
AutoInit: Analytic Signal-Preserving Weight Initialization for Neural Networks

Garrett Bingham1, 2 and Risto Miikkulainen1, 2

1 The University of Texas at Austin, Austin, TX 78712
2 Cognizant AI Labs, San Francisco, CA 94105
bingham@cs.utexas.edu, risto@cs.utexas.edu

Abstract

Neural networks require careful weight initialization to prevent
signals from exploding or vanishing. Existing initialization
schemes solve this problem in specific cases by assuming that
the network has a certain activation function or topology. It
is difficult to derive such weight initialization strategies, and
modern architectures therefore often use these same initial-
ization schemes even though their assumptions do not hold.
This paper introduces AutoInit, a weight initialization algo-
rithm that automatically adapts to different neural network
architectures. By analytically tracking the mean and variance
of signals as they propagate through the network, AutoInit
appropriately scales the weights at each layer to avoid ex-
ploding or vanishing signals. Experiments demonstrate that
AutoInit improves performance of convolutional, residual, and
transformer networks across a range of activation function,
dropout, weight decay, learning rate, and normalizer settings,
and does so more reliably than data-dependent initialization
methods. This flexibility allows AutoInit to initialize models
for everything from small tabular tasks to large datasets such as
ImageNet. Such generality turns out particularly useful in neu-
ral architecture search and in activation function discovery. In
these settings, AutoInit initializes each candidate appropriately,
making performance evaluations more accurate. AutoInit thus
serves as an automatic configuration tool that makes design of
new neural network architectures more robust. The AutoInit
package provides a wrapper around TensorFlow models and
is available at https://github.com/cognizant-ai-labs/autoinit.

1 Introduction
Proper weight initialization is crucial to achieve high per-
formance with deep networks. A common motif in such
networks is repeated layers or building blocks. Thus, if a
given layer amplifies or diminishes the forward or backward
propagation of signals, repeated applications of that layer
will result in exploding or vanishing signals, respectively
(Hochreiter 1991; Hanin 2018). This phenomenon makes op-
timization difficult, and can even exceed machine precision.
The issue persists regardless of whether the weights are sam-
pled to be uniform, normal, or orthogonal (Saxe, McClelland,
and Ganguli 2013; Hu, Xiao, and Pennington 2020).

While many initialization strategies have been proposed
in the past, these strategies apply only to neural networks

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with specific activation functions, topologies, or layer types.
Thus, researchers designing new models or activation func-
tions have two options. The first option is to derive weight
initialization strategies manually for every architecture con-
sidered, which is generally difficult and time consuming. The
second option is to use existing initialization strategies in
new settings, where they may be incorrect and therefore mis-
leading: A candidate model may appear poor when it is the
suboptimal initialization that makes training difficult.

To overcome this problem, this paper proposes AutoInit,
an algorithm that automatically calculates analytic mean- and
variance-preserving weight initialization for neural networks.
Since AutoInit is algorithmic, it relieves the researcher from
a difficult but consequential step in model design. It is no
longer necessary to use existing weight initialization strate-
gies in incorrect settings: AutoInit provides an appropriate
default initialization automatically, resulting in better and
more reliable performance.

2 Related Work
Weight initialization strategies attempt to solve the following
problem: How should weights be initialized so that the neural
network does not suffer from vanishing or exploding signals?
This section reviews previous research in neural network
weight initialization, which has focused on stabilizing signals
by accounting for specific components of neural networks
such as the activation function, topology, layer types, and
training data distribution.

Activation-Function-Dependent Initialization As is com-
mon in the literature, fan in and fan out refer to the
number of connections feeding into and out of a node, re-
spectively. LeCun et al. (2012) recommend sampling weights
from a distribution with mean zero and standard deviation√
fan in. This initialization encourages propagated signals

to have variance approximately one if used with an activation
function symmetric about the origin, like 1.7159 tanh

(
2
3x
)

or tanh(x) + αx for some small choice of α. The standard
sigmoid f(x) = 1/(1+e−x) induces a mean shift and should
not be used in this setting.

Glorot and Bengio (2010) proposed one initialization
strategy to ensure unit variance in the forward-propagated
signals and another to ensure unit variance for the
backward-propagated gradients. As a compromise between

the two strategies, they initialized weights by sampling
from U

(
−

√
6√

fan in+fan out
,

√
6√

fan in+fan out

)
. They also

avoided sigmoid, and instead chose symmetric functions
with unit derivatives at 0, such as tanh or Softsign(x) =
x/(1 + |x|).

He et al. (2015) introduced the PReLU activation function
and a variance-preserving weight initialization to be used
with it that samples weights from N (0,

√
2/fan in). Simi-

larly, Klambauer et al. (2017) introduced SELU, an activation
function with self-normalizing properties. These properties
are only realized when SELU is used with the initialization
scheme by LeCun et al. (2012).

The above weight initialization strategies attempt to solve
the same fundamental problem: How can weights be scaled
so that repeated applications of the activation function do
not result in vanishing or exploding signals? While these
approaches solve this problem in a few special cases, the
issue is more general. Manually deriving the correct scal-
ing is intractable for complicated activation functions. One
approach for an arbitrary function f is to sample Gaussian
inputs x and adjust the weights according to the empirical
variance Var(f(x)) (Brock, De, and Smith 2021). This pa-
per proposes an alternative and potentially more accurate
approach: integration by adaptive quadrature. The result is
a weight initialization strategy that is compatible with any
integrable activation function. Indeed, previous activation-
function-dependent initializations are special cases of the
AutoInit algorithm.

Topology-Dependent Initialization The activation-
function-dependent initializations discussed above were
designed for neural networks composed of convolutional or
dense layers. After the introduction of residual networks
(ResNets; He et al. 2016a,b), new weight initialization
schemes had to be developed to account for the effect of
shortcut connections and various types of residual branches.

Taki (2017) analyzed signal propagation in plain and batch-
normalized ResNets. They developed a new weight initializa-
tion to stabilize training, but did not consider modifications
like using deeper residual blocks or reordering components
like the activation function or batch normalization layers. In
contrast, AutoInit is topology-agnostic: It adapts to any of
these changes automatically.

Zhang, Dauphin, and Ma (2019) introduced Fixup, an
initialization method that rescales residual branches to stabi-
lize training. Fixup replaces batch normalization in standard
and wide residual networks (Ioffe and Szegedy 2015; He
et al. 2016a,b; Zagoruyko and Komodakis 2016) and replaces
layer normalization (Ba, Kiros, and Hinton 2016) in trans-
former models (Vaswani et al. 2017). The disadvantages of
this scheme are that it only applies to residual architectures,
needs proper regularization to get optimal performance, and
requires additional learnable scalars that slightly increase
model size.

Arpit, Campos, and Bengio (2019) proposed a new initial-
ization scheme for weight-normalized networks (Salimans
and Kingma 2016) that relies on carefully scaling weights,
residual blocks, and stages in the network. Like related ap-

proaches, this technique improves performance in specific
cases, but imposes design constraints, like requiring ReLU
activation functions and a specific Conv → ReLU → Conv
block structure.

Just as tanh-inspired weight initialization does not stabilize
training of ReLU networks, initialization schemes designed
for non-residual networks fail with ResNets (Hanin and Rol-
nick 2018; Bachlechner et al. 2020; Brock, De, and Smith
2021). This observation suggests that future classes of neural
networks will again require developing new weight initial-
izations. Additionally, practitioners with models that do not
fit neatly within the restricted settings of existing weight ini-
tialization research are left to derive their own initialization
or use a suboptimal one. For example, many initialization
schemes assume that the activation function is ReLU (He et al.
2015; Taki 2017; Arpit, Campos, and Bengio 2019; Zhang,
Dauphin, and Ma 2019; De and Smith 2020). Indeed, ReLU
is currently the most popular activation function (Nwankpa
et al. 2018; Apicella et al. 2021), but it is not the best choice
in every case. ReLU prevents dynamical isometry (Saxe, Mc-
Clelland, and Ganguli 2013; Pennington, Schoenholz, and
Ganguli 2017), weakens adversarial training (Xie et al. 2020),
and results in poorer accuracy compared to other activation
functions in certain tasks (Bingham and Miikkulainen 2022).
A general weight initialization strategy that does not impose
architectural constraints and achieves good performance in
diverse settings is needed. AutoInit is designed to meet this
challenge.

Layer-Dependent Initialization Hendrycks and Gimpel
(2016a) noted that dropout layers (Srivastava et al. 2014)
also affect the variance of forward-propagated signals in a
network. To stabilize training properly, it is necessary to take
dropout layers and the specific dropout rate into account in
weight initialization. In fact, pooling, normalization, recur-
rent, padding, concatenation, and other layer types affect
the signal variance in a similar way, but current initializa-
tion schemes do not take this effect into account. AutoInit is
designed to adapt to each of these layer types dynamically,
and can be extended to include new layer types as they are
introduced in the future.

Data-Dependent Initialization Mishkin and Matas (2015)
fed data samples through a network and normalized the out-
put of each layer to have unit variance. Krähenbühl et al.
(2015) adopted a similar approach, but opted to normalize
along the channel dimension instead of across an entire layer.
Data-dependent weight initializations are most similar in
spirit to AutoInit; they rely on empirical variance estimates
derived from the data in order to be model-agnostic. However,
data-dependent weight initializations introduce a computa-
tional overhead (Mishkin and Matas 2015), and are not appli-
cable in settings where data is not available or its distribution
may shift over time, such as online learning or reinforcement
learning. The quality of the initialization is also dependent on
the number of the data samples chosen, and suffers when the
network is very deep (Zhang, Dauphin, and Ma 2019). Au-
toInit instead uses an analytic approach for greater efficiency
and higher accuracy.

Summary Thus, previous techniques solved the initializa-
tion problem for networks with specific activation functions,
topologies, and layer types. In contrast, AutoInit does not
impose design constraints, depend on data samples, or incur
a parameter overhead (Dauphin and Schoenholz 2019; Zhu
et al. 2021) and is therefore a good starting point especially
in new settings.

3 Neural Network Signal Propagation
AutoInit aims to stabilize signal propagation throughout an
entire neural network. More precisely, consider a layer that
shifts its input by α and scales the input by a factor of β.
Given an input signal with mean µin and variance νin, after
applying the layer, the output signal will have mean µout =
α + βµin and variance νout = β2νin. In a deep network in
which the layer is applied L times the effect is compounded
and the signal at the final layer has mean and variance

µout = βLµin + α(βL + βL−1 + · · ·+ β + 1), νout = β2Lνin.
(1)

If |β| > 1, the network will suffer from a mean shift and
exploding signals as it increases in depth:

lim
L→∞

µout = ∞, lim
L→∞

νout = ∞. (2)

In the case that |β| < 1, the network will suffer from a mean
shift and vanishing signals:

lim
L→∞

µout = α/(1− β), lim
L→∞

νout = 0. (3)

AutoInit calculates analytic mean- and variance-preserving
weight initialization so that α = 0 and β = 1, thus avoiding
the issues of mean shift and exploding/vanishing signals.

4 The AutoInit Framework
AutoInit is a general framework that adapts to different layer
types. Its implementation is outlined in Algorithm 1. A given
layer in a neural network receives as its input a tensor x
with mean µin and variance νin. After applying the layer,
the output tensor has mean µout = E(layer(x)) and vari-
ance νout = Var(layer(x)). The function glayer maps
input mean and variance to output mean and variance when
the layer is applied:

glayer : (µin, νin) 7→ (µout, νout). (4)

Note that g in Equation 4 depends on the type of layer;
e.g. gDropout and gReLU are different functions. For layers
with trainable weights, the mean and variance mapping will
depend on those weights. For example, the function gConv2D,θ
maps input mean and variance to output mean and variance
after the application of a Conv2D layer parameterized by
weights θ. Deriving g for all layers makes it possible to
model signal propagation across an entire neural network.
Thus, if µin and νin are known, it is natural to calculate initial
weights θ such that the layer output will have zero mean and
unit variance.

For example, for Conv2D layers, one possibility is

θ ∼ N
(
0, 1/

√
fan in(νin + µ2

in)

)
=⇒ gConv2D,θ(µin, νin) = (0, 1).

(5)

Algorithm 1: AutoInit
Input: Network with layers L, directed edges E
output layers = {l ∈ L | (l, l′) /∈ E ∀ l′ ∈ L}
for output layer in output layers do

initialize(output layer)

def initialize(layer):
layers in = {l ∈ L | (l,layer) ∈ E}
i = 1

for layer in in layers in do
µini , νini = initialize(layer in)
i = i+ 1

µin = (µin1 , µin2 , . . . , µinN)
νin = (νin1 , νin2 , . . . , νinN)
if layer has weights θ then

initialize θ s.t. glayer,θ(µin, νin) = (0, 1)
µout, νout = 0, 1

else
µout, νout = glayer(µin, νin)

return µout, νout

The AutoInit framework includes mean and variance map-
ping functions g for the majority of layers used in modern
architectures. Appendix A details how these functions and the
corresponding initialization strategies (e.g. Equation 5) are
derived. New layers can be included by deriving g manually,
or by approximating it through Monte Carlo simulation. This
approach ensures that reliable estimates for µin and νin are
available at all layers in a network, which in turn allows for
weight initialization that stabilizes the signals to have zero
mean and unit variance, avoiding the issues of mean shift and
exploding/vanishing signals (Equations 2 and 3).

The main advantage of AutoInit is that it is a general
method. Unlike prior work, which imposes design constraints,
AutoInit adapts to different settings automatically in order
to improve performance. The next seven sections demon-
strate this adaptability experimentally from several perspec-
tives: different classes of models (convolutional, residual,
transformer), hyperparameter settings (activation function,
dropout rate, weight decay, learning rate, optimizer), model
depths (nine layer CNN to 812 layer ResNet), image sizes
(ten-class 28× 28 grayscale to 1,000-class 160× 160 RGB),
and data modalities (vision, language, tabular, multi-task,
transfer learning). AutoInit also outperforms data-dependent
initialization methods and stabilizes convolutional, residual,
and transformer networks without normalization layers. This
generality is shown to be particularly useful in neural ar-
chitecture search and activation function discovery, where
thousands of new designs need to be evaluated robustly. Au-
toInit produces specialized weight initialization strategies
for each candidate, which allows for measuring their per-
formance more accurately. As a result, better solutions are
discovered. The experiments thus show that AutoInit is an
effective initialization algorithm for existing networks as well
as a good starting point for networks that may be developed
in the future.

ELU

GELU
ReL

U
SELU

Softp
lu

s

Softs
ign
Swishta

nh

0.0

0.5

A
c
c
u
ra

c
y

0.0 0.2 0.4 0.6 0.8

Dropout Rate

0.85

0.90

0 1e-05 0.0001 0.001

Weight Decay

0.900

0.925

0.1 0.2 0.5 1 2 5

Learning Rate Multiplier

0.8

0.9

Glorot Uniform

AutoInit

Figure 1: All-CNN-C test accuracy on CIFAR-10. AutoInit results in comparable or better performance with different activation
functions, better performance across all dropout rates and weight decay settings, and is less sensitive to the choice of learning
rate than the default initialization.

100

10−2

10−4

10−6

ELU GELU ReLU SELU Glorot Uniform

In
p
u
t
L

a
y
e
r

C
o
n
v
2
D

S
o
ft

p
lu

s
C

o
n
v
2
D

S
o
ft

p
lu

s
C

o
n
v
2
D

D
r
o
p
o
u
t

C
o
n
v
2
D

S
o
ft

p
lu

s
C

o
n
v
2
D

S
o
ft

p
lu

s
C

o
n
v
2
D

S
o
ft

p
lu

s
D

r
o
p
o
u
t

C
o
n
v
2
D

S
o
ft

p
lu

s
C

o
n
v
2
D

S
o
ft

p
lu

s
C

o
n
v
2
D

S
o
ft

p
lu

s
G

A
P

2
D

F
la

t
t
e
n

s
o
ft

m
a
x

100

10−2

10−4

10−6

Softplus

In
p
u
t
L

a
y
e
r

C
o
n
v
2
D

S
o
ft

s
ig

n
C

o
n
v
2
D

S
o
ft

s
ig

n
C

o
n
v
2
D

D
r
o
p
o
u
t

C
o
n
v
2
D

S
o
ft

s
ig

n
C

o
n
v
2
D

S
o
ft

s
ig

n
C

o
n
v
2
D

S
o
ft

s
ig

n
D

r
o
p
o
u
t

C
o
n
v
2
D

S
o
ft

s
ig

n
C

o
n
v
2
D

S
o
ft

s
ig

n
C

o
n
v
2
D

S
o
ft

s
ig

n
G

A
P

2
D

F
la

t
t
e
n

s
o
ft

m
a
x

Softsign

In
p
u
t
L

a
y
e
r

C
o
n
v
2
D

S
w

is
h

C
o
n
v
2
D

S
w

is
h

C
o
n
v
2
D

D
r
o
p
o
u
t

C
o
n
v
2
D

S
w

is
h

C
o
n
v
2
D

S
w

is
h

C
o
n
v
2
D

S
w

is
h

D
r
o
p
o
u
t

C
o
n
v
2
D

S
w

is
h

C
o
n
v
2
D

S
w

is
h

C
o
n
v
2
D

S
w

is
h

G
A

P
2
D

F
la

t
t
e
n

s
o
ft

m
a
x

Swish

In
p
u
t
L

a
y
e
r

C
o
n
v
2
D

t
a
n
h

C
o
n
v
2
D

t
a
n
h

C
o
n
v
2
D

D
r
o
p
o
u
t

C
o
n
v
2
D

t
a
n
h

C
o
n
v
2
D

t
a
n
h

C
o
n
v
2
D

t
a
n
h

D
r
o
p
o
u
t

C
o
n
v
2
D

t
a
n
h

C
o
n
v
2
D

t
a
n
h

C
o
n
v
2
D

t
a
n
h

G
A

P
2
D

F
la

t
t
e
n

s
o
ft

m
a
x

tanh

Glorot Uniform

AutoInit

In
p
u
t
L

a
y
e
r

C
o
n
v
2
D

R
e
L

U
C

o
n
v
2
D

R
e
L

U
C

o
n
v
2
D

D
r
o
p
o
u
t

C
o
n
v
2
D

R
e
L

U
C

o
n
v
2
D

R
e
L

U
C

o
n
v
2
D

R
e
L

U
D

r
o
p
o
u
t

C
o
n
v
2
D

R
e
L

U
C

o
n
v
2
D

R
e
L

U
C

o
n
v
2
D

R
e
L

U
G

A
P

2
D

F
la

t
t
e
n

s
o
ft

m
a
x

AutoInit

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D
ro

p
o
u

t
R

a
te

S
ig

n
a
l

V
a
ri

a
n

ce

(a) (b)

Figure 2: Signal propagation in All-CNN-C networks with different (a) activation functions and (b) dropout rates. With the
default initialization, signals often vanish with depth, and their behavior is inconsistent across activation functions and dropout
rates. With AutoInit, the variance fluctuates naturally as each layer modifies its input. At layers with weights (marked in red),
AutoInit scales the weights appropriately to return the variance to approximately 1.0, stabilizing training in each case.

5 Hyperparameter Variation in CNNs
Experiment Setup The first experiment tests AutoInit’s
performance across a range of hyperparameter values for
CNNs. The experiment focuses on the All-CNN-C archi-
tecture (Springenberg et al. 2015), which consists of convo-
lutional layers, ReLU activation functions, dropout layers,
and a global average pooling layer at the end of the net-
work. This simple design helps identify performance gains
that can be attributed to proper weight initialization. The
network is trained on the CIFAR-10 dataset (Krizhevsky,
Hinton et al. 2009) using the standard setup (Appendix
B). In particular, the baseline comparison is the “Glorot
Uniform” strategy (also called Xavier initialization; Glo-
rot and Bengio 2010), where weights are sampled from
U
(
−

√
6√

fan in+fan out
,

√
6√

fan in+fan out

)
.

Hyperparameter Variation In separate experiments, the
activation function, dropout rate, weight decay, and learning
rate multiplier were changed. While one hyperparameter was
varied, the others were fixed to the default values.

Results Figure 1 shows the performance of the network
with the default initialization and with AutoInit in these dif-
ferent settings. In sum, AutoInit improved performance in
every hyperparameter variation evaluated. As Figure 2 shows,
AutoInit is adaptive. It alters the initialization to account for
different activation functions and dropout rates automatically.

AutoInit is also robust. Even as other hyperparameters like
learning rate and weight decay change, AutoInit still results

in a higher performing network than the default initialization.
The results thus suggest that AutoInit provides an improved
default initialization for convolutional neural networks.

6 Stability in Deep ResNets
This section expands the experimental analysis of AutoInit
to residual networks, focusing on preactivation residual net-
works of various depths (He et al. 2016b). The training setup
is standard unless explicitly stated otherwise (Appendix B).
In particular, the initialization is “He Normal” (He et al.
2015), where weights are sampled from N (0,

√
2/fan in).

Visualizing Signal Propagation Figure 3 shows how the
signal variance changes with depth. With ResNet-56, the
variance increases where the shortcut connection and resid-
ual branch meet, and the variance drops whenever ReLU
is applied. Although the variance increases exponentially
with the default initialization and linearly with AutoInit (note
the log scale on the y axis), training is still stable because
batch normalization layers return the signal to variance 1.0.
Without batch normalization, the signal variance never sta-
bilizes under the default initialization. In contrast, removing
batch normalization is not an issue with AutoInit; the signal
variance remains stable with depth.

With the deeper ResNet-164 and ResNet-812 networks, the
conclusions are similar but more pronounced. In the case of
ResNet-812 without batch normalization, the signals explode
so severely that they exceed machine precision. AutoInit
avoids this issue entirely.

0 100

100

101

102

103 ResNet-56

0 250 500

ResNet-164

0 1000 2000

ResNet-812

0 50 100

100

1012

1024

1036 ResNet-56 w/o BatchNorm

He Normal

AutoInit

0 200 400

ResNet-164 w/o BatchNorm

0 1000

ResNet-812 w/o BatchNorm

S
ig

n
a
l

V
a
ri

a
n
ce

Layer Index

Figure 3: Signal propagation in residual networks. Gaussian
input was fed to the networks and empirical variance com-
puted at each layer. Since ReLU, BatchNormalization,
and Add are counted as individual layers in this diagram, the
total number of layers is different from that in the architecture
name (i.e. ResNet-164 has 164 convolutional layers but over
500 total layers). The default initialization causes exploding
signals, while AutoInit ensures signal propagation is stable.

Stable Initial Learning Rates Exploding or vanishing sig-
nals make optimization difficult because they result in gradi-
ent updates that are too large to be accurate or too small to be
meaningful. This phenomenon can be observed when the net-
work does not exceed chance accuracy. Therefore, a simple
way to quantify whether a weight initialization is effective is
to observe a network’s performance after a few epochs.

Using this metric, AutoInit was compared against the
default initialization by training unnormalized versions of
ResNet-56, ResNet-164, and ResNet-812 for five epochs
with a variety of learning rates. With the default initializa-
tion, ResNet-56 requires a learning rate between 10−8 and
0.5 × 10−3 to begin training, but training was not possible
with ResNet-164 or ResNet-812 because of exploding signals
(Figure 4a). AutoInit stabilizes training for all three networks,
and its effect does not diminish with depth. The networks
remain stable with higher learning rates between 10−4 and
0.05. Such rates speed up learning, and also correlate with
better generalization performance (Jastrzebski et al. 2017;
Smith et al. 2018; Smith and Le 2018).

Full ResNet Training In the third residual network experi-
ment, ResNet-164 was trained to completion on CIFAR-10
with different learning rate schedules. All schedules included
a linear warm-up phase followed by a decay to zero using
cosine annealing (Loshchilov and Hutter 2016).

Figure 4b displays the performance with a variety of such
schedules. When the best learning rate schedules are used,
ResNet-164 achieves comparable performance with the de-
fault initialization and with AutoInit. However, when a sub-
optimal schedule is used, performance degrades more quickly
with the default initialization than it does with AutoInit. With-
out batch normalization, the network requires proper weight
initialization for stability. In this case, ResNet-164 with the
default initialization fails to train regardless of the learning
rate schedule, whereas AutoInit results in high accuracy for
the majority of them.

Together, the experiments in this section show that Au-

10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

Learning Rate

0.2

0.4

0.6

A
c
c
.

@
E

p
o
ch

5

He Normal

ResNet-56

ResNet-164

ResNet-812

AutoInit

ResNet-56

ResNet-164

ResNet-812

(a)

1
e
-4
→

2
e
-4

1
e
-4
→

5
e
-4

1
e
-4
→

1
e
-3

1
e
-4
→

2
e
-3

1
e
-3
→

2
e
-3

1
e
-4
→

5
e
-3

1
e
-3
→

5
e
-3

1
e
-4
→

1
e
-2

1
e
-3
→

1
e
-2

1
e
-4
→

2
e
-2

1
e
-3
→

2
e
-2

1
e
-2
→

2
e
-2

1
e
-4
→

5
e
-2

1
e
-3
→

5
e
-2

1
e
-2
→

5
e
-2

1
e
-4
→

0
.1

1
e
-3
→

0
.1

1
e
-2
→

0
.1

1
e
-4
→

0
.2

1
e
-3
→

0
.2

1
e
-2
→

0
.2

0
.1
→

0
.2

1
e
-4
→

0
.5

1
e
-3
→

0
.5

1
e
-2
→

0
.5

0
.1
→

0
.5

1
e
-4
→

1
1
e
-3
→

1
1
e
-2
→

1
0
.1
→

1

0.25

0.50

0.75

1.00

A
c
c
u
ra

c
y

LR Schedule:
Linear warmup
{start} → {stop}
until epoch 50,
then cosine decay
until epoch 200.

ResNet-164
BatchNorm

He Normal

AutoInit

No BatchNorm

He Normal

AutoInit

(b)

Figure 4: ResNet accuracy on CIFAR-10 with different set-
tings. (a) Accuracy of unnormalized ResNet architectures
after five epochs of training with different learning rates and
weight initializations. While default initialization makes train-
ing difficult in ResNet-56 and impossible at greater depths,
AutoInit results in consistent training at all depths. (b) Accu-
racy of ResNet-164 with a variety of learning rate schedules
and initializations. AutoInit is comparable to or outperforms
the default initialization in every case.

CoAtNet w/ GELU w/ ReLU w/ SELU w/ Swish w/o Norm

Default Init. 89.38 89.22 86.09 88.69 -
Glorot Normal 91.44 91.54 87.59 90.42 85.89
Glorot Uniform 91.16 91.18 88.25 90.06 85.73
He Normal 88.48 88.05 86.11 88.36 -
He Uniform 88.66 87.87 86.37 88.41 -
LeCun Normal 91.11 90.57 87.80 90.83 -
LeCun Uniform 90.55 90.65 87.67 90.57 -
AutoInit 92.48 92.15 86.80 92.28 85.73

Table 1: CoAtNet top-1 accuracy on Imagenette, shown as
median of three runs. The first four experiments vary the
activation function, while the fifth removes all normalization
layers from the architecture. A “-” indicates that training
diverged. AutoInit produces the best model in three of the
five settings, and remains stable even without normalization
layers.

toInit is effective with deep networks. It prevents signals
from exploding or vanishing, makes it possible to use larger
learning rates, and achieves high accuracy, with and without
batch normalization.

7 High-Resolution Images with Transformers
This section extends AutoInit to transformer architectures
and applies them to high-resolution image classification.
Specifically, AutoInit is applied to CoAtNet, a model that
combines convolutional and attention layers (Dai et al.
2021). The model is trained on Imagenette, a subset of 10
classes from the ImageNet dataset (Howard 2019; Deng
et al. 2009). Imagenette allows evaluating AutoInit in a high-
resolution image classification task with a 132× smaller
carbon footprint than the full ImageNet dataset would (Ap-
pendix F). As Table 1 shows, AutoInit outperforms six
commonly used initialization schemes as well as the de-

top-1 top-5

Default Init. 74.33 91.60
AutoInit 75.35 92.03

Table 2: ResNet-50 top-1 and top-5 validation accuracy on
ImageNet. AutoInit improves performance, even with large
and challenging datasets.

1 2 4 8 16 32 64 128256512

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

T
e
st

 A
cc

u
ra

cy

All-CNN-C

LSUV

AutoInit

1 2 4 8 16 32 64 128256512
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
ResNet-164 w/o BatchNorm

LSUV

AutoInit

Number of samples S used for LSUV initialization

Figure 5: Mean CIFAR-10 test accuracy for AutoInit vs.
LSUV with different numbers of samples S. Each evaluation
is repeated 10 times; the shaded area shows the maximum
and minimum accuracy among all trials. AutoInit is consis-
tent, but LSUV struggles when S is small or the network is
deep.

fault initialization, which initializes convolutional layers
from N (0,

√
2/fan out) and fully-connected layers from

U
(
−

√
6√

fan in+fan out
,

√
6√

fan in+fan out

)
. Furthermore, Au-

toInit stabilizes the network even when normalization layers
are removed, suggesting that it is a promising candidate to-
wards developing normalizer-free transformer architectures.
Full experiment details are in Appendix B.

8 Scaling up to ImageNet
In order to compliment the results from Section 7 and demon-
strate that AutoInit can scale to more difficult tasks, ResNet-
50 was trained from scratch on ImageNet with the default
initialization and with AutoInit. As Table 2 shows, AutoInit
improves top-1 and top-5 accuracy in this task as well. Full
training details are in Appendix B.

9 Contrast with Data-Dependent Initialization
The layer-sequential unit-variance (LSUV) algorithm is the
most natural data-dependent initialization comparison to Au-
toInit because both approaches aim to scale the weights appro-
priately in an architecture-agnostic way. LSUV pre-initializes
the weights with an existing approach, feeds S training sam-
ples through the network, and adjusts the scale of the weights
so that each layer’s output variance is approximately one
(Mishkin and Matas 2015).

Data-dependent initialization is time-consuming for large
S (indeed, even S = 1 is used in practice (Kingma and Dhari-
wal 2018)). However, if S is too small, the samples may not
reflect the statistics of the dataset accurately, leading to poor
initialization. Figure 5 demonstrates this phenomenon. In

Blueprint Modules Assembled Network

Module
Species 1

Module
Species 2

1

2

1

(a)

f(x)

α

σ(x)

x1 − x2

β

|x|

arctan(x)

γ

x x(b)

Figure 6: (a) The CoDeepNEAT method. Modules replace
nodes in the blueprint to create a candidate neural network.
(b) An example activation function created with the PAN-
GAEA method. The computation graph represents the para-
metric function f(x) = α·σ(β ·|x|−arctan(γ ·x)). CoDeep-
NEAT and PANGAEA generate a variety of architectures and
activation functions that can be used to evaluate AutoInit’s
generality and flexibility.

some training runs LSUV matches the performance of Au-
toInit, but in many instances the randomly selected samples
do not accurately reflect the overall dataset and performance
suffers. Since AutoInit is not data-dependent, it does not have
this issue. Details of this experiment are in Appendix B.

10 Enabling Neural Architecture Search
Sections 5 through 9 demonstrated that AutoInit works well
for convolutional, residual, and transformer networks with
a variety of hyperparameter values and depths. In this sec-
tion, the results are extended to a broader variety of network
topologies and types of tasks, for two reasons. First, whereas
custom weight initialization may be developed by hand for
the most popular machine learning benchmarks, it is unlikely
to happen for a variety of architectures and tasks beyond
them. Second, as new types of neural network designs are
developed in the future, it will be important to initialize them
properly to reduce uncertainty in their performance. This
section evaluates the generality of AutoInit by applying it
to the variety of networks generated in a neural architecture
search process with five types of tasks.

The CoDeepNEAT Architecture Search Method Neural
networks are evolved using CoDeepNEAT (Liang et al. 2019;
Miikkulainen et al. 2019). CoDeepNEAT extends previous
work on evolving network topologies and weights (Mori-
arty and Miikkulainen 1997; Stanley and Miikkulainen 2002)
to the level of evolving deep learning architectures. Utiliz-
ing a cooperative coevolution framework (Potter and Jong
2000), CoDeepNEAT evolves populations of modules and
blueprints simultaneously (Figure 6a). Modules are small
neural networks, complete with layers, connections, and hy-
perparameters. Blueprints are computation graphs containing
only nodes and directed edges. To create a candidate neural
network, CoDeepNEAT chooses a blueprint and replaces its
nodes with selected modules. This mechanism makes it pos-
sible to evolve deep, complex, and recurrent structures, while
taking advantage of the modularity often found in state-of-
the-art models. In addition to the network structure, CoDeep-
NEAT evolves hyperparameters like dropout rate, kernel reg-
ularization, and learning rate. The network weights are not

0 10 20 30

0.98

0.99

F
it

n
e
ss

MNIST

0 10 20 30 40

0.6

0.8

Omniglot

0 10 20 30

Generation

0.855

0.860

PMLB Adult

0 10 20 30

0.960

0.965

Wikipedia Toxicity

0 10 20 30

0.935

0.940

0.945

Oxford 102 Flower

Evolved Init AutoInit(a)

In
p
u
tL

a
ye

r

C
o
n
v2

D
(fi

lt
e
rs

=
4
2
,
k
e
rn

e
l_

si
ze

=
[3

,
3
])

D
ro

p
o
u
t(

ra
te

=
0
.4

1
0
9
)

C
o
n
v2

D
(fi

lt
e
rs

=
4
9
,
k
e
rn

e
l_

si
ze

=
[3

,
3
])

D
ro

p
o
u
t(

ra
te

=
0
.1

2
6
7
)

 r
e
lu

C
o
n
v2

D
(fi

lt
e
rs

=
1
8
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

M
a
xP

o
o
li
n
g
2
D

(p
o
o
l_

si
ze

=
[2

,
2
])

C
o
n
v2

D
(fi

lt
e
rs

=
2
8
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

C
o
n
v2

D
(fi

lt
e
rs

=
2
8
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

A
d
d

In
p
u
tL

a
ye

r

C
o
n
v2

D
(fi

lt
e
rs

=
6
7
,
k
e
rn

e
l_

si
ze

=
[3

,
3
])

D
ro

p
o
u
t(

ra
te

=
0
.4

1
0
9
)

C
o
n
v2

D
(fi

lt
e
rs

=
7
8
,
k
e
rn

e
l_

si
ze

=
[3

,
3
])

D
ro

p
o
u
t(

ra
te

=
0
.1

2
6
7
)

 r
e
lu

C
o
n
v2

D
(fi

lt
e
rs

=
2
8
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

M
a
xP

o
o
li
n
g
2
D

(p
o
o
l_

si
ze

=
[2

,
2
])

C
o
n
v2

D
(fi

lt
e
rs

=
4
5
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

In
p
u
tL

a
ye

r

C
o
n
v2

D
(fi

lt
e
rs

=
1
0
6
,
k
e
rn

e
l_

si
ze

=
[3

,
3
])

D
ro

p
o
u
t(

ra
te

=
0
.4

1
0
9
)

C
o
n
v2

D
(fi

lt
e
rs

=
1
2
4
,
k
e
rn

e
l_

si
ze

=
[3

,
3
])

D
ro

p
o
u
t(

ra
te

=
0
.1

2
6
7
)

 r
e
lu

C
o
n
v2

D
(fi

lt
e
rs

=
4
5
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

M
a
xP

o
o
li
n
g
2
D

(p
o
o
l_

si
ze

=
[2

,
2
])

C
o
n
v2

D
(fi

lt
e
rs

=
1
8
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

C
o
n
v2

D
(fi

lt
e
rs

=
7
3
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

C
o
n
v2

D
(fi

lt
e
rs

=
2
8
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

In
p
u
tL

a
ye

r

C
o
n
v2

D
(fi

lt
e
rs

=
2
8
4
,
k
e
rn

e
l_

si
ze

=
[3

,
3
])

D
ro

p
o
u
t(

ra
te

=
0
.4

1
1
0
)

 e
lu

C
o
n
v2

D
(fi

lt
e
rs

=
3
0
0
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

D
ro

p
o
u
t(

ra
te

=
0
.5

4
0
9
)

 e
lu

C
o
n
v2

D
(fi

lt
e
rs

=
7
3
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

In
p
u
tL

a
ye

r

In
p
u
tL

a
ye

r

C
o
n
v2

D
(fi

lt
e
rs

=
1
7
0
,
k
e
rn

e
l_

si
ze

=
[3

,
3
])

D
ro

p
o
u
t(

ra
te

=
0
.4

1
0
9
)

C
o
n
v2

D
(fi

lt
e
rs

=
1
9
9
,
k
e
rn

e
l_

si
ze

=
[3

,
3
])

D
ro

p
o
u
t(

ra
te

=
0
.1

2
6
7
)

 r
e
lu

C
o
n
v2

D
(fi

lt
e
rs

=
7
3
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

C
o
n
v2

D
(fi

lt
e
rs

=
1
8
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

C
o
n
v2

D
(fi

lt
e
rs

=
1
8
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

C
o
n
v2

D
(fi

lt
e
rs

=
2
8
4
,
k
e
rn

e
l_

si
ze

=
[3

,
3
])

D
ro

p
o
u
t(

ra
te

=
0
.4

1
1
0
)

 e
lu

C
o
n
v2

D
(fi

lt
e
rs

=
3
0
0
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

D
ro

p
o
u
t(

ra
te

=
0
.5

4
0
9
)

 e
lu

C
o
n
v2

D
(fi

lt
e
rs

=
7
3
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

C
o
n
v2

D
(fi

lt
e
rs

=
2
8
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

In
p
u
tL

a
ye

r

C
o
n
v2

D
(fi

lt
e
rs

=
6
7
,
k
e
rn

e
l_

si
ze

=
[3

,
3
])

D
ro

p
o
u
t(

ra
te

=
0
.4

1
0
9
)

C
o
n
v2

D
(fi

lt
e
rs

=
7
8
,
k
e
rn

e
l_

si
ze

=
[3

,
3
])

D
ro

p
o
u
t(

ra
te

=
0
.1

2
6
7
)

 r
e
lu

C
o
n
v2

D
(fi

lt
e
rs

=
2
8
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

M
a
xP

o
o
li
n
g
2
D

(p
o
o
l_

si
ze

=
[2

,
2
])

M
a
xP

o
o
li
n
g
2
D

(p
o
o
l_

si
ze

=
[2

,
2
])

In
p
u
tL

a
ye

r

C
o
n
v2

D
(fi

lt
e
rs

=
6
7
,
k
e
rn

e
l_

si
ze

=
[3

,
3
])

D
ro

p
o
u
t(

ra
te

=
0
.4

1
0
9
)

C
o
n
v2

D
(fi

lt
e
rs

=
7
8
,
k
e
rn

e
l_

si
ze

=
[3

,
3
])

D
ro

p
o
u
t(

ra
te

=
0
.1

2
6
7
)

 r
e
lu

C
o
n
v2

D
(fi

lt
e
rs

=
2
8
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

M
a
xP

o
o
li
n
g
2
D

(p
o
o
l_

si
ze

=
[2

,
2
])

M
a
xP

o
o
li
n
g
2
D

(p
o
o
l_

si
ze

=
[2

,
2
])

In
p
u
tL

a
ye

r

C
o
n
v2

D
(fi

lt
e
rs

=
7
0
,
k
e
rn

e
l_

si
ze

=
[3

,
3
])

D
ro

p
o
u
t(

ra
te

=
0
.4

1
1
0
)

 e
lu

C
o
n
v2

D
(fi

lt
e
rs

=
7
4
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

D
ro

p
o
u
t(

ra
te

=
0
.5

4
0
9
)

 e
lu

C
o
n
v2

D
(fi

lt
e
rs

=
1
8
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

M
a
xP

o
o
li
n
g
2
D

(p
o
o
l_

si
ze

=
[2

,
2
])

M
a
xP

o
o
li
n
g
2
D

(p
o
o
l_

si
ze

=
[4

,
4
])

In
p
u
tL

a
ye

r

C
o
n
v2

D
(fi

lt
e
rs

=
1
7
0
,
k
e
rn

e
l_

si
ze

=
[3

,
3
])

D
ro

p
o
u
t(

ra
te

=
0
.4

1
0
9
)

C
o
n
v2

D
(fi

lt
e
rs

=
1
9
9
,
k
e
rn

e
l_

si
ze

=
[3

,
3
])

D
ro

p
o
u
t(

ra
te

=
0
.1

2
6
7
)

 r
e
lu

C
o
n
v2

D
(fi

lt
e
rs

=
7
3
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

C
o
n
v2

D
(fi

lt
e
rs

=
1
8
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

In
p
u
tL

a
ye

r

C
o
n
v2

D
(fi

lt
e
rs

=
1
7
0
,
k
e
rn

e
l_

si
ze

=
[3

,
3
])

D
ro

p
o
u
t(

ra
te

=
0
.4

1
0
9
)

C
o
n
v2

D
(fi

lt
e
rs

=
1
9
9
,
k
e
rn

e
l_

si
ze

=
[3

,
3
])

D
ro

p
o
u
t(

ra
te

=
0
.1

2
6
7
)

 r
e
lu

C
o
n
v2

D
(fi

lt
e
rs

=
7
3
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

C
o
n
v2

D
(fi

lt
e
rs

=
1
8
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

In
p
u
tL

a
ye

r

R
e
sh

a
p
e

Z
e
ro

P
a
d
d
in

g
3
D

R
e
sh

a
p
e

M
a
xP

o
o
li
n
g
2
D

(p
o
o
l_

si
ze

=
[9

,
9
])

M
a
xP

o
o
li
n
g
2
D

(p
o
o
l_

si
ze

=
[2

,
2
])

M
a
xP

o
o
li
n
g
2
D

(p
o
o
l_

si
ze

=
[9

,
9
])

A
d
d

C
o
n
v2

D
(fi

lt
e
rs

=
7
3
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

A
d
d

A
d
d

C
o
n
v2

D
(fi

lt
e
rs

=
2
8
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

C
o
n
v2

D
(fi

lt
e
rs

=
7
3
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

C
o
n
v2

D
(fi

lt
e
rs

=
7
3
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

C
o
n
v2

D
(fi

lt
e
rs

=
1
8
,
k
e
rn

e
l_

si
ze

=
[1

,
1
])

A
d
d

F
la

tt
e
n

D
e
n
se

(u
n
it

s=
1
0
)

In
p
u
tL

a
ye

r

D
e
n
se

(u
n
it

s=
1
0
6
)

D
e
n
se

(u
n
it

s=
8
9
)

 r
e
lu

In
p
u
tL

a
ye

r

A
d
d

A
d
d

D
e
n
se

(u
n
it

s=
1
0
6
)

D
e
n
se

(u
n
it

s=
8
9
)

 r
e
lu

In
p
u
tL

a
ye

r

D
ro

p
o
u
t(

ra
te

=
0
.4

1
6
8
)

D
e
n
se

(u
n
it

s=
8
8
)

C
o
n
ca

te
n
a
te

 e
lu

D
e
n
se

(u
n
it

s=
8
9
)

In
p
u
tL

a
ye

r

In
p
u
tL

a
ye

r

A
d
d

In
p
u
tL

a
ye

r

D
ro

p
o
u
t(

ra
te

=
0
.4

1
6
8
)

D
e
n
se

(u
n
it

s=
8
8
)

C
o
n
ca

te
n
a
te

 e
lu

D
e
n
se

(u
n
it

s=
8
9
)

In
p
u
tL

a
ye

r

D
ro

p
o
u
t(

ra
te

=
0
.4

1
6
8
)

D
e
n
se

(u
n
it

s=
8
8
)

C
o
n
ca

te
n
a
te

 e
lu

D
e
n
se

(u
n
it

s=
8
9
)

D
e
n
se

(u
n
it

s=
1
0
6
)

D
e
n
se

(u
n
it

s=
8
9
)

 r
e
lu

A
d
d

In
p
u
tL

a
ye

r

D
e
n
se

(u
n
it

s=
1
0
6
)

D
e
n
se

(u
n
it

s=
8
9
)

 r
e
lu

In
p
u
tL

a
ye

r

D
e
n
se

(u
n
it

s=
1
6
8
)

D
e
n
se

(u
n
it

s=
1
6
6
)

 e
lu

D
e
n
se

(u
n
it

s=
8
9
)

 r
e
lu

D
e
n
se

(u
n
it

s=
8
9
)

In
p
u
tL

a
ye

r

D
e
n
se

(u
n
it

s=
1
6
8
)

D
e
n
se

(u
n
it

s=
1
6
6
)

 e
lu

D
e
n
se

(u
n
it

s=
8
9
)

 r
e
lu

In
p
u
tL

a
ye

r

D
e
n
se

(u
n
it

s=
8
9
)

D
e
n
se

(u
n
it

s=
2
)

In
p
u
tL

a
ye

r

S
p
a
ti

a
lD

ro
p
o
u
t1

D
(r

a
te

=
0
.2

9
5
0
)

S
p
a
ti

a
lD

ro
p
o
u
t1

D
(r

a
te

=
0
.3

0
7
0
)

C
o
n
v1

D
(fi

lt
e
rs

=
1
6
5
,
k
e
rn

e
l_

si
ze

=
[1

])

M
a
xP

o
o
li
n
g
1
D

(p
o
o
l_

si
ze

=
[2

])

In
p
u
tL

a
ye

r M
a
xP

o
o
li
n
g
1
D

(p
o
o
l_

si
ze

=
[4

])

G
R

U
(u

n
it

s=
7
1
)

C
o
n
ca

te
n
a
te

L
S

T
M

(u
n
it

s=
7
3
)

C
o
n
ca

te
n
a
te

S
p
a
ti

a
lD

ro
p
o
u
t1

D
(r

a
te

=
0
.1

9
2
8
)

L
S

T
M

(u
n
it

s=
1
0
7
)

C
o
n
v1

D
(fi

lt
e
rs

=
1
6
5
,
k
e
rn

e
l_

si
ze

=
[1

])

M
a
xP

o
o
li
n
g
1
D

(p
o
o
l_

si
ze

=
[2

])

A
d
d

M
a
xP

o
o
li
n
g
1
D

(p
o
o
l_

si
ze

=
[2

])

In
p
u
tL

a
ye

r

G
R

U
(u

n
it

s=
7
1
)

C
o
n
ca

te
n
a
te

L
S

T
M

(u
n
it

s=
7
3
)

C
o
n
ca

te
n
a
te

S
p
a
ti

a
lD

ro
p
o
u
t1

D
(r

a
te

=
0
.1

9
2
8
)

L
S

T
M

(u
n
it

s=
1
0
7
)

C
o
n
v1

D
(fi

lt
e
rs

=
1
6
5
,
k
e
rn

e
l_

si
ze

=
[1

])

M
a
xP

o
o
li
n
g
1
D

(p
o
o
l_

si
ze

=
[2

])

A
d
d

M
a
xP

o
o
li
n
g
1
D

(p
o
o
l_

si
ze

=
[2

])

In
p
u
tL

a
ye

r

S
p
a
ti

a
lD

ro
p
o
u
t1

D
(r

a
te

=
0
.3

8
7
5
)

G
R

U
(u

n
it

s=
8
9
)

C
o
n
ca

te
n
a
te

C
o
n
ca

te
n
a
te

C
o
n
ca

te
n
a
te

S
p
a
ti

a
lD

ro
p
o
u
t1

D
(r

a
te

=
0
.1

4
0
5
)

G
R

U
(u

n
it

s=
1
9
0
)

S
p
a
ti

a
lD

ro
p
o
u
t1

D
(r

a
te

=
0
.1

3
4
3
)

C
o
n
v1

D
(fi

lt
e
rs

=
1
6
5
,
k
e
rn

e
l_

si
ze

=
[1

])

M
a
xP

o
o
li
n
g
1
D

(p
o
o
l_

si
ze

=
[2

])

A
d
d

In
p
u
tL

a
ye

r

M
a
xP

o
o
li
n
g
1
D

(p
o
o
l_

si
ze

=
[4

])

M
a
xP

o
o
li
n
g
1
D

(p
o
o
l_

si
ze

=
[1

6
])

M
a
xP

o
o
li
n
g
1
D

(p
o
o
l_

si
ze

=
[2

])

F
la

tt
e
n

D
e
n
se

(u
n
it

s=
2
)

MNIST PMLB Adult Wikipedia Toxicity(b)

Figure 7: Evaluation of AutoInit with neural architecture search. (a) Performance improvement over generations in the five tasks.
AutoInit outperforms the evolved initialization on four tasks and matches it on one. (b) Representative networks evolved with
AutoInit. Although the networks are distinct, AutoInit initializes them properly, leading to good performance in each case.

evolved, but instead trained with gradient descent. The gener-
ality of CoDeepNEAT helps minimize human design biases
and makes it well-suited to analyzing AutoInit’s performance
in a variety of open-ended machine learning settings.

Tasks Using CoDeepNEAT, networks are evolved for their
performance in vision (MNIST), language (Wikipedia Tox-
icity), tabular (PMLB Adult), multi-task (Omniglot), and
transfer learning (Oxford 102 Flower) tasks (Appendix C).

Results Figure 7a shows how CoDeepNEAT discovers pro-
gressively better networks over time on the five tasks. Evolu-
tion often selects different weight initialization strategies for
the different layers in these networks, so this scheme is al-
ready a flexible and powerful baseline. However, by account-
ing for each model’s unique topology and hyperparameters,
AutoInit outperforms the baseline in four of the five tasks,
and matches it in the fifth.

Beyond performance, three interesting phenomena can be
observed. First, the mean population fitness varies greatly
with the default initialization in each task, sometimes drop-
ping significantly from one generation to the next (Figure
9 in Appendix C). Though some variation is natural in a
stochastic evolutionary process like CoDeepNEAT, AutoInit
makes the discovery process more reliable by stabilizing the
performance of the entire population.

Second, hyperparameters play a large role in the final per-
formance of the dense networks, in particular in the “Ox-
ford 102 Flower” task. While CoDeepNEAT discovers good
models with both initialization strategies, performance is
consistently higher with AutoInit. This finding agrees with
Section 5, where AutoInit was shown to be robust to different
hyperparameter values.

Third, while many networks exhibit motifs popular in exist-
ing architectures, such as alternating convolution and dropout
layers and utilizing residual connections, other phenomena
are less common (Figure 7b). For example, the networks
make use of different activation functions and contain several
unique information processing paths from the input to the
output. Because AutoInit provides effective initialization in
each of these cases, it allows for taking full advantage of un-
usual design choices that might otherwise hurt performance
under default initialization schemes.

The results in this section suggest that AutoInit is an effec-
tive, general-purpose algorithm that provides a more effective
initialization than existing approaches when searching for
new models.

11 Enabling Activation Function Discovery
As new activation functions are developed in the future, it will
be important to adjust weight initialization to maintain stable
signal propagation. Since AutoInit makes this adjustment
automatically, it is well-suited to the task. Indeed, Figure 1
confirmed that AutoInit improves performance with several
existing activation functions. This section presents a more
challenging task. To simulate future research in activation
function design, hundreds of novel activation functions were
generated as arbitrary computation graphs and trained with a
CNN. AutoInit’s ability to initialize each of these networks
was then evaluated. The method for creating such activation
functions is described first, followed by experimental details,
and results on stability, performance, and generality.

Creating Novel Activation Functions An important area
of automated machine learning (AutoML) is to discover
new, better activation functions (Basirat and Roth 2018; Ra-
machandran, Zoph, and Le 2018; Bingham, Macke, and
Miikkulainen 2020; Liu et al. 2020). Among existing ap-
proaches, PANGAEA (Bingham and Miikkulainen 2022)
has the most flexible search space and is therefore used to
generate new functions in this section.

PANGAEA represents activation functions as computation
graphs containing unary and binary operators (Figure 6b).
Creating a novel activation function involves three steps. First,
a minimal computation graph is initialized with randomly
selected unary and binary operators. Second, the functional
form of the activation function is modified by applying three
random mutations to increase diversity. Third, the function is
augmented with up to three learnable parameters. These pa-
rameters are analogous to those in other parametric activation
functions, such as PReLU (He et al. 2015); they are initial-
ized to one and learned during training by gradient descent.
Through this process, it is possible to understand to what
extent AutoInit can improve performance with activation
functions that have yet to be discovered.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CIFAR-10 Validation Accuracy

0

50

100

150
A

c
t
iv

a
t
io

n
F
u
n
c
t
io

n
s Default AutoInit AutoInit++

(a)

0

2

ReLU(arctan(x))

Accuracy: 0.9256

10

5

0
log((x))

Accuracy: 0.9288

0

5

10
ELU(Softplus(x))

Accuracy: 0.9292

0

2

ReLU(tanh(e x 1))

Accuracy: 0.9334

0

5

10
ELU(x)

Accuracy: 0.9350

0

5

10
ELU(x)

Accuracy: 0.9356

A
u

to
In

it

0

5

Swish(x) 0.21

Accuracy: 0.9298

0

5

10
Softplus(x) 0.81

Accuracy: 0.9302

0

5

10
ReLU(x) 0.40

Accuracy: 0.9318

5 0 5

0

5

Swish(x) 0.21

Accuracy: 0.9320

5 0 5

0

5

10
log((x)) 0.81

Accuracy: 0.9350

5 0 5

0

5

10
(ELU(|x|) + x) 0.80

Accuracy: 0.9356

A
u

to
In

it
+

+

(b)

Figure 8: Evaluation of AutoInit with activation function
discovery. (a) Distribution of accuracies achieved with 200
activation functions and different weight initialization strate-
gies. AutoInit and AutoInit++ make training more stable and
allow more high-performing activation functions to be discov-
ered than the default initialization does. (b) High-performing
activation functions. The red line shows the function at ini-
tialization, with α = β = γ = 1. The blue lines show the
shapes the activation function takes during training, created
by sampling α, β, γ from U(0.5, 2.0). AutoInit’s flexibility
should turn out useful for developing new activation func-
tions in the future.

Experimental Setup An important insight in this domain
is that in addition to modifying the variance of the signals
in a network, activation functions can induce mean shifts.
Prior work encouraged stability by reparameterizing the
weights to have zero empirical mean (Huang et al. 2017b;
Qiao et al. 2019; Brock, De, and Smith 2021). An alterna-
tive and more direct approach is to modify the activation
function itself so that it does not cause a mean shift in the
first place. Given an activation function f with Gaussian
mean µf = 1√

2π

∫∞
−∞ f(x)e−x2/2 dx, this goal can be ac-

complished with f̃ := f − µf , which has zero Gaussian
mean. To take advantage of this idea, a version of AutoInit
called AutoInit++ was created for this domain, thus extending
AutoInit slightly beyond weight initialization.

Thus, three initialization strategies were compared. With
the default initialization, weights were sampled from
U
(
−

√
6√

fan in+fan out
,

√
6√

fan in+fan out

)
(Glorot and Ben-

gio 2010). With AutoInit, the weights were sampled from
N
(
0, 1/

√
fan inµf

)
to account for an arbitrary activation

function f ; the dropout adjustment (Section 5) was not used.

Finally, AutoInit++ takes advantage of f̃ as described above,
but is otherwise identical to AutoInit.

For each initialization strategy, 200 activation functions
were created using the PANGAEA process. Each activation
function was used with the All-CNN-C architecture on the
CIFAR-10 dataset following the standard training setup. To
avoid overfitting to the test set when evaluating such a large
number of activation functions, the accuracy with a balanced
validation set of 5000 images is reported instead.

Stability Achieving better-than-chance accuracy is a useful
metric of training stability (Section 6). As shown in Figure
8a, many activation functions result in chance accuracy re-
gardless of how the network is initialized. This phenomenon
is not surprising; since the activation functions are arbitrary
computation graphs, many of them will turn out to be poor.
With the default initialization strategy, 149 activation func-
tions caused training to fail in this way. With AutoInit, the
number of failed activation functions dropped to 130, and
with AutoInit++, it further decreased to 117. AutoInit and
AutoInit++ thus make training more stable, allowing it to
succeed for a greater number of activation functions.

Performance Beyond training stability, a good weight ini-
tialization should also improve performance. As a baseline,
when trained with ReLU and the default initialization, All-
CNN-C achieved 89.10% test accuracy. Twenty-two of 200
activation functions from the PANGAEA search space out-
performed this accuracy with the default initialization. With
AutoInit, this number increased to 26, and with AutoInit++,
to 50—a notable improvement. Thus, with the default initial-
ization, one can naively create a randomly generated compu-
tation graph activation function and have roughly a one in
nine chance of outperforming ReLU, but with AutoInit++,
this probability increases to one in four.

Indeed, the Mann-Whitney U test (Mann and Whitney
1947) concludes that the distribution of accuracies induced
by AutoInit++ is stochastically larger than that from AutoInit
(p < 0.05) or the default initialization (p < 0.01). This result
means that for any level of performance, it is always more
probable to discover an activation function that achieves that
level of performance when initializing with AutoInit++ ver-
sus AutoInit or the default initialization. The result implies
that activation function researchers who properly initialize
their networks are more likely to discover state-of-the-art
activation functions, while staying with the default initializa-
tion may hinder that research effort. More detailed statistical
significance analyses are included in Appendix D.

Generality Figure 8b plots several activation functions
from the PANGAEA search space. Many discovered func-
tions have similar shapes to existing functions. However,
others are nonmonotonic, have discontinuous derivatives, or
saturate to nonzero values. These properties are less common
in existing activation functions. This observation suggests
that AutoInit is a general approach that does not depend on a
specific type of activation function; it may therefore serve as
a useful tool in developing new such functions in the future.

12 Future Work

Experiments in Other Domains The experiments in this
paper demonstrate that AutoInit can improve performance
in a variety of settings, suggesting that it can be applied to
other domains as well. For instance in reinforcement learning,
good estimates of activation statistics are usually not available
due to the online nature of the algorithm. It is not possible
to stabilize training using e.g. batch normalization, but it
may be possible to do it with AutoInit. Similarly, training of
generative adversarial networks (Goodfellow et al. 2014) is
often unstable, and proper initialization may help. Applying
AutoInit to such different domains should not only make
them more reliable, but also lead to a better understanding of
their training dynamics.

Accelerating Model Search In Sections 10 and 11, Au-
toInit was shown to facilitate the discovery of better neu-
ral network designs and activation functions. This ability is
possible because AutoInit is a general method, i.e. not re-
stricted to a single class of models, and it could similarly
augment other meta-learning algorithms (e.g. those reviewed
by Elsken, Metzen, and Hutter 2019; Wistuba, Rawat, and
Pedapati 2019).

However, this finding points to an even more promising
idea. As model search techniques become more prevalent
in real-world applications, it will be most worthwhile to de-
rive general principles rather than specific instantiations of
those principles. For example, past weight initialization strate-
gies improved performance with specific activation functions
through manual derivation of appropriate weight scaling (Sec-
tion 2). In contrast, AutoInit is a general method, leveraging
Gaussian quadrature for any activation function. Similarly,
AutoInit resulted in better initialization than strategies dis-
covered by CoDeepNEAT through evolution (Section 10).
Further, AutoInit++ (Section 11), rather than producing a few
high-performing activation functions, introduces the general
property that activation functions with zero Gaussian mean
(f̃ := f −µf) tend to perform well. This property discovered
a highly diverse set of powerful activation functions in the
PANGAEA search space (Figure 8).

Thus, AutoInit is successful because it is not a single ini-
tialization strategy, but rather a mapping from architectures to
initialization strategies. Such mappings, whether focused on
initialization or some other aspect of model design, deserve
increased attention in the future. They can lead to perfor-
mance gains in a variety of scenarios. They also accelerate
model search by focusing the search space to more promis-
ing regions. If one does not have to worry about discovering
a good initialization, compute power can instead be used
in other areas, like designing architectures and activation
functions. Thus, general tools like AutoInit save time and
resources, and lead to better models as a result.

Further technical extensions to AutoInit are outlined in
Appendix E), including variations on the core AutoInit algo-
rithm, support for new layer types, and integration with deep
learning frameworks.

13 Conclusion
This paper introduced AutoInit, an algorithm that calculates
analytic mean- and variance-preserving weight initialization
for neural networks automatically. In convolutional networks,
the initialization improved performance with different activa-
tion functions, dropout rates, learning rates, and weight decay
settings. In residual networks, AutoInit prevented exploding
signals, allowed training with higher learning rates, and im-
proved performance with or without batch normalization. In
transformers, AutoInit was scaled up to high-resolution im-
age classification, and improved performance with several
activation functions with and without normalization. AutoInit
also improved accuracy on the ImageNet dataset. The ini-
tialization is independent of data and is therefore efficient
and reliable. AutoInit’s generality proved instrumental in
two types of AutoML. In neural architecture search, new
architectures were evaluated more accurately, resulting in
better networks in vision, language, tabular, multi-task, and
transfer learning settings. In activation function discovery,
AutoInit stabilized training and improved accuracy with a
large diversity of novel activation functions. Thus, AutoInit
serves to make machine learning experiments more robust
and reliable, resulting in higher performance, and facilitating
future research in AutoML.

References
Abadi, M.; Barham, P.; Chen, J.; et al. 2016. Tensorflow: A
system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementa-
tion, 265–283.
Apicella, A.; Donnarumma, F.; Isgrò, F.; and Prevete, R. 2021.
A survey on modern trainable activation functions. Neural
Networks.
Arpit, D.; Campos, V.; and Bengio, Y. 2019. How to initialize
your network? robust initialization for weightnorm & resnets.
arXiv:1906.02341.
Ba, J. L.; Kiros, J. R.; and Hinton, G. E. 2016. Layer normal-
ization. arXiv:1607.06450.
Bachlechner, T.; Majumder, B. P.; Mao, H. H.; Cottrell, G. W.;
and McAuley, J. 2020. Rezero is all you need: Fast conver-
gence at large depth. arXiv:2003.04887.
Basirat, M.; and Roth, P. M. 2018. The quest for the golden
activation function. arXiv:1808.00783.
Bingham, G.; Macke, W.; and Miikkulainen, R. 2020. Evolu-
tionary Optimization of Deep Learning Activation Functions.
In Genetic and Evolutionary Computation Conference.
Bingham, G.; and Miikkulainen, R. 2022. Discovering para-
metric activation functions. Neural Networks, 148: 48–65.
Brock, A.; De, S.; and Smith, S. L. 2021. Characterizing
signal propagation to close the performance gap in unnormal-
ized ResNets. arXiv:2101.08692.
Chen, M.; Pennington, J.; and Schoenholz, S. 2018. Dy-
namical isometry and a mean field theory of RNNs: Gating
enables signal propagation in recurrent neural networks. In
International Conference on Machine Learning, 873–882.
PMLR.

Chung, J.; Gulcehre, C.; Cho, K.; and Bengio, Y. 2014. Em-
pirical evaluation of gated recurrent neural networks on se-
quence modeling. In NIPS 2014 Workshop on Deep Learning,
December 2014.
Clevert, D.-A.; Unterthiner, T.; and Hochreiter, S. 2015. Fast
and Accurate Deep Network Learning by Exponential Linear
Units (ELUs). CoRR, abs/1511.07289.
Courbariaux, M.; Bengio, Y.; and David, J.-P. 2015. Bi-
naryconnect: Training deep neural networks with binary
weights during propagations. In Neural information pro-
cessing systems, 3123–3131.
Cubuk, E. D.; Zoph, B.; Shlens, J.; and Le, Q. V. 2020. Ran-
daugment: Practical automated data augmentation with a
reduced search space. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition work-
shops, 702–703.
Dai, Z.; Liu, H.; Le, Q. V.; and Tan, M. 2021. Coatnet: Mar-
rying convolution and attention for all data sizes. Advances
in Neural Information Processing Systems, 34: 3965–3977.
Dauphin, Y. N.; and Schoenholz, S. 2019. MetaInit: Initial-
izing learning by learning to initialize. Advances in Neural
Information Processing Systems, 32.
De, S.; and Smith, S. 2020. Batch normalization biases resid-
ual blocks towards the identity function in deep networks.
Neural Information Processing Systems, 33.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Li, F.-F.
2009. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, 248–255. Ieee.
Elfwing, S.; Uchibe, E.; and Doya, K. 2018. Sigmoid-
weighted linear units for neural network function approx-
imation in reinforcement learning. Neural Networks, 107:
3–11.
Elsken, T.; Metzen, J. H.; and Hutter, F. 2019. Neural Ar-
chitecture Search: A Survey. Journal of Machine Learning
Research, 20(55): 1–21.
Epps, T.; and Singleton, K. J. 1986. An omnibus test for
the two-sample problem using the empirical characteristic
function. Journal of Statistical Computation and Simulation,
26(3-4): 177–203.
Gilboa, D.; Chang, B.; Chen, M.; Yang, G.; Schoenholz, S. S.;
Chi, H.; and Pennington, J. 2019. The Dynamics of Signal
Propagation in Gated Recurrent Neural Networks.
Glorot, X.; and Bengio, Y. 2010. Understanding the difficulty
of training deep feedforward neural networks. In 13th inter-
national conference on artificial intelligence and statistics,
249–256.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-
Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014.
Generative adversarial nets. Neural information processing
systems, 27.
Hanin, B. 2018. Which neural net architectures give rise to
exploding and vanishing gradients? In 32nd International
Conference on Neural Information Processing Systems, 580–
589.

Hanin, B.; and Rolnick, D. 2018. How to start training: The
effect of initialization and architecture. arXiv:1803.01719.
Harris, C. R.; Millman, K. J.; van der Walt, S. J.; et al. 2020.
Array programming with NumPy. Nature, 585(7825): 357–
362.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving deep
into rectifiers: Surpassing human-level performance on im-
agenet classification. In IEEE international conference on
computer vision, 1026–1034.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016a. Deep resid-
ual learning for image recognition. In IEEE conference on
computer vision and pattern recognition, 770–778.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016b. Identity
mappings in deep residual networks. In European conference
on computer vision, 630–645. Springer.
Hendrycks, D.; and Gimpel, K. 2016a. Adjusting for dropout
variance in batch normalization and weight initialization.
arXiv:1607.02488.
Hendrycks, D.; and Gimpel, K. 2016b. Gaussian error linear
units (gelus). arXiv:1606.08415.
Hochreiter, S. 1991. Untersuchungen zu dynamischen neu-
ronalen Netzen. Diploma, Technische Universität München,
91(1).
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation, 9(8): 1735–1780.
Howard, J. 2019. Imagenette. https://github.com/fastai/
imagenette. Accessed: 2022-07-27.
Hu, W.; Xiao, L.; and Pennington, J. 2020. Provable benefit of
orthogonal initialization in optimizing deep linear networks.
arXiv:2001.05992.
Huang, G.; Liu, Z.; Van Der Maaten, L.; and Weinberger,
K. Q. 2017a. Densely connected convolutional networks. In
IEEE conference on computer vision and pattern recognition,
4700–4708.
Huang, L.; Liu, X.; Liu, Y.; Lang, B.; and Tao, D. 2017b.
Centered weight normalization in accelerating training of
deep neural networks. In IEEE International Conference on
Computer Vision, 2803–2811.
Ioffe, S.; and Szegedy, C. 2015. Batch Normalization: Accel-
erating Deep Network Training by Reducing Internal Covari-
ate Shift. In International Conference on Machine Learning,
448–456.
Jastrzebski, S.; Kenton, Z.; Arpit, D.; Ballas, N.; Fischer, A.;
Bengio, Y.; and Storkey, A. 2017. Three factors influencing
minima in sgd. arXiv:1711.04623.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for stochas-
tic optimization. arXiv:1412.6980.
Kingma, D. P.; and Dhariwal, P. 2018. Glow: Generative
flow with invertible 1x1 convolutions. Advances in neural
information processing systems, 31.
Klambauer, G.; Unterthiner, T.; Mayr, A.; and Hochreiter, S.
2017. Self-normalizing neural networks. In Neural informa-
tion processing systems, 971–980.
Kohavi, R. 1996. Scaling up the accuracy of naive-bayes
classifiers: A decision-tree hybrid. In Kdd, volume 96, 202–
207.

Krähenbühl, P.; Doersch, C.; Donahue, J.; and Darrell, T.
2015. Data-dependent initializations of convolutional neural
networks. arXiv:1511.06856.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images. Technical report, Univer-
sity of Toronto.
Lake, B. M.; Salakhutdinov, R.; and Tenenbaum, J. B. 2015.
Human-level concept learning through probabilistic program
induction. Science, 350(6266): 1332–1338.
LeCun, Y.; Cortes, C.; and Burges, C. 2010. MNIST
handwritten digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2.
LeCun, Y. A.; Bottou, L.; Orr, G. B.; and Müller, K.-R. 2012.
Efficient backprop. In Neural networks: Tricks of the trade,
9–48. Springer.
Liang, J.; Meyerson, E.; Hodjat, B.; Fink, D.; Mutch, K.;
and Miikkulainen, R. 2019. Evolutionary neural automl for
deep learning. In Genetic and Evolutionary Computation
Conference, 401–409.
Liu, H.; Brock, A.; Simonyan, K.; and Le, Q. V. 2020. Evolv-
ing Normalization-Activation Layers. arXiv:2004.02967.
Loshchilov, I.; and Hutter, F. 2016. Sgdr: Stochastic gradient
descent with warm restarts. arXiv:1608.03983.
Loshchilov, I.; and Hutter, F. 2017. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101.
Maas, A. L.; Hannun, A. Y.; and Ng, A. Y. 2013. Rectifier
nonlinearities improve neural network acoustic models. In
30th international conference on machine learning (ICML-
13), 3.
Mann, H. B.; and Whitney, D. R. 1947. On a test of whether
one of two random variables is stochastically larger than the
other. The annals of mathematical statistics, 50–60.
Massey Jr, F. J. 1951. The Kolmogorov-Smirnov test for
goodness of fit. Journal of the American statistical Associa-
tion, 46(253): 68–78.
Miikkulainen, R.; Liang, J.; Meyerson, E.; Rawal, A.; Fink,
D.; Francon, O.; Raju, B.; Shahrzad, H.; Navruzyan, A.;
Duffy, N.; et al. 2019. Evolving deep neural networks. In
Artificial intelligence in the age of neural networks and brain
computing, 293–312. Elsevier.
Mishkin, D.; and Matas, J. 2015. All you need is a good init.
arXiv:1511.06422.
Moriarty, D. E.; and Miikkulainen, R. 1997. Forming neural
networks through efficient and adaptive coevolution. Evolu-
tionary computation, 5(4): 373–399.
Mutch, K. 2017–2021. Studio Go Runner. https://hub.docker.
com/repository/docker/leafai/studio-go-runner.
Nair, V.; and Hinton, G. E. 2010. Rectified linear units im-
prove restricted boltzmann machines. In 27th international
conference on machine learning (ICML-10), 807–814.
Nilsback, M.-E.; and Zisserman, A. 2008. Automated Flower
Classification over a Large Number of Classes. In The In-
dian Conference on Computer Vision, Graphics and Image
Processing.

Nwankpa, C.; Ijomah, W.; Gachagan, A.; and Marshall, S.
2018. Activation functions: Comparison of trends in practice
and research for deep learning. arXiv:1811.03378.
Olson, R. S.; La Cava, W.; Orzechowski, P.; Urbanowicz,
R. J.; and Moore, J. H. 2017. PMLB: a large benchmark suite
for machine learning evaluation and comparison. BioData
Mining, 10(1): 36.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. Neural information processing systems,
32: 8026–8037.
Pennington, J.; Schoenholz, S. S.; and Ganguli, S. 2017. Res-
urrecting the sigmoid in deep learning through dynamical
isometry: theory and practice. In 31st International Confer-
ence on Neural Information Processing Systems, 4788–4798.
Pennington, J.; and Worah, P. 2018. The Spectrum of the
Fisher Information Matrix of a Single-Hidden-Layer Neural
Network. In NeurIPS, 5415–5424.
Pennington, J.; and Worah, P. 2019. Nonlinear random matrix
theory for deep learning. Journal of Statistical Mechanics:
Theory and Experiment, 2019(12): 124005.
Piessens, R.; de Doncker-Kapenga, E.; Überhuber, C. W.; and
Kahaner, D. K. 2012. QUADPACK: A subroutine package
for automatic integration, volume 1. Springer Science &
Business Media.
Potter, M. A.; and Jong, K. A. D. 2000. Cooperative coevolu-
tion: An architecture for evolving coadapted subcomponents.
Evolutionary computation, 8(1): 1–29.
Qiao, S.; Wang, H.; Liu, C.; Shen, W.; and Yuille, A. 2019.
Micro-batch training with batch-channel normalization and
weight standardization. arXiv:1903.10520.
Radosavovic, I.; Johnson, J.; Xie, S.; Lo, W.-Y.; and Dollár,
P. 2019. On network design spaces for visual recognition.
In IEEE/CVF International Conference on Computer Vision,
1882–1890.
Ramachandran, P.; Zoph, B.; and Le, Q. V. 2018. Searching
for Activation Functions. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Workshop Track Proceed-
ings.
Salimans, T.; and Kingma, D. P. 2016. Weight normalization:
A simple reparameterization to accelerate training of deep
neural networks. Neural information processing systems, 29:
901–909.
Saxe, A. M.; McClelland, J. L.; and Ganguli, S. 2013. Exact
solutions to the nonlinear dynamics of learning in deep linear
neural networks. arXiv:1312.6120.
Smith, L. N.; and Topin, N. 2019. Super-convergence: Very
fast training of neural networks using large learning rates. In
Artificial intelligence and machine learning for multi-domain
operations applications, volume 11006, 1100612. Interna-
tional Society for Optics and Photonics.
Smith, S. L.; Kindermans, P.-J.; Ying, C.; and Le, Q. V. 2018.
Don’t Decay the Learning Rate, Increase the Batch Size. In
International Conference on Learning Representations.

Smith, S. L.; and Le, Q. V. 2018. A Bayesian Perspective on
Generalization and Stochastic Gradient Descent. In Interna-
tional Conference on Learning Representations.
Springenberg, J.; Dosovitskiy, A.; Brox, T.; and Riedmiller,
M. 2015. Striving for Simplicity: The All Convolutional Net.
In ICLR (workshop track).
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: a simple way to prevent
neural networks from overfitting. Journal of machine learn-
ing research, 15(1): 1929–1958.
Stanley, K. O.; and Miikkulainen, R. 2002. Evolving neu-
ral networks through augmenting topologies. Evolutionary
computation, 10(2): 99–127.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich,
A. 2015. Going deeper with convolutions. In Proceedings of
the IEEE conference on computer vision and pattern recogni-
tion, 1–9.
Taki, M. 2017. Deep residual networks and weight initializa-
tion. arXiv:1709.02956.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention
is all you need. In Neural information processing systems,
5998–6008.
Virtanen, P.; Gommers, R.; Oliphant, T. E.; et al. 2020. SciPy
1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17: 261–272.
Wightman, R.; Touvron, H.; and Jégou, H. 2021. Resnet
strikes back: An improved training procedure in timm. arXiv
preprint arXiv:2110.00476.
Wistuba, M.; Rawat, A.; and Pedapati, T. 2019. A Survey on
Neural Architecture Search. arXiv:1905.01392.
Wu, Y.; and He, K. 2018. Group normalization. In Proceed-
ings of the European conference on computer vision (ECCV),
3–19.
Wulczyn, E.; Thain, N.; and Dixon, L. 2017. Ex machina: Per-
sonal attacks seen at scale. In 26th international conference
on world wide web, 1391–1399.
Xiao, L.; Bahri, Y.; Sohl-Dickstein, J.; Schoenholz, S.; and
Pennington, J. 2018. Dynamical isometry and a mean field
theory of cnns: How to train 10,000-layer vanilla convo-
lutional neural networks. In International Conference on
Machine Learning, 5393–5402. PMLR.
Xie, C.; Tan, M.; Gong, B.; Yuille, A.; and Le, Q. V. 2020.
Smooth adversarial training. arXiv:2006.14536.
Yun, S.; Han, D.; Oh, S. J.; Chun, S.; Choe, J.; and Yoo,
Y. 2019. Cutmix: Regularization strategy to train strong
classifiers with localizable features. In Proceedings of the
IEEE/CVF international conference on computer vision,
6023–6032.
Zagoruyko, S.; and Komodakis, N. 2016. Wide residual
networks. arXiv:1605.07146.
Zhang, H.; Cisse, M.; Dauphin, Y. N.; and Lopez-Paz, D.
2017. mixup: Beyond empirical risk minimization. arXiv
preprint arXiv:1710.09412.

Zhang, H.; Dauphin, Y. N.; and Ma, T. 2019. Fixup
initialization: Residual learning without normalization.
arXiv:1901.09321.
Zhokhov, P.; Denissov, A.; and Mutch, K. 2017–2021. Studio.
https://studio.ml.
Zhu, C.; Ni, R.; Xu, Z.; Kong, K.; Huang, W. R.; and Gold-
stein, T. 2021. GradInit: Learning to initialize neural net-
works for stable and efficient training. Advances in Neural
Information Processing Systems, 34: 16410–16422.

A Mean and Variance Estimation for
Different Layer Types

In the AutoInit framework of Algorithm 1, the mean and
variance mapping function g needs to be defined for each type
of layer in a given neural network. This appendix presents
derivations for a majority of the most commonly used layers
available in the TensorFlow package (Abadi et al. 2016) at
time of writing. Extending AutoInit to support new layers in
the future will require deriving the function g for those layers.
Monte Carlo sampling can also be used as an approximation
for g before it is manually derived.

In the following paragraphs, x denotes the input to a
layer, and y is the output. The incoming and outgoing
means and variances are denoted as µin := E(x), µout :=
E(y), νin := Var(x), and νout := Var(y). The notation
Conv{1D,2D,3D} is used to refer to Conv1D, Conv2D,
and Conv3D, and analogously for other layer types. Inputs
to each layer are assumed to be independent and normally
distributed. Although these assumptions may not always hold
exactly, experiments show that AutoInit models signal propa-
gation across different types of networks well in practice.

Convolution and Dense Layers The analysis in
the next paragraph applies to Conv{1D,2D,3D},
DepthwiseConv{1D,2D}, and Dense layers, since
convolution layers are dense layers with sparse connectivity.
Notation and derivation are inspired by that of Glorot and
Bengio (2010) and He et al. (2015).

A feedforward layer can be written as y = Wx+ b, where
x is the input, W is a fan out × fan in weight matrix,
b is a vector of biases, and y is the result. Assume the ele-
ments of W are mutually independent and from the same
distribution, and likewise for the elements of x. Further as-
sume that W and x are independent of each other. The out-
going mean can then be written as µout = E(W)µin. For
the outgoing variance, letting W have zero mean and ex-
panding the product of independent random variables yields
νout = fan inVar(W)(νin + µ2

in). Sampling the weights
W according to

W ∼ N

(
0,

1√
fan in(νin + µ2

in)

)
(6)

or

W ∼ U

(
−

√
3√

fan in(νin + µ2
in)

,

√
3√

fan in(νin + µ2
in)

)
(7)

is sufficient to ensure that

µout = 0 and νout = 1. (8)

Activation Functions The analysis in the next
paragraph accounts for all activation functions in
TensorFlow, including elu, exponential, gelu,
hard sigmoid, LeakyReLU, linear, PReLU, ReLU,
selu, sigmoid, softplus, softsign, swish,
tanh, and ThresholdedReLU (by Clevert, Unterthiner,
and Hochreiter 2015; Hendrycks and Gimpel 2016b; Maas,
Hannun, and Ng 2013; He et al. 2015; Nair and Hinton 2010;

Klambauer et al. 2017; Ramachandran, Zoph, and Le 2018;
Elfwing, Uchibe, and Doya 2018; Courbariaux, Bengio,
and David 2015, respectively), and in fact extends to any
integrable Activation function f .

Let pN (x;µ, σ) denote the probability density function of
a Gaussian distribution with mean µ and standard deviation
σ. By the law of the unconscious statistician,

µout =

∫ ∞

−∞
f(x)pN (x;µin,

√
νin) dx, (9)

νout =

∫ ∞

−∞
f(x)2pN (x;µin,

√
νin) dx− µ2

out. (10)

These integrals are computed for an arbitrary activation func-
tion f with adaptive quadrature, a well-established numerical
integration approach that approximates integrals using adap-
tively refined subintervals (Piessens et al. 2012; Virtanen et al.
2020; Harris et al. 2020).

Dropout Layers Dropout layers randomly set rate per-
centage of their inputs to zero (Srivastava et al. 2014). There-
fore,

µout = µin(1− rate) and νout = νin(1− rate). (11)

However, this analysis only applies to
SpatialDropout{1D,2D,3D} layers. For regular
Dropout layers, TensorFlow automatically scales the
values by 1/(1−rate) to avoid a mean shift towards zero.1
Adjusting for this change gives

µout = µin and νout = νin/(1− rate). (12)

Pooling Layers The same approach applies
to all commonly used pooling layers, including
AveragePooling{1D,2D,3D}, MaxPooling{1D,
2D,3D}, GlobalAveragePooling{1D,2D,3D}, and
GlobalMaxPooling{1D,2D,3D}.

Let op(·) be the average operation for an average pooling
layer, and the maximum operation for a max pooling layer.
Define K to be the pool size of the layer. For standard 1D,
2D, and 3D pooling layers, K would equal k, k × k, and
k × k × k, respectively. The global pooling layers can be
seen as special cases of the standard pooling layers where the
pool size is the same size as the input tensor, except along
the batch and channel dimensions. Analytically, the outgoing
mean and variance can be expressed as

µout =

∫
· · ·
∫
RK

op(x1, x2, . . . , xK) ·

K∏
i=1

pN (xi;µin,
√
νin) dx1 dx2 · · · dxK ,

(13)

νout =

∫
· · ·
∫
RK

op(x1, x2, . . . , xK)2 ·

K∏
i=1

pN (xi;µin,
√
νin) dx1 dx2 · · · dxK − µ2

out,

(14)

1https://github.com/tensorflow/tensorflow/blob/v2.5.0/
tensorflow/python/keras/layers/core.py\#L149-L150

where the xi represent tensor entries within a pooling win-
dow. Unfortunately, even a modest 3 × 3 pooling layer re-
quires computing nine nested integrals, which is prohibitively
expensive. In this case, a Monte Carlo simulation is ap-
propriate. Sample x1j , x2j , . . . xKj

from N (µin,
√
νin) for

j = 1, . . . , S and return

µout =
1

S

S∑
j=1

op(x1j , x2j , . . . , xKj), (15)

νout =
1

S

S∑
j=1

op(x1j , x2j , . . . , xKj)
2 − µout. (16)

Normalization Layers BatchNormalization,
LayerNormalization, and GroupNormalization
normalize the input to have mean zero and variance one
(Ioffe and Szegedy 2015; Ba, Kiros, and Hinton 2016; Wu
and He 2018). Thus,

µout = 0 and νout = 1. (17)

Arithmetic Operators Assume the input tensors
x1, x2, . . . , xN with means µin1 , µin2 , . . . , µinN

and vari-
ances νin1 , νin2 , . . . , νinN

are independent. The following
mean and variance mapping functions are derived. For an
Add layer,

µout =

N∑
i=1

µini and νout =

N∑
i=1

νini . (18)

For an Average layer,

µout =
1

N

N∑
i=1

µini and νout =
1

N2

N∑
i=1

νini . (19)

For a Subtract layer,

µout = µin1
− µin2

and νout = νin1
+ νin2

. (20)

Finally, for a Multiply layer,

µout =

N∏
i=1

µini and νout =

N∏
i=1

(νini + µ2
ini

)−
N∏
i=1

µ2
ini

.

(21)

Concatenation Layers Assume the inputs x1, x2, . . . , xN

with means µin1 , µin2 , . . . , µinN
and variances

νin1 , νin2 , . . . , νinN
are independent, and let input xi

have Ci elements. Then for a Concatenate layer,

µout =
1∑
Ci

N∑
i=1

Ciµini , (22)

νout =
1∑
Ci

N∑
i=1

Ci(νini + µ2
ini

)− µ2
out. (23)

Recurrent Layers A Monte Carlo simulation can be used
to estimate the outgoing mean and variance for recurrent
layers, including GRU, LSTM, and SimpleRNN (Hochreiter
and Schmidhuber 1997; Chung et al. 2014). Recurrent layers

often make use of activation functions like sigmoid and tanh
that constrain the scale of the hidden states. Because of this
practice, recurrent layers should be initialized with a default
scheme or according to recent research in recurrent initial-
ization (Chen, Pennington, and Schoenholz 2018; Gilboa
et al. 2019). AutoInit will then estimate the outgoing mean
and variance in order to inform appropriate weight scaling
elsewhere in the network.

Padding Layers ZeroPadding{1D,2D,3D} layers
augment the borders of the input tensor with zeros, increas-
ing its size. Let z be the proportion of elements in the ten-
sor that are padded zeros. Then z = (padded size −
original size)/padded size, and

µout = µin(1− z) and νout = νin(1− z). (24)

Shape Adjustment Layers Many layers alter the size
or shape of the input tensor but do not change the dis-
tribution of the data. These layers include Flatten,
Permute, Reshape, UpSampling{1D,2D,3D}, and
Cropping{1D,2D,3D} layers. The same is true of
TensorFlow API calls tf.reshape, tf.split, and
tf.transpose. For these layers,

µout = µin and νout = νin. (25)

Input Layers An InputLayer simply exposes the
model to the data, therefore

µout = µdata and νout = νdata. (26)

TensorFlow allows nesting models within other models. In
this use case where the InputLayer does not directly con-
nect to the training data,

µout = µin and νout = νin. (27)

Matrix Multiplication A call to tf.matmul takes input
tensors x1 and x2 of shape · · · ×m× n and · · · × n× p and
produces the output tensor xout of shape · · · ×m× p with
entries

xout··· ,i,j =

n∑
k=1

x1··· ,i,kx2··· ,k,j
. (28)

Assuming independent matrix entries, the output statistics
can then be calculated as

µout = nµin1
µin2

, (29)

νout = n
(
(νin1 + µ2

in1
)(νin2 + µ2

in2
)− µ2

in1
µ2
in2

)
. (30)

Reduction Operators A call to tf.reduce mean re-
duces the size of the input tensor by averaging values along
one or more axes. For example, averaging an input tensor of
shape 128× 8× 8× 256 along axes 1 and 2 would produce
an output tensor of shape 128×1×1×256. Let D represent
the product of the length of the axes being averaged over (in
the example above, 8× 8 = 64). The output tensor has

µout = µin and νout = νin/D. (31)

The function tf.reduce sum performs similarly, sum-
ming entries instead of averaging them. In this case,

µout = Dµin and νout = Dνin. (32)

Maintaining Variance ̸= 1. In Algorithm 1, AutoInit ini-
tializes weights so that the output signal at each layer has
mean zero and variance one. Although signal variance ν = 1
is sufficient for stable signal propagation, it is not a neces-
sary condition. Indeed, other values for the signal variance
ν could be utilized, as long as ν remains consistent through-
out the network. If a different ν is desired, weights can be
initialized according to Equation 6 or 7 and then multiplied
by

√
ν. For instance, such a modification was done for the

CoAtNet model in Section 7, resulting in slightly improved
final performance.

B Convolutional, Residual, and Transformer
Network Experiment Details

This appendix contains implementation details for the experi-
ments in Sections 5-9.

All-CNN-C The training setup follows that of Springen-
berg et al. (2015) as closely as possible. The network is
trained with SGD and momentum 0.9. The dropout rate is 0.5
and weight decay as L2 regularization is 0.001. The data aug-
mentation involves featurewise centering and normalizing,
random horizontal flips, and random 32×32 crops of images
padded with five pixels on all sides. The initial learning rate
is 0.01 and is decreased by a factor of 0.1 after epochs 200,
250, and 300 until training ends at epoch 350.

Because Springenberg et al. (2015) did not specify how
they initialized their weights, the networks are initialized with
the “Glorot Uniform” strategy (also called Xavier initializa-
tion; Glorot and Bengio 2010), where weights are sampled
from U

(
−

√
6√

fan in+fan out
,

√
6√

fan in+fan out

)
. This initial-

ization is the default setting in TensorFlow,2 and is sufficient
to replicate the results reported by Springenberg et al. (2015).

Residual Networks The networks are optimized with SGD
and momentum 0.9. Dropout is not used, and weight decay
is 0.0001. Data augmentation includes a random horizontal
flip and random 32× 32 crops of images padded with four
pixels on all sides.

CoAtNet A smaller variant of the CoAtNet architecture3

was used in order to fit the model and data on the avail-
able GPU memory. The architecture has three convolutional
blocks with 64 channels, four convolutional blocks with 128
channels, six transformer blocks with 256 channels, and three
transformer blocks with 512 channels. This architecture is
slightly deeper but thinner than the original CoAtNet-0 ar-
chitecture, which has two convolutional blocks with 96 chan-
nels, three convolutional blocks with 192 channels, five trans-
former blocks with 384 channels, and two transformer blocks
with 768 channels (Dai et al. 2021). The models are otherwise
identical.

The training hyperparameters were inspired by Wightman,
Touvron, and Jégou (2021) and are common in the literature.

2https://github.com/tensorflow/tensorflow/blob/v2.5.0/
tensorflow/python/keras/layers/convolutional.py\#L608-L609

3https://github.com/leondgarse/keras cv attention models/
blob/v1.3.0/keras cv attention models/coatnet/coatnet.py#L199

Specifically, images were resized to 160× 160. The learning
rate schedule was increased linearly from 1e−4 to 4e−4 for
six epochs and it then followed a cosine decay until epoch
105. Weight decay was set to 0.02 times the current learning
rate at each epoch. The model was trained with batch size
256 and optimized with AdamW (Loshchilov and Hutter
2017). Data augmentation included RandAugment applied
twice with a magnitude of six (Cubuk et al. 2020). Mixup and
Cutmix were also used with alpha 0.1 and 1.0, respectively
(Zhang et al. 2017; Yun et al. 2019). The training images
were augmented with random resized crops (Szegedy et al.
2015) that were at minimum 8% of the original image; after
training the model was evaluated on 95% center crops.

As discussed in Appendix A, AutoInit maintains signal
variance ν = 1, but it is also possible to adjust ν if desired.
In the CoAtNet experiments, ν = 0.01 was found to give
the best performance among ν = {1, 0.1, 0.01, 0.001}. The
experiment removing normalization layers used the default
of ν = 1.

ImageNet The experiment in Section 8 used the same train-
ing setup as the experiments with CoAtNet on Imagenette
in the previous paragraph except for two changes. The batch
size was 2,048 (512 per GPU across four GPUs), and the
maximum learning rate was 3.2e−2.

Data-Dependent Initialization Comparison In the exper-
iments in Section 9, a learning rate schedule inspired by
superconvergence (Smith and Topin 2019) was used to save
time. The learning rate increases linearly to 0.1 during the
first five epochs, and then decreases linearly for 20 epochs,
after which training ends. The weight decay for All-CNN-C
was also decreased by a factor of 10. This modification is
common when networks are trained with superconvergence
(Smith and Topin 2019).

Initialization Time It is important to note that AutoInit
does not incur a significant overhead. Each layer must be vis-
ited once to be initialized, so the complexity is O(L) where
L is the number of layers. For example: All-CNN-C, ResNet-
56, and ResNet-164 take 1, 33, and 106 seconds to initialize.
The costs are hardware-dependent, but only spent once, and
are small compared to the cost of training.

C Neural Architecture Search Experiment
Details

This appendix contains implementation details for the experi-
ments in Section 10. The progress of CoDeepNEAT in these
experiments was shown in Figure 7 in the main text. Figure
9 shows this same data but in greater detail. Table 3 contains
the training hyperparameters, neural network layers, evolu-
tionary hyperparameters, and mutation probabilities used in
each of the five tasks. The five tasks used with CoDeepNEAT
are:

Vision The MNIST dataset contains 28x28 grayscale im-
ages of handwritten digits 0-9. There are 60,000 training
images (5,000 of which were used for validation) and 10,000
test images (LeCun, Cortes, and Burges 2010). MNIST is

MNIST Omniglot PMLB Adult Wikipedia Toxicity Oxford 102 Flower
Training Hyperparameters
Activation All domains: {ReLU, Linear, ELU, SELU}
Batch Size 128 1000 iterations 32 128 8
Dropout Rate [0.0, 0.7] [0.0, 0.7] [0.0, 0.9] [0.0, 0.5] [0.0, 0.9]
Epochs 5 3 25 3 30
Filters/Units [16, 96] [16, 96] [64, 192] [64, 192] [64, 192]
Kernel Reg. L2: [10−9, 10−3] L2: [10−9, 10−3] {L1, L2}: [10−9, 10−3] {L1, L2}: [10−9, 10−3] {L1, L2}: [10−7, 10−3]
Kernel Size {1, 3} {1, 3} N/A {1, 3, 5, 7} N/A
Learning Rate [10−4, 10−2] [10−4, 10−3] [10−4, 10−2] [10−4, 10−2] [10−4, 10−1]
Optimizer Adam Adam Adam Adam SGD (Nesterov=0.9)
Weight Init. All domains: {Glorot Normal, Glorot Uniform, He Normal, He Uniform} or AutoInit
Neural Network Layers
Add ✓ ✓ ✓
Concatenate ✓ ✓
Conv1D ✓
Conv2D ✓ ✓
Dense ✓ ✓
Dropout ✓ ✓ ✓ ✓
GRU ✓
LSTM ✓
MaxPooling1D ✓
MaxPooling2D ✓ ✓
SpatialDropout1D ✓
WeightedSum ✓

Evolutionary Hyperparameters
Elitism (B) 0.4 0.4 0.4 0.2 0.1
Elitism (M) 0.4 0.4 0.4 0.2 0.4
Evaluations (B) 4 4 4 4 1
Generations 30 40 30 30 30
Population Size (B) 22 22 22 22 20
Population Size (M) 56 56 56 56 20
Preserved Networks 12 12 12 12 1
Species (B) 1 1 1 1 1
Species (M) 4 4 4 4 2

Mutation Probabilities
Change Hyperparam. 0.25 0.25 0.25 0.5 0.5
New Connection (B) 0.12 0.12 0.12 0.2 0.12
New Connection (M) 0.08 0.08 0.08 0.2 0.08
New Layer (M) 0.08 0.08 0.08 0.2 0.08
New Node (B) 0.16 0.16 0.16 0.2 0.16

Table 3: Configuration of neural architecture search experiments in the five tasks. Entries with a (B) or (M) suffix apply to
CoDeepNEAT blueprints or modules, respectively. These values were found to work well in preliminary experiments. When
AutoInit is applied to an evolved network, it replaces the weight initialization method selected by evolution, but the setup
otherwise remains unchanged. The neural architecture search experiments were designed to show that AutoInit improves
performance in a wide variety of settings, including those with different data modalities, network topologies, computational
complexities, and hyperparameter configurations.

0 10 20 30

Generation

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F
it

n
es

s

MNIST — Evolved Init: 0.9912; AutoInit: 0.9922

Evolved Init (Best so far)

Evolved Init (Best)

Evolved Init (Average)

AutoInit (Best so far)

AutoInit (Best)

AutoInit (Average)

0 10 20 30
0.98

0.99

(Zoomed)

0 10 20 30 40

Generation

0.3

0.4

0.5

0.6

0.7

0.8

F
it

n
es

s

Omniglot — Evolved Init: 0.6991; AutoInit: 0.7785

Evolved Init (Best so far)

Evolved Init (Best)

Evolved Init (Average)

AutoInit (Best so far)

AutoInit (Best)

AutoInit (Average)

0 10 20 30 40

0.6

0.8
(Zoomed)

0 10 20 30

Generation

0.82

0.83

0.84

0.85

0.86

F
it

n
es

s

PMLB Adult — Evolved Init: 0.8578; AutoInit: 0.8578

Evolved Init (Best so far)

Evolved Init (Best)

Evolved Init (Average)

AutoInit (Best so far)

AutoInit (Best)

AutoInit (Average)

0 10 20 30

0.855

0.860

(Zoomed)

0 10 20 30

Generation

0.91

0.92

0.93

0.94

0.95

0.96

F
it

n
es

s

Wikipedia Toxicity — Evolved Init: 0.9623; AutoInit: 0.9644

Evolved Init (Best so far)

Evolved Init (Best)

Evolved Init (Average)

AutoInit (Best so far)

AutoInit (Best)

AutoInit (Average)

0 10 20 30

0.960

0.965

(Zoomed)

0 10 20 30

Generation

0.65

0.70

0.75

0.80

0.85

0.90

0.95

F
it

n
es

s

Oxford 102 Flower — Evolved Init: 0.9400; AutoInit: 0.9459

Evolved Init (Best so far)

Evolved Init (Best)

Evolved Init (Average)

AutoInit (Best so far)

AutoInit (Best)

AutoInit (Average)

0 10 20 30

0.935

0.940

0.945

(Zoomed)

Figure 9: Progress of neural architecture search in the five
tasks. The data is the same as that in Figure 7, but this plot
also shows how AutoInit can stabilize mean population per-
formance, leading to more reliable discovery of powerful
models.

used under the Creative Commons Attribution-Share Alike
3.0 license.

Language In the Wikipedia Toxicity dataset, the task is
to classify English Wikipedia comments as toxic or healthy
contributions (Wulczyn, Thain, and Dixon 2017). The dataset
contains 92,835, 31,227, and 30,953 comments in the training,
validation, and test sets, respectively.

Tabular In the Adult dataset (Kohavi 1996) from the Penn
Machine Learning Benchmarks repository (PMLB; Olson
et al. 2017)) the task is to predict whether an individual makes
over $50K per year based on 14 features. Out of 48,842 total
instances, 20% are randomly separated to create a test set.
The dataset is used under the MIT License.

Multi-Task The Omniglot dataset contains handwritten
characters in 50 different alphabets (Lake, Salakhutdinov, and
Tenenbaum 2015); classifying characters in each alphabet is
a natural multi-task problem. The characters are 105× 105
grayscale images, and there are 20 instances of each charac-
ter. To save compute resources, 20 of the 50 alphabets were
randomly selected for experiments. A fixed training, valida-
tion, and testing split of 50%, 20%, and 30% was used with
each task. The learning rate decays as learning rate =
0.1epoch/10 ∗ initial learning rate during training.
The dataset is used under the MIT License.

Transfer Learning A DenseNet-121 network is first pre-
trained on the ImageNet dataset (Deng et al. 2009; Huang
et al. 2017a). Models are then evolved to utilize its embed-
dings to classify images in the Oxford 102 Flower dataset,
consisting of 102 types of flowers found in the United King-
dom (Nilsback and Zisserman 2008). Each class has between
40 and 258 images; the training and validation sets have 10
images per class, and the test set contains the remaining im-
ages from the dataset. During training, the weight decay (L2
loss) is scaled by the current learning rate. Images are also
augmented to improve generalization performance. Images
are randomly flipped horizontally, rotated up to 40 degrees,
shifted up/down and left/right up to 20%, and shear intensity
and zoom range varied up to 20%.

D Statistical Significance of Results in
Activation Function Meta-Learning

Sampling activation functions from the PANGAEA search
space results in a distribution of possible models for each
weight initialization strategy. Comparing the empirical dis-
tribution functions (EDFs) induced by each initialization
strategy makes it possible to quantify the importance of the
initialization (Radosavovic et al. 2019).

Given n activation functions with errors {ei}, the EDF
F (e) = 1

n

∑n
i=1 1[ei < e] gives the fraction of activation

functions that result in error less than e. Let Fdefault, FAutoInit,
and FAutoInit++ be the EDFs for the three initialization strate-
gies. Figure 10 plots these EDFs along with the Kolmogorov-
Smirnov test statistic D = supe |F1(e)−F2(e)|, which mea-
sures the maximum vertical discrepancy between two EDFs
(Massey Jr 1951). This statistic shows that (1) AutoInit out-
performs the default initialization (D = 0.105); (2) Au-

10 20 30 40 50 60 70 80 90

Error (%)

0.0

0.1

0.2

0.3

0.4

C
u

m
u

la
ti

ve
 P

ro
b

a
b

il
it

y

D=0.122

D=0.191

D=0.105

Default

AutoInit

AutoInit++

Figure 10: Error EDFs for PANGAEA activation functions
when using different weight initialization strategies. The
Kolmogorov-Smirnov statistic D quantifies the maximum
vertical distance between the EDFs, and shows that proper
initialization provides a measurable increase in expected per-
formance. Notice that the x-axis shows percent error, and not
accuracy as in Figure 8.

toInit++ delivers an even greater boost in performance over
the default initialization (D = 0.191); and (3) AutoInit++
is measurably better than AutoInit (D = 0.122), confirm-
ing that having zero Gaussian mean is a useful property for
activation functions to have.

Other ways of measuring statistical significance lead to
similar conclusions. For instance, consider the null hypothe-
sis that Fdefault = FAutoInit. In other words, this null hypothesis
states that AutoInit provides no benefit and that the accura-
cies obtained come from the same underlying distribution.
With the Epps-Singleton test (Epps and Singleton 1986) this
null hypothesis is rejected with p < 0.05. Similarly, the
test rejects the null hypothesis that Fdefault = FAutoInit++ with
p < 0.001. Even stronger statements can be made in the
case of AutoInit++. With the Mann-Whitney U test (Mann
and Whitney 1947), the null hypothesis that Fdefault(e) ≥
FAutoInit++(e) for some e is rejected (p < 0.01) in favor of
the alternative that Fdefault(e) < FAutoInit++(e) for all e. Sim-
ilarly, the null hypothesis that FAutoInit(e) ≥ FAutoInit++(e)
for some e is rejected (p < 0.05) in favor of the alternative
that FAutoInit(e) < FAutoInit++(e) for all e. As discussed in the
main text, this result states that the distribution of accuracies
induced by AutoInit++ is stochastically larger than that from
AutoInit or the default initialization.

E Future Technical Extensions
AutoInit is based on understanding and utilizing the training
dynamics of neural networks, leading to higher and more
robust performance, and facilitating further advances in meta-
learning. It can be improved and its scope broadened in sev-
eral ways in the future, as outlined below.

Initial Weight Distributions AutoInit calculates appropri-
ate weight scaling, but it does not impose a distribution from
which weights are drawn (Equation 6). All experiments in

this paper used a truncated normal distribution. In prelim-
inary experiments, AutoInit also used untruncated normal,
uniform, and orthogonal distributions, but no clear trends
were observed. Indeed, assuming weights are scaled appro-
priately, whether training is stable depends only on the ar-
chitecture and not the distribution from which weights are
sampled (Hanin 2018). However, this conclusion applies only
in limited theoretical settings; in other settings, orthogonal
initialization was found to be beneficial (Saxe, McClelland,
and Ganguli 2013; Hu, Xiao, and Pennington 2020). Whether
there is a single distribution that is optimal in every case,
or whether certain distributions are better-suited to different
models, tasks, or layers, remains an open question, and a
compelling direction for future research.

Variations of AutoInit Several variations of the core Au-
toInit algorithm can be devised that may improve its perfor-
mance. For example, AutoInit stabilizes signals by analyzing
the forward pass of activations from the input to the output
of the network. It is possible to similarly model the back-
ward pass of gradients from the output to the input. Indeed,
past weight initialization strategies have sometimes utilized
signals in both directions (Glorot and Bengio 2010; Arpit,
Campos, and Bengio 2019). It would be interesting to find
out whether AutoInit could similarly benefit from analyzing
backward-propagating signals.

Alternative objectives beyond mean and variance stabiliza-
tion could also be considered. Two promising objectives are
tuning the conditioning of the Fisher information matrix (Pen-
nington and Worah 2018) and achieving dynamical isometry
(Xiao et al. 2018). Mean field theory and nonlinear random
matrix theory (Pennington and Worah 2019) could potentially
be used to implement these objectives into AutoInit.

Support for New Layer Types AutoInit calculates outgo-
ing mean and variance estimates for the majority of layer
types available in current deep learning frameworks (Ap-
pendix A). If AutoInit encounters an unknown layer, the
default behavior is to assume that the mean and variance are
not changed by that layer: glayer(µin, νin) = µin, νin. This
fallback mechanism tends to work well; if there are only a
few unknown layers, then the variance estimation will be
incorrect only by a constant factor and training can proceed.
However, mean and variance estimation functions g can be
derived for new types of layers as they are developed, either
analytically or empirically with Monte Carlo sampling, thus
taking full advantage of AutoInit’s ability to stabilize training
in the future as well.

Tighter Integration with Deep Learning Frameworks
Using AutoInit is simple in practice. The AutoInit pack-
age provides a wrapper around TensorFlow models. The
wrapper automatically traverses the TensorFlow computation
graph, calculates mean and variance estimations for each
layer, and reinstantiates the model with the correct weight
scaling. However, this implementation can be streamlined.
The most effective approach would be to integrate AutoInit
natively with deep learning frameworks like TensorFlow
(Abadi et al. 2016) and PyTorch (Paszke et al. 2019). Na-
tive integration would not just make AutoInit easier to use,

it would also make it more accessible to general machine
learning practitioners. For example, TensorFlow provides a
few initialization strategies that can be leveraged by chang-
ing the kernel initializer keyword in certain layers.
However, implementing other weight initialization strategies
requires subclassing from the Initializer base class,
which is both time-consuming and complicated, especially
for non-experts. Native integration would ensure that the ben-
efits of smarter initialization are available immediately to the
wider machine learning community.

F Computing Infrastructure
Experiments in this paper were run in a distributed frame-
work using StudioML software (Mutch 2017–2021; Zhokhov,
Denissov, and Mutch 2017–2021) to place jobs on machines
with NVIDIA GeForce GTX 1080 Ti and RTX 2080 Ti GPUs.
The CoAtNet experiments (Section 7) were run on an AWS
g5.48xlarge instance with NVIDIA A10G GPUs. Training
CoAtNet on Imagenette required an average of 0.91 GPU
hours per run. Training CoAtNet on ImageNet once took
119.89 GPU hours. Training on Imagenette instead of Im-
ageNet therefore emit approximately 119.89/0.91 ≈ 132
times less carbon. The AutoInit package is available at
https://github.com/cognizant-ai-labs/autoinit.

