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Abstract

Self-organizing computational models with specific intracorti-
cal connections can explain many functional features of visual
cortex, such as topographic orientation and ocular dominance
maps. However, due to their computational requirements, it is
difficult to use such detailed models to study large-scale phe-
nomena like object segmentation and binding, object recogni-
tion, tilt illusions, optic flow, and fovea–periphery interaction.
This paper introduces two techniques that make large simu-
lations practical. First, a set of general linear scaling equa-
tions for the RF-LISSOM self-organizing model is derived and
shown to result in quantitatively equivalent maps over a wide
range of simulation sizes. This capability makes it possible to
debug small simulations and then scale them up to larger simu-
lations only when needed. The scaling equations also facilitate
the comparison of biological maps and parameters between in-
dividuals and species with different brain region sizes. Second,
the equations are combined into a new growing map method
called GLISSOM, which dramatically reduces the memory and
computational requirements of large self-organizing networks.
With GLISSOM it should be possible to simulate all of human
V1 at the single-column level using existing supercomputers,
making detailed computational study of large-scale phenom-
ena possible.

1 Introduction
Computational models of the self-organization in the visual
cortex have shown that input-driven development can ex-
plain much of its topographic organization, such as retino-
topy, orientation preference, and ocular dominance, as well
as many of its functional properties, such as short-range con-
tour segmentation and binding (Grossberg 1976; Kohonen
1989; von der Malsburg 1973; see Erwin et al. 1995; Swin-
dale 1996 for review). However, other important phenomena
have remained out of reach because they require too much
computation time and memory to simulate. These phenom-
ena, such as orientation interactions between spatially sep-
arated stimuli and long-range visual contour and object in-
tegration, are thought to arise out of specific lateral interac-
tions between large numbers of neurons over a wide corti-
cal area (Gilbert et al. 1996). Simulating such behavior re-
quires an enormous number of specific, modifiable connec-
tions. Currently-practical methods can only model intracorti-
cal interactions abstractly (e.g. SOM, Erwin et al. 1992; Ko-

honen 1989; Obermayer et al. 1990), and thus cannot be used
for such investigations.

In this paper we present two interrelated techniques for
making detailed large-scale simulations practical. First,
we derive a set of linear scaling equations that, when
given a small-scale simulation, make it possible to deter-
mine the parameter settings necessary to perform a large-
scale simulation. The original and scaled simulations have
quantitatively-equivalent map-level and neuron-level organi-
zation; the larger map will just have more detail. Such a cor-
respondence makes it possible to develop a small-scale simu-
lation first using available hardware, then scale it up to study
specific phenomena that require a larger map. The scaling
equations can also help tie parameters from small models to
experimental measurements in larger systems, help determine
simulation sizes needed for realistic simulations, and allow
comparison of species or individuals with brain regions of
different sizes.

Second, we present a modeling approach called GLISSOM
that allows much larger networks to be simulated in a given
computation time and in a given amount of memory. The
simulations begin with a small network, which is gradually
scaled up as it self-organizes. This approach is effective for
two reasons: (1) pruning-based self-organizing models tend
to have peak computational and memory requirements at the
beginning of training, and (2) self-organization tends to pro-
ceed in a global-to-local fashion, with large-scale order estab-
lished first, followed by more detailed local self-organization
(as found in experimental animals; Chapman et al. 1996).
Thus small maps, which are much quicker to simulate and
take less memory, can be used to establish global order, with
larger maps used only to achieve more detailed structure.

Although the primary motivation for GLISSOM is compu-
tational, the scaling process is also well-motivated biologi-
cally, since it represents the integration of new neurons into
an existing region during development. Recent experimental
results suggest that new neurons continue to be added even
in adulthood in many areas of primate cortex (Gould et al.
1999). Moreover, many of the neurons in the immature cortex
corresponding to GLISSOM’s early stages have not yet be-
gun to make functional connections, having only recently mi-
grated to their final positions (Purves 1988). Thus the scaleup
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procedure in GLISSOM corresponds to the gradual process of
incorporating those neurons into the partially-organized map.

In the next section the model used in these simulations
is introduced, and in section 3 scaling equations for it are
derived and shown to achieve matching results over a wide
range of simulation sizes. In section 4 the GLISSOM scaleup
procedure is introduced and shown to greatly reduce simula-
tion time and memory requirements while achieving results
similar to the original model. Section 5 shows calculations
that suggest that with GLISSOM it should be possible to sim-
ulate all of human V1 at the single-column level using ex-
isting supercomputers. The remaining sections discuss how
the scaling equations relate to biological systems and how
they can be used to simulate larger, more realistic systems
that would otherwise be intractable.

2 RF-LISSOM model of the visual cortex

The scaling equations and GLISSOM are based on the RF-
LISSOM (Receptive-Field Laterally Interconnected Syner-
getically Self-Organizing Map) computational model of cor-
tical maps. RF-LISSOM has been successfully used to model
the development of ocular dominance and orientation maps,
as well as low-level visual phenomena in the adult, such as tilt
aftereffects and short-range segmentation and binding (Bed-
nar and Miikkulainen 2000; Choe and Miikkulainen 1998;
Miikkulainen et al. 1997; Sirosh and Miikkulainen 1994;
Sirosh et al. 1996). We will first describe the architecture of
the RF-LISSOM model, and then later present our extensions
that allow scaling the network.

RF-LISSOM focuses on the two-dimensional organization
of the cortex, so each “neuron” in the model cortex corre-
sponds to a vertical column of cells through the six layers of
the primate cortex. The cortical network is modeled with a
sheet of interconnected neurons and the retina with a sheet
of retinal ganglion cells (figure 1). Neurons receive affer-
ent connections from broad overlapping circular patches on
the retina. (Since the lateral geniculate nucleus (LGN) ac-
curately reproduces the receptive fields of the retina, it has
been bypassed to simplify the model.) TheN × N network
is projected on to theR × R retinal ganglion cells, and each
neuron is connected to ganglion cells in an area of radiusrA

around its projection. Thus, neurons at a particular cortical
location receive afferents from a corresponding location on
the retina, i.e. its anatomical receptive field (RF). Additional
ganglion cells are included around the borders so that every
neuron will have a complete set of afferent connections. For
an example set of weights, see figure 9a-c in section 4.1.

In addition to the afferent connections, each neuron has
reciprocal excitatory and inhibitory lateral connections with
itself and other neurons. Lateral excitatory connections are
short-range, connecting each neuron with itself and its close
neighbors. Lateral inhibitory connections run for compara-
tively long distances, but also include connections to the neu-
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Figure 1:Architecture of the RF-LISSOM network. A small RF-
LISSOM network and retina are shown, along with connections to
a single neuron (shown as the large circle). The input is an oriented
Gaussian activity pattern on the retinal ganglion cells (shown by
grayscale coding); the LGN is bypassed for simplicity. The afferent
connections form a local anatomical receptive field (RF) on the sim-
ulated retina. Neighboring neurons have different but highly over-
lapping RFs. Each neuron computes an initial response as a scalar
(dot) product of its receptive field and its afferent weight vector, i.e.
a sum of the product of each weight with its associated receptor.
The responses then repeatedly propagate within the cortex through
the lateral connections and evolve into activity “bubbles”. After the
activity stabilizes, weights of the active neurons are adapted using a
normalized Hebbian rule.

ron itself and to its neighbors.1

The afferent weights are initially set to random values, and
the lateral weights are preset to a smooth Gaussian profile.
The connections are then organized through an unsupervised
learning process. For an orientation map, the input for the
learning process consists of 2-D ellipsoidal Gaussian patterns
representing retinal ganglion cell activations (figure 2a); each
pattern is presented at a random orientation and position. At
each training step, neurons start out with zero activity. The
initial responseηij of neuron(i, j) is calculated as a weighted
sum of the retinal activations:

ηij = σ

∑
a,b

ξabµij,ab

 , (1)

whereξab is the activation of retinal ganglion(a, b) within
the receptive field of the neuron,µij,ab is the corresponding
afferent weight, andσ is a piecewise linear approximation of
the sigmoid activation function. The response evolves over

1For high-contrast inputs, long-range interactions must be in-
hibitory for proper self-organization to occur (Sirosh 1995). Op-
tical imaging and electrophysiological studies have indeed shown
that long-range column-level interactions in the cortex are inhibitory
at high contrasts, even though individual long-range lateral connec-
tions between neurons are primarily excitatory (Grinvald et al. 1994;
Hirsch and Gilbert 1991; Weliky et al. 1995). The model uses ex-
plicit inhibitory connections for simplicity since all inputs used are
high-contrast, and since it is such inputs that primarily drive adapta-
tion in a Hebbian model.
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(a) Input pattern (b) Orientation map (c) Initial activity (d) Settled activity

Figure 2:Orientation map activation in RF-LISSOM ( color figure). The orientation color key at the far right applies to all of the plots in
(b-d), and to all similar plots in this paper. After being trained on inputs like the one in (a) with random positions and orientations, a 144×144
RF-LISSOM network developed the orientation map shown in (b), which is similar to those found in experimental animals (Blasdel 1992).
Each neuron in the map is colored according to the orientation it prefers. The white outline shows the extent of the patchy self-organized
lateral inhibitory connections of one neuron (marked with a white square), which has a horizontal orientation preference. The strongest
long-range connections of each neuron are extended along its preferred orientation and link columns with similar orientation preferences,
avoiding those with very different preferences. The brightness of the colors in (c,d) shows the strength of activation for each neuron to
pattern (a). The initial response of the organized map is spatially broad and diffuse (c), like the input, and its cortical location around a
horizontal line near the center of the cortex indicates that the input is horizontally extended near the center of the retina. The response is
patchy because the neurons that encode orientations far from the horizontal do not respond (comparec andd to b). After the network settles
through lateral interactions, the activation is much more focused, but the activated neurons continue to match the position and orientation
of the input. See appendix A for the parameter values used in this and later simulations. Animated demos of these figures can be seen at
http://www.cs.utexas.edu/users/nn/pages/research/visualcortex.html .

a very short time scale through lateral interaction. At each
settling time step, the neuron combines the above afferent
activation

∑
ξµ with lateral excitation and inhibition:

ηij(t) = σ
(∑

ξµ + γE

∑
k,l Eij,klηkl(t− 1)

−γI

∑
k,l Iij,klηkl(t− 1)

)
,

(2)

whereEij,kl is the excitatory lateral connection weight on the
connection from neuron(k, l) to neuron(i, j), Iij,kl is the in-
hibitory connection weight, andηkl(t − 1) is the activity of
neuron(k, l) during the previous time step. The scaling fac-
torsγE andγI determine the relative strengths of excitatory
and inhibitory lateral interactions.

While the cortical response is settling, the retinal activity
remains constant. The cortical activity pattern starts out dif-
fuse and spread over a substantial part of the map (as in fig-
ure 2c), but within a few iterations of equation 2, converges
into a small number of stable focused patches of activity, or
activity bubbles (figure 2d). After an input is presented, and
the activity has settled, the connection weights of each neuron
are modified. Both afferent and lateral weights adapt accord-
ing to the same mechanism: the Hebb rule, normalized so that
the sum of the weights is constant:

wij,mn(t + δt) =
wij,mn(t) + αηijXmn∑

mn [wij,mn(t) + αηijXmn]
, (3)

whereηij stands for the activity of neuron(i, j) in the final
activity bubble,wij,mn is the afferent or lateral connection
weight (µ, E or I), α is the learning rate for each type of
connection (αA for afferent weights,αE for excitatory, and

αI for inhibitory) andXmn is the presynaptic activity (ξ for
afferent,η for lateral). At long distances, very few neurons
have correlated activity and therefore most long-range con-
nections eventually become weak. The weak connections are
eliminated periodically, resulting in patchy lateral connectiv-
ity similar to that observed in the visual cortex.

3 Scaling RF-LISSOM simulations
The RF-LISSOM algorithm is computationally intensive and
requires a large amount of memory to store the specific lat-
eral connections, which makes large simulations impractical.
One straightforward way to model larger maps is to develop
the initial model using a small network, and then scale up
to more realistic cortical sizes once the behaviour is well-
understood and the influence of the various parameters is
clear. This way only a few runs will be needed at the larger
size; if necessary the larger simulation can be performed on
a remote supercomputer. In the following subsections we de-
scribe the general approach to systematic scaling, show how a
self-organizing model can achieve similar results across sim-
ulations with different initial conditions, and derive scaling
equations that make use of this property to develop similar
maps with networks of different sizes.

3.1 The scaling approach
There are two general types of scaling transformations: a
change in the total cortical and retinal area simulated, and
a change in neuron or ganglion density for a fixed area. A
change in the area corresponds to modeling a larger portion
of the visual space, e.g. a larger part of V1 and of the eye. A
change in density corresponds to modeling a given area at a
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finer resolution (of either cortical neurons or retinal ganglia),
as well as modeling a species, individual, or brain area that
devotes more neurons or ganglia to the representation of a
fixed amount of visual space.

Varying the density or area over a wide range is difficult
in a complex dynamical system like RF-LISSOM. Parameter
settings that work for one size will need to be very differ-
ent to work properly with other sizes. To make such scaling
feasible, we derived a set of size scaling equations that ap-
ply to RF-LISSOM networks and can be adapted for most
other models with similar connectivity. The equations were
derived by treating a cortical network as a finite approxima-
tion to a continuous map composed of an infinite number of
units (as in Amari 1980 and Roque Da Silva Filho 1992). Un-
der such an assumption, networks of different sizes represent
coarser or denser approximations to the continuous map, and
any given approximation can be transformed into another by
(conceptually) reconstructing the continuous map and then
resampling it.

Given an existing retina and cortex of some fixed size, the
scaling equations provide the parameter values needed for a
smaller or larger retina and cortex to form a functionally-
equivalent map. The equations are linear, but despite the non-
linearities in the model they have been been experimentally
verified to result in maps with similar properties and map
organization, for a wide range of network sizes. All of the
equations can be applied before the simulation begins, and
as described in section 4, the GLISSOM method allows the
density to be changed dynamically during the self-organizing
process.

3.2 Prerequisite: Insensitivity to initial conditions

One desirable property of a scaling algorithm is that it results
in identical final maps even when the scaling steps are dif-
ferent. Therefore, it is crucial that the map organization not
depend on the random initial weights, since those will vary
between networks of different sizes. In this section we will
show that the RF-LISSOM algorithm has exactly this prop-
erty. Figure 3 shows that the map pattern depends primarily
on the stream of inputs seen during self-organization, and not
on the initial weights, as long as the initial weights are drawn
from the same random distribution.

The insensitivity to initial weights follows from three fea-
tures of the RF-LISSOM model: (1) the scalar product input
response function, (2) lateral excitation between neurons, and
(3) the initial period with high learning rates. First, a neuron’s
initial response to an input pattern is determined by the sum
of the product of each retinal receptor with its corresponding
weight value (equation 1). For smoothly-varying input pat-
terns and large enoughrA, this sum will have a very similar
value regardless of the specific values of the weights to each
receptor. Thus, until the weights have self-organized into
a smooth, spatially non-uniform distribution, the input re-
sponse of each neuron will be largely insensitive to the weight

values. Second, settling due to lateral excitation (equation 2)
causes nearby neurons to have similar final activity levels,
which further reduces the contribution of each random affer-
ent weight value. Third, Hebbian learning depends on the fi-
nal settled activity levels resulting from an input (equation 3),
and with a high enough learning rate, the initial weight values
are soon overwritten by the responses to the input patterns.
Figure 3d,eshows that the large-scale map features develop
similarly even before the initial weight values have been over-
come, and thus that the Hebbian process of self-organization
is driven by the input patterns rather than the initial weights.

The net result is that as long as the initial weights are gen-
erated from the same distribution, their precise values do not
significantly affect map organization. Similar invariance to
the initial weights should be found in other Hebbian mod-
els that compute the scalar product of the input and a weight
vector, particularly if they include lateral excitation and use
a high learning rate in the beginning of self-organization. If
a model does not have such invariance, scaling equations can
still generate functionally-equivalent maps, but they will not
be visually identical like the density-scaled maps presented in
later sections.

3.3 Scaling the area
The following subsections will present the scaling equations
for area, retinal ganglion density, and cortical density, along
with results from simulations of each type. Since the equa-
tions are linear they can also be applied together to change
both area and density simultaneously. First, we consider the
simplest case, changing the area of the visual space simu-
lated. To change the area, both the cortex widthN and the
retina widthR must be scaled by the same proportionk rel-
ative to their initial valuesNo andRo. In addition, to ensure
that the resulting network has the same amount of learning
per neuron per iteration, the average activity per input recep-
tor needs to remain constant. Thus when using discrete input
patterns (such as the oriented Gaussians used in these simula-
tions), the average number of patternsı̄ per iteration must be
scaled with the retinal area. Consequently, the equations for
scaling the area by a factork are:

N = kNo, R = kRo, ı̄ = k2 ı̄o (4)

See figure 4 for an example of scaling the area.

3.4 Scaling retinal ganglion density
The parameter changes required when changing retinal recep-
tor or cortical neuron density are less obvious than those for
area. To scale the retinal receptor density without disrupting
the functional behavior of the map, the ratio between the af-
ferent connection radius andR must be constant, i.e.rA must
scale withR. (Otherwise, the visual field area processed by
each neuron would change when the retinal density changes.)

When the connection radius increases, the total number of
afferent connections per neuron also increases. Because the
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Figure 3: Input stream determines map pat-
tern in RF-LISSOM ( color figure). There are
two sources of random fluctuations that can affect
the final map pattern in a self-organizing system:
the random initial values of the weights, and the
random stream of inputs presented. Each of these
sources is controlled by an independent pseudo-
random number generator that can be given dif-
ferent seeds to produce different streams of val-
ues. Using a different seed for the weight gener-
ator results in different initial orientation maps (a
andb), but has almost no effect on the final self-
organized maps (compareg to h). (These plots
and those in subsequent figures use the color key
from figure 2.) This invariance occurs because the
development of large-scale map features is insen-
sitive to the initial weight values. (Compare maps
d andemeasured at iteration 100; the same large-
scale features are emerging in both maps despite
different patterns of local noise caused by the dif-
ferent initial weights.) In contrast, changing the
input stream produces very different early and fi-
nal map patterns (comparee to f andh to i), even
when the initial weight patterns (and therefore the
initial orientation maps) are identical (b and c).
Note that regardless of the seed values, the over-
all properties of the final maps are similar (e.g. hy-
percolumn spacing, number of pinwheel centers),
because the statistical properties of the random in-
put distributions are the same. In animals, dif-
ferent input streams correspond to differing early
visual experiences or different patterns of sponta-
neous activity. Thus the RF-LISSOM model pre-
dicts that the precise map pattern in an adult an-
imal depends primarily on the order and type of
activity patterns seen by the cortex in early devel-
opment, and not on the details of the initial con-
nectivity.

learning rateαA specifies the amount of change per connec-
tion and not per neuron (equation 3), it must be scaled down
so that the average total weight change per neuron per it-
eration remains constant. (Otherwise, a given input pattern
would cause more total change in the weight vectors of each
neuron in the scaled network than in the original.) So the af-
ferent learning rateαA must scale inversely with the number
of afferent connections to each neuron, which in the contin-
uous plane corresponds to the area enclosed by the afferent

radius. Thus,αA scales by the ratiorAo
2

rA2 .

To keep the average activity per iteration constant, the size of
the input features must also scale withR, keeping the ratio
between the feature width andR constant. For Gaussian in-
puts this means keeping the ratio between the Gaussianσ and
R constant. Thus the retinal density scaling equations are:

rA = R
Ro

rAo
αA = rAo

2

rA2 αAo
, σx = R

Ro
σxo

,

σy = R
Ro

σyo

(5)

Figure 5 shows how this set of equations can be used to gen-

erate functionally-equivalent orientation maps using different
retinal receptor densities.

3.5 Scaling cortical neuron density

Changing the cortical density is analogous to changing reti-
nal receptor density, but the intracortical connection sizes and
associated learning rates also need to be scaled. The lateral
connection radiirE andrI should be scaled withN so that
the ratio between each radius andN remains constant. For
simulations that shrink the lateral excitatory radius, the final
radiusrEf

must also be scaled. LikeαA in retinal density
scaling,αE and αI must be scaled so that the average to-
tal weight change per neuron per iteration remains constant
despite changes in the number of connections. Finally, the
absolute weight levelDI below which lateral inhibitory con-
nections are killed at a given iteration must be scaled when
the total number of lateral connections changes. (The weight
normalization in equation 3 ensures that when there are fewer
weights each one is stronger, and thus the value of each
weight is proportional to the number of connections.) Thus,
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(a) 36×36
0.17 hours, 2.0MB

(b) 48×48
0.32 hours, 5.2MB

(c) 72×72
0.77 hours, 22MB

(d) 96×96
1.73 hours, 65MB

(e) 144×144
5.13 hours, 317MB

Figure 6:Scaling the cortical density in RF-LISSOM (color figure). Five RF-LISSOM orientation maps from networks of different sizes
are shown; the parameters for each network were calculated using equations (6), and then each network was trained independently on the
same pseudorandom stream of input patterns. The size of the network in the number of connections ranged from2 × 106 to 3 × 108 (2
megabytes to 317 megabytes of memory), and the simulation time ranged from ten minutes to five hours on the same machine, a single-
processor 600MHz Pentium III with 1024 megabytes of RAM. Much larger simulations on the massively-parallel Cray T3E supercomputer
perform similarly. Despite this wide range of simulation scales, the final organized maps are both qualitatively and quantitatively similar, as
long as their size is above a certain minimum (here about 64×64). Larger networks take significantly more memory and simulation time; this
difficulty is addressed by GLISSOM (section 4).

the cortical density scaling equations are:

rE = N
No

rEo , αE = rEo
2

rE2 αEo , DI = DIo

rIo
2

rI2

rI = N
No

rIo
, αI = rIo

2

rI2
αIo

,
(6)

Figure 6 shows examples of using the cortical density scaling
equations to generate RF-LISSOM orientation maps of dif-
ferent sizes. For band-limited input patterns like those we use
here for clarity, results at different sizes match closely, since
even the larger networks are representing the same quanti-
ties represented by the smaller ones. If the input were much
more complicated, as are natural images, then different be-
havior would be seen for each larger network, as it developed
smaller-scale structure to represent the less-prominent fea-
tures of the input. However, the large-scale features should
still remain constant over scaling.

3.6 Limitations on scaling
The scaling equations essentially allow any desired cortex
and retina size to be simulated without a search for the appro-
priate parameters. They make it simple to trade off density
for area to study specific phenomena given fixed computa-
tional resources, and to scale up to larger maps when required.
Matching results will be achieved when the size is increased
while keeping the complexity of the input patterns constant;
in this case, qualitatively and quantitatively similar maps de-
velop regardless of size. The equations can also be used to
construct a smaller network, but at some lower bound the net-
work will no longer have enough units to represent a similar
map, and thus e.g. only position will be represented and not
orientation. Similarly, if the retinal resolution is reduced so
much that the retinal images become unrecognizable, the net-
work will no longer have similar functional properties.

For a given simulation, the lower bound on cortex den-
sity is generally determined by the minimum excitatory ra-
dius (rEf

); with rEf
close to 1.0, the simulation will not give

results similar to larger ones. Units are laid out on a rectan-
gular grid, and thus the smallest neuron-centered radius that
includes at least one other neuron center is 1.0. If the exci-
tatory radius is allowed to drop below 1.0, the map will no
longer have any local topographic ordering, since there will
be no local excitation between neurons. Conversely, if the
final radius is held at a minimum of 1.0 while the map size
continues to be reduced, the lateral spread of excitation will
take over a larger and larger portion of the map, causing the
hypercolumn width of the resulting map to increase. To avoid
such complications, in the rest of this paper we assume that
the starting size is above this lower bound on therEf

and that
sizes are being increased.2

4 Growing LISSOM (GLISSOM)
The scaling equations make it practical to do many simula-
tions using widely-available hardware, but the scaled up sim-
ulations still require so much simulation time and memory
that supercomputers are often necessary. Supercomputers
generally have restricted access, are located at inconvenient
remote sites, have limited auxiliary tool support, and in gen-
eral are less practical to use than workstations. To address
this problem we developed GLISSOM, an extension of the
RF-LISSOM model that allows much larger networks to be
simulated on the same hardware in the same amount of com-
putation time. GLISSOM consists of successively scaling up
an RF-LISSOM network during self-organization using the
cortical density equations (6), while smoothly interpolating

2Radius values smaller than 1.0 could be approximated using
a technique similar to antialiasing in computer graphics. Before
a weight value is used in equation 2 at each iteration, it would be
scaled by the proportion of its corresponding pixel’s area that is in-
cluded in the radius. This technique should permit smaller networks
to be simulated faithfully even with a discrete grid. However, since
our focus is on methods for simulating larger networks, we have not
investigated such an extension.

6



(a) Original cortex
N = 54

0.4 hours, 8MB

(b) Cortex area scaled
N = 4No = 4 · 54 = 216

9 hours, 148MB

(c) Original retina
R = 24

(d) Retina area scaled
R = 4Ro = 4 · 24 = 96

Figure 4: Scaling the total area in RF-LISSOM (color figure).
Equations (4) can be used to scale the total area simulated, in order
to simulate a larger portion of the cortex, retina, and visual field. For
largeN the number of connections and the simulation time scale
approximately linearly with the area, and thus a network four times
as wide and four times as tall (above) takes about sixteen times the
memory and sixteen times as long to simulate. For discrete input pat-
terns like these oriented Gaussians, larger areas require more input
patterns to keep the total learning per neuron and per iteration con-
stant. Because the inputs are generated randomly across the active
surface of the retina, each map sees an entirely different stream of
inputs, and so the final map patterns always differ when the area dif-
fers. The area scaling equations are most useful for testing a model
with a small area and then scaling up to eliminate border effects and
to simulate the full area of a corresponding biological preparation.

the existing afferent and lateral weights to create the new neu-
rons and new connections for the larger network. This scaling
allows neuron density to be increased while keeping the large-
scale structural and functional properties constant, such as the
organization of the orientation preference map. In essence,
the large network is grown in place, thereby minimizing the
computational resources required for simulation.

Figure 7demonstrates why such an approach is effective.
Both the memory requirements and the computation time of

(a) Original retina
R = 24

σx = 7, σy = 1.5

(b) Final map

(c) Retina scaled by 2.0
R = 24 · 2 = 48
σx = 14, σy = 3

(d) Final map

(e) Retina scaled by 3.0
R = 24 · 3 = 72

σx = 21, σy = 4.5

(f ) Final map

Figure 5:Scaling the retinal density in RF-LISSOM (color fig-
ure). Equations (5) can be used to scale the density of retinal gan-
glion cells simulated per unit of visual area, while keeping the area
and the cortex density constant. Here we show RF-LISSOM orien-
tation maps from three separate 96×96 networks that have retinas of
different densities. The parameters for each network were calculated
using equations (5), and then each network was trained indepen-
dently on the same pseudorandom stream of input patterns. The size
of the input pattern in retinal units increases as the retinal density is
increased, but its size as a proportion of the retina remains constant.
For spatial-frequency band-limited inputs like the ellipsoidal Gaus-
sians shown above and used to train these orientation maps, the final
map changes very little above a certain retinal density (here about
R = 48). With natural images and other stimuli that have high
spatial-frequency components, scaling the retinal density will allow
the map to represent this higher-frequency data while preserving the
large-scale map organization.
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(b) Training time per iteration

Figure 7:Training time and memory requirements at each iteration. Data is shown for one run of each algorithm with a final network
size of 144×144; for GLISSOM the starting size was 36×36. (a) Each line shows the number of connections alive at a given iteration.
Memory requirements of RF-LISSOM peak at early iterations, decreasing at first in a series of small drops as the lateral excitatory radius
shrinks, and then later in a few large drops as long-range inhibitory weights are pruned at iterations 6500, 12,000, and 16,000. GLISSOM
does similar radius shrinking and pruning, while also scaling up the network size at iterations 4000, 6500, 12,000, and 16,000. Since the
GLISSOM map starts out small, memory requirements peak much later, and remain bounded because connections are pruned as the network
is grown. By this means GLISSOM can keep its peak number of connections, which determines the simulation memory requirements, as
low as the smallest number of connections occurring in RF-LISSOM. (b) Each line shows a 20-point running average of the time spent in
training for one iteration, with a data point measured every 10 iterations. Only training time is shown; times for initialization, plotting images,
pruning, and scaling networks are not included. Computational requirements of RF-LISSOM peak at early iterations, falling as the excitatory
radius (and thus the number of neurons activated by a given pattern) shrinks and as neurons become more selective. In contrast, GLISSOM
requires little computation time until the final iterations. Since the total training time is determined by the area under each curve, GLISSOM
spends much less time in training overall.

RF-LISSOM (and other pruning-based models) peak at the
start of self-organization, when all connections are active,
none of the neurons are selective, and activity is spread over
a wide area. As the neurons become selective and smaller
regions of the cortex are activated by a given input, simula-
tion time dramatically decreases, since only the active neu-
rons need to be simulated in a given iteration. GLISSOM
takes advantage of this process by approximating the map
with a very small network early in training, then gradually
growing the map as selectivity and specific connectivity are
established.

4.1 GLISSOM methods

The GLISSOM weight scaling interpolates between existing
values by treating the original weight matrices as a discrete
set of samples of a smooth, continuous function. Under such
an assumption, the underlying smooth function can be resam-
pled at the higher density. Such resampling is equivalent to
the smooth bitmap scaling done by computer graphics pro-
grams, as can be seen in the plots shown later in figure 9. This
type of scaling always adds at least one whole row or column
of neurons at once, as is done in more abstract growing self-
organizing maps like the Growing Grid model (Fritzke 1995;
Rodriques and Almeida 1990).

We first consider the interpolation procedure for afferent

connections. The afferent connection strength to a neuronX
in a scaled map from a retinal ganglionG in its receptive field
is calculated from the strengths of the connections fromG to
the ancestorsof X. The ancestors of neuronX consist of
up to four neuronsX1, X2, X3, andX4 surrounding theim-
ageof X, i.e. the real-valued location in the original network
to which the neuron would be mapped by linear scaling of its
position (figure 8). In the middle, each neuron has four ances-
tors; at the corners, each has only one, and along the edges,
each has two. Each ancestorXi of X has aninfluence= rang-
ing from 0 to 1.0 on the computed weights ofX, determined
by its proximity toX:

=Xi
= 1.0− d(X, Xi)

dm
, (7)

whered(X, Xi) represents the Euclidean distance between
the image ofX and its ancestorXi in the original network,
anddm is the maximum possible distance between the image
of a scaled neuron and any of its ancestors, i.e. the diagonal
spacing between ancestors in the original network. The affer-
ent connection strengthwXG is then a normalized proximity-
weighted linear combination of the weights fromG to the
ancestors ofX:

wXG =
∑

i wXiG=Xi∑
i =Xi

, (8)
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Figure 8:GLISSOM connection strength scaling.This example shows a cortex of size 4×4 being scaled to 9×9 during self-organization,
with the retina size fixed at 8×8. Both cortical networks are plotted in the continuous plane representing a fixed area of cortex. The squares
on the cortex represent neurons in the original network (i.e. before scaling) and circles represent neurons in the new network.G is a retinal
ganglion cell andX andY are neurons in the new network. Afferent connection strengths to neuronX in the new network are calculated
from the connection strengths of theancestorsof X. The ancestors ofX areX1, X2, X3, andX4, i.e. the neurons in the original network that
surround the position ofX. The new afferent connection strengthwXG from ganglionG to X is a normalized combination of the connection
strengthswXiG from G to each ancestorXi of X, weighted by the distanced(X, Xi) betweenXi andX. Lateral connection strengths from
Y to X are calculated similarly, as a proximity-weighted combination of the connection strengths between the ancestors of those neurons.
First thecontributionof eachXi is calculated as a normalized combination of the connection strengthswXiYj from eachYj to Xi, weighted
inversely by the distanced(Y, Yj) betweenYj andY . The connection strengthwXY is then the sum of the contributions of eachXi, weighted
inversely by the distanced(X, Xi). Thus the connection strengths in the scaled network consist of proximity-weighted combinations of the
connection strengths in the original network.

wherewXiG is the afferent connection weight from ganglion
G to theith ancestor ofX. Because receptive fields are lim-
ited in size, not all ancestors will necessarily have connec-
tions to that ganglion, and only those ancestors with connec-
tions toG contribute to the sum.

Lateral connection strengths from neuronY to neuronX
in the scaled map are computed similarly, as a proximity-
weighted linear combination of the connection strengths be-
tween the ancestors ofY and the ancestors ofX. First, the
contributionfrom the ancestors ofY to eachXi is calculated:

CXiY =

∑
j wXiYj=Yj∑

j =Yj

, (9)

wherewXiYj is the connection weight from thejth ancestor
of Y to theith ancestor ofX, where defined. The new lateral
connection strengthwXY is then the proximity-weighted sum
of the contributions from all ancestors ofX:

wXY =
∑

i CXiY =Xi∑
i =Xi

, (10)

Figure 9 shows a scaling example for a partially-organized
orientation map and the weights of one neuron in it.

4.2 GLISSOM experiments

A GLISSOM simulation starts with a cortex that has a low
cortical density. The scaling procedure is then used to gradu-
ally increase the density as the network self-organizes. At the
same time, the scaling equations from section 3.5 are used
to keep the other parameters functionally equivalent. Similar
scaling could be used to increase the retinal density during
self-organization, but since the retinal processing has less of
an influence on the computation and memory requirements,
retinal density scaling was not included in the simulations re-
ported below.

The precise scaling schedule is not crucial as long as the
starting point is large enough to represent the largest-scale
features in the final map, without being so large that the speed
benefits are minimal. A linear size increase from the starting
sizeNo to the final sizeNf shortly before the end of train-
ing usually works well; scaling up more quickly increases
simulation accuracy, while delaying scaling reduces training
time at the expense of accuracy. Making a few large scaling
steps gives similar results in less computation time than mak-
ing many smaller steps, so usually only a few steps are used.
The intermediate scaling steps in the following sections were

9



(a) Afferent weights
Before scaling

(b) Excitatory weights
Before scaling

(c) Inhibitory weights
Before scaling

(d) 48×48 cortex
Before scaling

(e) Afferent weights
After scaling

(f ) Excitatory weights
After scaling

(g) Inhibitory weights
After scaling

(h) 96×96 cortex
After scaling

Figure 9: GLISSOM: Scaling cortex density in place (color figure). These figures represent a single large GLISSOM cortical density
scaling operation, going from a 48×48 cortex to a 96×96 cortex in one step at iteration 10,000 out of a total of 20,000. (Usually much smaller
steps are used, but the changes are exaggerated here to make them more obvious.) A set of weights for one neuron from the original 48×48
network is shown in (a-c), and the orientation map measured for the network in (d). The active inhibitory weights of that neuron are outlined
in white. Similarly, a set of weights for one neuron from the 96×96 scaled network is shown in (e-g). The orientation map (h) measured
from the scaled map is identical to (d) except that the resolution has been doubled smoothly; this network can then self-organize at the new
density to represent finer details. Since each scaled neuron receives four times as many lateral weights as one from the original map, pruning
is usually done during the scaling step to keep the total size of the network bounded; pruning was skipped here for simplicity.

computed using the following formula:

N = No + κ(No −Nf ), (11)

where κ was a constant whose values increased approxi-
mately linearly over training. Unless stated otherwise the
simulations below use four scaling steps,κ =0.20 at itera-
tion 4000, 0.47 at 6500, 0.67 at 12,000, and 1.0 at 16,000.
Figure 10 shows examplesof the scaled maps at each iteration
for one GLISSOM simulation, compared to the full-size RF-
LISSOM simulation. The GLISSOM network passes through
similar stages of self-organization, with the map size gradu-
ally approaching that of the RF-LISSOM map.

4.3 GLISSOM results
The first requirement for GLISSOM is that the maps and con-
nection weights it produces should be equivalent to those pro-
duced by RF-LISSOM. As shown in figures 11 and 12, for
a sufficiently large starting map size, GLISSOM produces
an orientation preference map and weight patterns that are
qualitatively and quantitatively equivalent to those of RF-
LISSOM.

The second requirement is that GLISSOM significantly re-
duce the overall computation time and memory requirements.
This result can clearly be seen in figure 13. For example, for
a finalN = 144 on a 600MHz Pentium III workstation, RF-
LISSOM takes 5.1 hours for 20,000 training iterations, while
GLISSOM finishes in 1.6 hours (a speedup ratio of 3.1). For
that simulation, RF-LISSOM requires 317MB of memory to
store its connections, while GLISSOM requires only 60MB (a
memory savings ratio of 5.2). Importantly, the speedup and
memory savings increase as the network size increases (fig-
ures 13c and 13d), which means that GLISSOM can make it
practical to simulate much larger networks.

These results validate our conjecture that a coarse approxi-
mation suffices for the early iterations in RF-LISSOM. Early
in training, only the large-scale organization of the map is
important; using a smaller map for this stage does not signif-
icantly affect the final results. Once the large-scale structure
settles, individual neurons start to become more selective and
to differentiate from their local neighbors; a denser map is
then required so that this detailed structure can develop. Thus
GLISSOM uses a map size appropriate for each stage in self-
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Iteration 0 Iteration 1000 Iteration 5000 Iteration 10,000 Iteration 20,000

(a) 144×144 RF-LISSOM (b) 144×144 RF-LISSOM (c) 144×144 RF-LISSOM (d) 144×144 RF-LISSOM (e) 144×144 RF-LISSOM

(a) 36×36 GLISSOM (b) 36×36 GLISSOM (c) 58×58 GLISSOM (d) 87×87 GLISSOM (e) 144×144 GLISSOM

Figure 10: Self-organization in RF-LISSOM and GLISSOM (color figure). At each iteration, the emerging GLISSOM map features
are similar to those of RF-LISSOM except for discretization differences, and the maps are gradually scaled so that by the final iteration the
GLISSOM map has the same size as RF-LISSOM. To make the scaling steps more obvious, this example uses the smallest acceptable starting
size; figure 12 shows that results match more closely for larger starting sizes.
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Figure 11: For sufficiently large starting N, GLISSOM weights
are a close match to those of RF-LISSOM.Each point shows the
root mean squared (RMS) difference between the final values of the
corresponding weights of each neuron in two networks: a 144×144
RF-LISSOM map, and a GLISSOM map with an initial size shown
on the x-axis and a final size of 144×144. Both maps were trained
on the same stream of oriented inputs. The GLISSOM maps starting
as large asN = 96 used four scaling steps, while the three starting
points closer to the final size used fewer steps:N = 114 had one step
at iteration 6500,N = 132 had one step at iteration 1000, and there
were no scaling steps forN = 144. Low values of RMS difference
indicate that the corresponding neurons in each map developed very
similar weight patterns. The RMS difference drops quickly as the start-
ing size increases, becoming negligible above 36×36. As described in
section 3.6, this lower bound is determined byrEf , the minimum size
of the excitatory radius.

organization, in order to model development faithfully while
saving simulation time and memory.

5 Scaling to cortical dimensions

The maps in section 4 represent only a small region of cor-
tex and have a limited range of connectivity. Combined with
the scaling equations, these results make it possible to ob-
tain a rough estimate of the resource requirements needed to
approximate the full density, area, and connectivity of the vi-
sual cortex in a particular species. As discussed in the next

section, with such a simulation it will be possible to study
phenomena that require the entire visual field or the full cor-
tical column density and connectivity. Calculating the full-
scale parameter values is also valuable by itself, since it can
help tie the parameters of a small model to physical measure-
ments. For instance, once the relevant scaling factors are cal-
culated, the connection lengths, receptive field sizes, retinal
area, and cortical area to use in a model can all be derived
directly from the corresponding quantities measured in a bi-
ological preparation. Conversely, where such measurements
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(a) GLISSOM
StartingN = 36
1.63 hours, 61MB

(b) GLISSOM
StartingN = 54

1.94 hours, 60 MB

(c) GLISSOM
StartingN = 72

2.29 hours, 69 MB

(d) RF-LISSOM
FixedN = 144

5.13 hours, 317 MB

Figure 12:Orientation maps match between GLISSOM and RF-LISSOM (color figure). Above the minimum 36×36 starting size, the
final GLISSOM maps closely match those of RF-LISSOM, yet take much less time and memory to simulate. Computation time increases
smoothly as the starting size is increased, allowing a tradeoff between accuracy and time; accuracy is high even for computation times sub-
stantially lower than those of RF-LISSOM. Memory requirements are bounded by the size of the final maps until the starting size approaches
the final size, after which the requirements gradually approach those of RF-LISSOM.

are not available, model parameter values which produce re-
alistic behavior constitute predictions for future experiments.

In this section we will compute resource requirements and
several key RF-LISSOM parameters needed for a full-scale
simulation of human visual cortex. We will first consider
a full-density simulation of a small but typical simulation
area, and then a full-density simulation of the total area of
human V1. The parameters used in most of the simula-
tions in the preceding sections construct a map whose global
features match approximately a5mm× 5mm (25mm2) area
of macaque cortex (compare figure 12 with Blasdel 1992).
Many map models use an area of about this size because it
corresponds to the experimental data available, and because
it shows enough hypercolumns in each direction to study the
overall map organization. Estimates for the number of neu-
rons in a25mm2 area of human V1 range from1.6 × 106

(Wandell 1995) to9 × 106 (Rockel et al. 1980). Each corti-
cal unit in RF-LISSOM represents one vertical column, and
the number of neurons per vertical column in primate V1 has
been estimated at259 (Rockel et al. 1980). Thus a full-scale
simulation of25mm2 would require from6, 000 to 35, 000
column units total, which corresponds to RF-LISSOM pa-
rameterN ranging from78 to 188.

Simulations with this number of units are practical; some
of the workstation simulations presented in the previous sec-
tions were as large asN = 144, and similar simulations on
a supercomputer have been as large asN = 192 (Bednar
and Miikkulainen 2000). However, it is the number of lateral
connections, not the number of columns, that is the crucial
determinant of simulation time and memory requirements.
Lateral connections in V1 are as long as8mm (Gilbert et al.
1990), but previous RF-LISSOM simulations have underes-
timated lateral connection length for computational reasons.
For the smallest realistic sizeN = 78, a simulation compa-
rable to those in the previous sections would use a maximum

inhibitory radiusrI = 18, but simulating the full8mm would
requirerI = 124.3 Because the current RF-LISSOM imple-
mentation stores all connections possible within the full ex-
tent, it would need to store782 × 2492 ≈ 4× 108 long-range
lateral connections for the25mm2 area.4 Thus a minimum
of1.4 terabytes of RAM (assuming 4 bytes per connection)
would be required to simulate the25mm2 area at full den-
sity in RF-LISSOM. Supercomputers will probably reach this
range within the next few years but are not yet there. Since the
total area of human V1 is about2400mm2 (Wandell 1995),
the minimum realistic RF-LISSOM simulation size for all of
V1 would be about1000 times greater than for the25mm2

patch, or135 terabytes. This figure is out of the range of
even the largest supercomputers expected to be available in
the near future.

In contrast, since GLISSOM does not need to represent all
of the possible final connections at the beginning of the sim-
ulation, it can make use of a sparse lateral connection stor-
age format that takes much less memory, and correspond-
ingly less computation time. The memory required depends
on the number of connections active after self-organization,
which in current GLISSOM simulations is about15%. As
the radius increases this percentage will drop with at least
the square of the radius, since long-range connections ex-
tend only along the preferred orientation of the neuron and
not in all directions (Bosking et al. 1997). Thus, for the full

3Since this range would provide greater than full connectivity for
the78 × 78 area simulated, to make the following calculations we
assume that the area under discussion is part of a larger area also
simulated. Note thatrI = 18 requires only a tiny fraction of the
memory needed to simulaterI = 124, since the memory require-
ments increase with the area enclosed by the radius.

4For the large networks discussed here the number of long-range
lateral inhibitory connections is far greater than the connections of
other types, so the memory requirements will be calculated from the
inhibitory connections alone.
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Figure 13: Comparison of simulation time and memory requirements for GLISSOM and RF-LISSOM. Summary of results from
fourteen simulations on the same 600MHz Pentium III workstation, each running either RF-LISSOM (with the fixedN indicated in the
x-axis) or GLISSOM (with a starting size ofN = 36 and the final sizeN indicated in the x-axis). (a) The memory requirements consist
of the peak number of network connections required for the simulation; this peak determines the minimum physical memory needed when
using an efficient sparse format for storing weights. RF-LISSOM’s memory requirements increase very quickly asN is increased, while
GLISSOM is able to keep the peak number low so that much larger networks can be simulated on a given machine. For example (reading
across a horizontal line through the graph), if a machine can hold 20 million connections, with RF-LISSOM it can only simulateN = 96
(9000 units), while with GLISSOM it can simulateN = 144 (21,000 units); GLISSOM’s advantage increases for larger values ofN . (b) The
total simulation times for RF-LISSOM also increase dramatically for larger networks, because larger networks have many more connections
to process. In contrast, since GLISSOM uses fewer connections for most of the self-organization process, its computation time increases only
modestly for the same range ofN . (Simulation time includes training time plus time for all other computations, including plotting, orientation
map measurement, and GLISSOM’s scaling steps.) (c,d) As the network size increases, GLISSOM results in greater memory savings (ratio
between memory requirements of RF-LISSOM and GLISSOM) and a greater speed boost, which makes large networks much more practical
to simulate. [The variance in simulation time and memory usage between simulation runs is very small (less than 1% even with different input
and weight seeds), and thus forN ≥ 72 the differences between GLISSOM and RF-LISSOM are highly statistically significant (Student’s
t-test,P < 0.005) after only two runs of each simulation. Since the results are so consistent, for simplicity all data points plotted here were
measured from a single run of the indicated algorithm.]
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scale simulation, about15% · 182

1242 = 0.3% of the connections
would remain active. Under these assumptions, the memory
requirements for a fully-realistic simulation of a25mm2 area
could be reduced to approximately5 gigabytes, which is cur-
rently within the range of a large workstation. Even for a
simulation of the full V1 area, GLISSOM using an efficient
sparse connection storage format would require only about
450 gigabytes, which is within the reach of the largest ex-
isting supercomputers, e.g. San Diego Supercomputing Cen-
ter’s 584GB IBM RS/6000 SP. Thus a sparse implementa-
tion of GLISSOM should be able to simulate all of V1 at the
single-column level with realistic lateral connectivity using
currently-available computer hardware.

6 Discussion and future work
The RF-LISSOM simulation results in section 3 showed that
the scaling equations are valid over a wide range of spatial
scales. The GLISSOM results in section 4 showed that the
equations can be used to significantly reduce simulation time
and memory usage and thereby make the study of large-scale
phenomena tractable. Similar equations should apply to most
other models with specific intracortical connectivity, and can
be adapted to those with more abstract connectivity such as
a Mexican hat interaction function. The growth process of
GLISSOM should provide similar performance and memory
benefits to most other densely-connected models whose peak
number of connections occurs early in training. Essentially,
the GLISSOM procedure allows a fixed model to be adapted
into one that grows in place, by using scaling equations and
an interpolation algorithm.

The benefits of a GLISSOM approach will be somewhat
lower for models that do not shrink an excitatory radius dur-
ing self-organization, and therefore do not have a temporary
period with widespread activation. For such models, it may
be worthwhile to consider a related approach, whereby only
the lateral connection density is gradually increased, instead
of increasing the total number of neurons in the cortex. Such
an approach would still keep the number of connections (and
therefore the computational and memory requirements) low,
while keeping large-scale map features such as the hypercol-
umn distance constant over the course of self-organization.

Apart from their application to simulations, the scaling
equations give insight into how the corresponding quantities
differ between individuals, between species, and during de-
velopment. In essence, the equations predict how the bio-
physical correlates of the model parameters will differ be-
tween any two cortical regions that differ in size but perform
similar computations. The discrepancy between the actual pa-
rameter values and those predicted by the scaling equations
can give insight into the difference in function and perfor-
mance of different brain regions, individuals and species.

For instance, equations (6) and the simulation results sug-
gest that learning rates per connection should scale with the
total number of connections per neuron. Otherwise neurons

from a more densely-connected brain area would have sig-
nificantly greater total plasticity, which (to our knowledge)
has not been demonstrated. Consequently, unless the number
of synapses per neuron is constant, the learning rate must be
regulated at the whole-neuron level rather than being a prop-
erty of individual synapses. This principle conflicts with as-
sumptions implicit in most neural-network models, including
RF-LISSOM, that specify learning rates for individual con-
nections directly. Future work will be needed to determine
whether such whole-neuron regulation of plasticity does oc-
cur, and if not, whether more densely-connected regions do
have a greater level of overall plasticity.

Similarly, equations (6) suggest that the connection
strength pruning thresholdDI depends on the total number
of connections to the neuron, rather than being an arbitrary
fixed value. With divisive weight normalization, increasing
the number of connections decreases the strength of each one;
this procedure is motivated byin vitro findings of whole-cell
regulation of excitability (Turrigiano et al. 1998). A conse-
quence is that a fixedDI that prunes e.g. 1% of the connec-
tions for a small cortex would prune all of the connections for
a larger cortex. This finding provides independent theoretical
support for experimental evidence that shows pruning to be a
competitive process (Purves 1988).

The scaling equations also provide an effective tool
for making cross-species comparisons, particularly between
species with different brain sizes. In effect, the equations
specify the parameter values that a networkshoulduse if it
is to have similar behavior as a network of a different size.
As pointed out by Kaas (2000), different species donot usu-
ally scale faithfully, probably due to geometrical, metabolic,
and other restrictions. As a result, as V1 size increases, the
lateral connection radii do not increase as specified in the cor-
tical density scaling equations, and processing becomes more
and more topographically local. Kaas (2000) proposes that
such limitations on connection length may explain why larger
brains such as human and macaque are composed of so many
visual areas, instead of just expanding the area of V1 to sup-
port greater functionality. The scaling equations combined
with LISSOM provide a concrete platform on which to test
these ideas in future multi-region simulations.

The most important result of the scaling equations and the
GLISSOM approach is that they will make much larger sim-
ulations feasible. Future work can use this power to study
larger-scale and more complex phenomena that would other-
wise be possible only in abstract models. For instance, the
visual tilt illusion is thought to occur through orientation-
specific lateral interactions between spatially-separated stim-
uli (Carpenter and Blakemore 1973). Memory constraints
limited the lateral connection length in previous RF-LISSOM
simulations, and thus such long-range interactions could not
be studied. Existing computational models of the tilt illusion
have been practical only because they ignore the spatial com-
ponents of the input pattern and the cortical response (Mundel
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et al. 1997; Spivey-Knowlton 1993), which is an unrealistic
assumption since the tilt illusion is strongly dependent on spa-
tial position (Gibson and Radner 1937). With GLISSOM it
should be possible to integrate both the spatial and orienta-
tion aspects of the tilt illusion by self-organizing a network
with a large area and the full range of specific lateral connec-
tivity found in the cortex.

Visual contour integration, object binding, and object seg-
mentation are similarly thought to depend on specific long-
range lateral interactions (Gilbert et al. 1996). Existing mod-
els use fixed connectivity or support only short-range inter-
actions (Choe and Miikkulainen 1998; Li 1998). It has not
yet been possible to model the detailed self-organization of
a large enough area to represent the multiple detailed ob-
jects necessary to study such phenomena realistically. With a
GLISSOM approach such simulations should become prac-
tical. The results can then be extended to include multi-
ple hierarchically-organized feedback networks so that large-
scale object recognition can be studied. The computational
requirements will increase when more maps are included,
but the GLISSOM approximation techniques should apply to
each of the maps.

Current laterally-connected map models also focus on a
single stimulus dimension (such as orientation, ocularity, or
spatial frequency) so that a low-density approximation to the
cortical network suffices. More abstract models have been
able to incorporate several such dimensions (typically orien-
tation and ocular dominance) because their computational re-
quirements are lower (Obermayer et al. 1991; Osan and Er-
mentrout 2002; Swindale 1992). However, such models can-
not be used to study phenomena like the interocular trans-
fer of the tilt aftereffect, which depends on specific lateral
connections between binocular orientation-selective neurons
(Bednar and Miikkulainen 2000; Gibson and Radner 1937).
Since GLISSOM makes a higher-density network practical,
future simulations can model such phenomena by using natu-
ral image training stimuli which vary along all of the stimulus
dimensions represented in the cortex.

Many other important phenomena also require large maps,
including visual attention, saccades between stimulus fea-
tures, the interaction between the foveal and peripheral repre-
sentations of the visual field, and how large-scale patterns of
optic flow due to head movement influence self-organization.
The scaling equations and the GLISSOM method should help
make detailed models of these simulations practical as well.
Modeling at this level will allow the components and param-
eters of the model to be tied directly to neural structures and
experimental measurements, which will provide new predic-
tions for biology as well as allow the models to be validated
rigorously.

7 Conclusion
The scaling equations and the GLISSOM method should
allow detailed laterally-connected cortical models like RF-

LISSOM to be applied to much more complex, large-scale
phenomena. Using the largest available supercomputers, it
should even be possible to model all of V1 at the column
level. These methods also provide insight into the cortical
mechanisms at work in organisms with brains of widely dif-
ferent sizes. Thus the scaling equations and GLISSOM can
help explain brain scaling in nature as well as helping to scale
up computational simulations of the brain.
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A Parameter values and simulation details
All simulations were run using the same reference set of RF-
LISSOM parameters adapted from Bednar and Miikkulainen (2000).
The reference simulation used a cortexN = 192 and a retina
R = 24. All parameters listed below are for this reference sim-
ulation only; they were scaled using the density and area scaling
equations from section 3 to get the specific parameters for each of
the other simulations.

The cortex was self-organized for20, 000 iterations on oriented
Gaussian inputs with major and minor axes withσ = 7.5 and1.5,
respectively. The afferent receptive field radiusrA was 6; the initial
connections within that circular radius were drawn from a uniform
random distribution. Where multiple input patterns were used, they
were constrained to have centers at least2.2rA apart. The initial
lateral excitation radiusrE was19 and was gradually decreased to
5.5. The lateral inhibitory radiusrI was48. The lateral inhibitory
connections were initialized to a Gaussian profile withσ = 100, and
the lateral excitatory connections to a Gaussian withσ = 15, with
no connections outside the circular radius. The lateral excitationγE

and inhibition strengthγI were both0.9. The learning rateαA was
gradually decreased from0.007 to 0.0015, αE from 0.002 to 0.001
andαI was a constant0.00025. The lower and upper thresholds of
the sigmoid were increased from0.1 to 0.24 and from0.65 to 0.88,
respectively. The number of iterations for which the lateral connec-
tions were allowed to settle at each training iteration was initially
9, and was increased to13 over the course of training. Inhibitory
connections below 0.0000007 were pruned at iteration 6500, those
below 0.000035 at iteration 12,000, and those below 0.0002 at iter-
ation 16,000.

All simulations were run on an unloaded single-processor
600MHz Pentium III Linux machine with 1024 megabytes of RAM.
All timing results are user CPU times reported by the GNUtime
command; for these simulations CPU time is essentially the same
as the elapsed wallclock time since the CPU utilization was always
over 99%.
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