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Abstract

Self-organizing computational models with specific intracorti-
cal connections can explain many functional features of visual
cortex, such as topographic orientation and ocular dominance
maps. However, due to their computational requirements, it is
difficult to use such detailed models to study large-scale phe-
nomena like object segmentation and binding, object recogni-
tion, tilt illusions, optic flow, and fovea—periphery interaction.
This paper introduces two techniques that make large simu-
lations practical. First, a set of general linear scaling equa-
tions for the RF-LISSOM self-organizing model is derived and
shown to result in quantitatively equivalent maps over a wide
range of simulation sizes. This capability makes it possible to
debug small simulations and then scale them up to larger simu-
lations only when needed. The scaling equations also facilitate
the comparison of biological maps and parameters between in-
dividuals and species with different brain region sizes. Second,
the equations are combined into a new growing map method
called GLISSOM, which dramatically reduces the memory and
computational requirements of large self-organizing networks.

honer 198S; Obermayer et/al. 1990), and thus cannot be used
for such investigations.

In this paper we present two interrelated techniques for
making detailed large-scale simulations practical. First,
we derive a set of linear scaling equations that, when
given a small-scale simulation, make it possible to deter-
mine the parameter settings necessary to perform a large-
scale simulation. The original and scaled simulations have
quantitatively-equivalent map-level and neuron-level organi-
zation; the larger map will just have more detail. Such a cor-
respondence makes it possible to develop a small-scale simu-
lation first using available hardware, then scale it up to study
specific phenomena that require a larger map. The scaling
equations can also help tie parameters from small models to
experimental measurements in larger systems, help determine
simulation sizes needed for realistic simulations, and allow
comparison of species or individuals with brain regions of
different sizes.

With GLISSOM it should be possible to simulate all of human
V1 at the single-column level using existing supercomputers,
making detailed computational study of large-scale phenom-
ena possible.

Second, we present a modeling approach called GLISSOM
that allows much larger networks to be simulated in a given
computation time and in a given amount of memory. The
simulations begin with a small network, which is gradually
. scaled up as it self-organizes. This approach is effective for

1 Introduction two reasons: (1) pruning-based self-organizing models tend
Computational models of the self-organization in the visualto have peak computational and memory requirements at the
cortex have shown that input-driven development can exbeginning of training, and (2) self-organization tends to pro-
plain much of its topographic organization, such as retinoceed in a global-to-local fashion, with large-scale order estab-
topy, orientation preference, and ocular dominance, as welished first, followed by more detailed local self-organization
as many of its functional properties, such as short-range corfas found in experimental animals; Chapman et al. 1996).
tour segmentation and binding (Grossberg 1976; Kohonehus small maps, which are much quicker to simulate and
1989; von der Malsburg 1973; see Erwin et al. 1995; Swin-take less memory, can be used to establish global order, with
dale: 1996 for review). However, other important phenomenaarger maps used only to achieve more detailed structure.
have remained out of reach because they require too much Although the primary motivation for GLISSOM is compu-
computation time and memory to simulate. These phenomtational, the scaling process is also well-motivated biologi-
ena, such as orientation interactions between spatially segally, since it represents the integration of new neurons into
arated stimuli and long-range visual contour and object inan existing region during development. Recent experimental
tegration, are thought to arise out of specific lateral interacresults suggest that new neurons continue to be added even
tions between large numbers of neurons over a wide cortiin adulthood in many areas of primate cortex (Gould et al.
cal area/(Gilbert et al. 1996). Simulating such behavior re1999). Moreover, many of the neurons in the immature cortex
quires an enormous number of specific, modifiable conneceorresponding to GLISSOM’s early stages have not yet be-
tions. Currently-practical methods can only model intracorti-gun to make functional connections, having only recently mi-
cal interactions abstractly (e.g. SOM, Erwin et al. 1992;| Ko-grated to their final positions (Purves 1988). Thus the scaleup
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procedure in GLISSOM corresponds to the gradual process of Cortex
incorporating those neurons into the partially-organized map. Retina
In the next section the model used in these simulations
is introduced, and in section 3 scaling equations for it are
derived and shown to achieve matching results over a wide .
range of simulation sizes. In section 4 the GLISSOM scaleup © 0D ,Q,'@:::. ©
procedure is introduced and shown to greatly reduce simula- = C g\‘gj/&,}) )
tion time and memory requirements while achieving resultsAfferent connections %.f/ ). O O
similar to the original model. Sectior 5 shows calculations| ong-range inhibitory o°C ,’8\“\0 o
that suggest that with GLISSOM it should be possible to sim-connections ----- o dl o \b o o
ulate all of human V1 at the single-column level using ex- Short-range excitatory .
isting supercomputers. The remaining sections discuss howonnections
the scaling equations relate to biological systems and how
they can be used to simulate larger, more realistic systerrﬁ
that would otherwise be intractable.
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igure 1:Architecture of the RF-LISSOM network. A small RF-

SSOM network and retina are shown, along with connections to
a single neuron (shown as the large circle). The input is an oriented
Gaussian activity pattern on the retinal ganglion cells (shown by

2 RF-LISSOM model of the visual cortex grayscale coding); the LGN is bypassed for simplicity. The afferent
connections form a local anatomical receptive field (RF) on the sim-

The scaling equations and GLISSOM are based on the RFulated retina. Neighboring neurons have different but highly over-
LISSOM (Receptive-Field Laterally Interconnected Syner_lapping RFs. Each neuron computes an initial response as a scalar

icall If iZina M . I del of (dot) product of its receptive field and its afferent weight vector, i.e.
getically Self-Organizing Map) computational model of cor- a sum of the product of each weight with its associated receptor.

tical maps. RF-LISSOM has been successfully used to modethe responses then repeatedly propagate within the cortex through
the development of ocular dominance and orientation mapshe lateral connections and evolve into activity “bubbles”. After the

as well as low-level visual phenomena in the adult, such as ti|@ctivity.stabilizes,. weights of the active neurons are adapted using a

aftereffects and short-range segmentation and binding (Bed°'™alized Hebbian rule.

nar and Miikkulainen 200C; Choe and Miikkulainen 1998;

Miikkulainen et al. 1997; Sirosh and Miikkulainen 1994; ron itself and to its neighbors.

Sirosh et al. 1996). We will first describe the architecture of The afferent weights are initially set to random values, and

the RF-LISSOM model, and then later present our extensionthe lateral weights are preset to a smooth Gaussian profile.

that allow scaling the network. The connections are then organized through an unsupervised
RF-LISSOM focuses on the two-dimensional organizationlearning process. For an orientation map, the input for the

of the cortex, so each “neuron” in the model cortex correlearning process consists of 2-D ellipsoidal Gaussian patterns

sponds to a vertical column of cells through the six layers ofepresenting retinal ganglion cell activations (figuag; 2ach

the primate cortex. The cortical network is modeled with apattern is presented at a random orientation and position. At

sheet of interconnected neurons and the retina with a sheégch training step, neurons start out with zero activity. The

of retinal ganglion cells (figure 1). Neurons receive affer-initial responsey;; of neuron(i, j) is calculated as a weighted

ent connections from broad overlapping circular patches ogum of the retinal activations:

the retina. (Since the lateral geniculate nucleus (LGN) ac-

curately reproduces the receptive fields of the retina, it has s 25 3 )

been bypassed to simplify the model.) TNex N network "hig - abliab | »

is projected on to th& x R retinal ganglion cells, and each ¢

neuron is connected to ganglion cells in an area of radius where¢,, is the activation of retinal gangliofu, b) within

around its projection. Thus, neurons at a particular corticathe receptive field of the neurop,; .5 is the corresponding

location receive afferents from a corresponding location orafferent weight, and is a piecewise linear approximation of

the retina, i.e. its anatomical receptive field (RF). Additionalthe sigmoid activation function. The response evolves over
ganglion cells are included around the borders so that ever:

neuron will have a complete set of afferent connections. Foy ., . o .
P F\lbltory for proper self-organization to occur (Sirosh 1995). Op-

an example set of weights, see figusdin sectior) 4.1. tical imaging and electrophysiological studies have indeed shown
In addition to the afferent connections, each neuron haghat long-range column-level interactions in the cortex are inhibitory
reciprocal excitatory and inhibitory lateral connections withat high contrasts, even though individual long-range lateral connec-

itself and other neurons. Lateral excitatory connections ar#0ns between neurons are primarily excitatory (Grinvald et al. 1994;
y Hirsch and Gilbert 1991; Weliky et &l. 1995). The model uses ex-

short-range, connecting each neuron with itself and its CIOSﬁlicit inhibitory connections for simplicity since all inputs used are

neighbors. Lateral inhibitory connections run for compara-high-contrast, and since it is such inputs that primarily drive adapta-
tively long distances, but also include connections to the neuton in a Hebbian model.

For high-contrast inputs, long-range interactions must be in-
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(a) Input pattern (b) Orientation map (¢) Initial activity (d) Settled activity

Figure 2:Orientation map activation in RF-LISSOM ( color figure). The orientation color key at the far right applies to all of the plots in

(b-d), and to all similar plots in this paper. After being trained on inputs like the oreg iwith random positions and orientations, a %4414
RF-LISSOM network developed the orientation map showrb)nwhich is similar to those found in experimental animals (Blesdel 1992).

Each neuron in the map is colored according to the orientation it prefers. The white outline shows the extent of the patchy self-organized
lateral inhibitory connections of one neuron (marked with a white square), which has a horizontal orientation preference. The strongest
long-range connections of each neuron are extended along its preferred orientation and link columns with similar orientation preferences,
avoiding those with very different preferences. The brightness of the colosdnshows the strength of activation for each neuron to
pattern ). The initial response of the organized map is spatially broad and difft)séike the input, and its cortical location around a
horizontal line near the center of the cortex indicates that the input is horizontally extended near the center of the retina. The response is
patchy because the neurons that encode orientations far from the horizontal do not respond (camgéite b). After the network settles

through lateral interactions, the activation is much more focused, but the activated neurons continue to match the position and orientation
of the input. See appendix A for the parameter values used in this and later simulations. Animated demos of these figures can be seen at
http://www.cs.utexas.edu/users/nn/pages/research/visualcortex.html

a very short time scale through lateral interaction. At eachy; for inhibitory) and X,,,,, is the presynaptic activity¢(for
settling time step, the neuron combines the above afferergfferent,r for lateral). At long distances, very few neurons

activation ¢ with lateral excitation and inhibition: have correlated activity and therefore most long-range con-
nections eventually become weak. The weak connections are
nij(t) =0 (Z En+ve Yy Eijamua(t—1) eliminated periodically, resulting in patchy lateral connectiv-

(2) ity similar to that observed in the visual cortex.
=2y Lig i (= 1)) , y

, : , . 3 Scaling RF-LISSOM simulations

whereL;; 1, is the excitatory lateral connection weight on the o _ _ _
connection from neurof¥;, [) to neuron(i, ), I; x; is the in- The RF—LISSOM algorithm is computationally mtenswg_and
hibitory connection weight, angj, (¢ — 1) is the activity of ~ requires a large amount of memory to store the specific lat-
neuron(k, 1) during the previous time step. The scaling fac- eral connections, which makes large simulations impractical.
torsvi and~; determine the relative strengths of excitatory One straightforward way to model larger maps is to develop
and inhibitory lateral interactions. the initial model using a small network, and then scale up

While the cortical response is Settling’ the retinal activityto more realistic cortical sizes once the behaviour is well-
remains constant. The cortical activity pattern starts out dif4nderstood and the influence of the various parameters is
fuse and spread over a substantial part of the map (as in figlear. This way only a few runs will be needed at the larger
ure 2t), but within a few iterations of equation 2, converges Size; if necessary the larger simulation can be performed on
into a small number of stable focused patches of activity, o@ remote supercomputer. In the following subsections we de-
activity bubbles (figure @). After an input is presented, and Scribe the general approach to systematic scaling, show how a
the activity has settled, the connection weights of each neuro®€lf-organizing model can achieve similar results across sim-
are modified. Both afferent and lateral weights adapt accordulations with different initial conditions, and derive scaling

ing to the same mechanism: the Hebb rule, normalized so th&duations that make use of this property to develop similar
the sum Of the We|ghts is constant: mapS W|th netWOka Of diﬂ:erent SiZeS.

Wigmn () + 075 Xonn 3.1 The scaling approach

S [ Wijamn () + ani; Xonn) ) There are two general types of scaling transformations: a
change in the total cortical and retinal area simulated, and
wheren;,; stands for the activity of neurofi, j) in the final  a change in neuron or ganglion density for a fixed area. A
activity bubble,w;; . is the afferent or lateral connection change in the area corresponds to modeling a larger portion
weight (u, E or I), « is the learning rate for each type of of the visual space, e.g. a larger part of V1 and of the eye. A
connection ¢ for afferent weightspg for excitatory, and change in density corresponds to modeling a given area at a
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finer resolution (of either cortical neurons or retinal ganglia),values. Second, settling due to lateral excitation (equation 2)
as well as modeling a species, individual, or brain area thatauses nearby neurons to have similar final activity levels,
devotes more neurons or ganglia to the representation of which further reduces the contribution of each random affer-
fixed amount of visual space. ent weight value. Third, Hebbian learning depends on the fi-
Varying the density or area over a wide range is difficultnal settled activity levels resulting from an input (equation 3),
in a complex dynamical system like RF-LISSOM. Parameterand with a high enough learning rate, the initial weight values
settings that work for one size will need to be very differ- are soon overwritten by the responses to the input patterns.
ent to work properly with other sizes. To make such scalingFigure 3l,e shows that the large-scale map features develop
feasible, we derived a set of size scaling equations that agsimilarly even before the initial weight values have been over-
ply to RF-LISSOM networks and can be adapted for mosicome, and thus that the Hebbian process of self-organization
other models with similar connectivity. The equations wereis driven by the input patterns rather than the initial weights.
derived by treating a cortical network as a finite approxima- The net result is that as long as the initial weights are gen-
tion to a continuous map composed of an infinite number ofrated from the same distribution, their precise values do not
units (as in Amaii 1980 and Roque Da Silva Filho 1992). Un-significantly affect map organization. Similar invariance to
der such an assumption, networks of different sizes represethie initial weights should be found in other Hebbian mod-
coarser or denser approximations to the continuous map, arels that compute the scalar product of the input and a weight
any given approximation can be transformed into another byector, particularly if they include lateral excitation and use
(conceptually) reconstructing the continuous map and thea high learning rate in the beginning of self-organization. If
resampling it. a model does not have such invariance, scaling equations can
Given an existing retina and cortex of some fixed size, thétill generate functionally-equivalent maps, but they will not
scaling equations provide the parameter values needed forke visually identical like the density-scaled maps presented in
smaller or larger retina and cortex to form a functionally- later sections.
equivalent map. The equations are linear, but despite the no

%3 Scaling the area
linearities in the model they have been been experimentallx_ i 9 ] ) . )
verified to result in maps with similar properties and map he following subsections will present the scaling equations

organization, for a wide range of network sizes. All of the for area, retinal ganglion density, and cortical density, along
equations can be applied before the simulation begins, anffith results from simulations of each type. Since the equa-
as described in section 4, the GLISSOM method allows thdions are linear they can also be applied together to change
density to be changed dynamically during the self-organizind’?th area and density simultaneously. First, we consider the

process. simplest case, changing the area of the visu_al space simu-
lated. To change the area, both the cortex wiittand the
3.2 Prerequisite: Insensitivity to initial conditions retina width R must be scaled by the same proportiorel-

. . . . . ative to their initial valuesv, and R,,. In addition, to ensure
One desirable property of a scaling algorithm is that it resultsthat the resulting network ohas thg same amount of learning

in identical final maps even when the scaling steps are dif- o1 neuron per iteration. the average activity ber input recen.
ferent. Therefore, it is crucial that the map organization not? P ’ 9 yp P P

depend on the random initial weights, since those will vary or needs to remain con_stant. Thus vyhen using discrete |_nput
patterns (such as the oriented Gaussians used in these simula-

between networks of different sizes. In this section we will®, . !
tions), the average number of pattefnger iteration must be

show that the RF-LISSOM algorithm has exactly this prop- ) i .
erty. Figure 3 shows that the map pattern depends primarilggg:ﬁ]dgVt\ﬂt:;?;arssr;a]!airt(;?érgonsequemly' the equations for

on the stream of inputs seen during self-organization, and no
on the initial weights, as long as the initial weights are drawn N =kN, R=kR, 7=k, 4)
from the same random distribution.

The insensitivity to initial weights follows from three fea- See figure 4 for an example of scaling the area.
tures of the RF-LISSOM model: (1) the scalar product input . . . .
response function, (2) lateral excitation between neurons, ang-4 ~ Scaling retinal ganglion density
(3) the initial period with high learning rates. First, a neuron’s The parameter changes required when changing retinal recep-
initial response to an input pattern is determined by the suntor or cortical neuron density are less obvious than those for
of the product of each retinal receptor with its correspondingarea. To scale the retinal receptor density without disrupting
weight value (equation 1). For smoothly-varying input pat-the functional behavior of the map, the ratio between the af-
terns and large enough,, this sum will have a very similar ferent connection radius afimust be constant, i.ey must
value regardless of the specific values of the weights to eacécale withR. (Otherwise, the visual field area processed by
receptor. Thus, until the weights have self-organized intceach neuron would change when the retinal density changes.)
a smooth, spatially non-uniform distribution, the input re- When the connection radius increases, the total number of
sponse of each neuron will be largely insensitive to the weighafferent connections per neuron also increases. Because the
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; Figure 3: Input stream determines map pat-
Weight stream 2 tern in RF-LISSOM (color figure). There are
Input stream 1 Input stream 1 Input stream 2 two sources of random fluctuations that can affect
the final map pattern in a self-organizing system:
the random initial values of the weights, and the
random stream of inputs presented. Each of these
sources is controlled by an independent pseudo-
random number generator that can be given dif-
ferent seeds to produce different streams of val-
ues. Using a different seed for the weight gener-
ator results in different initial orientation maps (
andb), but has almost no effect on the final self-
organized maps (compacgto h). (These plots
and those in subsequent figures use the color key
@ (b) © from figure 2.) This invariance occurs because the
development of large-scale map features is insen-
sitive to the initial weight values. (Compare maps
d ande measured at iteration 100; the same large-
scale features are emerging in both maps despite
different patterns of local noise caused by the dif-
ferent initial weights.) In contrast, changing the
input stream produces very different early and fi-
nal map patterns (compaedo f andhtoi), even
when the initial weight patterns (and therefore the
initial orientation maps) are identicab @nd c).
Note that regardless of the seed values, the over-
all properties of the final maps are similar (e.g. hy-
percolumn spacing, number of pinwheel centers),
because the statistical properties of the random in-
put distributions are the same. In animals, dif-
ferent input streams correspond to differing early
visual experiences or different patterns of sponta-
neous activity. Thus the RF-LISSOM model pre-
dicts that the precise map pattern in an adult an-
imal depends primarily on the order and type of
activity patterns seen by the cortex in early devel-
opment, and not on the details of the initial con-
nectivity.

Weight stream 1 Weight stream 2

Initial map

Early map

Final map

learning raten, specifies the amount of change per connec-erate functionally-equivalent orientation maps using different
tion and not per neuron (equation 3), it must be scaled downetinal receptor densities.
so that the average total weight change per neuron per it-
eration remains constant. (Otherwise, a given input patter@.5 Scaling cortical neuron density
would cause more total change in the weight vectors of each
neuron in the scaled network than in the original.) So the afChanging the cortical density is analogous to changing reti-
ferent learning rater, must scale inversely with the number nal receptor density, but the intracortical connection sizes and
of afferent connections to each neuron, which in the continassociated learning rates also need to be scaled. The lateral
uous plane corresponds to the area enclosed by the afferegénnection radiig andr; should be scaled wittv so that
radius. Thuse, scales by the rati@‘%. the ratio between each radius afdremains constant. For
simulations that shrink the lateral excitatory radius, the final
To keep the average activity per iteration constant, the size gdiusrg, must also be scaled. Likea in retinal density
the input features must also scale wiih keeping the ratio scaling,ag and a; must be scaled so that the average to-
between the feature width arid constant. For Gaussian in- tal weight change per neuron per iteration remains constant
puts this means keeping the ratio between the Gaussianl despite changes in the number of connections. Finally, the
R constant. Thus the retinal density scaling equations are: absolute weight leveD; below which lateral inhibitory con-
2 nections are killed at a given iteration must be scaled when
A = R%?”Aa an=Daray, o, = Loy, (5) the tota}l ngmb_er of Iatgral connections changes. (The weight
oy = Riayo normalization in equation 3 ensures that when there are fewer
° weights each one is stronger, and thus the value of each
Figure 5 shows how this set of equations can be used to gemveight is proportional to the number of connections.) Thus,
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(a) 36x 36 (b) 48x 48 (c) 72x72 (d) 96x96 (e) 144x 144
0.17 hours, 2.0MB 0.32 hours, 5.2MB 0.77 hours, 22MB 1.73 hours, 65MB 5.13 hours, 317MB

Figure 6:Scaling the cortical density in RF-LISSOM (color figure). Five RF-LISSOM orientation maps from networks of different sizes

are shown; the parameters for each network were calculated using equations (6), and then each network was trained independently on the
same pseudorandom stream of input patterns. The size of the network in the number of connections rangied T68nto 3 x 10% (2

megabytes to 317 megabytes of memory), and the simulation time ranged from ten minutes to five hours on the same machine, a single-
processor 600MHz Pentium Il with 1024 megabytes of RAM. Much larger simulations on the massively-parallel Cray T3E supercomputer
perform similarly. Despite this wide range of simulation scales, the final organized maps are both qualitatively and quantitatively similar, as
long as their size is above a certain minimum (here aboutsdd. Larger networks take significantly more memory and simulation time; this
difficulty is addressed by GLISSOM (section 4).

the cortical density scaling equations are: results similar to larger ones. Units are laid out on a rectan-
N 2 2 gular grid, and thus the smallest neuron-centered radius that
Eo — 1o . . .
TE = N,TE,, OB = 77 QE,; Dy = Dy, 2 ©6) includes at least one other neuron center is 1.0. If the exci-
N 02 . . .
"= NeTn,, 01 = 7;{12 ar,, tatory radius is allowed to drop below 1.0, the map will no

longer have any local topographic ordering, since there will
Figure 6 shows examples of using the cortical density scalinge no local excitation between neurons. Conversely, if the
equations to generate RF-LISSOM orientation maps of diffina| radius is held at a minimum of 1.0 while the map size
ferent sizes. For band-limited input patterns like those we usgontinues to be reduced, the lateral spread of excitation will
here for clarity, results at different sizes match closely, sincgzke over a larger and larger portion of the map, causing the
even the larger networks are representing the same quanfiypercolumn width of the resulting map to increase. To avoid
ties represented by the smaller ones. If the input were muchych complications, in the rest of this paper we assume that
more complicated, as are natural images, then different bgne starting size is above this lower bound onithe and that
havior would be seen for each larger network, as it developedizes are being increaséd.

smaller-scale structure to represent the less-prominent fea-

tures of the input. However, the large-scale features should 4 Growing LISSOM (GLISSOM)

still remain constant over scaling. The scaling equations make it practical to do many simula-
3.6 Limitations on scaling tions using widely-available hardware, but the scaled up sim-

ulations still require so much simulation time and memory

The scaling equations essentially allow any desired corte
: f . : that supercomputers are often necessary. Supercomputers
and retina size to be simulated without a search for the appro- . . )
enerally have restricted access, are located at inconvenient

riate parameters. They make it simple to trade off densit . L - .
P P y P emote sites, have limited auxiliary tool support, and in gen-

for area to study specific phenomena given fixed computa- . X
y sp P 9 P gal are less practical to use than workstations. To address

ional r r n | larger maps when required.. .
tional resources, a 'dto scale up o larger maps when require is problem we developed GLISSOM, an extension of the
Matching results will be achieved when the size is increase

. ) . . RF-LISSOM model that allows much larger networks to be
while keeping the complexity of the input patterns constant;_. :
simulated on the same hardware in the same amount of com-

in this case, qualitatively and quantitatively similar maps de- N : . :
velop regardless of size. The equations can also be used Pclftatlon time. GLISSOM consists of successively scaling up

construct a smaller network, but at some lower bound the nef’-’—m RF-LISSOM network during self-organization using the

work will no longer have enough units to represent a similarCortlcal density equations (6), while smoothly interpolating

map, and thus e.g. only position will be represented and not 2Rradius values smaller than 1.0 could be approximated using
orientation. Similarly, if the retinal resolution is reduced soa technique similar to antialiasing in computer graphics. Before
much that the retinal images become unrecognizable, the ned-weight value is used in equation 2 at each iteration, it would be
work will no longer have similar functional properties. scaled by the proportion of its corresponding pixel's area that is in-

E . imulati the | b d tex d cluded in the radius. This technique should permit smaller networks
or a given simulation, the fower bound on corex den-y, pe simylated faithfully even with a discrete grid. However, since

sity is generally determined by the minimum excitatory ra-our focus is on methods for simulating larger networks, we have not
dius (g, ); with rg, close to 1.0, the simulation will not give  investigated such an extension.
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Figure 4: Scaling the total area in RF-LISSOM (color figure).

Equations (4) can be used to scale the total area simulated, in orde

to simulate a larger portion of the cortex, retina, and visual field. For

large N the number of connections and the simulation time scale

approximately linearly with the area, and thus a network four times

as wide and four times as tall (above) takes about sixteen times the (e) Retina scaled by 3.0 (f) Final map

memory and sixteen times as long to simulate. For discrete input pat- R—=94.3—="79

terns like these oriented Gaussians, larger areas require more input " _ 9y . _ 45

patterns to keep the total learning per neuron and per iteration con- ’ Y '

stant. Because the inputs are generated randomly across the aCt'WPgure 5: Scaling the retinal density in RF-LISSOM (color fig-

surface of the retina, each map sees an entirely different stream of.&) " Equations|(5) can be used to scale the density of retinal gan-

inputs, and so the final map patterns always differ when the area dify ion cells simulated per unit of visual area, while keeping the area

fers. The area scaling equations are most useful for testing a mod Ld the cortex density constant. Here we show RF-LISSOM orien-

with a small area and then scaling up to eliminate border effects ang,io, maps from three separate-385 networks that have retinas of

to simulate the full area of a corresponding biological preparation. yiterent densities. The parameters for each network were calculated
using equations (5), and then each network was trained indepen-
dently on the same pseudorandom stream of input patterns. The size

the existing afferent and lateral weights to create the new neusf the input pattern in retinal units increases as the retinal density is

rons and new connections for the larger network. This Sca“ngcreased, but its size as a proportion of the retina remains constant.

allows neuron density to be increased while keeping the large-0" SPatial-frequency band-limited inputs like the ellipsoidal Gaus-
sians shown above and used to train these orientation maps, the final

scale §tru_ctura| and fu_nction_al properties constant, such as tl?l"?ap changes very little above a certain retinal density (here about
organization of the orientation preference map. In essence; — 48). With natural images and other stimuli that have high
the large network is grown in place, thereby minimizing thespatial-frequency components, scaling the retinal density will allow

computational resources required for simulation. the map to represent this higher-frequency data while preserving the
. - . . large-scale map organization.
Figure 7demonstrates why such an approach is effective.

Both the memory requirements and the computation time of
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Figure 7:Training time and memory requirements at each iteration. Data is shown for one run of each algorithm with a final network

size of 144x144; for GLISSOM the starting size was 886. (@) Each line shows the number of connections alive at a given iteration.
Memory requirements of RF-LISSOM peak at early iterations, decreasing at first in a series of small drops as the lateral excitatory radius
shrinks, and then later in a few large drops as long-range inhibitory weights are pruned at iterations 6500, 12,000, and 16,000. GLISSOM
does similar radius shrinking and pruning, while also scaling up the network size at iterations 4000, 6500, 12,000, and 16,000. Since the
GLISSOM map starts out small, memory requirements peak much later, and remain bounded because connections are pruned as the network
is grown. By this means GLISSOM can keep its peak number of connections, which determines the simulation memory requirements, as
low as the smallest number of connections occurring in RF-LISS@ME&ch line shows a 20-point running average of the time spent in
training for one iteration, with a data point measured every 10 iterations. Only training time is shown; times for initialization, plotting images,
pruning, and scaling networks are not included. Computational requirements of RF-LISSOM peak at early iterations, falling as the excitatory
radius (and thus the number of neurons activated by a given pattern) shrinks and as neurons become more selective. In contrast, GLISSOM
requires little computation time until the final iterations. Since the total training time is determined by the area under each curve, GLISSOM
spends much less time in training overall.

RF-LISSOM (and other pruning-based models) peak at theonnections. The afferent connection strength to a neiron
start of self-organization, when all connections are activejn a scaled map from a retinal gangliGhin its receptive field
none of the neurons are selective, and activity is spread ovés calculated from the strengths of the connections fédto
a wide area. As the neurons become selective and smalléhe ancestorsof X. The ancestors of neural consist of
regions of the cortex are activated by a given input, simulaup to four neuronsy;, X,, X3, and X, surrounding théem-
tion time dramatically decreases, since only the active neuageof X, i.e. the real-valued location in the original network
rons need to be simulated in a given iteration. GLISSOMto which the neuron would be mapped by linear scaling of its
takes advantage of this process by approximating the maposition (figure 3). In the middle, each neuron has four ances-
with a very small network early in training, then gradually tors; at the corners, each has only one, and along the edges,
growing the map as selectivity and specific connectivity areeach has two. Each ancesfoyof X has arinfluences rang-
established. ing from 0 to 1.0 on the computed weights &f determined
by its proximity to.X:
4.1 GLISSOM methods
. . . .. o~ _ d(X7 Xi)

The GLISSOM weight scaling interpolates between existing Sx, =10 - ——, (7)
values by treating the original weight matrices as a discrete "
set of samples of a smooth, continuous function. Under sucWhered(X, X;) represents the Euclidean distance between
an assumption, the underlying smooth function can be resanibe image ofX and its ancestoX; in the original network,
pled at the higher density. Such resampling is equivalent t&nddy, is the maximum possible distance between the image
the smooth bitmap scaling done by computer graphics proOf a scaled neuron and any of its ancestors, i.e. the diagonal
grams, as can be seen in the plots shown later in figure 9. ThigPacing between ancestors in the original network. The affer-
type of scaling always adds at least one whole row or columi§nt connection strengthx ¢ is then a normalized proximity-
of neurons at once, as is done in more abstract growing seliv€ighted linear combination of the weights frothto the
organizing maps like the Growing Grid model (Fritzke 1995;ancestors of:
Rodriques and Almeida 1990). > wxaSx;

We first consider the interpolation procedure for afferent Wxae = ZZT’ (®)
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Figure 8:GLISSOM connection strength scaling. This example shows a cortex of size 4 being scaled to 99 during self-organization,

with the retina size fixed at>88. Both cortical networks are plotted in the continuous plane representing a fixed area of cortex. The squares
on the cortex represent neurons in the original network (i.e. before scaling) and circles represent neurons in the newGhistaaekinal
ganglion cell andX andY are neurons in the new network. Afferent connection strengths to nelinonthe new network are calculated

from the connection strengths of thecestorf X . The ancestors oX are X, X», X3, andXy, i.e. the neurons in the original network that
surround the position ak. The new afferent connection strength  from ganglionG to X is a normalized combination of the connection
strengthsux, ¢ from G to each ancestoX; of X, weighted by the distane& X, X;) betweenX; andX. Lateral connection strengths from

Y to X are calculated similarly, as a proximity-weighted combination of the connection strengths between the ancestors of those neurons.
First thecontributionof eachX; is calculated as a normalized combination of the connection streagths from eachy; to X;, weighted
inversely by the distana&(Y, Y;) betweerlt; andY. The connection strengthxy is then the sum of the contributions of eakh, weighted
inversely by the distancé( X, X;). Thus the connection strengths in the scaled network consist of proximity-weighted combinations of the
connection strengths in the original network.

wherewy, ¢ is the afferent connection weight from ganglion 4.2 GLISSOM experiments

G to theith ancestor ofX. Because receptive fields are lim- . ) )
ited in size, not all ancestors will necessarily have connec?* GLISSOM simulation starts with a cortex that has a low

tions to that ganglion, and only those ancestors with connecortical density. The scaling procedure is then used to gradu-
tions to( contribute to the sum. ally increase the density as the network self-organizes. At the

Lateral connection strengths from neurBnto neuronX same time, the scaling equations from section 3.5 are used
in the scaled map are computed similarly, as a proximity-to keep the other parameters functionally equivalent. Similar

weighted linear combination of the connection strengths beSc@ling could be used to increase the retinal density during
tween the ancestors 8f and the ancestors of. First. the Self-organization, but since the retinal processing has less of

contributionfrom the ancestors df to eachy; is calculated: 2" influence on the computation and memory requirements,
retinal density scaling was not included in the simulations re-

o > Wx,y; Sy, ported below.
Y Zj Sy, ©) The precise scaling schedule is not crucial as long as the
starting point is large enough to represent the largest-scale
wherewyx:y, is the connection weight from thgh ancestor  features in the final map, without being so large that the speed
of Y to theith ancestor ofX', where defined. The new lateral penefits are minimal. A linear size increase from the starting

connection strengttrxy is then the proximity-weighted sum  sjze N, to the final sizeN; shortly before the end of train-

of the contributions from all ancestors &f. ing usually works well; scaling up more quickly increases
3. Cx,vSix, simulation accuracy, while delaying scaling reduces training
Wxy = W’ (10)  time at the expense of accuracy. Making a few large scaling
(2 (3

steps gives similar results in less computation time than mak-
Figure 9 shows a scaling example for a partially-organizedng many smaller steps, so usually only a few steps are used.
orientation map and the weights of one neuron in it. The intermediate scaling steps in the following sections were



(a) Afferent weights (b) Excitatory weights (c) Inhibitory weights (d) 48x 48 cortex
Before scaling Before scaling Before scaling Before scaling

[
(e) Afferent weights (f) Excitatory weights (g) Inhibitory weights (h) 96x 96 cortex
After scaling After scaling After scaling After scaling

Figure 9: GLISSOM: Scaling cortex density in place ¢olor figure). These figures represent a single large GLISSOM cortical density
scaling operation, going from a 4818 cortex to a 9& 96 cortex in one step at iteration 10,000 out of a total of 20,000. (Usually much smaller

steps are used, but the changes are exaggerated here to make them more obvious.) A set of weights for one neuron from the48iginal 48
network is shown ing-c), and the orientation map measured for the networkljnThe active inhibitory weights of that neuron are outlined

in white. Similarly, a set of weights for one neuron from thex®® scaled network is shown ir<{g). The orientation maphj measured

from the scaled map is identical td)(except that the resolution has been doubled smoothly; this network can then self-organize at the new
density to represent finer details. Since each scaled neuron receives four times as many lateral weights as one from the original map, pruning
is usually done during the scaling step to keep the total size of the network bounded; pruning was skipped here for simplicity.

computed using the following formula: The second requirement is that GLISSOM significantly re-
duce the overall computation time and memory requirements.
N = No + K(No — Ny), (11)  This result can clearly be seen in figure 13. For example, for

h h | . d a final N = 144 on a 600MHz Pentium Il workstation, RF-
wherek was a constar}t ‘Whose values Increased approxip oo takes 5.1 hours for 20,000 training iterations, while
"?a‘e'y _Imearly over training. U_nless stated 0therywse theGLISSOM finishes in 1.6 hours (a speedup ratio of 3.1). For
simulations below use four scaling steps=0.20 at itera- .+ simylation, RF-LISSOM requires 317MB of memory to

: . %tore its connections, while GLISSOM requires only 60MB (a
Figure 10 shows examplesof the scaled maps at each 'terat'(?ﬂemory savings ratio of 5.2). Importantly, the speedup and

for one GLISSOM simulation, compared to the full-size RF- : : o :
’ memory savings increase as the network size increases (fig-
LISSOM simulation. The GLISSOM network passes throughures 1‘gand 1%) which means that GLISSOM can make |(t 9

similar stages of self-organization, with the map size gradu- ; ;
. ractical to simulate much larger networks.
ally approaching that of the RF-LISSOM map. P . g _ _
These results validate our conjecture that a coarse approxi-

4.3 GLISSOM results mation suffices for the early iterations in RF-LISSOM. Early
The first requirement for GLISSOM is that the maps and conin training, only the large-scale organization of the map is
nection weights it produces should be equivalent to those prdmportant; using a smaller map for this stage does not signif-
duced by RF-LISSOM. As shown in figures 11 and 12, foricantly affect the final results. Once the large-scale structure
a sufficiently large starting map size, GLISSOM producessettles, individual neurons start to become more selective and
an orientation preference map and weight patterns that ae differentiate from their local neighbors; a denser map is
qualitatively and quantitatively equivalent to those of RF-then required so that this detailed structure can develop. Thus
LISSOM. GLISSOM uses a map size appropriate for each stage in self-
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Iteration O Iteration 1000 Iteration 10,000 Iteration 20,000

() 36x36 GLISSOM  (b) 36x36 GLISSOM () 58x58 GLISSOM  (d) 87x87 GLISSOM  (e) 144x 144 GLISSOM

Figure 10: Self-organization in RF-LISSOM and GLISSOM (color figure). At each iteration, the emerging GLISSOM map features

are similar to those of RF-LISSOM except for discretization differences, and the maps are gradually scaled so that by the final iteration the
GLISSOM map has the same size as RF-LISSOM. To make the scaling steps more obvious, this example uses the smallest acceptable starting
size; figure 12 shows that results match more closely for larger starting sizes.

0.050 Figure 11: For sufficiently large starting N, GLISSOM weights
] are a close match to those of RF-LISSOMEach point shows the
root mean squared (RMS) difference between the final values of the

_ 0040 ] corresponding weights of each neuron in two networks: axii4é

2 L E RF-LISSOM map, and a GLISSOM map with an initial size shown
% 0,030 i on the x-axis and a final size of 14444. Both maps were trained

g = on the same stream of oriented inputs. The GLISSOM maps starting
] - 1 as large agV = 96 used four scaling steps, while the three starting
£ 0.020- B points closer to the final size used fewer stefys= 114 had one step
P at iteration 6500N = 132 had one step at iteration 1000, and there
> - ] were no scaling steps fa¥ = 144. Low values of RMS difference

= o010l | indicate that the corresponding neurons in each map developed very

similar weight patterns. The RMS difference drops quickly as the start-
] ing size increases, becoming negligible above 36. As described in

0.000 \ \ \ T \ Tty sectior| 3.5, this lower bound is determinedrigy., the minimum size
0 18 3% 54 72 90 108 126 144 of the excitatory radius.
Starting N

organization, in order to model development faithfully while section, with such a simulation it will be possible to study

saving simulation time and memory. phenomena that require the entire visual field or the full cor-
tical column density and connectivity. Calculating the full-
5 Scaling to cortical dimensions scale parameter values is also valuable by itself, since it can

help tie the parameters of a small model to physical measure-
The maps in section 4 represent only a small region of corments. For instance, once the relevant scaling factors are cal-
tex and have a limited range of connectivity. Combined withcylated, the connection lengths, receptive field sizes, retinal
the scaling equations, these results make it possible to okyrea, and cortical area to use in a model can all be derived
tain a rough estimate of the resource requirements needed #rectly from the corresponding quantities measured in a bi-

approximate the full density, area, and connectivity of the vi-g|ogical preparation. Conversely, where such measurements
sual cortex in a particular species. As discussed in the next
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(a) GLISSOM (b) GLISSOM (c) GLISSOM (d) RF-LISSOM
Starting N = 36 StartingV = 54 StartingN = 72 Fixed N = 144
1.63 hours, 61MB 1.94 hours, 60 MB 2.29 hours, 69 MB 5.13 hours, 317 MB

Figure 12:Orientation maps match between GLISSOM and RF-LISSOM ¢olor figure). Above the minimum 3636 starting size, the

final GLISSOM maps closely match those of RF-LISSOM, yet take much less time and memory to simulate. Computation time increases
smoothly as the starting size is increased, allowing a tradeoff between accuracy and time; accuracy is high even for computation times sub-
stantially lower than those of RF-LISSOM. Memory requirements are bounded by the size of the final maps until the starting size approaches

the final size, after which the requirements gradually approach those of RF-LISSOM.

are not available, model parameter values which produce rénhibitory radiusr; = 18, but simulating the fulimm would
alistic behavior constitute predictions for future experimentsrequirer; = 124.° Because the current RF-LISSOM imple-

several key RF-LISSOM parameters needed for a full-scaldent, it would need to stors? x 249 %44 x 10° long-range
simulation of human visual cortex. We will first consider lateral connections for thesmn?* arez? Thus a minimum

a full-density simulation of a small but typical simulation ©f1.4 terabytes of RAM (assuming 4 bytes per connection)
area, and then a full-density simulation of the total area ofvould be required to simulate tiBsmm?” area at full den-
human V1. The parameters used in most of the simulaSity in RF-LISSOM. Supercomputers will probably reach this
tions in the preceding sections construct a map whose glob&Rnge within the next few years but are not yet there. Since the
features match approximatelysaim x 5mm (5mm?) area total area of human V1 is aboa#00mm? (Wandell 1995),

of macaque cortex (compare figure 12 with Blasdel :ngz)j[he minimum realistic RF-LISSOM simulation size for all of
Many map models use an area of about this size because il Would be about.000 times greater than for thgsmm?
corresponds to the experimental data available, and becauBatch, or135 terabytes. This figure is out of the range of

it shows enough hypercolumns in each direction to study th&€Ven the largest supercomputers expected to be available in
overall map organization. Estimates for the number of neuthe near future.

rons in a25mm? area of human V1 range from6 x 10° In contrast, since GLISSOM does not need to represent all
(Wandell 1995) td x 10° (Rockel et al, 1980). Each corti- Of the possible final connections at the beginning of the sim-
cal unit in RF-LISSOM represents one vertical column, andulation, it can make use of a sparse lateral connection stor-
the number of neurons per vertical column in primate V1 hagge format that takes much less memory, and correspond-
been estimated @59 (Rockel et al. 1980). Thus a full-scale ingly less computation time. The memory required depends
simulation of25mm? would require from6, 000 to 35, 000 on the number of connections active after self-organization,

column units total, which corresponds to RF-LISSOM pa-Which in current GLISSOM simulations is abots%. As
rameter)N ranging from78 to 188. the radius increases this percentage will drop with at least

the square of the radius, since long-range connections ex-

Simulations with this number of units are practical; somet d onlv al th torred orientati £ th d
of the workstation simulations presented in the previous sece 1@ only along he preterred orientation ol the neuron an

tions were as large a¥ — 144, and similar simulations on not in all directions/(Bosking et &l. 1997). Thus, for the full

a sup(_a_rcomputer have been as Ia.rge’\faﬁ 192 (Bednay 3Since this range would provide greater than full connectivity for
and Miikkulainer) 2000). However, it is the number of lateral e 73 « 78 area simulated, to make the following calculations we
connections, not the number of columns, that is the cruciahssume that the area under discussion is part of a larger area also
determinant of simulation time and memory requirementssimulated. Note that; = 18 requires only a tiny fraction of the
Lateral connections in V1 are as long&am (Gilbert et al. Mmemory needed to simulatg = 124, since the memory require-
1990), but previous RF-LISSOM simulations have underes™ents increase with the area enclosed by the radius.

timated lateral tion | th f tati | 4For the large networks discussed here the number of long-range
Imated lateral connection length Tor computational reasongye g inhibitory connections is far greater than the connections of

For the smallest realistic siz& = 78, a simulation compa-  other types, so the memory requirements will be calculated from the
rable to those in the previous sections would use a maximurimhibitory connections alone.
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Figure 13: Comparison of simulation time and memory requirements for GLISSOM and RF-LISSOM. Summary of results from

fourteen simulations on the same 600MHz Pentium IIl workstation, each running either RF-LISSOM (with th&/fixelicated in the

x-axis) or GLISSOM (with a starting size df = 36 and the final sizéV indicated in the x-axis). & The memory requirements consist

of the peak number of network connections required for the simulation; this peak determines the minimum physical memory needed when
using an efficient sparse format for storing weights. RF-LISSOM’s memory requirements increase very quigkly exreased, while
GLISSOM is able to keep the peak number low so that much larger networks can be simulated on a given machine. For example (reading
across a horizontal line through the graph), if a machine can hold 20 million connections, with RF-LISSOM it can only sNnela26

(9000 units), while with GLISSOM it can simulafé = 144 (21,000 units); GLISSOM'’s advantage increases for larger valuds @) The

total simulation times for RF-LISSOM also increase dramatically for larger networks, because larger networks have many more connections
to process. In contrast, since GLISSOM uses fewer connections for most of the self-organization process, its computation time increases only
modestly for the same range df. (Simulation time includes training time plus time for all other computations, including plotting, orientation

map measurement, and GLISSOM's scaling stefsd) As the network size increases, GLISSOM results in greater memory savings (ratio
between memory requirements of RF-LISSOM and GLISSOM) and a greater speed boost, which makes large networks much more practical
to simulate. [The variance in simulation time and memory usage between simulation runs is very small (less than 1% even with different input
and weight seeds), and thus fsr > 72 the differences between GLISSOM and RF-LISSOM are highly statistically significant (Student’s
t-test, P < 0.005) after only two runs of each simulation. Since the results are so consistent, for simplicity all data points plotted here were
measured from a single run of the indicated algorithm.]
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scale simulation, abouts%-% = 0.3% of the connections from a more densely-connected brain area would have sig-
would remain active. Under these assumptions, the memonmgificantly greater total plasticity, which (to our knowledge)
requirements for a fully-realistic simulation oRamm? area  has not been demonstrated. Consequently, unless the number
could be reduced to approximatéhgigabytes, which is cur- of synapses per neuron is constant, the learning rate must be
rently within the range of a large workstation. Even for aregulated at the whole-neuron level rather than being a prop-
simulation of the full V1 area, GLISSOM using an efficient erty of individual synapses. This principle conflicts with as-
sparse connection storage format would require only abowgumptions implicit in most neural-network models, including
450 gigabytes, which is within the reach of the largest ex-RF-LISSOM, that specify learning rates for individual con-
isting supercomputers, e.g. San Diego Supercomputing Cemections directly. Future work will be needed to determine
ter's 584GB IBM RS/6000 SP. Thus a sparse implementawhether such whole-neuron regulation of plasticity does oc-
tion of GLISSOM should be able to simulate all of V1 at the cur, and if not, whether more densely-connected regions do
single-column level with realistic lateral connectivity using have a greater level of overall plasticity.
currently-available computer hardware. Similarly, equations (6) suggest that the connection
. . strength pruning threshol®; depends on the total number

6 Discussion and future work of connections to the neuron, rather than being an arbitrary
The RF-LISSOM simulation results in section 3 showed thafixed value. With divisive weight normalization, increasing
the scaling equations are valid over a wide range of spatidhe number of connections decreases the strength of each one;
scales. The GLISSOM results in section 4 showed that théis procedure is motivated by vitro findings of whole-cell
equations can be used to significantly reduce simulation timéegulation of excitability (Turrigiano et al. 1998). A conse-
and memory usage and thereby make the study of large-scafigience is that a fixed; that prunes e.g. 1% of the connec-
phenomena tractable. Similar equations should apply to mogtons for a small cortex would prune all of the connections for
other models with specific intracortical connectivity, and cana larger cortex. This finding provides independent theoretical
be adapted to those with more abstract connectivity such s&upport for experimental evidence that shows pruning to be a
a Mexican hat interaction function. The growth process ofcompetitive process (Purves 1988).
GLISSOM should provide similar performance and memory The scaling equations also provide an effective tool
benefits to most other densely-connected models whose peédr making cross-species comparisons, particularly between
number of connections occurs early in training. Essentiallyspecies with different brain sizes. In effect, the equations
the GLISSOM procedure allows a fixed model to be adaptedpecify the parameter values that a netwshioulduse if it
into one that grows in place, by using scaling equations ands to have similar behavior as a network of a different size.
an interpolation algorithm. As pointed out by Kaas (2000), different speciesndbusu-

The benefits of a GLISSOM approach will be somewhatally scale faithfully, probably due to geometrical, metabolic,
lower for models that do not shrink an excitatory radius dur-and other restrictions. As a result, as V1 size increases, the
ing self-organization, and therefore do not have a temporariateral connection radii do not increase as specified in the cor-
period with widespread activation. For such models, it maytical density scaling equations, and processing becomes more
be worthwhile to consider a related approach, whereby onlyand more topographically local. Kaas (2000) proposes that
the lateral connection density is gradually increased, insteaguch limitations on connection length may explain why larger
of increasing the total number of neurons in the cortex. Suclbrains such as human and macaque are composed of so many
an approach would still keep the number of connections (anslisual areas, instead of just expanding the area of V1 to sup-
therefore the computational and memory requirements) lowport greater functionality. The scaling equations combined
while keeping large-scale map features such as the hypercakith LISSOM provide a concrete platform on which to test
umn distance constant over the course of self-organization. these ideas in future multi-region simulations.

Apart from their application to simulations, the scaling The most important result of the scaling equations and the
equations give insight into how the corresponding quantitiesGLISSOM approach is that they will make much larger sim-
differ between individuals, between species, and during dedlations feasible. Future work can use this power to study
velopment. In essence, the equations predict how the bidarger-scale and more complex phenomena that would other-
physical correlates of the model parameters will differ be-wise be possible only in abstract models. For instance, the
tween any two cortical regions that differ in size but performvisual tilt illusion is thought to occur through orientation-
similar computations. The discrepancy between the actual papecific lateral interactions between spatially-separated stim-
rameter values and those predicted by the scaling equationsi (Carpenter and Blakemcre 1973). Memory constraints
can give insight into the difference in function and perfor- limited the lateral connection length in previous RF-LISSOM
mance of different brain regions, individuals and species.  simulations, and thus such long-range interactions could not

For instance, equations (6) and the simulation results suge studied. Existing computational models of the tilt illusion
gest that learning rates per connection should scale with thieave been practical only because they ignore the spatial com-
total number of connections per neuron. Otherwise neurongonents of the input pattern and the cortical response (Mundel
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et al|| 1997, Spivey-Knowlton 1993), which is an unrealisticLISSOM to be applied to much more complex, large-scale
assumption since the tilt illusion is strongly dependent on spaphenomena. Using the largest available supercomputers, it
tial position (Gibson and Radner 1937). With GLISSOM it should even be possible to model all of V1 at the column
should be possible to integrate both the spatial and orientdevel. These methods also provide insight into the cortical
tion aspects of the tilt illusion by self-organizing a network mechanisms at work in organisms with brains of widely dif-
with a large area and the full range of specific lateral connecferent sizes. Thus the scaling equations and GLISSOM can
tivity found in the cortex. help explain brain scaling in nature as well as helping to scale
Visual contour integration, object binding, and object seg-up computational simulations of the brain.
mentation are similarly thought to depend on specific long-
range lateral interactions (Gilbert et/al. 1996). Existing mod_ACknOWIedgments
els use fixed connectivity or support only short-range inter-This research was supported in part by the National Science Foun-
actions (Choe and Miikkulainén 1998; Li 1998). It has not 420N under grants IRI-9309273 and I1S-9811478,

yet been possible to model the detailed self-organization of A pParameter values and simulation details

a large enough area to represent the multiple detailed OQ&II simulations were run using the same reference set of RF-

jects necessary to study such phenomena realistically. With @ssom parameters adapted from Bednar and Miikkulainen (2000).
GLISSOM approach such simulations should become pracfhe reference simulation used a cortdk = 192 and a retina
tical. The results can then be extended to include multi-R = 24. All parameters listed below are for this reference sim-
ple hierarchically-organized feedback networks so that largeulation only; they were scaled using the density and area scaling

; e ; : guations from section 3 to get the specific parameters for each of
scale object recognition can be studied. The computatlonﬁWe other simulations.

requirements will increase when more maps are included, The cortex was self-organized fab, 000 iterations on oriented
but the GLISSOM approximation techniques should apply toGaussian inputs with major and minor axes with= 7.5 and 1.5,
each of the maps. respectively. The afferent receptive field radiuswas 6; the initial
Current laterally-connected map models also focus on gongectig_ns _vt\)/ithin th\;a\llthcircularlr_atljiu_s were drawn from a ur:jifo;]m
. . . . : . . andom distribution. Where multiple input patterns were used, they
Slngl_e stimulus dimension (such as (_)rlentatlon_, ocglarlty, 0 ere constrained to have centers at leéngt, apart. The initial
spatial frequency) so that a low-density approximation to thgateral excitation radiusy was19 and was gradually decreased to
cortical network suffices. More abstract models have bees.5. The lateral inhibitory radius; was48. The lateral inhibitory
able to incorporate several such dimensions (typically orienconnections were initialized to a Gaussian profile witi: 100, and
tation and ocular dominance) because their computational réhoec'gaenrgét‘isgﬁgagggdcgrt‘r:‘:(c:ti:r‘ézlsaior : dﬁi”ﬁir;a‘ggl g{c Yt"ggpn
quirements are Iower (Obermayer et al. 1891; Osan and EIgnd inhibition strength: were both0.9. The learning rateva was
mentrout 2002; Swindaje 1992). However, such models cangradually decreased froth007 to 0.0015, a;, from 0.002 to 0.001
not be used to study phenomena like the interocular transanda; was a constari.00025. The lower and upper thresholds of
fer of the tilt aftereffect, which depends on specific lateralthe sigmoid were increased franl to 0.24 and from0.65 to 0.88,
connections between binocular orientation-selective neurorf§spectively. The number of iterations for which the lateral connec-

= : ey ; tions were allowed to settle at each training iteration was initially
(Bednar and Miikkulainen 2000; Gibson and Radner 'L937)9, and was increased tt8 over the course of training. Inhibitory

Since GLISSOM makes a higher-density network pfaCticmconnections below 0.0000007 were pruned at iteration 6500, those
future simulations can model such phenomena by using natuelow 0.000035 at iteration 12,000, and those below 0.0002 at iter-
ral image training stimuli which vary along all of the stimulus ation 16,000.

dimensions represented in the cortex. All simulations were run on an unloaded single-processor

: . 600MHz Pentium Il Linux machine with 1024 megabytes of RAM.
Many other important phenomena also require large mapsy timing results are user CPU times reported b?/ th)é Giite

including yisual a.lttention, saccades between §timu|us feasommand; for these simulations CPU time is essentially the same
tures, the interaction between the foveal and peripheral repres the elapsed wallclock time since the CPU utilization was always

sentations of the visual field, and how large-scale patterns giver 99%.
optic flow due to head movement influence self-organization.
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