorithm was able to search it effectively. The approach,

called AQuaSurF (Activation Quality with a Surrogate Function), is orders of magnitude

more efficient than past work. Indeed, whereas previous approaches evaluated hundreds

or thousands of activation functions, AQuaSurF requires only tens of evaluations in order

to discover functions that outperform a wide range of baseline activation functions in each

context. Code implementing the AQuaSurF algorithm is available at https://github.com/

cognizant-ai-labs/aquasurf.

Prior research on activation function optimization and Fisher information matrices

is reviewed in Chapter 2. This work extends it in three ways. First, the benchmark
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collections are made available at https://github.com/cognizant-ai-labs/act-bench,

providing a foundation for further research on activation function optimization. Second,

the low-dimensional representation of the Fisher information matrix makes it a practical

surrogate measure, making it possible to apply it to not only activation function design, but

potentially also to other applications in the future. Third, the already-discovered functions

can be used immediately to improve performance in image processing tasks, and potentially

in other tasks in the future.

6.1 Activation Function Benchmark Datasets

As the first step, this section introduces three activation function benchmark datasets:

Act-Bench-CNN, Act-Bench-ResNet, and Act-Bench-ViT. Each dataset contains training

results for 2,913 unique activation functions when paired with different architectures and tasks:

All-CNN-C on CIFAR-10, ResNet-56 on CIFAR-10, and MobileViTv2-0.5 on Imagenette

[74, 82, 104, 136, 174]. These functions were created using the main three-node computation

graph from PANGAEA [17]. Details are in Appendix A.4.3.

Figure 6.1 shows the distribution of validation accuracies in these datasets. In all three

datasets, the distribution is highly skewed towards functions that result in failed training.

The plots suggest that it is difficult to design good activation functions, and explain why

existing methods are often so computationally expensive. Notwithstanding this difficulty, the

histograms show that many unique functions do achieve good performance. Thus, searching

for new activation functions is a worthwhile task that requires a smart approach.

The scatter plots in Figure 6.2 show the same distribution of accuracies as the

histograms in Figure 6.1, but through scatter plots that show how activation functions
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Figure 6.1: Distribution of validation accuracies with 2,913 unique activation functions from
the three benchmark datasets. Many activation functions result in failed training (indicated by
the chance accuracy of 0.1), suggesting that searching for activation functions is a challenging
problem. However, most of these functions do not have valid FIM eigenvalues, and can thus
be filtered out effectively.
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Figure 6.2: Distribution of validation accuracies across the benchmark datasets. Each point
represents one activation function, and its x and y coordinates represent its performance
in two of the three datasets. Some activation functions perform well on all tasks, and their
improvements correlate. Others are more specialized and succeed only with one or two tasks.
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perform across different tasks. Two interesting observations can be made. First, all three

plots contain linearly correlated clusters of points in the upper right corner. This finding

suggests that there are modifications to activation functions that make them more powerful,

regardless of the task. Second, the clusters of points in the upper left and lower right corners

represent activation functions that succeed in one task but fail in another, demonstrating

that the best results come from discovering functions specialized to individual tasks.

The three benchmark datasets thus form a foundation for developing and evaluating

methods for automated activation function design. In the next two sections, they are used to

develop a measure that serves as surrogate performance metric, making it possible to scale

up activation function optimization to large networks and datasets.

6.2 Fisher Information Matrix Details

In order to calculate the FIM, this chapter uses the K-FAC approach [65, 131, 132].

This technique is summarized in this section, with notation similar to that of Grosse and

Martens [65].

6.2.1 Preliminaries

A feedforward neural network maps an input a0 = x to an output aL = f(x;θ)

through a series of L layers. Each layer l ∈ {1, . . . , L} is comprised of a weight matrix Wl,

a bias vector bl, and an element-wise activation function ϕl. With W̄l =
(
bl Wl

)
and
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āl =
(
1 a⊤

l

)⊤
, each layer implements the transformation

sl = W̄lāl−1, (6.1)

al = ϕl(sl). (6.2)

Let θ =
(
vec(W̄1)

⊤ · · · vec(W̄L)⊤
)⊤

represent the vector of all network parameters. Param-

eterized by θ and given inputs x drawn from a training distribution Qx, the neural network

defines the conditional distribution Ry|f(x;θ). The Fisher information matrix associated with

this model is

F = E
x∼Qx

y∼Ry|f(x;θ)

[
∇θL(y, f(x;θ))∇θL(y, f(x;θ))⊤

]
. (6.3)

As usual in deep learning, the loss function L(y, z) represents the negative log-likelihood

associated with Ry|f(x;θ) and quantifies the discrepancy between the model’s prediction

z = f(x;θ) and the true label y. The network is trained to minimize the loss by updating its

parameters according to the gradient ∇θL(y, f(x;θ)).

6.2.2 Approximations

For ease of notation, write Dv = ∇vL(y, f(x;θ)). Recalling that

θ =
(
vec(W̄1)

⊤ · · · vec(W̄L)⊤
)⊤

, the FIM can be expressed as an L× L block matrix:

F =

E
[
vec(DW̄1)vec(DW̄1)

⊤] · · · E
[
vec(DW̄1)vec(DW̄L)⊤

]
...

. . .
...

E
[
vec(DW̄L)vec(DW̄1)

⊤] · · · E
[
vec(DW̄L)vec(DW̄L)⊤

]
 . (6.4)
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Note that DW̄l = Dslā
⊤
l−1, and recall that vec(uv⊤) = v⊗ u. Each block of the FIM can be

written as

Fi,j = E
[
vec(DW̄i)vec(DW̄j)

⊤] (6.5)

= E
[
vec(Dsiā

⊤
i−1)vec(Dsjā

⊤
j−1)

⊤] (6.6)

= E
[
(āi−1 ⊗Dsi)(āj−1 ⊗Dsj)

⊤] (6.7)

= E
[
(āi−1 ⊗Dsi)(ā

⊤
j−1 ⊗Ds⊤j )

]
(6.8)

= E
[
āi−1ā

⊤
j−1 ⊗DsiDs⊤j

]
. (6.9)

Two approximations are necessary in order to make representation of the FIM practical.

First, assume that different layers have uncorrelated weight derivatives. The FIM can then be

approximated as a block diagonal matrix, with Fi,j = 0 if i ̸= j. Second, if one approximates

the pre-activation derivatives Dsl and activations ā⊤
l−1 as independent, then the diagonal

blocks of the FIM can be further decomposed into the Kronecker product of two smaller

matrices:

Fl,l = E
[
āl−1ā

⊤
l−1 ⊗DslDs⊤l

]
≈ E

[
āl−1ā

⊤
l−1

]
⊗ E

[
DslDs⊤l

]
. (6.10)

Let Ωl = E
[
ālā

⊤
l

]
and Γl = E

[
DslDs⊤l

]
. The approximate empirical FIM is then written as

F̂ =

Ω0 ⊗ Γ1 0
. . .

0 ΩL−1 ⊗ ΓL

 . (6.11)

6.2.3 Layer-Specific Implementation

The above example illustrates FIM approximation for a simple feedforward network.

However, most modern architectures contain several different kinds of layers. Some layers
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like pooling, normalization, or dropout layers do not have trainable weights, and therefore

these layers are not included in the FIM [88, 175].

Each diagonal entry Ωl−1 ⊗ Γl corresponds to one layer with weights. The calcula-

tion differs slightly depending on the layer type, but otherwise the example above can be

straightforwardly extended to more complicated networks. Calculations for three common

layer types are presented below.

Dense Layers For dense layers, the matrices Ωl−1 and Γl can be readily computed with one

forward and backward pass through the network using a mini-batch of data. The eigenvalues

are then computed using standard techniques.

Convolutional Layers Convolutional layers require special consideration to calculate Ωl−1

and Γl. For a given layer, let M represent the batch size, T the set of spatial locations

(typically a two-dimensional grid), ∆ the set of spatial offsets from the center of the filter, and

I and J the number of output and input maps, respectively. The activations are represented

by the M × |T | × J array Al−1. The weights are represented by the I × |∆| × J array Wl

which is interpreted as an I × |∆|J matrix. The expansion operator J·K extracts patches

around each spatial location and flattens them into vectors that become the rows of a matrix:

JAl−1K is a M |T | × J |∆| matrix.

Similar to the feedforward networks, the bias (if used) can be prepended to the weights

matrix as W̄l =
(
bl Wl

)
and a homogeneous column of ones to the expanded activations
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as JAl−1KH =
(
1 JAl−1K

)
. This constructions allows the forward pass to be written as

Sl = JAl−1KHW̄⊤
l , (6.12)

Al = ϕ (Sl) , (6.13)

from which the factors are computed as

Ωl = E
[
JAlK⊤HJAlKH

]
, (6.14)

Γl =
1

|T |
E
[
DS⊤

l DSl
]
. (6.15)

Depthwise Convolutional Layers Depthwise convolutional layers utilize separate kernels

for each channel. In this case, JAl−1K is a M |T |J × |∆| matrix. Otherwise, the factors Ωl−1

and Γl are calculated in the same way as they are for standard convolutional layers.

6.2.4 Eigenvalue Calculation

Because F̂ is a block-diagonal matrix, its eigenvalues are simply the combined eigenval-

ues of each block: λ(F̂) = {λ(F̂l)}Ll=1. The eigenvalue calculation for one block F̂l = Ωl−1⊗Γl

is further simplified by first computing the eigenvalues λ(Ωl−1) and λ(Γl) for each Kronecker

factor separately and then returning all pairwise products from the two sets of eigenvalues.

For numerical stability, the eigenvalues can first be log-scaled and then all pairwise sums from

the two sets are returned. Calculating the eigenvalues requires one forward and backward

pass through the network with a mini-batch of data. The computational cost is therefore

relatively cheap, especially compared with the cost of fully training a network from scratch.

It is possible for the FIM eigenvalues to be invalid. For example, if the forward

propagated activations or backward propagated gradients explode or vanish, then the diagonal
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entries Ωl−1 ⊗ Γl may be undefined. Such invalid values result from activation functions

that are unstable. Therefore, invalid FIM eigenvalues provide a good way to filter out bad

activation functions.

6.3 Features and Distance Metrics

In order to make efficient search for good activation functions possible, the surrogate

space needs to be low-dimensional, represent informative features, and have an appropriate

distance metric. In the second step, an approach is developed based on two kinds of features:

the eigenvalues of the Fisher information matrix, and the outputs of the activation function. In

this section, each feature type is motivated first, and a metric is then developed for computing

distances between activation functions. They are then put together into a surrogate in the

next section.

6.3.1 FIM Eigenvalues

The Fisher information matrix (FIM) is an important concept in characterizing

neural network models. Viewed from various perspectives, the FIM determines a neural

network’s capacity for learning, ability to generalize, the robustness of the network to small

perturbations of its parameters, and the geometry of the loss function near the global minimum

[52, 71, 92–94, 116, 117].

The FIM has |θ| eigenvalues. The distribution of eigenvalues can be represented by

binning the eigenvalues into an m-bucket histogram, and this m-dimensional vector serves as

a computational characterization of the network. Importantly, different activation functions

induce different FIM eigenvalues for a given neural network. They can be calculated at
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initialization and do not require training; they can thus serve as a low-dimensional feature-

vector representation of the activation function. The FIM eigenvalues are immediately useful

for filtering out poor activation functions; if they are invalid, the activation function is likely

to fail in training (Figure 6.1). However, in order to use them as a surrogate, a distance

metric needs to be defined.

Given a neural network architecture f , let fϕ and fψ be two instantiations with

different activation functions ϕ and ψ. Let µl and νl represent the distributions of eigenvalues

corresponding to the weights in layer l of neural networks fϕ and fψ, respectively, and let wl

be the number of weights in layer l of the networks. The distance between fϕ and fψ is then

computed as a weighted layer-wise sum of 1-Wasserstein distances

d(fϕ, fψ) =
L∑
l=1

W1(µl, νl)

wl
. (6.16)

With this distance metric, the FIM eigenvalue vector representations encode a low-

dimensional embedding space for activation functions, making efficient search for good

functions possible. Note, however, that the FIM eigenvalues incorporate multiple sources of

information, including the activation function, neural network structure, data distribution,

and loss function. This fact makes the eigenvalues powerful features, but also introduces

noise in the prediction process. Fortunately, it is possible to combine them with another

feature, activation function outputs, to address this shortcoming.

6.3.2 Activation Function Outputs

The shape of an activation function ψ can be described by a vector of n sample values

ψ(x). If the network’s weights are appropriately initialized, the input activations to its
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neurons are initially distributed as N (0, 1) [16]. Therefore, the sampling x ∼ N (0, 1) provides

an n-dimensional feature vector that represents the expected use of the activation function

at initialization. A distance metric in this feature vector space can be defined naturally as

the Euclidean distance

d(fϕ, fψ) =

√∑n
i=1(ϕ(xi)− ψ(xi))2

n
, x ∼ N (0, 1). (6.17)

Functions with similar shapes will have a small distance between them, while those with

different shapes will have a large distance. Because these output feature vectors depend only

on the activation function, they are reliable and inexpensive to compute. Most importantly,

together with the FIM eigenvalues, they constitute a powerful surrogate search space, as will

be demonstrated in the next section.

6.4 Using the Features as a Surrogate

In this section, the UMAP dimensionality reduction technique is used to visualize

the FIM and output features across the benchmark datasets. This visualization leads to

a combined surrogate space that can be used to accelerate the search for good activation

functions.

6.4.1 Visualization with UMAP

The features developed above can be visualized using the UMAP algorithm [135].

UMAP is a general dimension reduction approach similar to t-SNE, but is better at scaling

to large sample sizes and preserving global structure [187]. As a first demonstration, Figure

6.3 shows a 2D representation of the 2,913 activation functions in the benchmark datasets.
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Each function was represented as an 80-dimensional vector of output values. Interpolating

between embedded points confirms that UMAP learns a good underlying representation.

UMAP was also used to project the activation functions to nine two-dimensional

spaces according to the distance metrics in Equations 6.16 and 6.17. In Figure 6.4, each

column represents a different benchmark dataset (Act-Bench-CNN, Act-Bench-ResNet, or

Act-Bench-ViT) and each row a different distance metric (FIM eigenvalues with m =

⌊|θ|/100⌋, activation function outputs with n = 1,000, or both). The plots include only

activation functions that were not filtered out. Each point represents a unique activation

function, and the points are colored according to their validation accuracy in the benchmark

task. Note that although the performance of each activation function is already known, this

information was not given to UMAP; the embeddings are entirely unsupervised.

Thus, the visualizations in Figure 6.4 illustrate how predictive each feature type is of

activation function performance in each dataset. The next subsections evaluate each feature

type in this role in detail, and show that utilizing both features provides better results than

either feature alone. Details are presented in Section 6.5.

6.4.2 FIM Eigenvalues

The first row of Figure 6.4 shows the 2D UMAP embeddings of the FIM eigenvalue

vectors associated with each activation function. There are several clusters in these plots

where the points share similar colors. These regions indicate distinct activation functions

with similar FIM eigenvalues. Such functions induce similar training dynamics in the neural

network and eventually lead to similar performance. On the other hand, some clusters contain

activation functions with a wide range of performances, and some points do not belong to
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Figure 6.3: UMAP embedding of the 2,913 activation functions in the benchmark datasets.
Each point stands for a unique activation function, represented by an 80-dimensional output
feature vector. The embedding locations of four common activation functions are labeled.
The black x’s mark coordinates interpolating between these four functions, and the grid
of plots on the bottom shows reconstructed activation functions at each of these points.
UMAP interpolates smoothly between different kinds of functions, suggesting that it is a
good approach for learning low-dimensional representations of activation functions.
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Figure 6.4: UMAP embeddings of activation functions for each dataset (column) and feature
type (row). Each point represents a unique activation function, and the points are colored
according to their validation accuracy on the given dataset. The colored triangles identify the
locations of six well-known activation functions. The areas of similar performance are more
continuous in the bottom row; that is, using both FIM eigenvalues and activation function
outputs provides a better low-dimensional representation than using either feature alone.
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any cluster at all. Overall, the plots suggest that FIM eigenvalues are a useful predictor of

performance, but also that incorporating additional information could lead to better results.

6.4.3 Activation Function Outputs

The middle row of Figure 6.4 shows the 2D UMAP embeddings of the output vectors

associated with each activation function. Points are close to each other in this space if the

corresponding activation functions have similar shapes. These plots are demonstrably more

informative than the plots based on the FIM eigenvalues in three ways. First, the purple

points are better separated from the others. This separation means that activation functions

that fail (those achieving 0.1 chance accuracy) are better separated from those that do well.

Second, most points’ immediate neighbors have similar colors. This similarity means that

activation functions with similar shapes lead to similar accuracy, and analyzing activation

function outputs on their own is more informative than analyzing the FIM eigenvalues. Third,

the plots include multiple regions where there are one-dimensional manifolds that exhibit

smooth transitions in accuracy, from purple to blue to green to yellow. Thus, not only does

UMAP successfully embed similar activation functions near each other, but it also is able to

organize the activation functions in a meaningful way.

There is one drawback to this approach: the performant activation functions (those

represented by yellow dots) are often in distinct clusters. This dispersion means that a search

algorithm would have to explore multiple areas of the search space in order to find all of the

best functions. As the next subsection suggests, this issue can be alleviated by utilizing both

FIM eigenvalues and activation function outputs.
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6.4.4 Combining Features: Eigenvalues & Outputs

The UMAP algorithm uses an intermediate fuzzy topological representation to rep-

resent relationships between data points, similar to a neighborhood graph. This property

makes it possible to combine multiple sources of data by taking intersections or unions of the

representations in order to yield new representations [135]. The bottom row of Figure 6.4

utilizes both FIM eigenvalues and activation function outputs by taking the union of the two

representations. Thus, activation functions are embedded close to each other in this space if

they have similar shapes, if they induce similar FIM eigenvalues, or both.

The bottom row of Figure 6.4 shows the benefits of combining the two features. Unlike

the activation function output plots, which contain multiple clusters of high-performing

activation functions in different locations in the embedding space, the combined UMAP

model embeds all of the best activation functions in similar regions. The combined UMAP

model also places poor activation functions (purple points) in the edge of the embedding

space, and brings good functions (yellow points) to the center. Thus, the embedding space is

more convex, and therefore easier to optimize.

In general, activation functions with similar shapes lead to similar performances, and

those with different shapes often produce different results. This property is why the middle

row of Figure 6.4 appears locally smooth. However, in some cases the shape of the activation

function does not tell the whole story, and additional information is needed to ascertain its

performance.

For example, the colored triangles in Figure 6.4 identify the location of six activation

functions in the low-dimensional space: ELU(x), −ELU(x), tanh(x), −tanh(x), |x|, and −|x|.
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In the activation function output space (middle row), all of these functions are mapped to

different regions of the space. The points are spread apart because an activation function and

its negative have very different shapes, i.e. their output will be different for every nonzero

input (Figure 6.5). In contrast, in the FIM eigenvalue space (top row of Figure 6.4), the

points for these pairs of functions overlap because the FIM eigenvalues are comparable (Figure

6.5). Indeed, assuming the weights are initialized from a distribution symmetric about zero,

negating an activation function does not change the training dynamics of a neural network,

and they are functionally equivalent.

This issue complicates the search process in two ways. The first is that good activation

functions are mapped to different regions of the embedding space, and so a search algorithm

must explore multiple areas in order to find the best function. The second challenge is that

distinct regions of the space may contain redundant information: if ELU(x) is known to be a

good activation function, it is not helpful to spend compute resources evaluating −ELU(x)

only to discover that it achieves the same performance.

Negating an activation function is a clear example of a modification that changes

the shape of the activation function, but does not affect the training of a neural network.

More broadly, it is likely that there exist activation functions that differ in other ways

(besides just negation), but that still induce similar training dynamics in neural networks.

Fortunately, utilizing FIM eigenvalues and activation function outputs together provides

enough information to tease out these relationships. FIM eigenvalues take into account

the activation function, the neural network architecture, the loss function, and the data

distribution. The eigenvalues are more meaningful features than activation function outputs,

which only depend on the shape of the function. However, as Figure 6.4 shows, the FIM
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Figure 6.5: FIM eigenvalue distributions for different architectures and activation functions.
The legends show the activation function and the corresponding validation accuracy in different
tasks. Although negating an activation function changes its shape, it does not substantially
change its behavior nor its performance. FIM eigenvalues capture this relationship between
activation functions. The eigenvalues are thus useful for finding activation functions that
appear different but in fact behave similarly, and these discoveries in turn improve the
efficiency of activation function search.
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eigenvalues are noisier features, while the activation function outputs are quite reliable.

Thus, utilizing both features is a natural way to combine their strengths and address their

weaknesses.

6.4.5 Constructing a Surrogate

These observations suggest an opportunity for an effective surrogate measure: The

UMAP coordinates in the bottom row of Figure 6.4 have the information needed to predict

how well an activation function will perform. They capture the essence of the m- and

n-dimensional feature vectors, and distill it into a 2D representation that can be computed

efficiently and used to guide the search for good functions. As the third step in this research,

the next two sections evaluate this process experimentally, demonstrating that it is efficient

and reliable, and that it scales to new and challenging datasets and search spaces.

6.5 Features and Surrogate Details

This section describes how the activation function features were implemented and how

the surrogate was constructed.

Calculating FIM Eigenvalues The FIM eigenvalues were calculated for each activation

function as discussed in Section 6.3. The eigenvalues were log-scaled for numerical stability.

By definition, the number of eigenvalues is the same as the number of weights in the neural

network. To save space, the eigenvalues were binned to histograms. For a layer l with

|θl| weights, ⌊|θl|/100⌋ equally sized bins from −100 to 100 were used. One histogram was

computed for each layer in a network, and all of the histograms were concatenated together into
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a single feature vector for a given activation function. In this manner, the total dimensionality

was 13,692 for All-CNN-C, 16,500 for ResNet-56, and 11,013 for MobileViTv2-0.5.

Calculating Activation Function Outputs The activation function outputs y = f(x)

were calculated for each activation function f by sampling n =1,000 values x ∼ N (0, 1)

and truncating to the range [−5, 5]. The same random inputs were used for all activation

functions.

Per-Layer FIM Eigenvalues In Figure 6.5, the eigenvalues for the entire network are

shown for completeness. However, the UMAP representations shown in Figure 6.4 were

produced by keeping the eigenvalues at each layer separate and computing a weighted distance

between them (according to Equation 6.16). As pointed out above, FIM eigenvalues are

informative but noisy features. In preliminary experiments, keeping the eigenvalues separate

at each layer reduced some of this noise, resulting in a more informative Figure 6.4 and

consequently improving the performance of the search algorithms.

UMAP Settings UMAP exposes a number of parameters that can be used to customize

its behavior [135]. The metric parameter determines how distances are computed between

points, the n neighbors parameter adjusts the tradeoff between the local and global structure

of the data, and the min dist parameter controls the minimum distance between points in

the embedding space.

The plots in Figure 6.4 were produced by computing the distances between FIM eigen-

values and activation function outputs. For the FIM eigenvalues UMAP(metric=‘manhattan’,
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n neighbors=3, min dist=0.1) was used, and for the activation function outputs

UMAP(metric=‘euclidean’, n neighbors=15, min dist=0.1) was used. The distance

metrics were chosen to implement Equations 6.16 and 6.17.

In preliminary experiments, decreasing n neighbors from the default of 15 down to 3

for the FIM eigenvalues qualitatively improved the embedding for the combined features. The

combined features were visualized with a union model, i.e. umap combined = umap fim eigs

+ umap fn outputs [135].

6.6 Searching on the Benchmark Tasks

Searching for activation functions typically requires training a neural network from

scratch in order to evaluate each candidate function fully, which is often computationally

expensive. With the benchmark datasets, all of the results are already precomputed. This

information makes it possible to experiment with different search algorithms and conduct

repeated trials to understand the statistical significance of the results. These results serve to

inform both algorithm design and feature selection, as demonstrated in this section.

6.6.1 Setup

Three algorithms were evaluated: weighted k-nearest regression with k = 3 (KNR),

random forest regression (RFR), and support vector regression (SVR). Gaussian Process

Regression (GPR) was also evaluated but found to be inconsistent in preliminary experiments

(Appendix A.4). Random search (RS) was included as a baseline comparison; it did not

utilize the FIM eigenvalue filtering mechanism. The algorithms were used out of the box with

default hyperparameters from the scikit-learn package [152]. They were provided different
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activation function features in order to understand their potential to predict performance. The

features included FIM eigenvalues, activation function outputs, or both. The features were

preprocessed and embedded in a two-dimensional space by UMAP. These representations are

visualized in Figure 6.4; the coordinates of each point correspond exactly to the information

given to the regression algorithms.

The ReLU activation function is ubiquitous in machine learning. For many neural

network architectures, the performance with ReLU is already known [6, 146, 149], which

makes it a good starting point for search. For this reason, the search algorithms began by

evaluating ReLU and seven other randomly chosen activation functions. In general, such

evaluation requires training from scratch, but with the benchmark datasets, it requires only

looking up the precomputed results. The algorithms then used the validation accuracy of these

eight functions to predict the performance of all unevaluated functions in the dataset. The

activation function with the highest predicted accuracy was then evaluated. The performance

of this new function was then added to the list of known results, and this process continued

until 100 activation functions had been evaluated. Each experiment comprising a different

search algorithm, activation function feature set, and benchmark dataset was repeated 100

times. The full experimental details are in Appendix A.4.

6.6.2 Results

Figure 6.6 shows the results of the searches. Importantly, the curves do not depict

just one search trial. Instead, they represent the average performance aggregated from 100

independent runs, which is made possible by the benchmark datasets. As indicated by the

shaded confidence intervals, the results are reliable and are not simply due to chance.
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Figure 6.6: Search results on the three benchmark datasets. Each curve represents a different
search algorithm (KNR, RFR, or SVR) utilizing a different UMAP feature (FIM eigenvalues,
function outputs, or both; these features are visualized in Figure 6.4). The curves represent
the validation accuracy of the best activation function discovered so far, averaged across
100 independent trials, and the shaded areas show the 95% confidence interval around the
mean. In all cases, regression with UMAP features outperforms random search, and searching
with both eigenvalues and outputs outperforms searching with either feature alone. Of the
three regression algorithms, KNR performs the best, rapidly surpassing ReLU and quickly
discovering near-optimal activation functions in all benchmark tasks. Thus, the features make
it possible to find good activation functions efficiently and reliably even with off-the-shelf
search methods; the benchmark datasets make it possible to demonstrate these conclusions
with statistical reliability.
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A number of conclusions can be drawn from Figure 6.6. First, all search algorithms,

even random search, reliably discover activation functions that outperform ReLU. This

finding is supported by previous work (reviewed in Chapter 2): Although ReLU is a good

activation function that performs well in many different tasks, better performance can be

achieved with novel activation functions. Therefore, continuing to use ReLU in the future is

unlikely to lead to best results; The choice of the activation function should be an important

part of the design, similar to the choice of the network architecture or the selection of its

hyperparameters.

Second, all regression algorithms outperform random search. This finding holds across

the three types of activation function features and across the three benchmark datasets. The

FIM eigenvalues and activation function outputs are thus important in predicting performance

of activation functions.

Third, regression algorithms trained on both FIM eigenvalues and activation function

outputs outperform algorithms trained on just eigenvalues or outputs alone. This result is

consistent across the regression algorithms and benchmark datasets. It suggests that the FIM

eigenvalues and activation function outputs contribute complimentary pieces of information.

The finding quantitatively reinforces the qualitative visualization in Figure 6.4: FIM eigen-

values are useful for matching activation functions that induce similar training dynamics in

neural networks, activation function outputs enable a low-dimensional representation where

search is more practical, and combining the two features results in a problem that is more

convex and easier to optimize.

Fourth, the searches are efficient. Previous approaches require hundreds or thousands

of evaluations to discover good activation functions [15, 17, 160]. In contrast, this chapter
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leverages FIM eigenvalues and activation function outputs to reduce the problem to simple

two-dimensional regression; the features are powerful enough that out-of-the-box regression

algorithms can discover good functions with only tens of evaluations. This efficiency makes

it possible to search for better functions directly on large datasets such as ImageNet [41],

demonstrated next.

6.7 Searching on New Tasks

The experiments in Section 6.6 utilized precomputed datasets and search spaces to

demonstrate that UMAP embeddings are useful in predicting activation function performance,

and that KNR can find good functions based on them. In this section, these insights are

extended to new datasets and search spaces, demonstrating that AQuaSurF scales up to new

and more challenging tasks.

6.7.1 Setup

The experiments were scaled up in two ways. First, while the network architectures

were the same, the datasets were much larger and more challenging: All-CNN-C on CIFAR-

100, ResNet-56 on CIFAR-100, and MobileViTv2-0.5 on ImageNet. Second, a much larger

space with 425,896 unique activation functions was searched, based on four-node computation

graphs (Appendix A.4.3). This space is large, diverse, and not precomputed, putting the

conclusions from the benchmark experiments to test in a production setting.

Based on the benchmark results, KNR with k = 3 was used as the search algorithm.

The searches all begin by evaluating the same eight existing activation functions: ELU,

ReLU, SELU, sigmoid, Softplus, Softsign, Swish, and tanh. From this starting point, eight
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Figure 6.7: Progress of activation function searches. Each point represents the validation
accuracy with a unique activation function, and the solid line indicates the performance of
the best activation function found so far. AQuaSurF discovers new activation functions that
outperform all baseline functions in every case.

workers operated in parallel evaluating the activation functions with the highest predicted

performance. Full experimental details are in Appendix A.4.

6.7.2 Results

Figure 6.7 shows that all three searches find improved activation functions over time,

and Figure 6.8 shows how the searches navigate the search space. In every experiment, new

activation functions were discovered that outperform all baseline functions. Although the

search space is large, the searches are efficient, requiring only tens of evaluations to improve

performance. Impressively, the search with ResNet-56 on CIFAR-100 produced an activation

function that outperformed all baselines on just the second evaluation.
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Figure 6.8: Low-dimensional UMAP representation of the 425,896 function search space. The
activation functions are embedded according to their outputs; each point represents a unique
function. The larger points represent activation functions that were evaluated during the
searches; they are colored according to their validation accuracy. Although the space is vast,
the searches require only tens of evaluations to discover good activation functions.
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Table 6.1: Accuracy with different activation functions. The CIFAR-100 results show the
median test accuracy from three runs, and the ImageNet results show the validation accuracy
from a single run. AQuaSurF discovers novel activation functions that outperform all
baselines in every case. This result demonstrates both that good functions matter, and the
power of optimizing them to the task.

All-CNN-C on CIFAR-100

HardSigmoid(HardSigmoid(x)) · ELU(x) 0.6990
σ(Softsign(x)) · ELU(x) 0.6950
Swish(x)/SELU(1) 0.6931

ELU 0.6312
ReLU 0.6897
SELU 0.0100
sigmoid 0.0100
Softplus 0.6563
Softsign 0.2570
Swish 0.6913
tanh 0.3757

ResNet-56 on CIFAR-100

Swish(−2x) 0.7469
SELU(sinh(earctan(x) − 1)) 0.7458
x · erfc(ELU(x)) 0.7419

ELU 0.7411
ReLU 0.7348
SELU 0.6967
sigmoid 0.5766
Softplus 0.7397
Softsign 0.6624
Swish 0.7401
tanh 0.6754

MobileViTv2-0.5 on ImageNet

−x · σ(x) · HardSigmoid(x) 0.6396
ELU(Swish(−x)) 0.6394
Swish(x) · erfc(bessel i0e(x)) 0.6336

ELU 0.6233
ReLU 0.6139
SELU 0.6096
sigmoid 0.5032
Softplus 0.5853
Softsign 0.5710
Swish 0.6383
tanh 0.6098

Table 6.1 shows the final results from AQuaSurF. The results reinforce the fact that

substantial gains can be obtained when using better activation functions than the default

ReLU, and especially those optimized specifically for the task. The activation functions can

also be transferred to new tasks to improve performance, as shown in Table 6.2.

Figure 6.9 illustrates the different activation functions discovered during the searches.

Visually, the best functions (shown in 6.9a) are similar to existing functions like ELU and

Swish, with subtle changes in their saturation value, the slope of the positive segment, and

the width and depth of the negative bump. This result is not surprising since these functions

formed the starting point for the search process. Indeed, after a few good functions were

discovered, much of the search process focused on refining their design (Figure 6.8). Although

these refinements appear small, they were not known ahead of time and they are significant,

as evidenced by the final results (Table 6.1).
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Table 6.2: ResNet-50 top-1 accuracy on ImageNet. Results are the median of three runs.
The best activation functions discovered in the searches (Table 6.1) successfully transfer to
this new task, with eight of the nine functions outperforming ReLU.

−x · σ(x) · HardSigmoid(x) 0.7776
Swish(x)/SELU(1) 0.7771
Swish(x) · erfc(bessel i0e(x)) 0.7755
σ(Softsign(x)) · ELU(x) 0.7734
SELU(sinh(earctan(x) − 1)) 0.7719
HardSigmoid(HardSigmoid(x)) · ELU(x) 0.7718
ELU(Swish(−x)) 0.7679
Swish(−2x) 0.7664
x · erfc(ELU(x)) 0.7635

ReLU(x) 0.7660

With AQuaSurF, several interesting activation functions were discovered (Figure 6.9b).

While they were not the best, all of them outperformed ReLU. These functions have prop-

erties uncommon among the usual deep learning activation functions: Many of them have

discontinuous derivatives at x = 0; some do not saturate, but diverge as x→ ±∞; in contrast

to Swish, which features a negative bump, many of these functions contain positive bumps.

In the future, these designs may be refined further, and perhaps produce better activation

functions for specific new tasks.

Together, the plots show that AQuaSurF is capable of both exploitation (Figure 6.9a)

and exploration (Figure 6.9b). In the future, it will be interesting to consider tradeoffs

between these concepts. A more comprehensive discussion of this and other future research

directions is in Section 6.8.
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Figure 6.9: Sample activation functions discovered with AQuaSurF. “HS” stands for Hard-
Sigmoid. (a) The top three functions discovered in each search. Many of these functions are
fine-tuned versions of existing activation functions like ELU and Swish. (b) Selected novel
activation functions. All of these functions outperformed ReLU and are distinct from existing
activation functions. Such designs may serve as a foundation for further improvement and
specialization in new tasks.

6.8 Discussion

This chapter demonstrated that FIM eigenvalues and activation function outputs are

efficient and reliable features that can predict performance of activation functions accurately.

This finding enabled discovering better activation functions for various tasks, improving the

state of the art in machine learning. Because the technique is efficient, it was possible to

scale it up to large datasets such as ImageNet. These discoveries inspire several avenues for

future research, discussed below.
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New Search Spaces The PANGAEA search space was used in this chapter because it is

known to work well for deep architectures [15]. In the future it will be interesting to explore

search spaces with different unary, binary, and n-ary operators. Beyond computation graphs,

it may also be possible to apply techniques in this chapter to optimize continuous vector

representations of activation functions [2, 143].

Exploration vs. Exploitation The KNR approach was utilized to search for new

activation functions because it performed well on the benchmark datasets (Section 6.6). In

the future, it will be interesting to consider other algorithms and analyze their tradeoffs

between exploration and exploitation. For example, in a resource-constrained environment

where improvement is needed quickly, a more exploitative approach could be used to find

an improved activation function in a short time. On the other hand, if substantial compute

is available, an approach that focuses on exploration could be used to discover activation

functions that perform well but are maximally different from functions used in modern

architectures (Figure 6.9b). Novelty search [109] could serve as a suitable approach, and

such discoveries could further understanding of how neural networks utilize different kinds of

activation functions to learn.

Optimizing Multiple Activation Functions In a typical neural network design, the

same activation function is used throughout the network. However, recent work has shown

that it may be beneficial to have different activation functions at different locations, and

further, that it may be useful to have different activation functions in the early and late

stages of training [15]. Indeed, many hybrid architectures use Swish in convolutional layers
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and ReLU in attention layers [136]. Unfortunately, it is difficult to design these strategies

manually, and so practitioners often use a single activation function for simplicity.

The techniques proposed in this chapter may provide an avenue toward optimizing

multiple activation functions in tandem. For example, the features for multiple candidate

activation functions could be concatenated into a single feature vector, and this vector could

be projected with UMAP to a low-dimensional space where performance prediction is more

straightforward.

Optimizing Other Aspects of Neural Network Design By fixing the neural network

architecture and varying the activation function, this chapter showed that it is possible to use

FIM eigenvalues to infer future performance. As the FIM is a fundamental quantity in machine

learning, it may be possible to apply a similar strategy to optimize other aspects of neural

network design, such as normalization layers, loss functions, or data augmentation strategies

[32, 61, 62, 121]. If a meaningful distance metric between such objects can be defined, then

UMAP could be used to map them to a low-dimensional space where performance prediction

is much simpler.

Reverse Engineering Activation Functions UMAP was used to project activation

functions to a low-dimensional space, and regression algorithms to predict the performance of

activation functions in this space, i.e. to serve as a fitness function for the search. However,

it is possible that there is no activation function that maps to the optimum of this fitness

landscape. Indeed, because such search spaces are finite, the activation functions do not

completely fill them. For example, there are empty regions in Figure 6.4, corresponding to
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activation functions outside of the predefined search space.

What should be done if an empty region of the embedding space has a higher predicted

fitness than any of the candidate activation functions? In the chapter, these regions were

simply ignored, and the activation function with the highest predicted fitness was used.

However, in the future, it may be possible to create activation functions that map to these

empty spaces, an in so doing improve performance. One approach could be based on inverse

transforms: Given a coordinate in the low-dimensional embedding space, UMAP can apply

an inverse transform and return an object that would have mapped to those coordinates.

This technique was already used for visualization in Figure 6.3. Using this approach, UMAP

could generate a hypothetical desired FIM eigenvalue distribution, or a list of activation

function outputs.

There are two challenges to this approach. First, because UMAP is a dimensionality-

reduction algorithm, different activation functions can map to the same location in the

embedding space. Thus, the mapping from embedding space back to activation functions

is not well defined. Second, even if UMAP prescribes a FIM eigenvalue distribution that is

predicted to result in good performance, it may be difficult to manually design an activation

function to satisfy that distribution.

However, a generated list of prescribed activation function outputs is already a good

start. From this list, it is possible to construct an activation function that interpolates

through these points, either in a piecewise linear fashion, with splines, or using some other

standard technique. Even without the corresponding FIM eigenvalues, such an approach

could potentially improve the efficiency of novel activation function discovery, and lead to

better designs for activation functions in the future.
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6.9 Conclusion

This chapter introduced three benchmark datasets, Act-Bench-CNN, Act-Bench-

ResNet, and Act-Bench-ViT, to support research on activation function optimization. Exper-

iments with these datasets showed that FIM eigenvalues and activation function outputs, and

their low-dimensional UMAP embeddings, predict activation function performance accurately,

and can thus be used as a surrogate for finding better functions, even with out-of-the-box

regression algorithms. These conclusions extended from the benchmark datasets to new and

challenging real-world tasks, where better activation functions were discovered on CIFAR-100

and ImageNet. The study reinforces the idea that activation function design is an important

part of deep learning, and shows AQuaSurF is an efficient and flexible mechanism for doing

it.
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Chapter 7

Discussion and Future Work

This chapter reviews the main ideas that were introduced in this dissertation, and

includes directions for possible future work.

7.1 Optimizing Other Aspects of Neural Network Design

While much of the literature in AutoML has focused on hyperparameter optimization

and neural architecture search (Chapter 2), and this dissertation focused on activation

functions (Chapters 3, 4, 6) and weight initialization (Chapter 5), in the future it will be

important to similarly optimize other aspects of neural network design. This dissertation

showed that automated methods can be more effective and more creative than humans,

and it is likely that these benefits extend to other areas as well. Indeed, existing work has

shown that automating the design of loss functions [61, 62], learning rate schedules [23],

data augmentation strategies [32, 33], and optimizers [28] is promising and worthy of future

research.

7.2 General and Specialized Solutions

CAFE and PANGAEA showed that general activation functions that perform well

across architectures and tasks exist, but that specialized activation functions designed for
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specific architectures and tasks give the best performance. To date, this idea of specialized

solutions has been overlooked in AutoML, and it will be worth pursuing in the future. It is

likely that similar benefits can be found by discovering specialized versions of other objects

like loss functions or data augmentation strategies. Discovering specialized solutions is often

more computationally expensive than finding general solutions, so it will also be important to

focus on efficient search algorithms. For example, AQuaSurF was much more efficient than

CAFE and PANGAEA, and made specialized activation function search practical for large

tasks like ImageNet.

7.3 Joint Optimization of Multiple Components

This dissertation automated the design of activation functions and weight initializa-

tion strategies, and thus made it possible to understand the effects of optimizing multiple

components of neural network design simultaneously. It turns out that doing so is beneficial:

Optimizing both the activation function and weight initialization was synergistic, resulting in

better performance than optimizing either component alone. It is likely joint optimization

of other aspects of neural networks will lead to similar benefits. It is also possible that

this practice will lead to new and surprising design choices. For example, simply changing

the activation function can inspire designs for a different weight initialization [72], dropout

strategy [99], normalization implementation [121], and topology [183]. All of the components

in a machine learning system interact in complex ways, and the future challenge will be to

exploit these interactions in order to find the combinations that lead to the best performance.
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7.4 Computational Cost Considerations

AutoML approaches tend to be computationally expensive because evaluating new

designs often requires training neural networks from scratch. These costs will need to be

addressed in the future, especially if multiple aspects of neural networks are to be optimized at

the same time. In this dissertation, AQuaSurF utilized a surrogate model to improve efficiency

over CAFE and PANGAEA by orders of magnitude. AutoInit, on the other hand, identified

the principle of stable signal propagation, and used this principle to define a mapping from

architectures to initialization strategies. AutoInit was thus efficient by design. By evaluating

different neural network designs fairly, AutoInit also accelerated neural architecture search

and activation function discovery: processes that are often expensive. In the future, it will

be important to focus on efficient search algorithms, low-cost evaluation proxies, surrogate

models, and general principles in order to ensure that AutoML is practical to implement.

7.5 Optimizing Alternative Objectives

The techniques in this dissertation used accuracy as the primary evaluation metric, but

in some scenarios other objectives may be more appropriate. Possibilities include maximizing

adversarial robustness, minimizing inference time, customizing designs to run well on specific

hardware, or even a multi-objective combination of these. Future approaches could optimize

any of these objectives, and could conceivably present the user with a Pareto front of options

that comprise tradeoffs between multiple such objectives.
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7.6 Designing Better Representations

Instead of using hand-coded activation function representations like CAFE and PAN-

GAEA, AQuaSurF learned activation function representations in a data-driven way. These

representations turned out to be much more informative, and allowed AQuaSurF to discover

good activation functions efficiently. This result shows that representations matter in AutoML,

and also highlights that a human-interpretable representation may not be the easiest to

optimize. It is likely that better encodings can similarly accelerate other AutoML algorithms.

Data-driven methods like AQuaSurF are promising ways to find these representations. Al-

though constructing benchmark datasets is initially expensive, it is a cost that is only spent

once. It may then result in dramatically more efficient search algorithms that practitioners

can implement more easily.

7.7 Towards Artificial General Intelligence

As it stands, AutoML approaches are not capable of recursive self-improvement,

but rather execute a single step of improvement. Part of the reason for this limitation is

that AutoML algorithms are typically separate from the machine learning system they are

optimizing. Thus, they can only optimize the machine learning system to a limited extent

before performance plateaus. In order to enable recursive self-improvement in the future, it

will be important to take the lessons learned from AutoML and implement them in a system

that is self-aware. Large language models (LLMs) may potentially provide a context where

such an implementation is possible. There already exists a vast amount of freely available

information about machine learning techniques on websites like GitHub, Stack Overflow, and

arXiv. An LLM trained on these sources of data and aware of its own code could conceivably

178



synthesize the current state of the art in machine learning and use this knowledge to improve

upon itself repeatedly, thereby achieving recursive self-improvement. Such an ability would

be a major step in automated machine learning, and thus also towards artificial general

intelligence.
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Chapter 8

Conclusion

This chapter summarizes the main contributions of this dissertation, and concludes

by reviewing the progress that this dissertation has made towards fully automated machine

learning.

8.1 Contributions

Chapter 3 introduced CAFE, which demonstrated that neural network performance

can be improved by evolving the design of the activation function. The chapter utilized

exhaustive search in a small search space (S1) and random search and evolution in a larger

search space (S2). It introduced novel activation functions that achieve high accuracy,

outperforming both standard functions such as ReLU and novel functions such as Swish. The

best activation functions successfully transferred from CIFAR-10 to CIFAR-100 and from

WRN-28-10 to WRN-40-4. However, the best results were obtained by specializing functions

for each architecture and dataset.

Chapter 4 presented PANGAEA, a system that extended the abilities of CAFE by

being more flexible in multiple ways. The search space was extended to include deeper and

more complex functional forms, including ones unlikely to be discovered by humans. Instead

of fixed activation functions, parametric activation functions were evolved. This construction
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allowed the activation functions to take on different shapes at different locations in the network

and in different stages of training. PANGAEA used a synergy of two different optimization

processes: evolutionary population-based search for the general form and gradient descent-

based fine-tuning of the parameters of the activation function. PANGAEA discovered general

activation functions that perform well across architectures as well as specialized functions that

take advantage of a particular architecture, significantly outperforming previously proposed

activation functions in both cases.

Chapter 5 described AutoInit, an algorithm that calculates analytic mean- and variance-

preserving weight initialization for neural networks automatically. In convolutional networks,

such an initialization improved performance with different activation functions, dropout

rates, learning rates, and weight decay settings. In residual networks, AutoInit prevented

exploding signals, allowed training with higher learning rates, and improved performance with

or without batch normalization. In transformers, AutoInit was scaled up to high-resolution

image classification, where it improved performance with several activation functions with

and without normalization. AutoInit also improved accuracy on the ImageNet dataset. In

neural architecture search, new architectures were evaluated more accurately, resulting in

better networks in vision, language, tabular, multi-task, and transfer learning settings. In

activation function discovery, AutoInit stabilized training and improved accuracy with a large

diversity of novel activation functions. Thus, AutoInit constitutes an important contribution

on its own, but it also demonstrates the power of optimizing multiple aspects of neural

network design simultaneously.

Chapter 6 introduced AQuaSurF, as well as three benchmark datasets: Act-Bench-CNN,

Act-Bench-ResNet, and Act-Bench-ViT. Experiments with these datasets showed that FIM
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eigenvalues and activation function outputs, and their low-dimensional UMAP embeddings,

predict activation function performance accurately, and can thus be used as a surrogate for

finding better functions, even with out-of-the-box regression algorithms. These conclusions

extended from the benchmark datasets to new and challenging real-world tasks, where better

activation functions were discovered on CIFAR-100 and ImageNet. AQuaSurF demonstrated

that learning better representations for activation functions allowed them to be optimized

more effectively. The technique reinforces the importance of activation function design, and

makes automating such designs practical for machine learning practitioners to implement.

8.2 Big Picture

The goal of AutoML is to replace biased and ad hoc human designs with ones that are

creative, principled, more effective, and automatically generated. This dissertation advanced

the state of the art in AutoML with automated approaches for activation function design

and weight initialization. This dissertation also showed that specialized solutions give better

performance than general ones, and demonstrated the power of optimizing multiple aspects of

neural network design jointly. These findings will be needed in order to realize the potential

of fully automated machine learning, and to achieve AGI.
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Appendix A

Training Details

This appendix contains training details for the experiments in the main text.

A.1 CAFE

This section describes implementation details for the experiments in Chapter 3.

A.1.1 Training Setup

A wide residual network [208] with depth 28 and widening factor 10 (WRN-28-

10), implemented in TensorFlow [1], was trained on the CIFAR-10 and CIFAR-100 image

datasets [104]. The architecture was comprised of repeated residual blocks that apply batch

normalization and ReLU prior to each convolution. In the experiments, all ReLU activations

were replaced with a candidate activation function. No other changes to the architecture were

made. Hyperparameters were chosen to mirror those of Zagoruyko and Komodakis [208] as

closely as possible. Featurewise center, horizontal flip, and ZCA whitening preprocessing were

applied to the datasets. Dropout probability was 0.3, and the architecture was optimized

using stochastic gradient descent with Nesterov momentum 0.9. WRN-40-4 (a deeper and

thinner wide residual network architecture) was also used in some experiments for comparison.

The CIFAR-10 and CIFAR-100 datasets both have 50K training images, 10K testing
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images, and no standard validation set. To prevent overfitting, balanced validation splits

were created for both datasets by randomly selecting 500 images per class from the CIFAR-10

training set and 50 images per class from the CIFAR-100 training set. The test set was not

modified so that the results can be compared with other work.

A.1.2 Search Implementation

To discover activation functions, a number of search strategies were used. Regardless

of the strategy, the training set always consisted of 45K images while the validation set

contained 5K images; the test set was never used during the search. All ReLU activations

in WRN-28-10 were replaced with a candidate activation function and the architecture was

trained for 50 epochs. The initial learning rate was set to 0.1, and decreased by a factor of

0.2 after epochs 25, 40, and 45. Training for only 50 epochs made it possible to evaluate

many activation functions without excessive computational cost.

The top three activation functions by validation accuracy from the entire search were

returned as a result. For each of these functions, a WRN-28-10 was trained from scratch

for 200 epochs. The initial learning rate was set to 0.1, and decreased by a factor of 0.2

after epochs 60, 120, and 160, mirroring the work by Zagoruyko and Komodakis [208]. After

training was complete, the test set accuracy was measured. The median test accuracy of five

runs was reported as the final result, as is commonly done in similar work in the literature

[160].

A.2 PANGAEA

This section describes the implementation details for the experiments in Chapter 4.
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A.2.1 Training Details

Wide Residual Network (WRN-10-4) When measuring final performance after evolu-

tion, the standard WRN setup was used; all ReLU activations in WRN-10-4 were replaced

with the evolved activation function, but no other changes to the architecture were made.

The network was optimized using stochastic gradient descent with Nesterov momentum 0.9.

The network was trained for 200 epochs; the initial learning rate was 0.1, and it was decreased

by a factor of 0.2 after epochs 60, 120, and 160. Dropout probability was set to 0.3, and L2

regularization of 0.0005 was applied to the weights. Data augmentation included featurewise

center, featurewise standard deviation normalization, horizontal flip, and random 32 × 32

crops of images padded with four pixels on all sides. This setup was chosen to mirror the

original WRN setup [208] as closely as possible.

During evolution of activation functions, the training was compressed to save time.

The network was trained for only 100 epochs; the learning rate began at 0.1 and was decreased

by a factor of 0.2 after epochs 30, 60, and 80. Empirically, the accuracy achieved by this

shorter schedule was sufficient to guide evolution; the computational cost saved by halving the

time required to evaluate an activation function could then be used to search for additional

activation functions.

Residual Network (ResNet-v1-56) As with WRN-10-4, when measuring final perfor-

mance with ResNet-v1-56, the only change to the architecture was replacing the ReLU

activations with an evolved activation function. The network was optimized with stochastic

gradient descent and momentum 0.9. Dropout was not used, and L2 regularization of 0.0001

was applied to the weights. In the original ResNet experiments [73], an initial learning
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rate of 0.01 was used for 400 iterations before increasing it to 0.1, and further decreasing

it by a factor of 0.1 after 32K and 48K iterations. An iteration represents a single forward

and backward pass over one training batch, while an epoch consists of training over the

entire training dataset. In these experiments, the learning rate schedule was implemented by

beginning with a learning rate of 0.01 for one epoch, increasing it to 0.1, and then decreasing

it by a factor of 0.1 after epochs 91 and 137. (For example, (48K iterations / 45K training

images) * batch size of 128 ≈ 137.) The network was trained for 200 epochs in total. Data

augmentation included a random horizontal flip and random 32 × 32 crops of images padded

with four pixels on all sides, as in the original setup [73].

When evolving activation functions for ResNet-v1-56, the learning rate schedule was

again compressed. The network was trained for 100 epochs; the initial warmup learning rate

of 0.01 still lasted one epoch, the learning rate increased to 0.1, and then decreased by a factor

of 0.1 after epochs 46 and 68. When evolving activation functions, their relative performance

is more important than the absolute accuracies they achieve. The shorter training schedule

was therefore a cost-efficient way of discovering high-performing activation functions.

Preactivation Residual Network (ResNet-v2-56) The full training setup, data aug-

mentation, and compressed learning rate schedule used during evolution for ResNet-v2-56

were all identical to those for ResNet-v1-56 with one exception: with ResNet-v2-56, it is

not necessary to warm up training with an initial learning rate of 0.01 [74], so this step was

skipped.
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All-CNN-C When measuring final performance with All-CNN-C, the ReLU activation

function was replaced with an evolved one, but the setup otherwise mirrored that of Springen-

berg et al. [174] as closely as possible. The network was optimized with stochastic gradient

descent and momentum 0.9. Dropout probability was 0.5, and L2 regularization of 0.001

was applied to the weights. The data augmentation involved featurewise centering and

normalizing, random horizontal flips, and random 32 × 32 crops of images padded with five

pixels on all sides. The initial learning rate was set to 0.01, and it was decreased by a factor

of 0.1 after epochs 200, 250, and 300. The network was trained for 350 epochs in total.

During evolution of activation functions, the same training setup was used. It is not

necessary to compress the learning rate schedule as was done with the residual networks

because All-CNN-C trains more quickly.

CIFAR-10 As with CIFAR-100, a balanced validation set was created for CIFAR-10 by

randomly selecting 500 images from each class, resulting in a training/validation/test split of

45K/5K/10K images.

A.2.2 Implementing Custom Activation Functions

This section demonstrates how to implement different activation functions in a Ten-

sorFlow neural network. For example, the code to create the All-CNN-C architecture with a

custom activation function is:

def all_cnn_c(args):

inputs = Input((32, 32, 3))

x = Conv2D(96, kernel_size=3, strides=(1, 1), padding=’same’, kernel_regularizer=l2(0.001))(inputs)

x = CustomActivation(args)(x)

x = Conv2D(96, kernel_size=3, strides=(1, 1), padding=’same’, kernel_regularizer=l2(0.001))(x)

x = CustomActivation(args)(x)

x = Conv2D(96, kernel_size=3, strides=(2, 2), padding=’same’, kernel_regularizer=l2(0.001))(x)
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x = Dropout(0.5)(x)

x = Conv2D(192, kernel_size=3, strides=(1, 1), padding=’same’, kernel_regularizer=l2(0.001))(x)

x = CustomActivation(args)(x)

x = Conv2D(192, kernel_size=3, strides=(1, 1), padding=’same’, kernel_regularizer=l2(0.001))(x)

x = CustomActivation(args)(x)

x = Conv2D(192, kernel_size=3, strides=(2, 2), padding=’same’, kernel_regularizer=l2(0.001))(x)

x = CustomActivation(args)(x)

x = Dropout(0.5)(x)

x = Conv2D(192, kernel_size=3, strides=(1, 1), padding=’same’, kernel_regularizer=l2(0.001))(x)

x = CustomActivation(args)(x)

x = Conv2D(192, kernel_size=1, strides=(1, 1), padding=’valid’, kernel_regularizer=l2(0.001))(x)

x = CustomActivation(args)(x)

x = Conv2D(10, kernel_size=1, strides=(1, 1), padding=’valid’, kernel_regularizer=l2(0.001))(x)

x = CustomActivation(args)(x)

x = GlobalAveragePooling2D()(x)

x = Flatten()(x)

outputs = Activation(’softmax’)(x)

return Model(inputs=inputs, outputs=outputs)

The CustomActivation is a wrapper that resolves to different activation functions de-

pending on the args parameter. After importing from tensorflow.keras.layers import

Activation, built-in activation functions can be implemented as Activation(’relu’) or

Activation(’tanh’), for example. Activation functions that are not built in and do

not contain learnable parameters can be implemented with lambda functions. For ex-

ample, the Mish activation function can be implemented with Activation(lambda x : x *

tf.math.tanh(tf.keras.activations.softplus(x))). Finally, activation functions with

learnable parameters simply require subclassing a Layer object. The code used to implement

the PAU activation function is below; APL and SPLASH are implemented in a similar

manner.

"""

Padé Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks

https://arxiv.org/abs/1907.06732

PAU of degree (5, 4) initialized to approximate Leaky ReLU (0.01)

"""

import tensorflow as tf

from tensorflow.keras.layers import Layer
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from tensorflow.keras.initializers import Constant

class PAU(Layer):

def __init__(self, num_init=None, denom_init=None, param_shape=’per-layer’, **kwargs):

super(PAU, self).__init__(**kwargs)

self.num_init = num_init if num_init else [0.02979246, 0.61837738, 2.32335207, 3.05202660, 1.48548002, 0.25103717]

self.denom_init = denom_init if denom_init else [1.14201226, 4.39322834, 0.87154450, 0.34720652]

self.num_weights = []

self.denom_weights = []

self.param_shape = param_shape

def build(self, input_shape):

if self.param_shape == ’per-layer’:

param_shape = (1,)

elif self.param_shape == ’per-channel’:

param_shape = list(input_shape[-1:])

else:

assert self.param_shape == ’per-neuron’

param_shape = list(input_shape[1:])

for i in range(6):

self.num_weights.append(

self.add_weight(

name=f’a{i}’,

shape=param_shape,

initializer=Constant(self.num_init[i]),

trainable=True))

for i in range(4):

self.denom_weights.append(

self.add_weight(

name=f’b{i+1}’,

shape=param_shape,

initializer=Constant(self.denom_init[i]),

trainable=True))

def call(self, inputs):

num = tf.add_n([self.num_weights[i] * tf.math.pow(inputs, i) for i in range(6)])

denom = 1 + tf.math.abs(tf.add_n([self.denom_weights[i] * tf.math.pow(inputs, i+1) for i in range(4)]))

return num / denom

def get_config(self):

config = super(PAU, self).get_config()

config.update({’num_init’ : self.num_init,

’denom_init’ : self.denom_init,

’param_shape’ : self.param_shape})

return config

A.3 AutoInit

This section describes the details of experiments from Chapter 5.

A.3.1 Convolutional, Residual, and Transformer Network Experiment Details

This section contains implementation details for the experiments in Sections 5.5-5.9.
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All-CNN-C The training setup follows that of Springenberg et al. [174] as closely as

possible. The network was trained with SGD and momentum 0.9. The dropout rate was 0.5

and weight decay as L2 regularization was 0.001. The data augmentation involved featurewise

centering and normalizing, random horizontal flips, and random 32 × 32 crops of images

padded with five pixels on all sides. The initial learning rate was 0.01 and was decreased by

a factor of 0.1 after epochs 200, 250, and 300 until training ends at epoch 350.

Because Springenberg et al. [174] did not specify how they initialized their weights, the

networks were initialized with the “Glorot Uniform” strategy [also called Xavier initialization;

55], where weights were sampled from U
(
−

√
6√

fan in+fan out
,

√
6√

fan in+fan out

)
. This initialization

is the default setting in TensorFlow,1 and was sufficient to replicate the results reported by

Springenberg et al. [174].

Residual Networks The networks were optimized with SGD and momentum 0.9. Dropout

was not used, and weight decay was 0.0001. Data augmentation included a random horizontal

flip and random 32 × 32 crops of images padded with four pixels on all sides.

CoAtNet A smaller variant of the CoAtNet architecture2 was used in order to fit the model

and data on the available GPU memory. The architecture has three convolutional blocks with

64 channels, four convolutional blocks with 128 channels, six transformer blocks with 256

channels, and three transformer blocks with 512 channels. This architecture is slightly deeper

1https://github.com/tensorflow/tensorflow/blob/v2.5.0/tensorflow/python/keras/layers/

convolutional.py#L608-L609
2https://github.com/leondgarse/keras_cv_attention_models/blob/v1.3.0/keras_cv_

attention_models/coatnet/coatnet.py#L199
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but thinner than the original CoAtNet-0 architecture, which has two convolutional blocks

with 96 channels, three convolutional blocks with 192 channels, five transformer blocks with

384 channels, and two transformer blocks with 768 channels [36]. The models are otherwise

identical.

The training hyperparameters were inspired by Wightman et al. [195] and are common

in the literature. Specifically, images were resized to 160×160. The learning rate schedule was

increased linearly from 1e−4 to 4e−4 for six epochs and it then followed a cosine decay until

epoch 105. Weight decay was set to 0.02 times the current learning rate at each epoch. The

model was trained with batch size 256 and optimized with AdamW [124]. Data augmentation

included RandAugment applied twice with a magnitude of six [33]. Mixup and Cutmix

were also used with alpha 0.1 and 1.0, respectively [207, 209]. The training images were

augmented with random resized crops [181] that were at minimum 8% of the original image;

after training the model was evaluated on 95% center crops.

As discussed in Section 5.4, AutoInit maintains signal variance ν = 1, but it is also

possible to adjust ν if desired. In the CoAtNet experiments, ν = 0.01 was found to give the

best performance among ν = {1, 0.1, 0.01, 0.001}. The experiment removing normalization

layers used the default of ν = 1.

ImageNet The experiment in Section 5.8 used the same training setup as the experiments

with CoAtNet on Imagenette in the previous paragraph except for two changes. The batch

size was 2,048 (512 per GPU across four GPUs), and the maximum learning rate was 3.2e−2.
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Data-Dependent Initialization Comparison In the experiments in Section 5.9, a

learning rate schedule inspired by superconvergence [170] was used to save time. The learning

rate increased linearly to 0.1 during the first five epochs, and then decreased linearly for 20

epochs, after which training ended. The weight decay for All-CNN-C was also decreased by a

factor of 10. This modification is common when networks are trained with superconvergence

[170].

Initialization Time It is important to note that AutoInit does not incur a significant

overhead. Each layer must be visited once to be initialized, so the complexity is O(L) where

L is the number of layers. For example: All-CNN-C, ResNet-56, and ResNet-164 took 1, 33,

and 106 seconds to initialize. The costs are hardware-dependent, but only spent once, and

are small compared to the cost of training.

A.3.2 Neural Architecture Search Experiment Details

This appendix contains implementation details for the experiments in Section 5.10.

Table A.1 contains the training hyperparameters, neural network layers, evolutionary hyper-

parameters, and mutation probabilities used in each of the five tasks. The five tasks used

with CoDeepNEAT are:

Vision The MNIST dataset contains 28x28 grayscale images of handwritten digits 0-9.

There are 60,000 training images (5,000 of which were used for validation) and 10,000 test

images [107]. MNIST was used under the Creative Commons Attribution-Share Alike 3.0

license.
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Table A.1: Configuration of neural architecture search experiments in the five tasks. Entries
with a (B) or (M) suffix apply to CoDeepNEAT blueprints or modules, respectively. These
values were found to work well in preliminary experiments. When AutoInit is applied to
an evolved network, it replaces the weight initialization method selected by evolution, but
the setup otherwise remains unchanged. The neural architecture search experiments were
designed to show that AutoInit improves performance in a wide variety of settings, including
those with different data modalities, network topologies, computational complexities, and
hyperparameter configurations.

MNIST Omniglot PMLB Adult Wikipedia Toxicity Oxford 102 Flower

Training Hyperparameters
Activation All domains: {ReLU, Linear, ELU, SELU}
Batch Size 128 1000 iterations 32 128 8
Dropout Rate [0.0, 0.7] [0.0, 0.7] [0.0, 0.9] [0.0, 0.5] [0.0, 0.9]
Epochs 5 3 25 3 30
Filters/Units [16, 96] [16, 96] [64, 192] [64, 192] [64, 192]
Kernel Reg. L2: [10−9, 10−3] L2: [10−9, 10−3] {L1, L2}: [10−9, 10−3] {L1, L2}: [10−9, 10−3] {L1, L2}: [10−7, 10−3]
Kernel Size {1, 3} {1, 3} N/A {1, 3, 5, 7} N/A
Learning Rate [10−4, 10−2] [10−4, 10−3] [10−4, 10−2] [10−4, 10−2] [10−4, 10−1]
Optimizer Adam Adam Adam Adam SGD (Nesterov=0.9)
Weight Init. All domains: {Glorot Normal, Glorot Uniform, He Normal, He Uniform} or AutoInit

Neural Network Layers
Add ✓ ✓ ✓
Concatenate ✓ ✓
Conv1D ✓
Conv2D ✓ ✓
Dense ✓ ✓
Dropout ✓ ✓ ✓ ✓
GRU ✓
LSTM ✓
MaxPooling1D ✓
MaxPooling2D ✓ ✓
SpatialDropout1D ✓
WeightedSum ✓

Evolutionary Hyperparameters
Elitism (B) 0.4 0.4 0.4 0.2 0.1
Elitism (M) 0.4 0.4 0.4 0.2 0.4
Evaluations (B) 4 4 4 4 1
Generations 30 40 30 30 30
Population Size (B) 22 22 22 22 20
Population Size (M) 56 56 56 56 20
Preserved Networks 12 12 12 12 1
Species (B) 1 1 1 1 1
Species (M) 4 4 4 4 2

Mutation Probabilities
Change Hyperparam. 0.25 0.25 0.25 0.5 0.5
New Connection (B) 0.12 0.12 0.12 0.2 0.12
New Connection (M) 0.08 0.08 0.08 0.2 0.08
New Layer (M) 0.08 0.08 0.08 0.2 0.08
New Node (B) 0.16 0.16 0.16 0.2 0.16
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Language In the Wikipedia Toxicity dataset, the task is to classify English Wikipedia

comments as toxic or healthy contributions [199]. The dataset contains 92,835, 31,227, and

30,953 comments in the training, validation, and test sets, respectively.

Tabular In the Adult dataset [101] from the Penn Machine Learning Benchmarks repository

[PMLB; 150]) the task is to predict whether an individual makes over $50K per year based

on 14 features. Out of 48,842 total instances, 20% were randomly separated to create a test

set. The dataset was used under the MIT License.

Multi-Task The Omniglot dataset contains handwritten characters in 50 different alphabets

[106]; classifying characters in each alphabet is a natural multi-task problem. The characters

are 105× 105 grayscale images, and there are 20 instances of each character. To save compute

resources, 20 of the 50 alphabets were randomly selected for experiments. A fixed training,

validation, and testing split of 50%, 20%, and 30% was used with each task. The learning

rate decayed as learning rate = 0.1epoch/10 ∗ initial learning rate during training. The

dataset was used under the MIT License.

Transfer Learning A DenseNet-121 network was first pretrained on the ImageNet dataset

[41, 84]. Models were then evolved to utilize its embeddings to classify images in the Oxford

102 Flower dataset, consisting of 102 types of flowers found in the United Kingdom [148].

Each class has between 40 and 258 images; the training and validation sets have 10 images per

class, and the test set contains the remaining images from the dataset. During training, the

weight decay (L2 loss) was scaled by the current learning rate. Images were also augmented
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to improve generalization performance. Images were randomly flipped horizontally, rotated

up to 40 degrees, shifted up/down and left/right up to 20%, and shear intensity and zoom

range varied up to 20%.

A.4 AQuaSurF

This section specifies the details for the experiments in Chapter 6.

A.4.1 Implementation Details

Training Details For CIFAR-10 and CIFAR-100, balanced validation sets were created by

sampling 5,000 images from the training set. Full training details and hyperparameters are

listed in Table A.2.

Search Implementation In order to predict performance for an unevaluated activation

function, the function outputs and FIM eigenvalues must first be computed. Thus, the

searches in Section 6.7 were implemented in three steps. First, activation function outputs

for all 425,896 activation functions in the search space were calculated. This computation is

inexpensive and easily parallelizable. Second, eight workers operated in parallel to sample

activation functions uniformly at random from the search space and calculate their FIM

eigenvalues. Third, once the number of activation functions with FIM eigenvalues calculated

reached 5,000, seven of the workers began the search by evaluating the functions with the

highest predicted performance. The eighth worker continued calculating FIM eigenvalues

for new functions so that their performance could be predicted during the search. This

setup allowed taking best advantage of the available compute for the regression-type search
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Table A.2: Training details and hyperparameter values used in the experiments in Chapter 6.

All-CNN-C on CIFAR-10 and CIFAR-100

Batch Size 128
Dropout 0.5
Epochs 25 for Act-Bench-CNN and search (Figure 6.7), 50 for full evaluation (Table 6.1)
Image Size 32 × 32
Learning Rate Linear warmup to 0.1 for five epochs, then linear decay
Mean/Std. Normalization Yes
Momentum 0.9
Optimizer SGD
Random Crops 32 × 32 crops of images padded with four pixels on all sides
Random Flips Yes
Weight Decay 1e−4

Weight Initialization AutoInit [16]

ResNet-56 on CIFAR-10 and CIFAR-100

Batch Size 128
Dropout 0.0
Epochs 25 for Act-Bench-ResNet and search (Figure 6.7), 50 for full evaluation (Table 6.1)
Image Size 32 × 32
Learning Rate Linear warmup to 0.1 for five epochs, then linear decay
Mean/Std. Normalization No
Momentum 0.9
Optimizer SGD
Random Crops 32 × 32 crops of images padded with five pixels on all sides
Random Flips Yes
Weight Decay 1e−4

Weight Initialization AutoInit [16]

MobileViTv2-0.5 on Imagenette and ImageNet

Batch Size 256
CutMix Alpha [207] 1.0
Epochs 105
Evaluation Center Crop 95%
Image Size 160 × 160
Learning Rate Linear warmup from 1e−4 to 4e−3 for five epochs, then cosine decay to 1e−6

Mixup Alpha [209] 0.1
Optimizer AdamW [124]
RandAugment [33] Magnitude six, applied twice
Random Resized Crop [181] Minimum 8% of the original image
Weight Decay 0.02× current learning rate

ResNet-50 on ImageNet

Batch Size 256
CutMix Alpha [207] 1.0
Epochs 105
Evaluation Center Crop 95%
Image Size 160 × 160
Learning Rate Linear warmup from 1e−4 to 2e−3 for five epochs, then cosine decay to 1e−6

Mixup Alpha [209] 0.1
Optimizer AdamW [124]
RandAugment [33] Magnitude six, applied twice
Random Resized Crop [181] Minimum 8% of the original image
Weight Decay 0.02× current learning rate
Weight Initialization AutoInit [16]
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methods.

The experiments on ImageNet required substantially more compute than the experi-

ments on CIFAR-100. For this reason, all eight workers evaluated activation functions once

the number of functions with FIM eigenvalues reached 7,000.

Computing FIM eigenvalues took approximately 26 seconds, 84 seconds, and 37

seconds per activation function for All-CNN-C, ResNet-56, and MobileViTv2-0.5, respectively.

This cost is not trivial, but it is well worth it, as the experiments in Chapter 6 show.

Unique Activation Functions Different computation graphs can result in the same

activation function (e.g. max{x, 0} and max{0, x}). In the benchmark dataset and in the

larger search space of Section 6.7, repeated activation functions were filtered out. A total of

1,000 inputs were sampled N (0, 1) and truncated to [−5, 5]. Two activation functions were

considered the same if their outputs were identical.

A.4.2 Preliminary Experiments

Several variations to the approach presented in the main text were also evaluated in

preliminary experiments. The approach turned out to be robust to most of them, but the

results also justify the choices used for the main experiments.

Improving the Combined UMAP Projection Figure A.1 displays a projection of FIM

eigenvalues using default UMAP hyperparameters. The plots show the eigenvalues organized

in multiple distinct one-dimensional manifolds. Again, FIM eigenvalues are noisy features;

there are some clusters of activation functions achieving similar performance, but there are
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Figure A.1: UMAP projections of FIM eigenvalues using the default hyperparameter of
n neighbors=15. The embedding is informative but also noisy. Using n neighbors=3, as
shown in the main text, improved performance.

also regions where performance varies widely. As mentioned in the main text, this issue was

addressed by reducing the UMAP parameter n neighbors to three. This change reduced the

connectivity of the low-dimensional FIM eigenvalue representation, resulting in a space with

many distinct clusters (as seen in Figure 6.4).

On its own, this setting did not improve the search on the benchmark datasets.

However, it did improve performance when the FIM eigenvalues were combined with activation

function outputs (as was discussed in Section 6.4). The reason is that the UMAP model for

the activation function outputs did not decrease n neighbors, and so the combined UMAP

model relied more on the activation function outputs than it did on the FIM eigenvalues. As

Figure 6.4 shows, the activation function outputs are reliable but sometimes project good

activation functions to distinct regions in the search space. Introducing extra connectivity

into the fuzzy topological representation via the FIM eigenvalues was sufficient to address

this issue, bringing good activation functions to common regions of the space.
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Increasing the Dimension of the UMAP Projections The UMAP plots show two-

dimensional projections of FIM eigenvalues and activation function outputs. Regression

algorithms were also trained on five and 10-dimensional projections. These runs resulted

in comparable or worse performance. Therefore, the two-dimensional projections were

selected for simplicity and for consistency between the algorithm implementation and figure

visualizations.

Gaussian Process Regression As an alternative search method, Gaussian process re-

gression (GPR) was evaluated in activation function search. Several different acquisition

mechanisms were used, including expected improvement, probability of improvement, max-

imum predicted value, and upper confidence bound. The approach worked well, but the

results were inconsistent across the different acquisition mechanisms. GPR was also more

expensive to run compared to the algorithms in the main text (KNR, RFR, SVR), and so

those algorithms were used instead for simplicity and efficiency.

Adjusting k in KNR The initial experiments with the KNR algorithm used k = 3.

Experimenting with k = {1, 5, 8} did not reliably improve performance, so k = 3 was kept.

Uniformly Spaced Inputs for Activation Function Outputs In an alternative imple-

mentation, equally spaced inputs from −5 to 5 were given to the activation functions instead

of normally distributed inputs. This variation did not noticeably change the quality of the

embeddings nor the performance of the search algorithms. Therefore, normal inputs were

used for consistency with Equation 6.17. Figure 6.3 is the only exception; it used 80 inputs
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equally spaced from −5 to 5 and increased the UMAP parameter min dist to 0.5. These

settings improved the quality of the reconstructed activation functions in the plot.

A.4.3 Activation Function Search Spaces

The activation functions in this chapter were implemented as computation graphs from

the PANGAEA search space [15]. The space includes unary and binary operators, in addition

to existing activation functions [30, 42, 99, 146, 160]. This approach allows specifying families

of functions in a compact manner. It is thus possible to focus the search on a space where

good functions are likely to be located, and also to search it comprehensively.

Benchmark Datasets The benchmark datasets introduced in Section 6.1 contain every

activation function of the three-node form binary(unary(x),unary(x)) using the operators

in Table A.3. The result is 5,103 activation functions, of which 2,913 are unique. This space

is visualized in Figure 6.4.

For Act-Bench-CNN and Act-Bench-ResNet, the accuracies are the median from three

runs. For Act-Bench-ViT, the results are from single runs due to computational costs.

New Tasks The experiments in Section 6.7 utilized a larger search space. Specifically, it was

based on the following four-node computation graphs: binary(unary(unary(x)),unary(x)),

binary(unary(x),unary(unary(x))), n-ary(unary(x),unary(x),unary(x)),

unary(binary(unary(x),unary(x))), and unary(unary(unary(unary(x)))). The unary

and binary nodes used the operators in Table A.3, and the n-ary node used the sum, product,

maximum, and minimum operators. Together, these computation graphs create a search
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Table A.3: Activation function search spaces were defined through computation graphs
consisting of basic unary and binary operators as well as existing activation functions [15].

Unary Binary

0 erf(x) ReLU(x) x1 + x2
1 erfc(x) ELU(x) x1 − x2
x sinh(x) SELU(x) x1 · x2
−x cosh(x) Swish(x) x1/x2
|x| tanh(x) Softplus(x) xx21
x−1 arcsinh(x) Softsign(x) max{x1, x2}
x2 arctan(x) HardSigmoid(x) min{x1, x2}
ex ex − 1 bessel i0e(x)
σ(x) log(σ(x)) bessel i1e(x)

space with 1,023,516 functions, of which 425,896 are unique. This space is visualized in

Figure 6.8.
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Appendix B

Compute Infrastructure and Cost

This appendix describes the infrastructure used to run the experiments in the main

text, and the computational cost incurred from running them.

B.1 Compute Infrastructure

Four main systems were used to run experiments for this dissertation.

HTCondor In the first system, HTCondor [185] was used for scheduling jobs. Jobs were

placed on NVIDIA GeForce GTX 1080 and 1080 Ti GPUs.

Slurm The second system used the Slurm workload manager, and also used 1080 and 1080

Ti GPUs.

StudioML In the third system, StudioML software [145, 211] was used to place jobs on

machines with NVIDIA GeForce GTX 1080 Ti and RTX 2080 Ti GPUs.

AWS The fourth system was an AWS g5.48xlarge instance with eight NVIDIA A10G

GPUs. The instance ran in Oregon (us-west-2) and was powered by renewable energy, so

the experiments with this system contributed no carbon emissions.
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B.2 Cost

The overall cost of each system depends on the hardware used. With this detail in

mind, the costs for the four systems in this dissertation in terms of GPU hours are estimated

below.

B.2.1 CAFE

Ten generations of evolution took approximately 2,000 GPU hours using the HTCondor

system.

B.2.2 PANGAEA

PANGAEA experiments used both the HTCondor and Slurm systems. When a job

began executing, a parent activation function was selected by sampling S = 16 functions

from the P = 64 most recently evaluated activation functions. This is a minor difference

from the original regularized evolution [162], which is based on a strict sliding window of size

P . This approach may haven given extra influence to some activation functions, depending

on how quickly or slowly jobs were executed in each of the clusters. In practice the method

was highly effective; it allowed evolution to progress quickly by taking advantage of extra

compute when demand on the clusters was low.

It is difficult to know ahead of time how computationally expensive the evolutionary

search will be. Some activation functions immediately resulted in an undefined loss, causing

training to end. In that case only a few seconds had been spent and another activation

function could immediately be evaluated. Other activation functions trained successfully,

but their complicated expressions resulted in longer-than-usual training times. In these
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experiments, evolution for WRN-10-4 took 2,314 GPU hours, evolution for ResNet-v1-56 took

1,594 GPU hours, and evolution for ResNet-v2-56 took 2,175 GPU hours. These numbers do

not include costs for reranking and repeated runs in the final experiments.

B.2.3 AutoInit

AutoInit experiments were run using the StudioML system, while the CoAtNet

experiments (Section 5.7) used the AWS system. Training CoAtNet on Imagenette required

an average of 0.91 GPU hours per run. Training CoAtNet on ImageNet once took 119.89 GPU

hours. Training on Imagenette instead of ImageNet therefore required 119.89/0.91 ≈ 132

times less compute.

B.2.4 AQuaSurF

AQuaSurF was implemented using the AWS system. The total compute cost for the

search experiments in Section 6.7 was 14.49 GPU-hours for All-CNN-C on CIFAR-100, 21.67

GPU-hours for ResNet-56 on CIFAR-100, and 196.25 GPU-days for MobileViTv2-0.5 on

ImageNet. This cost includes the time to train the eight baseline activation functions and

then to evaluate 100 additional functions.
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[103] P. Krähenbühl, C. Doersch, J. Donahue, and T. Darrell. Data-dependent initializations

of convolutional neural networks. arXiv:1511.06856, 2015.

[104] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images.

Technical report, University of Toronto, 2009.

[105] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

[106] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning

through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

[107] Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database. ATT Labs

[Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[108] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In Neural

networks: Tricks of the trade, pages 9–48. Springer, 2012.

[109] J. Lehman and K. O. Stanley. Abandoning objectives: Evolution through the search

for novelty alone. Evolutionary computation, 19(2):189–223, 2011.

[110] J. Lehman, J. Clune, D. Misevic, C. Adami, L. Altenberg, J. Beaulieu, P. J. Bentley,

S. Bernard, G. Beslon, D. M. Bryson, et al. The surprising creativity of digital evolution:

A collection of anecdotes from the evolutionary computation and artificial life research

communities. Artificial life, 26(2):274–306, 2020.

219



[111] L. Li and A. Talwalkar. Random search and reproducibility for neural architecture

search. In Uncertainty in Artificial Intelligence, pages 367–377. PMLR, 2020.

[112] Y. Li, C. Wei, and T. Ma. Towards explaining the regularization effect of initial large

learning rate in training neural networks. Advances in Neural Information Processing

Systems, 32, 2019.

[113] Z. Li, F. Zhou, F. Chen, and H. Li. Meta-sgd: Learning to learn quickly for few-shot

learning. arXiv:1707.09835, 2017.

[114] J. Liang, E. Meyerson, B. Hodjat, D. Fink, K. Mutch, and R. Miikkulainen. Evolutionary

neural automl for deep learning. In Proceedings of the Genetic and Evolutionary

Computation Conference, pages 401–409, 2019.

[115] J. Liang, S. Gonzalez, and R. Miikkulainen. Population-based training for loss function

optimization. arXiv:2002.04225, 2020.

[116] T. Liang, T. Poggio, A. Rakhlin, and J. Stokes. Fisher-rao metric, geometry, and

complexity of neural networks. In The 22nd international conference on artificial

intelligence and statistics, pages 888–896. PMLR, 2019.

[117] Z. Liao, T. Drummond, I. Reid, and G. Carneiro. Approximate fisher information

matrix to characterize the training of deep neural networks. IEEE transactions on

pattern analysis and machine intelligence, 42(1):15–26, 2018.

[118] S. Lim, I. Kim, T. Kim, C. Kim, and S. Kim. Fast autoaugment. In Advances in Neural

Information Processing Systems, pages 6665–6675, 2019.

220



[119] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu. Hierarchical

representations for efficient architecture search. arXiv:1711.00436, 2017.

[120] H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture search. In

International Conference on Learning Representations, 2018.

[121] H. Liu, A. Brock, K. Simonyan, and Q. Le. Evolving normalization-activation layers.

Advances in Neural Information Processing Systems, 33:13539–13550, 2020.

[122] I. Loshchilov and F. Hutter. Cma-es for hyperparameter optimization of deep neural

networks. arXiv:1604.07269, 2016.

[123] I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient descent with warm restarts.

arXiv:1608.03983, 2016.

[124] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv:1711.05101,

2017.

[125] D. G. Lowe. Object recognition from local scale-invariant features. In Proceedings of the

seventh IEEE international conference on computer vision, volume 2, pages 1150–1157.

Ieee, 1999.

[126] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu. Neural architecture optimization. In

Advances in neural information processing systems, pages 7816–7827, 2018.

[127] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural

network acoustic models. In Proceedings of the 30th international conference on machine

learning (ICML-13), page 3, 2013.

221



[128] D. Maclaurin, D. Duvenaud, and R. Adams. Gradient-based hyperparameter optimiza-

tion through reversible learning. In International Conference on Machine Learning,

pages 2113–2122, 2015.

[129] H. B. Mann and D. R. Whitney. On a test of whether one of two random variables

is stochastically larger than the other. The annals of mathematical statistics, pages

50–60, 1947.

[130] A. Marchisio, M. Hanif, S. Rehman, M. Martina, and M. Shafique. A methodology

for automatic selection of activation functions to design hybrid deep neural networks.

arXiv:1811.03980, 2018.

[131] J. Martens and R. Grosse. Optimizing neural networks with kronecker-factored approx-

imate curvature. In International conference on machine learning, pages 2408–2417.

PMLR, 2015.

[132] J. Martens, J. Ba, and M. Johnson. Kronecker-factored curvature approximations for

recurrent neural networks. In International Conference on Learning Representations,

2018.

[133] A. D. Martinez, J. Del Ser, E. Villar-Rodriguez, E. Osaba, J. Poyatos, S. Tabik,

D. Molina, and F. Herrera. Lights and shadows in evolutionary deep learning: Taxonomy,

critical methodological analysis, cases of study, learned lessons, recommendations and

challenges. Information Fusion, 2020.

[134] F. J. Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal of the

American statistical Association, 46(253):68–78, 1951.

222



[135] L. McInnes, J. Healy, N. Saul, and L. Großberger. Umap: Uniform manifold approxi-

mation and projection. Journal of Open Source Software, 3(29):861, 2018.

[136] S. Mehta and M. Rastegari. Separable self-attention for mobile vision transformers.

arXiv:2206.02680, 2022.

[137] J. Mellor, J. Turner, A. Storkey, and E. J. Crowley. Neural architecture search without

training. In International Conference on Machine Learning, pages 7588–7598. PMLR,

2021.

[138] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju,

H. Shahrzad, A. Navruzyan, N. Duffy, et al. Evolving deep neural networks. In

Artificial Intelligence in the Age of Neural Networks and Brain Computing, pages

293–312. Elsevier, 2019.

[139] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word represen-

tations in vector space. arXiv:1301.3781, 2013.

[140] D. Mishkin and J. Matas. All you need is a good init. arXiv:1511.06422, 2015.

[141] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. A simple neural attentive

meta-learner. In International Conference on Learning Representations, 2018.

[142] D. Misra. Mish: A self regularized non-monotonic neural activation function.

arXiv:1908.08681, 2019.

[143] A. Molina, P. Schramowski, and K. Kersting. Padé activation units: End-to-end
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