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Tilt Aftereffects in a Self-Organizing Model of the

Primary Visual Cortex

James Albert Bednar, M.A.
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Supervisor: Risto Miikkulainen

The psychological phenomenon known as the tilt aftereffect was used to demonstrate the
functional properties of RF-LISSOM, a self-organizing model of laterally connected ori-
entation maps in the primary visual cortex. The same self-organizing processes that are
responsible for the development of the map and its lateral connections are shown to result
in tilt aftereffects as well. The model allows analysis of data that are difficult to measure
in humans, thus providing a view of the cortex that is otherwise not available. The results
give computational support for the idea that tilt aftereffects arise from lateral interactions
between adapting feature detectors, as has long been surmised. They also suggest that
indirect tilt aftereffects could result from the conservation of synaptic resources. The model
thus provides a unified computational explanation of self-organization and both direct and
indirect tilt aftereffects in the primary visual cortex.
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Chapter 1

Introduction

The tilt aftereffect (TAE, Gibson and Radner 1937) is a simple but intriguing visual phe-
nomenon. After staring at a pattern of tilted lines or gratings, subsequent lines appear to
have a slight tilt in the opposite direction. Figure 1.1 demonstrates the effect. The effect
resembles an afterimage from staring at a bright light, but it causes changes in orientation
perception rather than color or brightness perception.

In general, the visual system provides an accurate means of measuring the orientation
of visual contours such as lines and edges (see Howard and Templeton 1966,p.179–183 for
a review). However, contours presented close together or one after the other in the same
location can interact, causing distortions in their apparent orientations. When the lines are
presented simultaneously, this effect is known as the tilt illusion, when they are presented
successively, it is known as the tilt aftereffect. This thesis will focus on the tilt aftereffect,
but since the tilt illusion and aftereffect are widely held to have closely related causes, the
tilt illusion will be discussed as well.

The prevailing theory for these effects attributes them to lateral interactions between
orientation-specific feature-detectors in the primary visual cortex (Tolhurst and Thompson
1975). The inhibitory connection strengths between activated neurons are believed to in-
crease temporarily while the subject focuses on an input pattern, causing changes in the
perception of subsequent orientations. This occurs because the detectors are broadly tuned,
and detectors for neighboring orientations also adapt somewhat (Hubel and Wiesel 1968).
When a subsequent line of a slightly different orientation is presented, the most strongly
responding units are now the ones with orientation preferences further from the adapting
line, resulting in a change in the angle perceived.

Although the fundamentals of the theory were proposed in the 1970s, it has only
recently become computationally feasible to test it in a detailed model of cortical function.
A Hebbian1 self-organizing process (the Receptive-Field Laterally Interconnected Synerget-

1In Hebbian learning, connections between two neurons are strengthened when both neurons are active
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Figure 1.1: Tilt aftereffect patterns. Fixate your gaze upon the circle inside the square at the
center for at least thirty seconds, moving your eye slightly inside the circle to avoid developing strong
afterimages. Now fixate upon the figure at the left. The vertical lines should appear slightly tilted to
the right; this phenomenon is called the direct tilt aftereffect. If you fixate upon the horizontal lines
at the right, they may appear slightly tilted counterclockwise, though not every observer reports
this indirect tilt aftereffect. (Adapted from Campbell and Maffei 1971.)

ically Self-Organizing Map, or RF-LISSOM; Miikkulainen et al. 1997; Sirosh and Miikkulai-
nen 1997; Sirosh et al. 1996) has been shown to develop feature detectors and specific lateral
connections that could produce such illusions and aftereffects. The RF-LISSOM model gives
rise to anatomical and functional characteristics of the cortex such as topographic maps,
ocular dominance, orientation, and size preference columns, and patterned lateral connec-
tions between them. Although other models exist that explain how the feature-detectors
and afferent connections could develop by input-driven self-organization, RF-LISSOM is
the only model that also shows how the lateral connections can self-organize as an integral
part of the process. The laterally connected model has also been shown to account for
many of the dynamic aspects of the visual cortex, such as reorganization following retinal
and cortical lesions (Miikkulainen et al. 1997; Sirosh and Miikkulainen 1994b; Sirosh et al.
1996).

The current work is a first study of the functional behavior of the model, specifically
the response to stimuli similar to those known to cause the TAE in humans. Because RF-
LISSOM is a computational model, it can demonstrate phenomena in high detail that are
difficult to measure experimentally, thus presenting a view of the cortex that is otherwise not
available. The results suggest that tilt aftereffects are not flaws in an otherwise well-designed
system, but an unavoidable result of a self-organizing process that aims at producing an
efficient, sparse encoding of the input through decorrelation (as proposed by Barlow 1990;
see also Dong 1995, 1996; Field 1994; Sirosh et al. 1996).

The rest of this thesis is organized as follows. Chapter 2 is a survey of related
and previous work in the study of tilt aftereffects and early vision in general. Chapter 3

simultaneously.
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explains the RF-LISSOM system in detail, including the network architecture, activity
calculation, and connection weight learning mechanisms. It also presents an overview of
previous results with the RF-LISSOM model, and evaluates the biological plausibility of
the model. Chapter 4 describes how the realistic cortical orientation map used in the
aftereffect simulations was trained. Detailed explanations of the experimental settings such
as the training schedule and training parameter values are given in this chapter. The
resulting map is compared to anatomical and physiological data from humans and other
mammals. Chapter 5 describes the aftereffect experiments and results using this orientation
map, and demonstrates that the model closely reproduces the psychophysical data for the
tilt aftereffect in humans. Chapter 6 further relates the results of the model to the human
data, and speculates on the details of the biological mechanisms causing the observed effects.
Some directions for future work are suggested, including an examination of tilt illusions,
extensions that may be needed for the model to account for behavior at low contrasts, and
studies of aftereffects in other modalities. Chapter 7 summarizes the major conclusions
from this study. It is argued that this thesis presents the first detailed and convincing
computational explanation for the tilt aftereffect, and that it does so within a very general
and biologically-plausible self-organizing model of the afferent and lateral connections within
the cortex.

3



Chapter 2

Related Work

This chapter will present an overview of previous experimental and theoretical work on the
tilt aftereffect. First, a brief review of the visual system and visual processing areas of the
brain will be given. Next, an outline of the research and theories on tilt aftereffects to date
will be presented, followed by a discussion of previous mathematical and computational
models of the TAE and related aspects of early visual processing.

2.1 Anatomy and physiology of the visual system

Figure 2.1 shows a diagram of the main feedforward pathway in the visual system of humans
(see Wandell 1995 and Kandel et al. 1991 for an overview). Very similar structures are
present in other mammals, including such well-studied laboratory animals as monkeys,
cats, and rats. For each species, light entering the eye is detected by the retina, an array
of photoreceptors on the inside of the rear surface of the eye. The photoreceptors and
related circuitry in the retina encode light levels as electrical signals. These signals leave
the eye through nerve cells called retinal ganglion cells. From there, they travel to the lateral
geniculate nucleus (LGN) of the thalamus, at the base of each side of the brain. From the
LGN, the signals travel to the primary visual cortex (V1) at the rear of the brain, the first
stage of cortical processing of vision. The output from this area goes to many different
higher areas of the brain, eventually contributing to visual perception in ways that are only
beginning to be understood (Merigan and Maunsell 1993; Van Essen et al. 1992).

There is a consensus that significant information processing occurs in the retina and
V1 (Kandel et al. 1991). Although they are often modeled as simple filters, the earliest
stages of visual perception are perhaps better described by a feature detector model (Hubel
and Wiesel 1959, 1965; Van Essen et al. 1992). Neurons at each level detect certain features,
sending their outputs to higher levels for the detection of progressively more complex stimuli.

For instance, retinal ganglion cells in the eye typically respond most strongly to

4



cortex
visual
Primary

chiasm
Optic 

thalamus
Right

thalamus
Left

�

Visual field

Left eye

Right eye

right

left

Figure 2.1: Human visual sensory pathways (top view). Visual information travels in
separate pathways for each half of the visual field. Light entering the eye from the right hemifield
hits the left half of the retina, on the rear surface of each eye. The inputs from each eye are combined
at the optic chiasm, and travel to the left lateral geniculate nucleus (LGN) of the thalamus, then to
the primary visual cortex (also called V1, visual area 1, striate cortex, or Brodmann area 17) of the
left hemisphere. Light entering the eye from the left hemifield strikes the right half of each retina,
which send signals to the right LGN and then to the right half of V1.

a circular light or dark spot in a particular area of the retina (its receptive field) (Dacey
1994; Kaplan 1989). Neurons in the LGN behave similarly (Casagrande and Norton 1989).
Beginning in the primary visual cortex, most neurons are found instead to prefer inputs
elongated in some particular direction (Hubel and Wiesel 1968). Such neurons respond most
strongly to an oriented stimulus such as a line or an edge close to a preferred orientation.
They respond less strongly the more the orientation differs from the preference, do not
generally respond to unoriented inputs, and respond equally well over a wide range of
contrasts. Thus V1 neurons are considered detectors for their preferred orientation, and
neural explanations of orientation perception usually begin at this level of processing. Higher
visual processing areas in the brain all use the output from this stage, eventually detecting
more complex features such as human faces (Van Essen et al. 1992).

The primary visual cortex, like the other parts of the cortex, is composed of a two-
dimensional, slightly folded sheet of neurons and connections between them. If flattened,
human V1 would cover an area of nearly four square inches (Wandell 1995). It contains at
least 150 million neurons, each making many hundreds of specific connections with other
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neurons (Wandell 1995). The neurons are arranged in six layers with different anatomical
characteristics (using Brodmann’s scheme for numbering laminations in human V1; see
Henry 1989 for more details). Input from the thalamus (the afferent input) typically goes
to layer 4 (Casagrande and Norton 1989; Henry 1989). Neurons in the other layers form
local connections within V1 or connect to other visual processing areas such as V2 (adjacent
to V1).

At a given location on the cortical sheet, the neurons in a vertical section through
the cortex generally have the same preference for the eye of origin, stimulus orientation,
stimulus size, etc. It is customary to refer to such a section as a column (Gilbert and
Wiesel 1989). The RF-LISSOM model discussed in this thesis will treat each column as a
single unit, thus representing the cortex as a purely two-dimensional surface. This is only
an approximation, but it is a valuable one because it greatly simplifies the analysis while
retaining the basic functional features of the cortex.

Nearby columns generally have similar, but not identical, preferences, and slightly
more distant columns generally have more dissimilar preferences. Preferences repeat at
regular intervals (approximately 1–2 mm) in every direction. For orientation preferences,
this arrangement of detectors forms a smoothly varying orientation map of the retinal input
(Blasdel 1992a; Blasdel and Salama 1986; Grinvald et al. 1994; Ts’o et al. 1990; Weliky et al.
1995). (See figure 4.3b in chapter 4 for an example of an orientation map.) Each location
on the retina is mapped to a region on the orientation map, with each possible orientation
at that location represented by different orientation detectors. The global layout of the
orientation map, and consequently the orientation preferences of the individual neurons in
the map, is formed during the early development of the animal based on its visual experience
(Blakemore and Cooper 1970; Blakemore and van Sluyters 1975; Hubel and Wiesel 1962,
1968; Movshon and van Sluyters 1981).

Extensive, long-range lateral connections are present between neurons in neighboring
columns with similar preferences (figure 2.2; Gilbert and Wiesel 1983; Gilbert et al. 1990).
The lateral connectivity is not uniform or genetically determined, but develops based on
visual experience (Burkhalter et al. 1993; Dalva and Katz 1994; Fisken et al. 1975; Gilbert
1992; Katz and Callaway 1992; Löwel and Singer 1992). The connections are initially
widespread, but develop into clustered patches at approximately the same time as the
orientation maps form. The lateral connections are far more numerous than the afferents
and they are believed to have a substantial influence on cortical activity. However, it is
not well understood what mechanisms underlie the development of lateral connections, why
their patterns are related to the response properties of cortical cells, or what their function
is in visual processing.

Although the afferent structures and lateral connections are influenced by visual
experience during development, after a critical period early in development they are not as

6
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Figure 2.2: Long-range lateral connections of a typical neuron. The connections run over
distances covering several degrees of the visual field, and sprout branches at intervals (marked by
arrows). The branches form a local cluster of connections to other cells in the region. Such clusters
occur only in regions with similar functional properties as the parent cell. Adapted from Gilbert
and Wiesel (1989).

easily modified (Movshon and van Sluyters 1981). However, recent results show that the
adult cortex can undergo significant, often reversible, reorganization in response to various
sensory and cortical manipulations such as lesions in the receptive surface and the cortex
(Gilbert 1992; Gilbert et al. 1996; Kaas 1991; Kapadia et al. 1994; Merzenich et al. 1990;
Pettet and Gilbert 1992).

2.2 Experimental data on the TAE

Although much is known about the anatomy of the early visual areas such as V1, the
mechanisms of visual perception are not yet fully understood. Studies of visual illusions
and aftereffects can help provide a window into this processing, giving clues about how
the underlying systems must be operating. The tilt aftereffect is a particularly important
phenomenon to study in a model of vision, since it is generally thought to arise in V1, the
earliest cortical processing stage. Accordingly, there have been many studies of the TAE
since the first experiments published by Gibson and Radner in 1937.

7



fixation point

adaptation line

(a) TAE adaptation procedure

��������
fixation point

test line line
comparison

(adjusts)

(b) TAE test procedure

Figure 2.3: Psychological paradigm for tilt aftereffect experiments. The subject first
adapts to a figure at a particular orientation presented for a fixed amount of time (a). The amount
of TAE is determined by having the subject adjust the comparison figure to match the apparent
orientation of the test figure (b). Some studies use lines or bars, as shown here; others show similar
results for sinusoidal or square-wave gratings in this or similar configurations.

2.2.1 Measuring the TAE in humans

A variety of experimental paradigms have been used to measure tilt aftereffects in humans,
but most are variations on the following procedure (figure 2.3). Subjects are tested in a dark
room without any clues to orientation except gravity. The subject’s head is immobilized,
and the subject is directed to look at some fixation point in the visual field. Oriented
geometric figures are used in most cases, generally lines, bars, or gratings (i.e., multiple
parallel bars, as in figure 1.1). The figures are presented in various locations relative to the
fixation point. First, a baseline is determined by presenting a test figure at a given angle.
The perceived orientation of that figure for the subject is determined by various methods,
such as:

Directly estimating the numerical angle. This is generally considered unreliable since
most subjects are poor judges of angles other than vertical and horizontal relative to
the retina (Mansfield 1974; Mitchell and Muir 1976).

Setting the figure to apparent vertical. This can be done with accuracy within a de-
gree by most unadapted subjects (Howard and Templeton 1966,p.179).

Setting a comparison figure parallel to the test figure. This can be done with fair-
ly high consistency, although it is not necessarily an accurate measure of the actual
orientation. It is particularly useful because it can measure the effect for oblique
testing angles.

After the baseline is computed, the subject views an adaptation figure of a different
orientation for a fixed amount of time; this period is called tilt adaptation. Finally, the test
figure is presented again, and its orientation measured once more. The difference between

8
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Figure 2.4: Original study of tilt aftereffect versus angle separation on retina. The two
lines shown indicate the tilt aftereffect for the two different observers in Gibson and Radner (1937).
Each point represents an average of 6 trials. Each trial consisted of a 45-second adaptation to a
tilted line, then an adjustment of a nearly vertical test line until it appeared vertical. The difference
between the perceived orientation and the actual orientation of the test line was taken as the tilt
aftereffect at that angle. The graph shows both direct and indirect effects, with expansion of small
angles and contraction of large angles.

the final and initial readings of the perceived orientation of the test figure is the value of
the tilt aftereffect for that particular angle separation between test and adaptation figures
(Campbell and Maffei 1971; Gibson and Radner 1937; Mitchell and Muir 1976; Muir and
Over 1970).

2.2.2 Human psychophysical data

The TAE was first documented in detail by Gibson and Radner (1937), who measured
the angular function (figure 2.4) and time course of the aftereffect. The precise shape of
the TAE versus angle curve varies widely for different subjects and different measurement
paradigms, but generally retains the S-shape seen in figure 2.4.

Gibson and Radner introduced terminology that describes the aftereffect as com-
posed of a direct effect and an indirect effect (figure 2.5). The direct effect consists of a
perceived expansion of small angles, i.e. the positive half of the ‘S’ in figure 2.5. A max-
imum overestimation of a few degrees is experienced at an angular separation between 5◦

and 20◦ (Howard and Templeton 1966,p.216). Larger angles begin to show less of an after-

9



Figure 2.5: Angle expansion and contraction effects. Arrows indicate the direction of change
of the perceived orientation of that line after adaptation on the other; the effects are equal in both
directions marked (Mitchell and Muir 1976). The direct effect (left) consists of a perceived expansion
of small angles, such as the one shown. The indirect effect (center) consists of a perceived contraction
of larger angles. The maximum angle separation is 90◦, since if two endpoints are separated by larger
angles than 90◦, another two form an angle smaller than 90◦ (right).

effect, eventually reaching zero somewhere between 25◦ and 50◦ (Campbell and Maffei 1971;
Mitchell and Muir 1976; Muir and Over 1970). Even larger angles (up to 90◦) generally
result in the indirect effect, which consists of a smaller perceived contraction of the angle,
peaking between 60◦ and 85◦ (Campbell and Maffei 1971; Mitchell and Muir 1976; Muir
and Over 1970). Note that for overlapping lines, the largest possible separation is 90◦ due
to symmetry (figure 2.5).

Early studies found tilt aftereffects only for horizontal or vertical test lines (Gibson
and Radner 1937), as did some later studies (Campbell and Maffei 1971). However, it has
since been demonstrated that although subjects do not spontaneously report any difference
in the perceived orientation of an oblique line (i.e., neither horizontal nor vertical) after
adaptation, when asked to set a comparison line parallel to the test line they make system-
atic errors identical to those made on vertical or horizontal test lines (Mitchell and Muir
1976). The variance of the settings was significantly larger for the oblique case, which con-
tributed to the difficulty of establishing the effect for oblique lines. The current consensus
is that the angular separation between the test and adaptation figures is the important
parameter, not the obliqueness of the line with respect to the horizontal or vertical axis.

The magnitude of the TAE increases logarithmically with increasing adaptation
time and decreases logarithmically with time elapsed since the adaptation period (Gibson
and Radner 1937). However, the magnitude of the effect saturates at approximately 4◦

(Campbell and Maffei 1971; Greenlee and Magnussen 1987; Magnussen and Johnsen 1986;
Mitchell and Muir 1976). The maximum indirect effect documented in central (foveal)
vision is approximately 2.5◦, and reaches up to about 60% of the magnitude of the direct
effect for a given subject and paradigm (Campbell and Maffei 1971; Mitchell and Muir 1976;
Muir and Over 1970). A preliminary report indicated that only a direct effect is seen for
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all angles 0◦ to 90◦ when the test and adaptation figures are in peripheral vision (Muir and
Over 1970), but this data has not yet been replicated by other laboratories.

The TAE is localized to what appear to be a specific set of orientation detectors.
It is spatially localized on the retina (Gibson and Radner 1937); adaptation for a figure in
one location has no measurable effect on test figures in other locations sufficiently distant.
It is spatially selective for frequency (Ware and Mitchell 1974); adapting on a figure with
narrow bars has no measurable effect upon a figure with wide bars, and vice versa. Finally,
it transfers completely from one eye to the other (Campbell and Maffei 1971; Gibson and
Radner 1937); adapting one eye causes equal effects upon test lines in the same location in
the visual field for either eye.

2.3 Proposed theories

2.3.1 Gibson normalization

Gibson and Radner (1937) hypothesized that the TAE results from a process they called
normalization, wherein the subjective vertical and horizontal norms for a subject are mod-
ified by visual experience. After prolonged inspection of a nearly-vertical stimulus, the
subjective vertical was thought to be shifted slightly towards the fixation stimulus. If an
objectively vertical line were presented subsequently, it would be perceived as slightly tilted
in the opposite direction relative to the new subjective vertical. Indirect effects would be
due to a constraint that the horizontal and vertical axes remain perpendicular, so that lines
close to the horizontal axis would appear shifted relative to that axis. The smaller magni-
tude of indirect effects was attributed to some degree of “play” between the axes, i.e. that
the linkage was imperfect.

One consequence of the normalization theory is that no effects should be seen when
vertical or horizontal adaptation lines are used, since such lines cannot change the supposed
vertical and horizontal norms in either direction. More recent experiments have shown
that this assumption is invalid, since similar effects occur regardless of the adaptation
angle (Mitchell and Muir 1976). Another likely consequence is that tilt effects should be zero
at precisely 45◦ (the midpoint between the two axes), as Gibson and Radner (1937) found
for their subjects and setup. However, subsequent studies have found that the crossover
point between direct and indirect effects varies significantly from 45◦, over a range of 25◦

to 50◦ (Campbell and Maffei 1971; Mitchell and Muir 1976; Muir and Over 1970).

2.3.2 Satiation

Later researchers were unsatisfied with the clearly ad hoc explanation of Gibson’s normal-
ization theory, and proposed alternatives (see Howard and Templeton 1966 for a review).
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One of the most prominent theories (Köhler and Wallach 1944) postulated that the TAE is
an example of a larger class of figural aftereffects. For each of these, activation of cortical
sensory areas was presumed to result in local electrical fields that spread electrotonically to
nearby areas. Activated areas experienced satiation, which would result in displacement of
subsequent perceptions to unsatiated areas. This metaphor was apparently inspired by the
beginnings of electronic technology at the time; no physiological evidence for fields of this
nature has ever been found (Barlow 1990). In addition, this theory entirely fails to account
for the indirect effect, since satiation would result in expansion only.

2.3.3 Feature-detector fatigue

The feature-detector model of the visual cortex based on the pioneering work of Hubel
and Wiesel (1959, 1962, 1965, 1968) led to theories formulated in terms of broadly-tuned
orientation-specific detectors. One intriguing finding of this work was that individual ori-
entation detectors become more difficult to excite during repeated presentation of appro-
priately oriented stimuli, and this desensitization persists for some time afterwards. This
apparently supports a model like that of Köhler and Wallach (1944): if neurons with orien-
tation preferences close to the adaptation figure become fatigued as a result of activation,
a different set of neurons will be activated for the test figure. Assuming the perceived ori-
entation is some sort of weighted average over the orientation preferences of the activated
neurons, the perceived orientation would thus show the direct TAE (Coltheart 1971).

Sutherland (1961) proposed such an explanation originally, and Coltheart (1971)
extended it to account for indirect effects. Coltheart noted that some neurons (here called
cross-neurons) had been discovered that had two preferred orientations, each orthogonal to
the other (Hubel and Wiesel 1965, 1968). While an adaptation figure is being shown, some
cross-neurons (i.e., those having one of their axes matching the figure) would desensitize
in the same way as the simpler neurons whose orientation preference matched. However,
subsequent figures having orientations nearly 90◦ from the adaptation figure would activate
fewer cross-neurons than otherwise. This would effectively shift the perceived orientation
of the test figure towards that of the adaptation figure, since it will result in less activation
of neurons having orientation preferences even further from the adaptation figure than the
test figure was.

Muir and Over (1970) proposed an alternative theory of indirect effects within this
framework. It had been observed that when an oriented figure is presented, neurons with
orientation preferences orthogonal to that of the figure actually have less activity than their
resting level (Hubel and Wiesel 1967). Muir and Over (1970) proposed that these neurons
would not only not be fatigued after adaptation, they would be actively facilitated, i.e.
somehow become more susceptible to future stimulation. This could cause the indirect
effect for lines near their orientation preference.
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The feature-detector fatigue theory could apparently account for much of the ob-
served phenomena with either extension for indirect effects. However, it is now discounted
for a number of reasons, including the following:

• The proposed fatigue mechanism has not been found to occur in single cells in vitro
— individual cortical neurons can be activated repeatedly with direct electrical sim-
ulation, without decreasing their output or showing less input sensitivity (Thomson
and Deuchars 1994).

• Adaptation still occurs when local application of the inhibitory transmitter GABA
prevents the cell from firing (Vidyasagar 1990), indicating that firing of the target cell
is not necessary for adaptation to occur.

• Adaptation does not occur when a cell is made to fire by local application of the exci-
tatory transmitter glutamate (Vidyasagar 1990), indicating that firing is not sufficient
to cause adaptation.

• Adaptation to two orientations simultaneously, each of which would cause adaptation
separately, can actually reduce the amount of the TAE, rather than increase it as
the fatigue theory would predict (Magnussen and Kurtenbach 1980a). This effect is
known as disinhibition, and is also discussed in section 2.3.4.

Together, the above factors imply that the observed desensitization must somehow
depend on the activation of multiple neurons, including inhibitory interneurons, not merely
on changes within the neuron itself.

2.3.4 Modifiable lateral inhibition

Direct effect

Other researchers have noted that an increase in lateral and local inhibition via the con-
nections between neurons could have very similar results to a decrease in the inherent
excitability of the neuron (Blakemore et al. 1970; Carpenter and Blakemore 1973). Since
typical test figures activate a large number of nearby neurons, increasing the strength of the
inhibitory connections between them would also produce the observed desensitization. Such
an explanation also accounts for similar effects between nearby stimuli presented simultane-
ously, known as the tilt illusion (Carpenter and Blakemore 1973). The two tilt effects have
very similar characteristics along a number of different dimensions, so related explanations
have generally been expected (Magnussen and Kurtenbach 1980b; Tolhurst and Thompson
1975).

The inhibition theory also correctly accounts for the phenomenon of disinhibition
documented for the tilt illusion (Carpenter and Blakemore 1973) and the tilt aftereffect
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(Magnussen and Kurtenbach 1980a). This phenomenon arises for the TAE when multiple
adaptation figures with different orientations are presented simultaneously. For a given test
line, two figures which each cause direct tilt aftereffects would be expected to cause an even
stronger TAE when presented together during adaptation, if the fatigue theory were correct
(Blakemore and Carpenter 1971)). This result follows simply from having more detectors
activated, and thus more detectors fatigued. However, such adaptation actually reduces the
amount of the TAE (Magnussen and Kurtenbach 1980a). The reduction might be explained
by the inhibition theory — the two adapting figures would inhibit the response to each other
during simultaneous presentation, and thus the total activation of the orientation detectors
near the test line would be smaller than it would be when either line is presented alone.
This would cause less adaptation than before, so the TAE will be lower as observed.

Furthermore, there is a wealth of evidence for extensive, modifiable lateral connec-
tions (Gilbert et al. 1990; Gilbert and Wiesel 1990; Hirsch and Gilbert 1991; McGuire et al.
1991; Weliky et al. 1995). However, as discussed in the next chapter, the detailed behavior
of these lateral connections is still a matter of some dispute, particularly with respect to
whether they are predominantly inhibitory or excitatory. In any case, the currently accepted
explanation of the direct TAE is in terms of the inhibitory effects.

Current theories of the TAE are typically vague about exactly what type of mech-
anism is causing prolonged inhibition to result in the direct TAE. Most seem to assume
that some sort of intracellular buildup of inhibitory transmitters occurs in the target cell
(Gelbtuch et al. 1986; Masini et al. 1990; Tolhurst and Thompson 1975). However, the
experiments by Vidyasagar (1990) suggest that this simple explanation will not suffice.
Vidyasagar was able to excite or inhibit cells in the visual cortex of cats by locally applying
excitatory or inhibitory transmitters, but regardless of the duration of the excitation or
inhibition the cells did not show adaptation effects when tested with a visual pattern. Yet
the cells showed clear signs of adaptation when a visual pattern was used instead, which
prompted the neighboring cells to deliver those same transmitters to the target cell. Thus,
unless there is a large gap in our knowledge of the neurophysiology of these cells, the adap-
tation must be occurring elsewhere, not within the target cell. As suggested by Barlow
(1990), this thesis will argue that the changes that occur during adaptation are changes
in the strength of connections between neurons. These effects will thus only be seen when
multiple nearby neurons are activated simultaneously, as they would be for the patterns
typically used (cf. Vidyasagar 1990; Wilson and Humanski 1993).

Indirect effect

Unlike the direct effect, the indirect effect has not been examined by very many researchers
within the context of the inhibition theory. The theory itself does not account for indirect
effects in any obvious way, since increases in inhibition around the training orientation can
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only repel other lines, other things being equal. This difficulty appears to have discouraged
research on the topic so far, but as this thesis will show, indirect effects can be explained
entirely within the inhibition theory.

So far, the most prominent explanation is from Wenderoth and Johnstone (1988);
Wenderoth et al. (1989), who have proposed that indirect effects arise from lateral inhibitory
repulsion from a virtual axis of the testing line. According to this view, the axes of symmetry
of an object can contribute to the perception of it, even if they are not visible. A line (or
grating) is symmetrical about two axes, one of which is the line itself, the other of which
is a line perpendicular to it. The axis nearest the testing figure is assumed to have the
greatest repulsive effect on the figure. Thus direct effects would result (as described above)
from repulsion from the actual line, and indirect effects would result from repulsion from the
virtual axis. The smaller magnitude of the indirect effects would presumably result from the
lower perceptual saliency of virtual axes (Wenderoth et al. 1989). Other differences between
the indirect and direct effects have been found in a long series of experiments (Wenderoth
and Johnstone 1988; Wenderoth et al. 1989), most of which indicate that indirect effects
develop later in time than the direct effects. Wenderoth et al. interpret these differences
as evidence that the processing of indirect effects occurs higher in the visual hierarchy, i.e.
that the neural substrate for the virtual axis is in areas higher than V1.

The virtual axis explanation does not appear to have been examined critically by
other researchers, perhaps because it appears untestable and nearly as ad hoc as that
originally proposed by Gibson and Radner (1937). To make it somewhat more concrete,
Spivey-Knowlton (1993) has proposed that the virtual axis results from the cross-neurons
described by Coltheart (1971). However, as Spivey-Knowlton himself notes, those neurons
are present in V1 as well as in the other early areas. Thus if those neurons represent the
virtual axis, they would have to be inherently slower to activate than other V1 neurons,
since the indirect effects have been shown to have a later onset (Wenderoth and Johnstone
1988; Wenderoth et al. 1989). Yet De Valois et al. (1982) found no significant differences in
the time behavior of cross-neurons relative to other V1 neurons, so these neurons must not
represent the substrate for the virtual axis.

Thus the virtual axis remains an unspecified higher-level process, essentially untest-
able although possible in theory. In contrast, the explanation for the indirect effect that
will be described in this thesis is based on entirely local synaptic resource conservation
mechanisms within V1. These mechanisms have already been found elsewhere in the cortex,
and they follow from general computational principles, while the virtual axis appears to have
been invented purely to explain indirect tilt effects.
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2.4 Computational and mathematical models

Computational models can play a fundamental role in understanding the development and
function of complex systems such as the cortex. With the introduction of massively parallel
computers in the last five years, it has become possible to simulate large numbers of neural
units and their connections. At the same time, neurobiological techniques for mapping
the response properties and connectivity of neurons have become sophisticated enough to
constrain and validate such models. This provides a timely opportunity to test the inhibition
theory of the TAE through large-scale computational experiments. By iteratively making
and testing hypotheses about which cortical features are responsible for which behaviors,
one can extend and revise a computational model so that it can predict cortical behavior
in detail. At each step of the way, the model itself can provide predictions for verification
or refutation in human and animal subjects. The overall goal is to represent the essential
computational and organizational principles of the cortex in as simple a model as possible.

2.4.1 Previous models of orientation maps

To test the inhibition theory, a model of the orientation detectors is needed. Several com-
putational models have shown how receptive fields (such as selectivity to different orienta-
tions) and their global organization in the cortical network can develop through Hebbian
self-organization of afferent synapses (Erwin et al. 1995; Goodhill 1993; Kohonen 1982;
Miller 1994; Miller et al. 1989; Obermayer et al. 1990; von der Malsburg 1973). These mod-
els have not taken the lateral interactions between cells into account, or have assumed that
they are preset and fixed and have a regular profile. Thus they are unsuitable for testing the
inhibitory theory of tilt aftereffects, since it depends upon modifiable connections between
specific orientation detectors.

2.4.2 Previous models of tilt illusions and aftereffects

Of the models that have been suitable for examining tilt aftereffects, none have successfully
accounted for both direct and indirect effects in a biologically realistic manner. The virtual
axis/lateral inhibition theory of Wenderoth et al. (1989) has been implemented in a very
simple computational model by Spivey-Knowlton (1993). He found that the model could
produce an S-shaped curve for the angular function of the tilt illusion; the curve was a
reasonably good match to human data. Presumably a similar model could be used for the
tilt aftereffect, but this has not yet been implemented. However, since the virtual axis theory
was explicitly developed as an explanation for the indirect tilt illusion data, demonstrating
it in a computational model only serves to verify that the theory is internally consistent,
rather than supporting or explaining it. The model to be described in this thesis, in contrast,
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was developed primarily as a model of self-organization of cortical structures, and exhibits
tilt aftereffects only as an emergent phenomenon.

Another mathematical model for neural development by Dong (1995, 1996) has also
been shown to exhibit the tilt illusion and tilt aftereffect. The model is a formal expression
of the information processing principle of decorrelation, that is, the reduction of redundancy
in an image or other sensory data. All natural images are redundant to some extent, and
the nervous system appears to make wide use of this fact (Barlow 1990). The amount of
redundancy may be expressed in terms of correlations: two pieces of information that are
highly correlated with each other could in theory be represented as a single entity, and
thus they contain redundant information. A network or algorithm that compacts the image
by removing such redundancies is said to decorrelate. After full decorrelation, an input
image would consist of purely white noise, where every bit of information is independent
of each of the others. Dong shows that a network that satisfies a simple approximation to
full decorrelation will exhibit both direct and indirect tilt aftereffects for Gaussian-shaped
inputs. The model predicts an S-shaped curve that is a reasonably good approximation to
the average human TAE data from Campbell and Maffei (1971). Dong’s theory may be seen
as a mathematical expression of some of the principles also operating in the RF-LISSOM
model; it is complementary to the more detailed column-level description of actual neural
behavior presented in later chapters of this thesis.

Finally, Wilson and Humanski (1993) proposed a linear differential equation model
of a cortical gain control mechanism that exhibits direct tilt aftereffects. Their model is a
proposed circuit for achieving contrast independence via a divisive inhibitory gain control.
The model had been shown to predict contrast sensitivity before and after adaptation, and
with the same parameters it was found to exhibit direct tilt effects that have an angular
function somewhat similar to the measured direct effects for humans. The same type of
contrast gain control is exhibited by RF-LISSOM (Sirosh 1995), so one can consider their
model to represent one part of the cortical processes modeled by RF-LISSOM. However,
they do not discuss indirect effects, and it is difficult to see how those would occur in their
model. Thus this model, like the others, does not fully account for both direct and indirect
tilt aftereffects in terms of actual known cortical structure.

2.5 Conclusion

Although the tilt aftereffect has been studied for many years, a fully satisfying explanation
has yet to be established. The prevailing theory is based on lateral inhibitory interactions
between orientation detectors in the primary visual cortex. This theory can account for
the angle repulsion effects found at small angle differences between test and adaptation
figures. However, the angle attraction effects found for larger angle differences have not
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yet been explained satisfactorily. A detailed neural model that includes modifiable lateral
connections, such as that presented in the next chapter, allows the lateral inhibitory theory
to be studied in more detail. Subsequent chapters will show that tilt aftereffects, both
direct and indirect, arise out of the same processes responsible for self-organization of such
a model of orientation detectors in the primary visual cortex. Unlike TAE models which
are merely a mathematical fit to the data, the model in this thesis is a general explanation
of the organization and function of the primary visual cortex.
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Chapter 3

The RF-LISSOM Model

3.1 Introduction

This thesis is a first functional study of the RF-LISSOM model (Receptive-Field Laterally
Interconnected Synergetically Self-Organizing Map) developed by Sirosh and Miikkulainen
(1994a, 1996, 1997). This chapter describes the architecture of the model in detail, summa-
rizes previous results using RF-LISSOM to model the cortex, and examines the biological
underpinnings of the model. Later chapters will show how this basic architecture can ac-
count for the psychological phenomenon of the tilt aftereffect.

The RF-LISSOM model is a descendent of computational models developed by
von der Malsburg (1973; see also Amari 1980 and Grossberg 1976). These early mod-
els demonstrated that simple computational rules could account for the development of
oriented receptive fields from visual input. Since these models, new discoveries about intra-
cortical connectivity have fundamentally altered our understanding of the primary visual
cortex (Gilbert and Wiesel 1983; Gilbert et al. 1990). In addition to the afferent input
leading from the eye to cortical areas, there are highly-specific patterns of lateral connec-
tivity that develop in response to visual experience (Burkhalter et al. 1993; Dalva and Katz
1994; Fisken et al. 1975; Gilbert 1992; Katz and Callaway 1992; Löwel and Singer 1992).
RF-LISSOM incorporates this new evidence into a computational model of structure and
function.

In previous work with the RF-LISSOM model, Sirosh and Miikkulainen (1994a, 1996,
1997) showed that Hebbian self-organization in a large recurrent network of simple, laterally-
connected neural elements can provide a unified account of self-organization and plasticity
in the visual cortex. They demonstrated computationally (1) how receptive fields develop
selectivity to orientation, ocular dominance, and size, (2) how such receptive fields organize
into global structures of intertwined columnar areas, (3) how the lateral connections develop
synergetically with the afferent connections and follow their global organization, and (4)
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Cortex

Short-range excitatory connections (radius 1)

Afferent connections (radius 1)

Long-range inhibitory connections (radius 2)

Retina

Figure 3.1: Architecture of the RF-LISSOM network (color figure). A tiny RF-LISSOM
network and retina are illustrated, along with connections to a single neuron (shown as a large circle).
Other neurons have similar connections to other areas of the retina and to the neurons surrounding
them. The afferent connections form a local anatomical receptive field on the simulated retina.
Neighboring neurons have different but highly overlapping RFs. Each neuron computes an initial
response as a dot product of its receptive field and its weight vector. The responses then repeatedly
propagate within the cortex through the lateral connections (only a very small connection radius
is shown) and evolve into an activity “bubble”. After the activity stabilizes, weights of the active
neurons are adapted.

how such structures are maintained in a dynamic equilibrium with the input, resulting
in reorganization after retinal and cortical lesions. The model also suggests a functional
role for the lateral connections: during development, they learn the activity correlations
between cortical neurons, and during visual processing, filter out these correlations from
cortical activity to form a redundancy-reduced sparse coding of the visual input.

3.2 The RF-LISSOM Architecture

The RF-LISSOM model is based on a simulated network of neurons with afferent connec-
tions from the external world and recurrent lateral connections between neurons. Connec-
tions adapt based on correlated activity between neurons. The result is a self-organized
structure where afferent connection weights form a map of the input space, and lateral
connections store long-term correlations in neuronal activity.

In RF-LISSOM, the cortical architecture has been simplified and reduced to the
minimum necessary configuration to account for the observed phenomena. Because the
focus is on the two-dimensional organization of the cortex, each “neuron” in the model

20



cortex corresponds to a vertical column of cells through the six layers of the human cortex.
This columnar organization helps make the problem of simulating such a large number of
neurons tractable, and is viable because the cells in a column generally fire in response
to the same inputs (chapter 2). Thus RF-LISSOM models biological mechanisms at an
aggregate level, so it is important to keep in mind that RF-LISSOM “neurons” are not
strictly identifiable with single cells in the human cortex.

The cortical network is modeled with a sheet of interconnected neurons and the retina
with a sheet of retinal ganglion cells (figure 3.1). Neurons receive afferent connections from
broad overlapping patches on the retina. The N ×N network is projected on to the retina
of R × R ganglion cells, and each neuron is connected to ganglion cells in a circular area
of radius r around the projections. Thus, neurons at a particular cortical location receive
afferents from the corresponding location on the retina. Depending on its location, the
number of afferents to a neuron varies from roughly r× r (at the corners) to 2r× 2r (at the
center).

In addition, each neuron has reciprocal excitatory and inhibitory lateral connections
with itself and other neurons. Lateral excitatory connections are short-range, connecting
each neuron and its close neighbors. Lateral inhibitory connections run for comparatively
long distances, but also include connections from the neuron and its immediate neighbors to
itself. Thus the “lateral” connections in the model are not exclusively from neurons located
laterally, since they include self-recurrent connections.

The input to the model consists of 2-D patterns of activity representing retinal
ganglion cell activations. Each ganglion cell is modeled only by its activation levels, not by
its receptive field, so the input pattern is equivalent to an image after it has been processed
by the retina. In addition, the transformation of retinal activation patterns by the LGN has
been bypassed for simplicity, since LGN neurons do not change the shape of the receptive
fields of the retina (chapter 2). Thus the “retina” of the model could equivalently be
considered to represent a pattern of activity across neurons in the retinotopic map of the
LGN.

The RF-LISSOM network will self-organize to represent the most common features
present in the input images it has seen (Sirosh 1995). Since tilt aftereffects appear to arise
in the areas processing oriented inputs (chapter 2), simple oriented inputs (two-dimensional
Gaussians) were used in the experiments presented in this thesis, as described in more detail
in chapter 4.

The weights are initially set to random values or a smooth distribution (such as a
Gaussian profile), and are organized through an unsupervised learning process. At each
training step, neurons start out with zero activity. The initial response ηij of neuron (i, j)
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Figure 3.2: The RF-LISSOM neuron activation function. The neuron requires an input as
large as the threshold δ before responding, and saturates at the ceiling β. The output activation
values are limited to [0, 1]. The activation function is an easy-to-compute approximation of the
sigmoid function.

is calculated as a weighted sum of the retinal activations:

ηij = σ

∑
a,b

ξabµij,ab

 , (3.1)

where ξab is the activation of retinal ganglion (a, b) within the anatomical RF of the neuron,
µij,ab is the corresponding afferent weight, and σ is a piecewise linear approximation of the
sigmoid activation function (figure 3.2):

σ(x) =


0 x ≤ δ

(x− δ)/(β − δ) δ < x < β

1 x ≥ β

(3.2)

The weighted sum in equation 3.1 is a measure of similarity of the afferent input to the
weight vector. The sigmoid introduces a nonlinearity into the response, and makes the
neuron selective to a small range of input vectors that are close to the afferent weight
vector.

Lateral interaction in the cortex sharpens neuronal response by repeated exchange of
activation (Kohonen 1989; Mountcastle 1968). In RF-LISSOM, the initial response evolves
over a very short time scale through lateral interaction. At each time step, the neuron
combines the above afferent activation

∑
ξµ with lateral excitation and inhibition:

ηij(t) = σ

∑
ξµ + γe

∑
k,l

Eij,klηkl(t− 1)− γi

∑
k,l

Iij,klηkl(t− 1)

 , (3.3)
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where Eij,kl is the excitatory lateral connection weight on the connection from neuron (k, l)
to neuron (i, j), Iij,kl is the inhibitory connection weight, and ηkl(t − 1) is the activity
of neuron (k, l) during the previous time step. All connection weights are positive. The
scaling factors γe and γi determine the relative strengths of excitatory and inhibitory lateral
interactions. While the cortical response is settling, the retinal activity remains constant.

The activity pattern starts out diffuse and spread over a substantial part of the map,
but within a few iterations of equation 3.3, converges into a small number of stable focused
patches of activity, or activity bubbles. This sharpens the contrast between areas of high
and low activity, helping it become focused around the maximally responding area.

After the activity has settled, the connection weights of each neuron are modified.
Both afferent and lateral weights adapt according to the same mechanism: the Hebb rule,
normalized so that the sum of the weights is constant:

wij,mn(t + δt) =
wij,mn(t) + αηijXmn∑

mn [wij,mn(t) + αηijXmn]
, (3.4)

where ηij stands for the activity of neuron (i, j) in the final activity bubble, wij,mn is the
afferent or lateral connection weight (µ, E or I), α is the learning rate for each type of
connection (αA for afferent weights, αE for excitatory, and αI for inhibitory) and Xmn is
the presynaptic activity (ξ for afferent, η for lateral). Afferent inputs, lateral excitatory
inputs, and lateral inhibitory inputs are normalized separately.

Following the Hebbian principle, the larger the product of the pre- and post-synaptic
activity ηijXmn, the larger the weight change. Therefore, when the pre- and post-synaptic
neurons fire together frequently, the connection becomes stronger. Both excitatory and
inhibitory connections strengthen by correlated activity; normalization then redistributes
the changes so that the sum of each weight type for each neuron remains constant. In
effect, such a rule distributes the weights of each neuron ηij in the proportion of its activity
correlations with other neurons ηkl, k, l = 1..N .

At long distances, very few neurons have correlated activity and therefore most
long-range connections eventually become weak. The weak connections can be eliminated
periodically by the researcher; through the weight normalization, this will concentrate the
inhibition in a closer neighborhood of each neuron. The radius of the lateral excitatory
interactions starts out large, but as self-organization progresses, it is decreased (according to
a schedule set by the researcher) until it covers only the nearest neighbors. Such a decrease is
necessary for global topographic order to develop and for the receptive fields to become well-
tuned at the same time (for theoretical motivation for this process, see Kohonen 1982, 1989,
1993; Obermayer et al. 1992; Sirosh and Miikkulainen 1997; for neurobiological evidence,
see Dalva and Katz 1994; Hata et al. 1993.) Together the pruning of lateral connections and
decreasing excitation range produce activity bubbles that are gradually more focused and
local. As a result, weights change in smaller neighborhoods, and receptive fields become
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better tuned to local areas of the retina.

3.3 Previous work with the RF-LISSOM model

The RF-LISSOM model has been used to examine a number of cortical phenomena. The
experiments show how the observed organization of feature detectors and lateral connections
in the primary visual cortex could form based on activity-dependent self-organization, driven
by the regularities in the input (Miikkulainen et al. 1997; Sirosh and Miikkulainen 1995,
1996; Sirosh et al. 1996). As will be described in more detail in chapter 4, when the model
is trained on retinal input patterns consisting of elongated Gaussian spots, it develops
orientation columns organized into realistic orientation maps. When trained on Gaussian
spots at slightly different positions on two separate receptive surfaces, the model develops
realistic ocular dominance columns (areas favoring each eye). When trained on Gaussian
spots of different sizes, size-selective columns develop much like those starting to be found
in the cortex. In all these cases, the lateral connectivity patterns are found to follow the
receptive field properties, as found in the cortex. When computational resources permit,
future simulations will examine self-organization of all these parameters simultaneously.
Such simulations would be trained on Gaussians varying along all of these dimensions, or
on natural images processed by a model of the retina.

In addition to these developmental simulations, RF-LISSOM has been used to model
cortical plasticity in the adult brain. The fundamental hypothesis is that the cortex is a con-
tinuously adapting structure in a dynamic equilibrium with both the external and intrinsic
input. This equilibrium is maintained by cooperative and competitive lateral interactions
within the cortex, mediated by lateral connections. As a test of this hypothesis, simulated
cortical and retinal lesions were made in the model and they were shown to result in re-
organization similar to that seen in monkey cortex (Miikkulainen et al. 1997; Sirosh and
Miikkulainen 1994b; Sirosh et al. 1996). This demonstrated that the self-organizing prin-
ciples may still be operating in the adult brain during recovery from trauma. This thesis
extends those results to show that self-organization may even influence the behavior of the
intact adult brain, during normal visual processing.

3.4 Sparseness and decorrelation

Since the model has shown that it organizes like the cortex, one can examine in more
detail what the goal of this organization might be. Field (1994, 1987) and Barlow (1972)
have suggested that the RFs in the primary visual cortex act as filters that form a sparse
coding of the visual input. Sparse codes minimize the number of active neurons in the
cortex, and are well suited for the detection of suspicious coincidences, pattern recognition,
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associative memory and feature grouping (Field 1994, Barlow 1972, 1985, 1990). Prior work
has demonstrated that the coding of visual input produced by the RF-LISSOM model is
sparse in this sense (Miikkulainen et al. 1997; Sirosh and Miikkulainen 1996, 1997; Sirosh
et al. 1996). The self-organized lateral connections have proven to be crucial for reducing
redundancies to achieve this coding.

By Hebbian self-organization, the lateral connections in the model learn correlations
between the feature-selective cells. The stronger the correlation between two cells’ activity
has been in the past, the larger the connection strength between them. Because the long-
range connections are inhibitory, strongly correlated regions of the network inhibit each
other. At the same time, the short-range lateral excitation locally amplifies the responses
of active neurons. As will be seen in chapter 4, the recurrent excitation and inhibition
focuses the activity to the neurons best tuned to the features of the input stimulus, thereby
producing a sparse coding of the input. This same process manifests itself in the model as
tilt illusions and aftereffects, as will be shown in chapter 5.

3.5 Biological basis of the model

RF-LISSOM models the interactions of small groups of neurons and the connections be-
tween them rather than individual neurons and synapses. This is appropriate because
detailed low-level knowledge of the cortex is still very patchy, so its function cannot simply
be extrapolated from the fragments of anatomy and physiology which have been estab-
lished. Instead, a more promising approach at present is to work backward from observed
psychophysical and other aggregate phenomena to describe the basic computations that are
being performed. When unequivocal low-level physiological or anatomical data is available,
it is used to constrain the possible models.

Many of the fundamental assumptions of the model, such as the computation of the
input activity as a weighted sum and the sigmoidal activation function, are common to most
neural network models. Their biological validity has been examined in detail previously by
other researchers. Representing activity as a scalar value rather than a spike train is a
common abstraction made for computational convenience; RF-LISSOM can be extended
to model the low-level time-dependent behavior of neurons when studying phenomena that
depend upon it (Choe and Miikkulainen 1996; Miikkulainen et al. 1997).

However, there are two key aspects of the model that remain particularly controver-
sial: whether the long-range horizontal connections are primarily inhibitory in effect, and
the balance between genetic factors (i.e., hardwiring) and environmental factors (i.e., due
to visual input) in the organization of the cortex. These topics will be discussed in detail
in the remaining sections to support the claim that RF-LISSOM represents a biologically
realistic model of cortical phenomena, including the tilt aftereffect. Furthermore, recent
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experimental data has clarified many of the issues involved since the discussion by Sirosh
(1995), and thus it is worthwhile to reexamine these issues.

3.6 Long-range inhibitory connections

The effect of the long-range lateral connections in the cortex has been controversial for
some time, with some studies indicating that they must be inhibitory, and some indicating
that they must be excitatory. All of the long-range lateral connections in the RF-LISSOM
model are inhibitory, as has been found to be required to produce self-organization (Sirosh
1995). However, a consensus appears to be emerging that they cannot always be considered
strictly excitatory or inhibitory, but instead have different effects in different circumstances
(Weliky et al. 1995).

Anatomical surveys show that 80% of the synapses of long-range lateral connections
connect directly between pyramidal cells, which are thought to make excitatory synapses
only (Gilbert et al. 1990; McGuire et al. 1991). The other 20% of the connections target
inhibitory interneurons which in turn contact the pyramidal cells, and thus represent in-
hibitory connections. Even though the inhibitory connections are outnumbered, the net
effect at the columnar level has been difficult to establish conclusively with anatomical
studies. For instance, the interneurons often synapse at regions such as the soma where
their effects may be larger than those of excitatory neurons, which synapse farther out on
the dendrites (Gilbert et al. 1990; McGuire et al. 1991).

Physiological and psychophysical evidence now indicates that the balance between
these two types of connections is actually contrast-dependent: the influence of the lateral
connections impinging upon a neuron is mildly excitatory when the surrounding area is
activated by a low-contrast stimulus, and strongly inhibitory when the surround is activated
by a high-contrast stimulus. This has been demonstrated conclusively at the cellular level
in tissue slices (Hirsch and Gilbert 1991), and more recently in vivo at the level of cortical
columns (Weliky et al. 1995). As discussed below, it has been hypothesized that these
complex connections help enhance the ability to detect low-contrast inputs while suppressing
redundant activation for high-contrast inputs.

However, it remains unclear how exactly this contrast dependence is implemented
in the cortex. An early proposal was that the inhibitory interneurons are inherently more
effective than the direct excitatory connections, but have a higher threshold for activa-
tion (Sillito 1979). At very low stimulus levels, the excitatory effects would predominate,
but at high levels the inhibitory interneurons would become progressively more active and
eventually would suppress the response of the target cell.

Douglas et al. (1995) have presented a more detailed proposal which takes into ac-
count the recurrent circuit provided by the type of short-range excitatory lateral connections
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found in LISSOM. That paper shows how the relatively few lateral inhibitory connections
could be effective enough to dominate the response even though they are fewer in number.
Simplified versions of such circuits have been modeled by Stemmler et al. (1995) and Somers
et al. (1996). They propose that these complex connections help enhance the ability to de-
tect weak, large-area stimuli while suppressing spatially redundant activation for strong
stimuli.

The current RF-LISSOM model emphasizes the suppressive effects only. Since all
inputs used for self-organization have been high-contrast, the assumption that the effects
are primarily inhibitory is well-founded. Because the amount of synaptic change due to
the learning mechanisms is very small for low-contrast inputs, the behavior for such inputs
does not significantly affect self-organization. Furthermore, since all the inputs used in this
thesis are high-contrast, the results presented for the tilt aftereffect should not depend upon
this simplifying assumption.

Future versions of RF-LISSOM may be extended so that the effect of the long-range
connections varies according to circumstances. However, it is not yet clear what type of
extension is necessary to account for the phenomena. One possibility is to multiply each
lateral connection impinging upon a cell by a factor that depends upon the activation of
the cell. This would treat any lateral input as a mild excitation if the cell is inactive, and
as strong inhibition if the cell is strongly active (Sillito 1979; Somers et al. 1996). Another
alternative extension is to use the net lateral input to the cell to compute this scaling factor.
Future work may help to clarify which of these two, or others not yet formulated, is most
appropriate.

3.7 Environmental versus genetic factors in development

The RF-LISSOM model allows researchers to explore the relationship between environmen-
tal and genetic factors in development. The relative weights of these factors have been
debated for hundreds of years (for review see Diamond 1974), but recent evidence is begin-
ning to clarify how development actually occurs in the nervous system. This section will first
sketch the very general constraints that apply to a developing organism and the tradeoffs
involved in satisfying them. It will then examine how these tradeoffs might be optimized in
the mammalian visual system in particular, and how they relate to RF-LISSOM. The intent
is to show how a self-organizing model can explain aspects of both environmentally- and
genetically-driven development. This helps to clarify the significance of the RF-LISSOM
model, and to suggest the role that it can play in an explanation of the cortex.1

1This section is optional; the rest of the thesis does not rely heavily upon the arguments presented here.
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3.7.1 Evolutionary and developmental constraints

Every organism develops from a single cell. As such, it can make use of material within
the cell, specifically the genome, and information in its environment, measured in some
way. Different organisms appear to use these sources of information in very different ways,
appropriate to their ecological niches and overall degree of complexity.

For instance, an animal’s development could be specified in precise detail by its
genome (Purves 1988). This would be feasible if the important factors of an animal’s envi-
ronment remain essentially constant for millennia, and if the adult animal is not particularly
complex. Each individual of the species would express exactly the same pattern, and evolu-
tionary selection processes would ensure that the pattern is appropriate for the environment
of the organism.

This developmental program appears to apply to the nervous system of the nematode
worm C. elegans. Under ordinary circumstances, this organism has 302 neurons in the same
configuration in every individual (Sulston and Horvitz 1977). The advantage of such a
scheme is that each individual will need only a fairly short developmental period, after which
it will be fully prepared for life. A competing organism which requires a long maturation
period would be at a disadvantage. While the competitor is still developing, the hard-wired
organism will already have appropriate default behaviors even for circumstances that it has
not previously encountered.

However, if the environment changes unpredictably over time scales shorter than
those required for evolution to change the genome significantly, then a hard-wired organism
will often encounter novel situations for which its behavior is inappropriate. An adaptive
organism that can make use of clues found in the environment could be much more successful
in those situations than a hard-wired ecological competitor.

It would be most efficient for the adaptive organism to extract all the relevant in-
formation from the environment at birth, so that it could subsequently devote its resources
to other tasks. However, this would risk optimizing the organism for the particular cir-
cumstances surrounding that short time period. Optimizations made at that time might
be wholly inappropriate for different situations encountered later, particularly since birth
is an inherently anomalous event in an organism’s lifetime. Thus it is desirable to integrate
the information over as long a time as possible, to maximize the chances that the learned
behavior is appropriate for the environment.

Yet the longer an organism takes to reach full competence, the more it is susceptible
to accidents and predators. In the limit, the finite lifespan of an organism provides an
upper bound upon how much environmental information can be integrated into the animal’s
repertoire. But since a single lifetime will only span a certain range of experiences, it cannot
provide as much information as the millions of years that have presumably contributed to
the formation of the genome.
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If an organism became entirely adapted to the environment as it has encountered it,
it would eventually encounter an important new event for which it was unprepared. In this
case its hard-wired competitor would have the advantage. The genome of the hard-wired
organism will presumably provide some appropriate behavior if the “novel” events actually
recur quite often on an evolutionary timescale. So an organism cannot rely solely upon
environmental cues, and to be fully suited to its environment it must (paradoxically) make
use of some genetic information. The long-term information represented in the genome thus
complements the direct environmental influences upon the organism after birth.

As discussed below, one might want the genetic influences to act as a constraint upon
the amount of learning that can occur. This would prevent the organism from becoming
too specifically adapted to its particular circumstances. The goal would be to help ensure
that the organism remains capable of detecting unusual situations; e.g. those that are fatal
but rare.

Thus there are a number of important tradeoffs between environmental and genetic
control of development. For simple organisms with well-defined ecological roles, hard-wiring
may suffice. However, more complex animals with more variable environments will optimally
use some cues from the environment when developing. Fully adapting to the environment
would not be entirely desirable, since it would amount to ignoring information only available
in the genome.

Mammals, being quite complex and capable of handling a wide variety of different
environments, appear to represent a particularly successful balance of these developmental
and evolutionary constraints. Although significant genetic components are present, an
extensive array of early environmental influences on visual system development have been
documented in mammals (for review see Movshon and van Sluyters 1981). The following
sections will argue that mammals make use of a simple technique that allows them to make
use of both environmental and genetic information efficiently. This process will also be
related to RF-LISSOM as a hypothesis for what the self-organization process represents.

3.7.2 Two-stage model for development

Since each individual begins from a single cell, yet some types of learning require multi-
cellular sensory systems, genetic factors must determine the very first stages of development.
Thus one simple way to combine genetic and environmental factors is for entirely gene-based
development to progress to a certain point, e.g. birth or shortly thereafter, and then transfer
developmental control to a learning mechanism (Blakemore and van Sluyters 1975). This
seems particularly appropriate in organisms such as mammals that have a long gestation
period, during which their ability to measure the environment is severely limited. This
approach would help minimize the time spent in learning, yet allow the environment to
have some influence on the structures developed.
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Once the developing systems are nearly complete, it would be desirable to limit their
adaptability. Otherwise, eventually all traces of the initial genetic order would disappear
(Jouvet 1980). Allowing the organism to significantly adapt further would thus amount to
ignoring valuable information from the genome (as described in the previous section).

In a computer model of sensory development such as RF-LISSOM, the hard-wired
aspects would correspond to the initial state of the model, before any self-organization
occurs. For instance, one could assume that a roughly retinotopic map on the LGN or
visual cortex is formed through genetic means. Subsequent sharpening of the map could
occur through visual experience, thus ensuring that the map is appropriate for the particular
environment found.

However, this simple two-stage approach does not adequately account for all of
the data on innate and environmental factors in mammals. Firstly, the genetic process
cannot fully specify the initial phase of development in detail. There is simply not enough
space available in the genome of a mammal (on the order of 105 genes) to specify every
connection in its nervous system (as many as 1015; Kandel et al. 1991,p.885). Thus the
genetic developmental mechanisms must express many highly repetitive structures or they
must specify the structures only approximately (Purves 1988; Shatz 1996).

Secondly, even during embryonic stages, the developmental process appears quite
flexible (Purves 1988). Developing organisms adapt systematically to a number of rather
drastic modifications, such as the implantation of a third eye in a frog (Reh and Constantine-
Paton 1985) or the removal of large areas of the brain of a primate (Goldman-Rakic 1980).
These adaptations presumably arise out of a repertoire of possible responses to damage
or malfunction in the developing embryo. The embryonic adaptive mechanisms would be
even more important for mammals than for simpler creatures, since greater complexity
increases the likelihood of isolated malfunctions (Purves 1988). Thus if each connection
were hardwired, an explosive number of backup connections would need to be specified as
well, or else some general adaptation procedure would be needed (Shatz 1996). If there
were such a general procedure, then the initial precise specification would be superfluous
anyway.

Finally, evolution seems unlikely to have developed such a wastefully modular sys-
tem, with two complex and non-overlapping systems to perform similar tasks. The first
system would express genetic information according to a fixed plan. Since it must start
from a single cell, it would need a set of bootstrapping mechanisms to construct the “pre-
set” pattern determined by the genome. These mechanisms would have to be quite complex
to account for the complex structures seen even at birth in mammals (Blakemore and van
Sluyters 1975). At some point determined by the genome, control would shift to the learn-
ing mechanism, and the cellular or intracellular structures used for bootstrapping would
need to be deactivated or perhaps even dismantled. Otherwise, the system would not be
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able to accept subsequent cues from the environment. Instead of such a clean separation
between genetic and environmental factors, it seems more likely that the initial mechanisms
or structures are reused to some extent in later activity-dependent developmental processes
(Shatz 1996).

Cumulatively, the above constraints strongly discourage large-scale fully-specific
hardwiring, yet somehow most organisms (including humans) develop with a large degree
of structure already present at birth (Blakemore and van Sluyters 1975). The next section
explores an alternative, complementary hypothesis for combining genetic and environmental
factors that addresses these considerations, and the following section will review evidence
that it is actually occurring in several systems of mammals. This type of developmental
strategy makes widespread use of activity-dependent self-organization, and so it helps to
show how and why animals may implement the processes modeled in RF-LISSOM.

3.7.3 Overlapping model for development using pattern generation

True environmental information is only available to the visual system after birth (and often
even later, depending on the time of eye-opening). However, coherent inputs arising at
any point along the pathway from the receptor to the cortical areas could activate cortical
areas. They could thus have effects similar to genuine visual experience, yet under genetic
control (Constantine-Paton et al. 1990; Maffei and Galli-Resta 1990; Marks et al. 1995;
Roffwarg et al. 1966; Shatz 1990, 1996). So once the basic, general connectivity and cellular
mechanisms are in place, particularly the learning mechanisms modeled by RF-LISSOM,
the system can self-organize based upon any input, not just those in the environment.

If the organism itself generates those signals with some form of internal pattern
generator, the organism could direct its own development. Neural mechanisms to generate
coherent patterns are well-documented in a number of different systems (Marder and Cal-
abrese 1996). Such a pattern generator would allow genetic factors to be expressed through
the same mechanisms also used later when adapting to the visual environment (Jouvet
1980).

As simulations with RF-LISSOM have demonstrated, even very simple patterns can
drive the development of extraordinarily complex structures, such as the orientation map
in V1 (described in chapter 4). For the orientation map, simple two-dimensional oriented
Gaussian inputs, described by a single equation with six parameters, were presented to the
general RF-LISSOM model. The model did not previously contain any representation of
orientation. These inputs prompted the model to develop an organized set of thousands
of orientation-specific feature-detectors, with many millions of specific connections between
them. Thus quite detailed structures could be specified by the genome merely by speci-
fying what type of pattern should be generated internally. Obviously, the nervous system
might use any number of different mechanisms to generate appropriate patterns, not all of
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which would be as simple as the equation mentioned above, but in general much simpler
mechanisms would suffice for the generation of training patterns than to specify the final
structures.

Since the specification for the pattern generator could be encoded into a very small
amount of genetic information (Jouvet 1980), very different structures could be specified by
changing only a small part of the genome. Random mutations in that portion of the genetic
code would be likely to cause development of slightly different patterns, which might lead to
quite different cortical structures. This would greatly facilitate the processes of evolution,
since it increases the chance that a mutation is useful rather than merely debilitating.

To compare, imagine that the genome of a phylogenetically more primitive animal,
such as a mouse, specified its nervous system in complete detail. The chance that it would
eventually evolve into an animal with a more complex nervous system, such as a monkey,
would be quite small. Any single change would be likely to damage the nervous system, yet
an enormous number of coordinated changes would be needed to transform a fully-specific
mouse genome into a fully-specific monkey genome (Purves 1988). But even though much of
the DNA is shared between mammalian species, an extraordinary variety of mammals exist,
with quite different cortical organizations (Purves 1988). Internally generated patterns may
help to explain how evolution leapt over the gaps between successive species in phylogeny.
This interpretation is supported by the observation that learning mechanisms appear to be
highly conserved between species and brain areas in mammals (Kirkwood and Bear 1994),
while presumably pattern generators would vary significantly between different species.

The patterns of fur coloring on different individuals of the same species, e.g. domestic
cats, might represent a graphic example of internal pattern generation in development.
Swindale (1980) proposed a similar analogy between zebra stripes, fingerprint whorls, and
ocular dominance stripes. Different kittens in the same litter often have very different fur
patterns, some quite complex, yet each individual is genetically quite similar to the others.
But purebred cats generally have the same overall fur patterns for every individual of that
subspecies. The lack of variation in purebreds indicates that the patterns are controlled
genetically, but the variety seen in mixed breeds suggests that the patterns are controlled
by a small region of the genome, which can express quite different patterns with only small
changes. This same type of pattern generation may be occurring in the mammalian nervous
system, as explored in the next section.

3.7.4 Pattern-generated development in mammals

Retinal waves

It is not presently known what role internal pattern generation plays in mammalian devel-
opment. However, evidence is rapidly accumulating that such processes are occurring in at
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least two pathways leading to mammalian visual cortex: the developing retina and the brain
stem. In the retina, the patterns take the form of intermittent spatially-coherent waves of
activity across groups of ganglion cells (Meister et al. 1991; Sirosh 1995; Wong et al. 1993).
They appear to arise from as-yet-unknown events in networks of developing amacrine cells
that provide input to the ganglion cells (Catsicas and Mobbs 1995; Feller et al. 1996; Shatz
1996). These waves may represent training inputs for the prenatally developing LGN and
cortex, providing a simple explanation of how the system could be activity-dependent, yet
already organized at birth.

The waves begin before photoreceptors have even developed (Maffei and Galli-Resta
1990), so they do not result from visual input of any sort. They are presumably entirely
unsynchronized between the two eyes, since they occur spontaneously and locally, with long
pauses in between (Shatz 1990). Blocking this activity in the retina prevents the segregation
of the LGN into eye-specific layers before birth (Shatz 1990, 1996), so the activity must
be playing a role in the segregation. Blocking the activity in the retina, but substituting
certain patterns of artificial electrical stimulation, results in dramatically different cellular
properties than if other patterns are used (Mooney et al. 1993). This suggests that the
patterns of electrical activity are the important feature of the waves (Shatz 1990, 1996). As
the waves subside gradually in strength and frequency due to developmental processes in the
retina, the connectivity in the LGN stabilizes (Wong et al. 1993). At approximately the same
time, visual input becomes functional, but it is not yet known whether visual input causes
the waves to cease or whether they cease in anticipation of visual input. Manipulations of
the visual environment have been shown to have dramatic effects on the organization of the
visual cortex (Movshon and van Sluyters 1981), the next step in the visual pathway. Thus
internally-generated retinal waves appear to be instrumental in pre-visual development, at
least of the LGN, and they appear to play a role similar to that which visual input plays
for higher areas. It is not yet known what role the retinal waves play in the development of
the cortex, but they may represent the prenatal portion of the activity seen by the cortex,
which later receives visual input that is crucial for its development.

It has further been proposed that the spontaneous activity is responsible for main-
taining topographic maps during the growth of the connecting pathways from the retina
to the LGN (Bunt et al. 1979). That is, when the ganglion cells of the retina extend
axons forming the optic nerve, they would keep a retinotopic order as a result of activity-
dependent processes driven by these retinal waves. Throughout the developmental process,
they would remain in this retinotopic order until they reached the LGN. This proposal has
not been definitively established, but there is some evidence for the proposed mechanisms
and results (Bunt et al. 1979). If it turns out to be well-supported, it would take still
more of the burden off of the genetic factors in development. That is, since the retina is
inherently “retinotopic”, if the fibers remain in that organization throughout the journey
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to the cortex, no genetic specification of the retinotopic ordering is needed.
Finally, similar waves have been documented in early areas of other sensory systems,

such as the auditory systems of birds (Lippe 1994). Such activity may be a general fea-
ture of the earliest sensory areas in more complex organisms such as birds and mammals,
allowing genetic factors to be take effect via the same mechanisms which later incorporate
environmental influences (Shatz 1990). This would represent a developmental mechanism
which is quite efficient and effective on a number of different levels, as described above.

PGO waves

Internal pattern generation may continue at somewhat reduced levels, even after develop-
ment. For instance, the generation of appropriate training patterns has been proposed to
be one function of the sleep stage known as rapid eye movement sleep (REM; Jouvet 1980;
Roffwarg et al. 1966). Infants exhibit very large durations of REM sleep during the ages
when their nervous systems are the most highly plastic, and the amounts of REM sleep
and plasticity decrease similarly with age (Roffwarg et al. 1966). Furthermore, birds and
mammals, which are much more adaptable to different environments than other animals,
are the only organisms known to exhibit REM sleep in the adult (Jouvet 1980).

During and just before REM sleep, internally generated phasic waves called ponto-
geniculo-occipital (PGO) waves can be measured in the LGN, V1, and many other cortical
areas (Jouvet 1980; Steriade et al. 1989). These apparently genetically-programmed waves
consist of large, slow increases in field potential when measured with an EEG (electroen-
cephalogram). They appear to cause specific eye movements which have been statistically
correlated with reports of the direction of gaze in dream imagery (Jouvet 1980). PGO waves
originate in the pons of the brain stem (hence ponto-) and travel via direct pathways to
the lateral geniculate nucleus (hence -geniculo) and to visual cortex (in the occipital lobe,
hence -occipital; Steriade et al. 1989). They appear to be relayed from the LGN and visual
cortex to many other areas of the cortex (Jouvet 1980).

Jouvet (1980) has proposed that these waves help direct the course of brain matura-
tion in early life, and specifically that they allow genetic differences among individuals to be
expressed. Tentative support for this hypothesis was obtained by Marks et al. (1995), who
found that depriving kittens of REM sleep during the critical period significantly enhanced
the effects of visual experience during that time. The heightened effects of experience were
interpreted as a weakening of genetic control over development.

Ordinarily, blocking signals from one eye of a kitten for even a few days during the
critical period for visual development (4–6 weeks after birth) causes dramatic strengthening
of connections to visual cortex from the non-deprived eye, and a loss of connections from the
deprived eye (Movshon and van Sluyters 1981). With shorter deprivation times, the effects
are less pronounced. If both eyes are deprived of input, no detectable loss or strengthening
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occurs (Movshon and van Sluyters 1981). Thus a monocular deprivation paradigm offers
an opportunity to test the role of environmental and genetic factors in development, both
of which appear to be operating in this system.

Marks et al. (1995) blocked signals from one eye of kittens for a portion of the critical
period. It was found that blocking the input had a much larger effect on animals deprived
of REM sleep than for control animals which had normal REM sleep. Similarly heightened
sensitivity to deprivation was found when the PGO waves were blocked directly by lesions
in the pons. Thus some mechanism in which the PGO waves participate appears to limit
the amount of plasticity in this system in the normal individual.

Unlike the retinal waves discussed in the previous section, PGO waves are correlated
between the two eyes. The patterns sent to each of the eye-specific layers of the LGN are
generated separately, but match quite closely (Jouvet 1980). The correlation presumably
represents the pattern of similar, but not identical, eye movement directions for the two
eyes. This type of correlated input would ordinarily counteract the imbalance of inputs
from the deprived and non-deprived eyes. Thus the monocular deprivation protocol should
have had greater effect in the absence of PGO waves, which was in fact seen (Marks et al.
1995).

Jouvet (1980) speculates that PGO waves are a very general signal that activates
local circuits in each brain area. Each local circuit would then generate training inputs
appropriate for its area. He further proposes candidate substrates for such circuitry, which
are beyond the scope of this discussion. However, if Jouvet’s proposal is correct, then
to the extent that the pattern evoked by PGO waves differs from the typical response to
the environment, REM sleep would serve to ensure that each brain area develops and is
maintained in readiness for its genetically-determined function. The genetically-determined
structure would be fine-tuned based on information from the environment, but it would
persist regardless of how much learning occurs. This would help ensure that the structure
and function of each area of the brain would be suitable for the species of the organism, and
thus for its ecological niche. It would also help differentiate different brain areas intended
for different tasks yet which receive similar inputs from the environment; without such
differentiation or some form of competition the areas would eventually become identical as
they adapt to visual input.

As argued above, it is not desirable for an organism to completely adapt to the
environment it experiences. The amount of time available for adaptation is very small
compared to the time over which genetic information has been compiled, and thus not all
the relevant information is available from the environment. Thus the PGO waves may also
serve to limit such unwarranted adaptation. Since adults exhibit significant amounts of
REM sleep as well, these pattern generators may also be operating in the developed animal
(Jouvet 1980). They may help maintain a balance between specific visual correlations

35



learned during the day, such as a preponderance of certain orientations of lines, and circuitry
capable of handling a wide variety of processing tasks, such as detecting all possible lines.
Roffwarg et al. (1966) and Steriade et al. (1989) speculate that these generated patterns
constitute some of the vivid imagery experienced during REM sleep.

Jouvet (1980) further speculates that the function of REM sleep is to “program”
the nervous system with genetically encoded behaviors and capabilities. In preliminary
experiments, he tested the effect of REM sleep deprivation on two strains of genotypically
similar laboratory mice. These two strains ordinarily exhibit a small number of well-defined
differences in maze-learning behavior even when raised in identical environments. When
deprived of REM sleep, the difference in behavior decreased, i.e. the mice became even
more similar. Although the experiment was not conclusive, it suggests that the REM
sleep deprivation inhibited the expression of genetic differences between the two strains. In
general, Jouvet hypothesizes that individuals would exhibit far less variation if deprived
of the effects of REM sleep, since their behavior would be determined primarily by the
environment. Thus “genetic programming” during REM sleep may help to ensure that
different species, individuals of the same species, and even different areas of a single brain
retain diversity, thus increasing the likelihood that some member of the group will be
appropriate for a given task.

As a cautionary note, the REM sleep effects are not nearly as well characterized as
those in the retina, primarily because sleep deprivation has a number of side effects. For in-
stance, both behavioral and pharmacological methods of REM deprivation cause significant
stress, and the pharmacological methods involve drugs that are not particularly specific in
their actions (Jouvet 1980). This makes REM sleep results difficult to interpret. The PGO
waves themselves are well-documented, however, and since they occur in many different
areas of the brain, they could represent a general feature of mammalian neural systems.
They may be a part of the mechanism by which genetic and environmental influences are
combined by activity-dependent learning processes.

Although research into the effects of pattern generation on the developing brain is
just beginning, it is already clear that the distinction between “genetic” and “environmen-
tal” origins of brain structures is blurring. Many alternatives in between can be determined
by the ratio of pre-programmed “experience” to actual sensory experience. The use of
pattern generators to direct experience-dependent learning processes represents an effective
solution to the general constraints faced by a complex organism with a limited genome and
a limited time for development.

3.7.5 Pattern-generated development in self-organizing models

Self-organizing models like RF-LISSOM allow hypotheses about the contribution of genetic
and environmental factors to be tested in detail. The training inputs for self-organizing mod-
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els can represent either internally generated patterns or environmentally realistic stimuli,
or any combination thereof. RF-LISSOM also incorporates hard-wired genetic information,
such as the basic learning and activity computation algorithms, which are assumed to be
essentially the same between different individuals.

The initial connectivity parameters, such as the extent of excitatory and inhibitory
connections or the amount of initial order, can be set by the researcher to represent different
possible starting states. The RF-LISSOM research so far has tried to begin from as much
initial randomness as is possible for self-organization. This shows how RF-LISSOM can
explain the most difficult cases. Adding further initial order, representing some innate bias
towards the appropriate structure (as often found in biological systems), just makes the
learning process easier.

Similarly, simulations are run using the simplest training inputs that will account
for the structures seen in the cortex. These inputs can then be compared with known
internal pattern generators, and with the typical features of the visual environment. Finding
that the required inputs match with those available from either of those two sources helps
confirm that the model is appropriate. Using such techniques, the RF-LISSOM model can
help test hypotheses about the relative importance of environmental and genetic factors in
development.

3.8 Conclusion

The RF-LISSOM model demonstrates that the afferent and lateral connections in the pri-
mary visual cortex can self-organize simultaneously and synergetically based on a single
Hebbian adaptation process. The model is well supported by anatomical and physiological
evidence for high contrast stimuli. It has already been very successful at modeling structural
development and adult plasticity on the cortex.

The self-organization process stores long-range activity correlations between units
into the lateral connections. During visual processing, this information is used to eliminate
redundancies and to form an efficient sparse coding of the input. Training inputs can
come from the visual environment or from internally generated sources. If the inputs have
features that are oriented (i.e., are not radially symmetrical), the model will self-organize
to represent that aspect of the inputs. Chapter 4 will examine how this self-organization
leads to the development of orientation preferences. Later chapters will show that the same
decorrelating process that forms a sparse coding of orientation and position also results in
psychological artifacts known as the tilt aftereffect.
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Chapter 4

Training the Orientation Map

As discussed in chapter 2, neurons in the primary visual cortex are selective for the orienta-
tion and position of stimuli. Furthermore, the neurons are arranged retinotopically across
the cortex, forming an orientation map (Blasdel 1992a; Blasdel and Salama 1986; Grinvald
et al. 1994; Ts’o et al. 1990; Weliky et al. 1995). Each local area in the map contains
neurons with each possible orientation preference, all responding to the same location on
the retina. The neurons tuned to a particular orientation are activated when an input of
that orientation is present at their preferred location on the retina.

It has been shown previously that, given oriented inputs, the RF-LISSOM model
develops orientation maps similar to those seen in the primary visual cortex (Miikkulainen
et al. 1997; Sirosh and Miikkulainen 1997; Sirosh et al. 1996). In this thesis, the functional
aspects of such self-organized orientation maps will be studied. This chapter describes the
process of organizing and characterizing an orientation map, and chapter 5 will examine
how the behavior of the map leads to tilt aftereffects.

4.1 Training inputs

To develop an orientation map in the RF-LISSOM model, one of the simplest oriented
training patterns was used: a 2-dimensional elongated Gaussian. For these inputs, the
activity at each retinal ganglion cell is calculated according to the equation

ξr1,r2 = exp( −((r1 − xi)cos(α)− (r2 − yi)sin(α))2

a2

−((r1 − xi)sin(α) + (r2 − yi)cos(α))2

b2
) (4.1)

where a2 and b2 specify the length along the major and minor axes of the Gaussian, (xi, yi)
specifies its center, and α its orientation. The x and y coordinates of the centers are each
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(a) +45◦ Gaussian at (14,13) (b) +88◦ Gaussian at (6,4) (c) -5◦ Gaussian at (8,14)

Figure 4.1: Sample training inputs plotted on the retina. The retina consisted of 24 × 24
units, with an origin at the top left corner. Angles cited are relative to vertical, taken to be 0◦, and
they increase counterclockwise. For all the Gaussian inputs in this thesis, the major axis half-width
was a = 7.5 units, and the minor axis half-width was b = 1.5.

chosen randomly within the retinal area, and the orientation is chosen randomly from the
uniform distribution in the range 0◦ ≤ α < 180◦. Figure 4.1 shows several sample training
inputs.

These patterns approximate natural visual stimuli after the edge detection and en-
hancement mechanisms in the retina. Such edge-enhanced images have a predominance
of elongated features. Similar features may also be found in the intrinsic retinal activity
waves that occur in late prenatal development in mammals, and they are believed to drive
the initial organization of the visual cortex (as discussed in section 3.7.4; Catsicas and
Mobbs 1995; Meister et al. 1991; Wong et al. 1993). The RF-LISSOM network models the
self-organization of the visual cortex based on these natural sources of elongated features.

4.2 Training parameters

The model consisted of an array of 192 × 192 neurons, and a retina of 24 × 24 ganglion
cells. The circular anatomical receptive field of each neuron was centered in the portion
of the retina corresponding to the location of the neuron in the cortex. The RF consisted
of random-strength connections to all ganglion cells less than 6 units away from the RF
center. For example, the neuron at the center of the cortex was connected to the ganglion
cells inside a circle of radius 6 at the center of the retina. The top left neuron was connected
to the top left retinal ganglion, and to the other ganglion cells in the top left corner. Sample
initial receptive fields are shown in figure 4.2.

The cortex was self-organized for 30,000 iterations on oriented Gaussians which each
had a major axis of half-width a = 7.5 units and a minor axis of half-width b = 1.5.
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The initial lateral excitation radius was 19 and was gradually decreased to 1. The lateral
inhibitory radius of each neuron was 47, and inhibitory connections whose strength was
below 0.00025 were pruned away at 30, 000 iterations. The lateral inhibitory connections
were preset to a Gaussian profile with σ = 100, and the lateral excitatory connections to
a Gaussian with σ = 15. The lateral excitation γe and inhibition strength γi were both
0.9. The learning rate αA was decreased from 0.007 to 0.0015, αE from 0.002 to 0.001 and
αI was a constant 0.00025. The lower and upper thresholds of the sigmoid was increased
from 0.1 to 0.24 and from 0.65 to 0.88, respectively. The number of iterations for which the
lateral connections were allowed to settle at each training iteration was initially 9, and was
gradually increased to 13 over the course of training.

These parameters were chosen by Sirosh (1995) in order to develop a biologically
realistic orientation map, prior to any of the experiments done on tilt illusions or aftereffects
for this thesis. Small variations of these parameters produce roughly equivalent results. The
training took 8 hours on 64 processors of a Cray T3D at the Pittsburgh Supercomputing
Center. The model requires more than three gigabytes of physical memory to represent the
more than 400 million connections in this small section of the cortex.

Although there is significant order in the model even before self-organization, with
training the RFs will sharpen into smooth profiles selective for orientation, the topographical
organization will be refined, and the lateral connections will become patchy and focused.
The initial order represents part of the genetically-determined development of the visual
cortex, and the self-organization to be described in the following sections represents the
activity-dependent developmental processes, as outlined in section 3.7.

4.3 Receptive fields and orientation maps

The self-organization of afferent weights results in oriented synaptic weight patterns forming
afferent receptive fields. Figure 4.2 shows examples of these weight patterns plotted on the
retinal surface for several neurons. A variety of such RFs are produced in the self-organizing
process, most highly selective to inputs of a particular orientation, others unselective.

To show how the orientation preferences are located across the network, an orienta-
tion map was computed by labeling each neuron with its orientation preference, as deter-
mined from its afferent weights. The afferent weights were fitted to an ellipsoidal Gaussian
(equation 4.1) using the nonlinear programming package NPSOL (Gill et al. 1986). The
orientation of the fitted function was taken to be the orientation preference of that neuron;
it is the orientation of the Gaussian that maximally excites the afferent weights. Because
the receptive fields were themselves developed based on Gaussian inputs, their orientation
preferences were generally unambiguous, and other methods of computing the orientation
map would show very similar results.
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(a) RF tuned to +45◦ (b) RF tuned to -30◦ (c) Unselective RF

Figure 4.2: Self-organization of afferent receptive fields. The afferent weights to three
neurons near the center of the cortex are shown, plotted on the retinal surface. The top row shows
the initial afferent weights for each neuron, and the bottom shows the weights after self-organization
(at iteration 30,000). Initially, all of the neurons had random afferent weights across the anatomical
receptive field area, and were not selective for orientation. Through self-organization, the first two
neurons became highly selective for a particular orientation. The third became selective for retinal
position within its RF, but remained unselective for orientation; this type of RF is relatively rare in
V1 as well as in the model. When a Gaussian input of a particular orientation is presented at the
location of these receptive fields, the first neuron will fire strongly only if the Gaussian is oriented
near +45◦, since otherwise very little of its receptive field will be activated. Similarly, the second
neuron will fire for a Gaussian oriented near -30◦, while the third will have approximately equal
response to all orientations. These types of receptive fields have also been found in the cortex, and
serve to encode the local orientation at that position on the retina.

Figure 4.3 shows the global organization of the receptive fields in the network before
and after training. The color of each neuron indicates its orientation preference as indicated
in the key. Initially, all the afferent weights are random. As a result, the orientation
preferences of the RFs are random and most RFs do not have a strong preference for any
particular orientation. As self-organization progresses and afferent weights develop oriented
receptive fields like those in figure 4.2, a complex organization of orientation preferences
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(a) Initial unordered map (b) Final orientation map

+90◦ +45◦ 0◦ -45◦ -90◦

Figure 4.3: Self-organization of the orientation map (color figure). Each neuron in these
plots of the cortex is colored according to the orientation preference of its afferent weights (as shown
on the key.) (a) Initially, the afferent weights are random within a fixed receptive field. However,
near the borders the receptive fields are elongated in shape because they are cut by the edge of
the retina. This gives neurons near the edge an initially oriented receptive field, even though the
weights themselves are random. (b) After 30,000 input presentations, the receptive fields organize
into continuous and highly selective bands of orientation columns. Near the borders, the patterns
have seamlessly self-organized in a way that takes advantage of the bias towards receptive fields
parallel to the borders. It is not known whether such edge effects occur in biological systems, where
only central regions have been studied in detail. The central section of the map is both qualitatively
and quantitatively similar to those found in the macaque monkey (Sirosh 1995). Both include (1)
pinwheels, points around which the orientation preferences change continuously (e.g. just below and
to the left of the center of the cortex) (2) linear zones, bands where the orientation preferences
change continuously, like a rainbow (e.g. from just below the center, down to the left at a 30◦ angle
from vertical), and (3) fractures, regions where the orientation preference changes abruptly between
two distant orientations (e.g. almost half-way over from the center to the left, between the red and
green areas).

develops. The map is remarkably similar in structure to those observed in the primary visual
cortex by recent imaging techniques (Blasdel 1992b; Blasdel and Salama 1986), and contains
complicated structures such as pinwheels, fractures and linear zones.1 The results suggest
that Hebbian self-organization of afferent weights, based on recurrent lateral interactions,

1The similarity of the model and experimental maps was measured with Fourier transforms, autocorrela-
tion functions, and correlation angle histograms. See Erwin et al. (1995) for a discussion of these methods;
see Sirosh (1995); Sirosh and Miikkulainen (1996, 1997) for those measurements for RF-LISSOM. An MPEG
animation of the self-organizing process is found in Sirosh et al. (1996).
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could underlie the development of orientation maps in the cortex.

4.4 Self-organization of lateral connections

The lateral connection weights self-organize at the same time as the orientation map forms.
Initially, the connections are spread over long distances and connect to neurons of all types.
As the lateral weights self-organize, the connections between uncorrelated regions grow
weaker, and after pruning, only the strongest connections remain (figures 4.4 and 4.5).
The strongest lateral connections of highly-tuned cells (figure 4.4c) link areas of similar
orientation preference, and avoid neurons with the orthogonal orientation preference, as
found in the cortex. Other neurons remain unselective (for instance, at points surrounded by
continuously changing orientation preferences), and they connect to cells of all orientations
equally (figure 4.5b,c). The connections of unselective neurons have not yet been studied,
so this result represents a prediction of the RF-LISSOM model.

Furthermore, the connection patterns of highly oriented neurons are typically elon-
gated along the direction in the map that corresponds to the neuron’s preferred stimulus
orientation (as verified subsequently for monkey cortex; Fitzpatrick et al. 1994). This orga-
nization reflects the activity correlations caused by the elongated Gaussian input pattern:
such a stimulus activates primarily those neurons that are tuned to the same orientation as
the stimulus, and located along its length (see Sirosh et al. 1996 for details).

4.5 Orientation encoding

The previous two sections showed how the afferent and lateral connections self-organize into
a highly structured map with very specific internal connections, as found in the cortex. As
one might expect from the properties of the individual neurons in the map, the response of
the network to an input varies systematically depending upon the orientation and position
of that input. This section will show examples of the network’s actual response to different
orientations, and will examine possible methods for determining what orientation is per-
ceived by the cortex for that activity pattern. Calculating the perceived orientation is an
essential prerequisite to measuring tilt aftereffects and illusions, since those are manifested
as differences in the perceived orientation in different circumstances.

At any point in time the visual system is processing an image that has only a small
number of oriented features in any local area, so only a few portions of the orientation map
will be active at a given time. Figure 4.6 shows the sparse activity that results for Gaussian
inputs of various orientations at the center of the retina. Initially, each input activates
a wide range of neurons with orientation preferences somewhat similar to the orientation
of the input pattern (figure 4.6b). Through the highly-specific lateral interactions, the
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(a) Afferent weights (b) Excitatory weights (c) Inhibitory weights

+90◦ +45◦ 0◦ -45◦ -90◦

Figure 4.4: Self-organization of lateral connections to a highly selective neuron (color
figure). The plots show each type of weights going to the neuron at (88,111), both before (top
row) and after self-organization (bottom row, after 30,000 iterations). A border is drawn around the
active weight area in each plot, and the neuron itself is marked with a tiny box in (c). Bright colors
at a location on the cortex in (b) and (c) indicate a strong lateral connection from that neuron to
neuron (88,111); the hue encodes the orientation preference of the neuron. Initially, each neuron had
lateral inhibitory connections to every surrounding neuron, so each connection was very weak. After
organization, the neuron developed a preference of -30◦ (blue), and its connections come primarily
from other blue neurons. The connections follow the twists and turns of each blue iso-orientation
column (compare to figure 4.3b), and are elongated upon the orientation they encode.

network then settles into a stable pattern with sharply-defined regions of active neurons.
The neurons that remain active are those that prefer orientations close to that of the input
pattern. In other words, the patterns of activity clearly encode the orientation of the input.

However, it is unknown precisely how the higher visual areas extract the encoding
of orientation from figure 4.6 and arrive at the perception of an individual oriented line. It
has been suggested that the perceived orientation is either the orientation preference of the
unit with the highest activation (Carpenter and Blakemore 1973), or a weighted average
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(a) Afferent weights (b) Excitatory weights (c) Inhibitory weights

+90◦ +45◦ 0◦ -45◦ -90◦

Figure 4.5: Self-organization of lateral connections to an unselective neuron (color fig-
ure). The plots show each type of weights going to the neuron at (88,105), both before (top row)
and after self-organization (bottom row, after 30,000 iterations). The weights are colored as in fig-
ure 4.4. After self-organization, this neuron is in the center of a pinwheel, around which orientation
preference changes continuously. The neuron is colored yellow because it has a very slight preference
for +30◦, but neighboring neurons of all orientation preferences connect to it.

of the preferences of all active units (Coltheart 1971). An intermediate method could also
be used, computing an average of all the units having activity greater than some arbitrary
activity level. In order to determine if a choice between these methods is crucial, the two
extreme options were tested for the RF-LISSOM model.

The weighted average of orientation preferences must be computed as a vector sum,
since angles repeat every 180◦. Two nearly horizontal lines (e.g. -85◦ and +85◦) should
average to represent a horizontal line (±90◦). However, the arithmetic average of -85◦ and
+85◦ is 0◦, which is a vertical line and is clearly incorrect as an estimated perception.
Instead, each neuron is represented by a vector. The vector must represent adjacent ori-
entations as adjacent vector angles. Thus each of the 180◦ possible orientations must be
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(a) Input pattern (b) Initial activity (c) Settled activity

+90◦ +45◦ 0◦ -45◦ -90◦

Figure 4.6: Cortical responses to various oriented inputs (color figure). The first column
(a) shows sample oriented Gaussians, at +60◦, 0◦, -30◦, and -90◦ from vertical (top to bottom,
respectively.) The second column (b) shows the initial response of the trained map to that input,
based on the afferent weights only (before the lateral interactions are allowed to settle). The third
column (c) shows the settled activity for that input. For (b) and (c), colors indicate the orientation
preference of each activated neuron, as in figure 4.3. Each input activates neurons which prefer
orientations like it, within the cortical region corresponding to the active area of the retina. The
initial response is wide and diffuse, like the input pattern, but the settled response is focused and
sharp.
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Neuron 3Neuron 1

activation = 0.6activation = 0.24

or. pref. = -16.8°

activation = 1.0

Neuron 2

Average

or. pref. = +22.5°

or. pref. = 0.0°

or. pref. = -3.0°

Figure 4.7: Computing the weighted average orientation. The activations and orientations
of three neurons are shown as vectors (solid lines). The angle of each vector is twice the orientation
preference of that neuron, in order to map the 180◦ of orientation preferences onto the full 360◦,
making the vector orientation for 0◦ and 180◦ identical. The magnitude of each vector is the
activation level, to ensure that the encoding primarily reflects those neurons that are most active.
The sum of these vectors is shown as a dashed line. The average orientation of the three neurons
shown is half of the angle of the dashed vector.

scaled by two to get the angle of the vector, which ranges over 360◦. Since each neuron is
to contribute only to the extent that it is active, the magnitude of the vector is taken to be
the activation level of the neuron. Once the neurons have been represented in this fashion,
the average orientation can be computed from the orientation of the vector sum. Figure 4.7
illustrates these calculations.

Using the vector sum method of computing the average, the perceived orientation
was calculated for the trained network using both the average value and the maximum value
methods. For each each angle, an oriented Gaussian (of the same shape as in training) was
presented at the center of the retina, and the estimated orientation was computed using
each method. The results are presented in figure 4.8.

Both methods appear to be reasonably accurate representations of orientation. Small
deviations from the true angle are present, however, because the activated cortical area
is comparable to the size of an orientation column. The number of neurons with RFs
receptive to the peak of the input Gaussian is relatively small, and thus the distribution
of orientation preferences will not necessarily be uniform within that population. Thus,
at different locations on the retina, the estimated orientation will differ slightly. If much
larger inputs are used, activating a large cortical area, these effects should cancel out,
allowing arbitrarily accurate orientation encoding. However, this would be computationally
prohibitive to verify at present since much larger cortex and retina sizes would need to be
simulated.

As one might expect, utilizing all active units in the calculation of the perceived
orientation is slightly more accurate than only using those at maximum activation, but
the difference is not significant because many neurons are at maximum and thus most
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Figure 4.8: Estimates of perceived orientation. For each possible orientation of a Gaussian at
the center of the retina, the heavy line shows the orientation that would be perceived if perception
were veridical (i.e., we would perceive the actual orientation of the Gaussian.) The other lines show
the perceived orientation of a Gaussian at the center of the RF-LISSOM retina estimated using two
different algorithms. The dotted line shows the estimate obtained by computing an average of the
orientation of each activated neuron weighted by the activation level of that neuron. The dashed
line shows the estimate obtained by performing a similar computation on only those units that have
reached maximum activation. Both methods are reasonably accurate estimates, although using all
activated units (dotted line) is slightly more accurate.
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of the neurons averaged in each case are identical. For simplicity, I have chosen in later
experiments to use only the method of averaging all units, but the results should be the
same for either method, or for any similar method. Note that there is insufficient biological
evidence to support a particular method, and I do not claim that orientation perception
actually need be occurring in precisely this way. In any case, to ensure that the biases
shown in figure 4.8 do not distort the results, all perceived orientation measurements in
this thesis are stated in terms of differences in perceived angles, rather than in terms of the
actual orientation on the retina.

4.6 Conclusion

Starting from unoriented connections, neurons in the RF-LISSOM model develop oriented
receptive fields and patterned lateral connections cooperatively and simultaneously. This
input-driven self-organization represents the salient features of the training examples: the
afferent connections develop feature detectors to distinguish between the inputs seen, and
the inhibitory connections represent the long-range activity correlations between feature-
selective cells. During visual processing, this information is used to eliminate redundant
information, and enhance the selectivity of cortical cells. The self-organized map forms an
accurate representation of the orientation and position of the input lines, suitable for use at
higher levels and for further processing. If these self-organizing processes remain active even
in the adult animal, they will continually act to adapt cortical response properties to match
the visual environment. As discussed in the next chapter, this can result in phenomena
such as tilt illusions and aftereffects.
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Chapter 5

Aftereffect Experiments

Using an orientation map apparently much like those in chapter 4, humans experience tilt
aftereffects that vary systematically with the angle between test and adaptation lines. The
longer one adapts to an orientation, the further away similar orientations seem to be, and
the closer distant orientations seem to be. These perceptions have been measured in some
detail in humans, and since they can be measured in the RF-LISSOM model as well, they
offer an opportunity to put the inhibition theory of the TAE to the test.

This chapter will describe how the orientation map from the previous chapter was
set up to test for the TAE, and it will show that the model exhibits quite realistic tilt
aftereffects. It will also show precisely how those effects arise in the model, with detail as yet
unavailable in the cortex. This analysis provides testable predictions for future biological
and psychophysical studies. Chapter 6 will discuss the significance of these results and
propose other areas for investigation.

5.1 Experimental setup

The trained orientation map network from chapter 4 was used to examine the tilt aftereffect
by measuring the activity of the cortex with different inputs and learning rates.1 The
state of the map at 30,000 iterations was taken as a starting point for each independent
experiment in this chapter, so the results roughly correspond to testing a single human
subject under different conditions. To simulate adapting to an oriented stimulus as in the
psychophysical experiments, the position and angle of the inputs were fixed to a single value
for a number of iterations (figure 5.1a). Previously, during self-organization, a uniform,
random distribution of all angles and positions was used, so that the cortex adapted to a
wide variety of stimuli. To see significant tilt aftereffects, the inputs must be restricted to
a small range of orientations, though they need not remain perfectly fixed as was done for

1This section may be skipped unless you are interested in the details of the TAE testing setup.
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(a) TAE adaptation procedure (b) TAE test procedure

Figure 5.1: RF-LISSOM TAE measurement procedure. To simulate a single trial of adap-
tation to a fixed stimulus, a fixed location for an input was chosen from one of the nine positions on
the retina indicated by the small circles. Then a vertical Gaussian was presented at that location
(as illustrated in (a) for the center location), activity was propagated, the lateral interactions were
allowed to settle, and weights were modified according to the usual RF-LISSOM algorithms. This
procedure was repeated for a number of iterations. Afterwards, the net effect of the adaptation was
evaluated for test lines of all different orientations presented at the same position chosen for adapta-
tion, as illustrated (b). The spacing of the positions was chosen so that the entire stimulus remained
within the central region of the cortex, yet covered at least a full set of orientation preferences on
the map.

the results presented here. The position of the adaptation inputs is not important as long
as some of them appear in the area that will later be tested for the TAE; each input causes
adaptation in the area corresponding to it in the cortex. Finally, to illustrate the separate
contributions of adapting the afferent, lateral excitatory, and lateral inhibitory weights, the
learning rate of each (αA, αE , and αI , respectively) was varied relative to the others. All
other parameters remained as in chapter 4, including the size and shape of the oriented
Gaussian inputs.

As adaptation progressed, test lines at various orientations were presented without
modifying any weights (figure 5.1b). For each test line, the perceived orientation was mea-
sured as described in section 4.5. The magnitude of the tilt aftereffect was defined as the
perceived orientation of the test line after adaptation minus the perceived orientation before
adaptation.

This procedure is similar to the procedure used for human subjects described in
section 2.2.1. For computational efficiency, it takes advantage of the fact that learning can be
turned off in the model. Since experiments with humans cannot turn off learning for testing,
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they cannot evaluate the effects of a single adaptation episode on multiple test orientations
equally. That is, the data for the second test figure presented after adaptation would be
affected by the presentation of the first test figure. Instead, psychophysical experiments use
a single test figure. They evaluate the effect on its perceived orientation by adaptation at
different angles relative to the test figure (see section 2.2.1). This alternative procedure is
computationally prohibitive to simulate (not to mention extraordinarily time-consuming to
measure in humans) because one must ensure that the cortex has returned to equilibrium
between the adaptation episodes. Since the angular function of the tilt aftereffect has been
demonstrated to be similar for all orientations (Mitchell and Muir 1976), the two procedures
should give an equivalent measure of the amount of aftereffect at each angle. The procedure
used here allows much more comprehensive data to be collected for the model, as shown in
section 5.5.

Because the TAE curves differ substantially between individuals, particularly in the
zero crossing between direct and indirect effects, it can be misleading to average results from
different subjects or testing paradigms. For instance, if the zero crossings vary over some
range, a null area will show up in the graph around that region, even though no individual
exhibited a null area. However, since the data are generally too erratic to interpret from a
single run, multiple runs from a single individual are usually averaged (e.g. Mitchell and
Muir 1976).

To obtain similar measurements for the RF-LISSOM model, a single orientation map
was tested separately at 9 different positions forming a 3 × 3 grid covering a retinal area
6 × 6 units around the center of the retina (figure 5.1). This range of positions covers
many different orientation preferences. Averaging over these positions reduces the random
fluctuations in TAE magnitude (see section 4.5), but it does not change the basic shape of
the curve presented in the following section.

5.2 Angular function of the tilt aftereffect

The TAE testing procedure described in the previous section was used to determine the
amount of aftereffect for each difference between adaptation and testing orientations in the
model. Figure 5.2 plots the aftereffects after adaptation for 90 iterations of the RF-LISSOM
algorithm. For comparison, figure 5.2 also shows the most detailed data available for the
TAE in human foveal vision (Mitchell and Muir 1976).

The results from the RF-LISSOM simulation are strikingly similar to the psychophys-
ical results. For the range 5◦ to 40◦, all subjects in the human study (including the one
shown) exhibited angle repulsion effects nearly identical to those found in the RF-LISSOM
model. The magnitude of the TAE increases very rapidly to a maximum angle repulsion
at approximately 10◦, falling off somewhat more gradually to zero as the angular separa-
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Figure 5.2: Tilt aftereffect versus retinal angle. The open circles represent the average tilt
aftereffect for a single human subject (DEM) from Mitchell and Muir (1976) over ten trials. For
each angle in each trial, the subject adapted for three minutes on a sinusoidal grating of a given
angle, then was tested for the effect on a horizontal grating. Error bars indicate ±1 standard error
of measurement. The subject shown had the most complete data of the four in the study. All four
showed very similar effects in the range ±40◦; the indirect TAE for the larger angles varied widely in
the range ±2.5◦. The graph is roughly anti-symmetric around 0◦, so the TAE is essentially the same
in both directions relative to the adaptation line. For comparison, the heavy line shows the average
magnitude of the tilt aftereffect in the RF-LISSOM model over nine trials, as described in section 5.1.
Error bars indicate ±1 standard error of measurement. The network adapted to a vertical adaptation
line at a particular position for 90 iterations, then the TAE was measured for test lines oriented
at each angle. Positive values of aftereffect denote a counterclockwise change in the perceived
orientation of the test line. The duration of adaptation was chosen so that the magnitude of the
TAE matches the human data; as discussed in section 5.5 the shape of the curve is nearly constant,
but the magnitude increases with adaptation. Learning rates were αA = αE = αI = 0.00005. The
result from the model closely resembles the curve for humans at all angles, showing both direct and
indirect tilt aftereffects.
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tion increases. Section 5.4.2 examines the mechanisms responsible for these direct effects in
RF-LISSOM.

The results for larger angular separations (from 45◦ to 85◦) show a greater inter-
subject variability in the psychophysical literature, but those found for the RF-LISSOM
model are well within the range seen for human subjects. The indirect effects for the
subject shown were typical for that study, although some subjects showed effects up to
2.5◦. Section 5.4.3 examines the mechanisms responsible for these indirect effects in the
RF-LISSOM model, and section 6.2.4 of the discussion proposes explanations for the variety
of effects seen in human subjects.

The TAE seen in figure 5.2 must result from changes in the connection strengths be-
tween neurons, since there is no other component of the model which changes as adaptation
progresses. In particular, there is no lasting change in the neuron’s inherent excitability or
sustained activation level. Thus there is nothing that could correspond to the concept of
whole-cell neural fatigue.

Three sets of weights adapt synergetically: the afferent weights, the lateral excita-
tory weights, and the lateral inhibitory weights. The lateral inhibitory theory would predict
that the inhibitory weights are primarily responsible for the TAE magnitude at each angle.
To determine whether this is the case, the contribution of each of the weight types was eval-
uated independently of the others (figure 5.3). The small component of the TAE resulting
from adaptation of either type of excitatory weights is almost precisely opposite the total
effect. Without inhibitory learning, Hebbian adaptation of the excitatory weights causes
the network to have a greater response to the input after every iteration, and boosts the
response to neighboring orientations as well. If there were no inhibitory learning, this would
result in a contraction of small angles, with the test line tending to be perceived as closer
to the adapting line than it really is. Such contraction effects have not been documented
in psychophysical experiments.

While the excitatory connections are adapting, the inhibitory connections adapt
as well. Each inhibitory connection adapts with the same learning rate as the excitatory
connections (αI = αA = αE = 0.00005), but there are many more inhibitory connections
than excitatory connections. The combined strength of all the small inhibitory changes
outweighs the excitatory changes, and results in a curve with a sign opposite that of the
components from the excitatory weights. If excitatory learning is turned off altogether, the
magnitude of the TAE increases slightly on average, but the shape of the curve does not
change significantly (figure 5.3). Similar results should be obtained if there are not as many
inhibitory connections as used here, but the ones present change more rapidly than afferent
connections; this would represent an alternative interpretation of the results.

Thus the inhibitory connections are clearly responsible for both the direct and indi-
rect tilt aftereffects observed in the RF-LISSOM model. The following sections will examine
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Figure 5.3: Components of the TAE due to each weight type. The heavy line shows
the magnitude of the TAE for a single trial from the average shown in figure 5.2. This trial was
at the center of the retina, and is typical of the effect seen at the other eight locations. The
other curves in this figure show the contribution of adapting each weight type separately; other
than the learning rates the parameters for each were identical. The thin dashed line represents
the contribution from the afferent weights (αA = 0.00005; αE = αI = 0). Adaptation of the
afferent weights contributes in a direction opposite to that of the overall TAE curve. The dotted
line represents the contribution from the lateral excitatory weights (αE = 0.00005; αA = αI = 0).
Note that the x-axis is not shown because it would have covered up this line. Adapting the lateral
excitatory weights results in a curve with a similar shape as for afferent weights, but it is so small
in magnitude that it is insignificant. The thick dashed line represents the contribution from the
inhibitory weights (αI = 0.00005; αA = αE = 0). The adaptation of the lateral inhibitory weights
clearly determines the shape of the overall curve, though it is somewhat reduced in magnitude by
the afferent contribution.
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exactly how changing the inhibitory weight strength produces the effects seen. To make the
analysis clear and unambiguous, the simplest case that shows a realistic TAE was chosen.
The discussion will center upon a single trial, using a Gaussian at the exact center of the
retina, with only the inhibitory weights adapting. The TAE curve for that case is shown
in figure 5.3. The curve is still quite similar to the average result when all weights were
adapting at the same rate, as well as to the human data (figure 5.2). The analysis will
show that Hebbian modification of the lateral inhibitory connection weights, followed by
normalization of the total connection strength, systematically alters the response in a way
that results in the tilt aftereffect.

5.3 Changes in the patterns of connection strength

The TAE magnitudes shown in figure 5.3 result from changes in the response to the test
line after adaptation. Each point on the graph represents the change in the overall activity
distribution for a test line, so it is an aggregate measure of many small changes. To illustrate
the changes in more detail, this section examines how the individual weights change with
adaptation. For clarity, only inhibitory weights were allowed to be modified (αI = 0.00005
and αA = αE = 0). Figure 5.4 shows how the connections of a typical neuron in the central
region of the model cortex changed during adaptation.

Adaptation has redistributed the inhibitory weights. Connections to neurons that
have orientation preferences similar to the adaptation line became stronger (the blue areas
in figure 5.4d). The strengthening results in the direct effect: inhibition for orientations
close to the adaptation orientation is increased. However, since total weight strength for
all inhibitory weights is constant (equation 3.4), the connections to other orientations (the
yellow and red areas) must simultaneously decrease. This causes the indirect effect: inhibi-
tion for distant orientations is reduced. Chapter 6 discusses possible biological mechanisms
for this weight normalization.

Since the changes for each neuron are relatively small, the difference may not be
readily apparent from figure 5.4. Some changes are visible on close inspection in the central
blue and red-orange areas; compare figure 5.4 (c) and (d). To highlight the changes,
figure 5.5 shows the result of subtracting the weight plots from before and after adaptation.
Subtracting the before plot from the after plot shows which connections have increased
in strength, and subtracting the after plot from the before plot shows which ones have
decreased. Clearly, inhibitory connections to orientations near the adaptation line have
increased in strength, while those to distant orientations have decreased. These systematic
changes in the inhibitory weights result in both direct and indirect tilt after-effects, as seen
in the next section.
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(a) Afferent weights (b) Lateral excitatory weights

(c) Inhibitory weights before adaptation (d) Inhibitory weights after adaptation

+90◦ +45◦ 0◦ -45◦ -90◦

Figure 5.4: Weights of a central neuron before and after adaptation (color figure). These
plots show the strength of the weights of each type going to the neuron at (91,98), which is marked
with a tiny box in the cortex plots of (c) and (d). The afferent weights (a) of this neuron have an
orientation preference of +45◦, and were not modifiable in this experiment. The fixed excitatory
weights in (b) connect only to the nearest neighbors in the cortex. Those neurons all have similar
orientation preferences, so even if these weights had been modifiable they would not have changed
the response of the neuron significantly. The inhibitory connections span a wide range of locations
and orientation preferences. They undergo large and orientation-specific changes with adaptation.
Comparing (c) with (d) shows that the blue areas along the vertical line down the center have
increased in strength as a result of adapting to the vertical test line.
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(a) Inhibitory weights that increased (b) Inhibitory weights that decreased

+90◦ +45◦ 0◦ -45◦ -90◦

Figure 5.5: Weight changes for a central neuron with adaptation (color figure). These
plots show the weight changes for the neuron in figure 5.4 in more detail. Colored areas in (a)
represent inhibitory connections that increased in strength. The plot was computed by subtracting
the weights in figure 5.4c from those in figure 5.4d, scaling the value up to a visible level, then
labeling each connected neuron with the color corresponding to its orientation preference. Only
connections within the cortical area corresponding to the input Gaussian have been strengthened,
and only those whose orientation preferences are close to the adaptation angle (i.e., neurons colored
blue, cyan, or green). These changes cause the direct tilt aftereffect, as explained in section 5.4.2.
While those connections strengthened, the rest of the connections to that neuron had to weaken (due
to equation 3.4). The colored areas in (b) represent inhibitory connections that decreased in strength.
The plot was computed by subtracting figure 5.4d from figure 5.4c, scaling it by the same factor as in
(a), and labeling each point with the orientation preference of the connected neuron. The weakened
connections are all those present for this neuron other than those that were strengthened; each was
weakened in proportion to its current strength. These changes cause the indirect tilt aftereffect, as
explained in section 5.4.3.

5.4 Changes in the response to test lines

The weight changes described in the previous section result in changes in the pattern of
the response to a test line. The differences in the responses were summarized as a single
number (the perceived orientation) for each point on the curve in figure 5.3. This section
will examine exactly how the activity patterns themselves change. First, it will look at
how the cortical response to the adaptation stimulus changes, even though the perceived
orientation does not change. It will then show the change in the response to test lines at
10◦ (where the peak direct effect was found) and 60◦ (where the peak indirect effect was
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found). The activity patterns are each plotted onto the orientation map from figure 4.3
so that the orientation preference of the activated neurons will be evident. These plots
constitute predictions of what should be found in the cortex if the TAE is occurring as it
does in the RF-LISSOM model.

5.4.1 Sharpening of the response to the adaptation line

Figure 5.6 shows the response to the adaptation line before and after adaptation. The
perceived orientation was approximately 0◦ both before and after adaptation (figure 5.3).
However, there were significant changes in the settled activity (i.e., the activity remaining
after lateral interactions have been allowed to settle). More neurons near the center of
the cortex, where the input was strongest, were activated after adaptation. Fewer were
activated in the outlying areas. Thus adaptation has sharpened the activity pattern.

The sharpening is caused by the strengthening of inhibition between activated neu-
rons — only the areas with the strongest activation remain active after settling. The rest
of the neurons initially activated in figure 5.6b are silenced by the active ones in the center.
The sharpening effect is present even before adaptation, which is why the settled activity
differs from the initial activity, but it gets stronger with adaptation. The inhibitory weight
changes and the activity changes can be related to each other by comparing the areas show-
ing changes between figure 5.6c and 5.6d with the areas showing increased inhibition in
figure 5.5a. The increased inhibition has effectively created a group of competitive neurons
where only a central region of strongly activated neurons is allowed to continue responding.

None of these changes show up in the TAE curve in figure 5.3 at 0◦ because the
distribution of activated units contains approximately the same proportion of each orienta-
tion preference both before and after adaptation. Compared to figure 5.6c, there are more
green units (orientation preference less than 0◦) activated in the center of figure 5.6d. At
the same time, there are more blue units (orientation preference greater than 0◦) activated
just outside that area. These changes cancel out for the adaptation orientation, since they
are centered upon it. As discussed in the next section, the direct TAE occurs for test lines
of slightly different orientations, where the changes do not cancel out.

5.4.2 Expansion of small angles (direct effect)

For the peak of the direct effect, the perceived orientation of a 10◦ test line shifted away
from 0◦ by several degrees (figure 5.3). This change is quite subtle but evident in the activity
patterns for the +10◦ test line in figure 5.7. After adaptation, fewer of the units encoding
orientations less than +10◦ are activated (the cyan and blue areas). Slightly more of the
units encoding orientations greater than +10◦ are activated (the yellow, yellow-green, and
green areas). The net effect is a shift of the perceived orientation away from 0◦, resulting
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(a) Input pattern (b) Initial activity

(c) Settled activity before adaptation (d) Settled activity after adaptation

+90◦ +45◦ 0◦ -45◦ -90◦

Figure 5.6: Cortical response to the adaptation figure (color figure). The initial (pre-
settling) and settled activity are shown for the adaptation Gaussian (a). The initial activity (due
to the afferent weights only) is wide and diffuse, like the input pattern. It does not change with
adaptation, since the afferent weights were fixed in this experiment. The settled activity did change,
becoming more concentrated near the center where the input was the strongest. Still, the average
orientation remained relatively constant, with equal areas of colors on either side of 0◦ activated
both before and after adaptation.
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(a) Input pattern (b) Initial activity

(c) Settled activity before adaptation (d) Settled activity after adaptation

+90◦ +45◦ 0◦ -45◦ -90◦

Figure 5.7: Cortical response at the peak direct effect (color figure). For the input pattern
shown (10◦ counterclockwise from the adaptation inputs), the settled activity changes significantly
with adaptation. Fewer of the units encoding orientations greater than +10◦ (i.e., the cyan and blue
areas) are activated. Slightly more of the regions encoding orientations less than +10◦ (the green
and yellow-green areas) are activated. The net effect is an angle expansion: the average orientation
changes from +14.5◦ to +16.9◦. The change is perceived as the direct TAE.
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in the direct TAE.
The changes are once again due to the strengthening of the inhibitory connections.

As shown in figure 5.5a, the inhibitory connections between the green, cyan, and blue
neurons were strengthened. This test line initially activated the green orientations most
strongly, so lateral interactions allowed those neurons to silence the weakly-activated cyan
and blue areas. The increased inhibition between neurons active during adaptation results
in competition between them for activation — only a subset will remain active at a given
time. Because these changes occurred only for neurons preferring orientations closer to 0◦

than 10◦, the perceived orientation shifts away from 0◦. Thus direct tilt aftereffects are
occurring in the RF-LISSOM model exactly as predicted by the lateral inhibition theory.

5.4.3 Contraction of large angles (indirect effect)

For the peak of the indirect effect, the perceived orientation of a 60◦ test line shifted towards
0◦ by nearly a degree (figure 5.3). This change is again subtle, yet still evident in the activity
patterns for the +60◦ test line in figure 5.8. After adaptation, more of the units encoding
orientations smaller than +60◦ are activated (the green areas). The same units encoding
orientations greater than +60◦ are activated both before and after adaptation; these units
show no change because they were never activated during adaptation. The net effect is a
shift of the perceived orientation towards 0◦, resulting in the indirect TAE.

The indirect effect, true to its name, results only indirectly from the strengthening
of the inhibitory connections. The inhibition between the green, cyan, and blue neurons
was strengthened during adaptation. Of those, only the green neurons were activated by
this test line, since it is quite distant from the adaptation line. Thus the stronger inhibitory
connections themselves did not change the response pattern significantly, since the targets
were already inactive.

However, since the total inhibitory connection strength to each neuron is limited
(equation 3.4), the increases in strength among the green, cyan, and blue neurons come
at the expense of all the other inhibitory connections to the green neurons. As shown in
figure 5.5b, the weakened connections are spread out over neurons with a wide range of
orientation preferences. The weakened connections include those to nearly all of the units
activated for this test line. Thus those units inhibit the green areas much less than they did
before adaptation. Consequently, more of the green neurons remain active throughout the
settling process. Before adaptation, many of them had been silenced by the other neurons
closer to the orientation of the test line. The net effect of these changes is that the perceived
orientation shifts towards 0◦.

The magnitude of the indirect effect is smaller than the direct effect because fewer
adapted neurons are involved. Most of the neurons showed little change; only those few
closest to the adaptation orientation were affected. For the direct effect, many neurons
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(a) Input pattern (b) Initial activity

(c) Settled activity before adaptation (d) Settled activity after adaptation

+90◦ +45◦ 0◦ -45◦ -90◦

Figure 5.8: Cortical response at the peak indirect effect (color figure). For the input
pattern shown (60◦ counterclockwise of the adaptation pattern), the settled activity again changes
significantly with adaptation, but in the opposite direction from that of figure 5.7. More of the units
encoding orientations greater +60◦ (i.e., the green areas) are activated, since they are no longer
inhibited as strongly as before adaptation. The regions encoding orientations less than the testing
orientation (the yellow and red areas) show little change. The net effect is an angle attraction: the
average orientation changes from +58.3◦ to +57.4◦. The change is perceived as the indirect TAE.
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were affected — a number of those preferring orientations greater than that of the test
line became less active, and some of the ones preferring smaller orientations became more
active. These changes add up to a greater difference in the perceived orientation for the
direct effect than for the indirect effect.

The indirect effect in RF-LISSOM is a simple consequence of the normalization of
inhibitory weights after they have been adjusted by Hebbian learning. This explanation for
the indirect effect was not discovered until the TAE was modeled here, thus underscoring
the importance of building computational models. Chapter 6 will discuss the biological
evidence for this theory of the indirect effect, and will compare it to the evidence for other
theories that have been proposed.

The model has allowed us to look into the cortex as it is processing and see the
changes as they occur. No other computational model has allowed the tilt aftereffect to be
studied so concretely. As also discussed in chapter 6, it may be possible to obtain similar
plots for the cortex to compare with these results.

5.5 Time course of the tilt aftereffect

In addition to the angular changes in the TAE described in the previous sections, the mag-
nitude of the TAE in humans increases regularly with adaptation time (Gibson and Radner
1937). The equivalent of “time” in the RF-LISSOM model is an iteration, i.e. a single cycle
of input presentation, activity propagation, settling, and weight modification. Figure 5.9
shows how the TAE varies for each angle as the number of adaptation iterations is increased.
The same basic S-shaped curve is always evident, but its magnitude increases monotoni-
cally with adaptation. Since obtaining human data for even a single curve is extremely
time consuming, equivalently comprehensive data for human subjects is unavailable. The
plots are easily obtained for the model, however, which illustrates one reason why compu-
tational models are important — they make it possible to obtain quite detailed data that
can constitute predictions for later experimental work.

The experimental work that has been done so far on the time course of the TAE in
humans (Gibson and Radner 1937; Greenlee and Magnussen 1987; Magnussen and Johnsen
1986) corresponds to a single vertical slice through the direct TAE region in figure 5.9. It
is measured by presenting an oriented adaptation figure for an extended period interrupted
at intervals by the presentation of test and comparison lines. At each test presentation,
the amount of the TAE present is measured using the standard techniques illustrated in
figure 2.3. The duration of the test presentation is minimized so that it will not affect the
magnitude of the TAE significantly.

When the time course of the direct TAE is measured in this way for human subjects,
the increase is approximately logarithmic with time (Gibson and Radner 1937), as is evident
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Figure 5.9: Tilt aftereffect versus angle over the course of adaptation. Each curve shows
the average TAE in the RF-LISSOM model from figure 5.2 with a different amount of adaptation.
The same basic S-shaped curve is seen regardless of the duration of adaptation, but the magnitude
increases monotonically with adaptation.

for the model in figure 5.9. The magnitude of the TAE eventually reaches saturation at
a level that depends upon the experimental protocol used (Greenlee and Magnussen 1987;
Magnussen and Johnsen 1986). Figure 5.10 compares the shape of the TAE versus time
curve for human subjects and for the RF-LISSOM model. The x axis for the RF-LISSOM
and human data has different units, but the correspondence between the two curves might
provide a rough way of quantifying the equivalent real time for an “iteration” of the model.
The time course of the TAE in the RF-LISSOM model is similar to the human data, but
the model does not show saturation effects over the adaptation amounts tested so far. This
difference indicates that the biological implementation has additional constraints on the
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Figure 5.10: Direct tilt aftereffect versus time. The circles show the magnitude of the TAE
as a function of adaptation time for human subjects MWG (unfilled circles) and SM (filled circles)
from Greenlee and Magnussen (1987); they were the only subjects tested in the study. Each subject
adapted to a single +12◦ line for the time period indicated on the horizontal axis (bottom). To
estimate the magnitude of the aftereffect at each point, a vertical test line was presented at the
same location and the subject was requested to set it a comparison line at another location to
match it. The vertical location of each point represents the average of five settings; the data for 0
– 10 minutes were collected separately from the rest. For comparison, the heavy line shows average
TAE in the LISSOM model for a +12◦ test line over 9 trials (with parameters as in figure 5.2).
The horizontal axis (top) represents the number of iterations of adaptation, and the vertical axis
represents the magnitude of the TAE at this time step. The RF-LISSOM results show a similar
logarithmic increase in TAE magnitude with time, but do not show the saturation that is seen for
the human subjects.
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amount of learning that can be achieved over the time scale over which the tilt aftereffect is
seen. This issue is explored further in the discussion in the next chapter, including possible
ways that saturation might be incorporated into the RF-LISSOM model.

5.6 Conclusion

The RF-LISSOM model was shown to exhibit tilt aftereffects that are very similar to those
measured in humans. This result links the detailed low-level behavior of the orientation
map from chapter 4 with measurements of human performance at the level of conscious
perception. It also demonstrates that the same self-organizing principles driving the de-
velopment of the map can account for behavior in the adult. The model suggests a new
explanation for the indirect effect, namely that limited synaptic resources require balancing
of synaptic strengths. Having a large-scale computational model also permits quite detailed
analysis that shows exactly how the TAE occurs. For instance, weight changes and the
corresponding changes in activity patterns can be visualized directly in the model, and
data for the time course of the TAE can be obtained at a level of detail impractical for
human subjects. This analysis represents a comprehensive set of predictions of what may
be going on in human perception, and thus provides opportunities for later experimental
work. Chapter 6 discusses how the RF-LISSOM results relate to biological evidence, and
describes specific predictions for human and animal experiments as well as suggesting areas
for future research with the model.
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Chapter 6

Discussion and Future Work

The results presented in the previous chapter demonstrate rigorously that activity-depend-
ent plastic lateral interactions could be responsible for the tilt aftereffect. The same self-
organizing principles that result in sparse coding and reduce redundant activation may also
be operating over short time intervals in the adult, with quantifiable psychological conse-
quences. This finding demonstrates a potentially important computational link between
development, structure, and function.

To clarify exactly which aspects of human behavior have been replicated in the
model, the following section will review the available psychophysical evidence and compare
it to the results found in the model. The model accounts for the great majority of such
evidence to date, but it does not yet demonstrate the saturation effect or decay of the TAE in
darkness. Later sections will discuss how the cortex may implement the functions performed
by the model, using the available biophysical evidence as constraints on the types of models
considered to be plausible. The adult cortex might implement quite different mechanisms
for plasticity than are present in the developing animal. Based on the results in chapter 5,
a number of predictions for verification of the model by human and animal experiments
are also discussed. For instance, one could measuring cortical activity analogously to the
activity plots in the previous chapter. This thesis also opens up a variety of new directions
for modeling function with RF-LISSOM, some of which are proposed at the end of this
chapter.

6.1 Psychophysical evidence relating to the TAE

Even though the RF-LISSOM model was not developed as an explanation for the tilt af-
tereffect, it exhibits tilt aftereffects that have nearly all of the features of those measured
in humans. With the appropriate extensions, it is expected to account for all of the known
data on the TAE. The features of the TAE which have already been demonstrated in the
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model include those in the following list. Except where noted, all of these features have
been replicated by a number of researchers and are quite consistent across different studies,
so any viable model of the tilt aftereffect would be expected to account for them.

Null at training angle: Adaptation does not change the perceived orientation of the
stimulus used during adaptation (figure 5.2; (Gibson and Radner 1937).

Direct effect: Similar orientations are misperceived by human subjects as having a larger
difference than they actually do (Gibson and Radner 1937), peaking between 5◦ and
20◦, typically 10◦– 13◦ (Howard and Templeton 1966,p.216; Campbell and Maffei
1971; Mitchell and Muir 1976). In RF-LISSOM, peaks at locations between 5◦ and
15◦ have been observed; 10◦ is typical (figure 5.2).

Null between direct and indirect effects:Human aftereffects return to zero somewhere
between 25◦ and 50◦ (Campbell and Maffei 1971; Mitchell and Muir 1976; Muir and
Over 1970). Zero-crossings between 30◦ and 60◦ have been observed in RF-LISSOM;
45◦ is typical (figure 5.2).

Indirect effect: Distant orientations are misperceived as having a smaller difference than
they actually do (Gibson and Radner 1937), peaking somewhere between 60◦ and
85◦ (Muir and Over 1970; Campbell and Maffei 1971; Mitchell and Muir 1976). In
RF-LISSOM, indirect effect peaks between 45◦ and 75◦ have been observed; 60◦ is
typical. These effects vary significantly between studies and different individuals, as
described in section 6.2.4.

Time course: The TAE magnitude increases at a diminishing rate with further adaptation
(figure 5.10; Gibson and Radner 1937; Greenlee and Magnussen 1987; Magnussen and
Johnsen 1986).

Orientation-independence: The TAE versus angle curve is similar for all pairs of test
and adaptation angles which differ by the same amount, regardless of the absolute
orientation on the retina (Mitchell and Muir 1976). Conflicting results were found by
previous researchers, who could not demonstrate effects on oblique lines of adaptation
to vertical lines. This discrepancy has been satisfactorily explained as a methodolog-
ical problem of the earlier studies, and the assumption of orientation independence
now seems well established.

Spatial localization: The TAE is localized to the area of the retina which was trained
(Gibson and Radner 1937). Adaptation for a figure in one location has no measur-
able effect on test figures in other locations sufficiently distant. In the model, this
occurs because weights are only adapted between active neurons, and a small stimulus
activates only neurons in a small cortical area.
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Several other aspects of the TAE will likely be exhibited by an RF-LISSOM model
trained on more realistic input distributions. These simulations do not necessarily require
any significant extensions to the model, but most will require larger cortex sizes and longer
training times. When sufficient computing power is available and the model is extended as
described, RF-LISSOM is expected to account for these experimental observations as well:

Higher variance at oblique orientations: The TAE versus angle curve shows greater
variance for oblique testing orientations (Mitchell and Muir 1976), often sufficiently
high to entirely mask the effect (Campbell and Maffei 1971). The variance may result
from the smaller number of detectors in the fovea subserving angles that are neither
horizontal nor vertical (Bauer et al. 1991; Mansfield 1974). Assuming the orientation
is perceived with a mechanism similar to that in section 4.5, when fewer detectors are
activated the response will vary more because the average is being computed from
fewer neurons. An RF-LISSOM model trained on a non-uniform training distribution
with a preponderance of horizontal and vertical lines develops more detectors for
horizontal and vertical orientations. This type of adaptation has also been observed
in kittens raised in deprived visual environments (Blakemore and van Sluyters 1975).
Such an anisotropic distribution is probably typical of the early visual experience of
humans (Mansfield 1974).

Frequency localization: The TAE is selective for spatial frequency (Ware and Mitchell
1974); adapting to a figure with narrow bars has no measurable effect upon a figure
with wide bars, and vice versa. Spatial frequency selectivity has previously been
demonstrated in the RF-LISSOM model (Miikkulainen et al. 1997; Sirosh et al. 1996).
A unified orientation/spatial frequency RF-LISSOM model, obtained by training on
oriented Gaussians of different sizes, would exhibit frequency localization for the same
reason as for spatial localization. That is, only a small range of frequency detectors
will be activated by a given stimulus, so only that range will show adaptation effects.

Movement direction specificity: The TAE is selective for the direction of movement
(Carney 1982). Adapting on a pattern moving in one direction past a fixation point
does not affect the orientation judgment of a pattern moving in the opposite direction.
A unified orientation/movement direction RF-LISSOM model, obtained by training
on oriented Gaussians moving in different directions, would exhibit this property as
well. However, simulations have not yet been performed with moving stimuli for
RF-LISSOM, and further work will be needed to determine how motion should be
represented in the model.

Ocular transfer: The TAE transfers completely from one eye to the other (Campbell
and Maffei 1971; Gibson and Radner 1937); adapting one eye causes equal effects
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upon test lines in the same location in the visual field for either eye. A unified
RF-LISSOM orientation/ocular dominance model could be obtained by training on
oriented Gaussians at slightly offset positions in the two eyes. Such a model would
exhibit ocular transfer if the neurons most selective for orientation were also binocular.
If this does not turn out to be true for the model, it might be that the most plastic
neurons in the cortex are also more likely to be binocular. The latter appears to
be true for human cortex, with the input layer (layer IV) showing strong ocular
dominance but lower adult plasticity, and the output layers (II, III, V, and VI) showing
strong binocularity and high plasticity (Daw 1995,pp.139–140; Shatz and Stryker
1978). Modeling such layer-dependent effects would require a significant extension to
RF-LISSOM because currently all the neurons in each column are grouped together
for simulation.

Large-scale combined simulations allowing the study of some of these features were
proposed by Sirosh (1995), but they generally require greater cortex sizes and training times
to represent multiple dimensions on the same map. Current computer resources are not
sufficient, but with forthcoming advances in technology they should soon be more practical.

Besides the above, there are a small number of features of the TAE not yet demon-
strated by the current model, and not expected to be found unless extensions are made:

Saturation: The TAE saturates at approximately 4◦ (Campbell and Maffei 1971; Greenlee
and Magnussen 1987; Magnussen and Johnsen 1986; Mitchell and Muir 1976) but in
the RF-LISSOM model it will steadily increase up to at least 20◦ with sufficiently long
adaptation times. Possible mechanisms for this limit to plasticity will be discussed
further in section 6.2. It is a simple matter to artificially limit the plasticity allowed
in the model, once it is known what the limiting factor should be.

Dark recovery: After the adaptation stimulus is removed, TAE magnitude gradually re-
duces in strength, even in the absence of visual input. In contrast, the RF-LISSOM
model will ordinarily remain static until further input is received. Explanations for
dark recovery in humans will be discussed further in section 6.2.3; adults may have
connections which change strength rapidly but temporarily.

There are also some small effects due to the absolute orientation of the head with
respect to gravity; these are presumably due to the vestibular system, not to processing in V1
(Howard and Templeton 1966; Wolfe and Held 1982). Apart from such data not expected to
apply to V1, there is no known psychophysical evidence against the RF-LISSOM explanation
of tilt aftereffects. The following section will examine the types of cellular processes that
may underlie the psychological effects above, if the TAE is occurring in humans in the same
way it does in the model.
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6.2 Biological mechanisms underlying the TAE

Since RF-LISSOM models neurons at an abstract level, it allows cortical function to be
studied without specifying a particular biochemical implementation. The same processes
could be performed by a number of different mechanisms in different species, in different
brain areas, at different stages of development, or at different time scales. Once the behavior
is clear from computational simulations, candidates for its implementation can be proposed
and tested. This section will relate the results from chapter 5 to experimental evidence, in
an attempt to constrain the possible candidates for biological mechanisms underlying the
TAE.

6.2.1 Is the TAE due to synaptic plasticity or to accumulation of inhibi-

tion?

Given a network of interconnected neurons, adaptation may conceivably occur either in
the connections or nonspecifically across the neurons themselves. It is sometimes hard to
make a distinction between these alternatives, but there are cases when they can clearly be
differentiated. For instance, if only the connections are changed, being able to stimulate a
neuron through a different unadapted pathway can demonstrate that the neuron itself is
unchanged. If the entire neuron itself changes, then no matter what mechanism is used to
stimulate it, it will show the effects of adaptation.

The TAE seen in RF-LISSOM results from changes in the connection weights, while
the discredited theory of neural fatigue (chapter 2) postulated changes occurring within the
neuron itself. However, echoes of the fatigue theory persist, even from researchers who have
accepted the lateral inhibition theory of the TAE (e.g. Gelbtuch et al. 1986; Kurtenbach
and Magnussen 1981; Masini et al. 1990; Tolhurst and Thompson 1975). These researchers
describe the TAE as arising from “the prolonged effects of inhibition” on a neuron. They
appear to interpret these effects as changes that occur within the neuron, perhaps a buildup
of some intracellular inhibitory messenger, or a change in the properties of ion channels in
the cell membrane. These changes would be activated by lateral inhibition, but would
remain in force for a short time following it. If this were true, the TAE would be resulting
from exactly the same biochemical processes that presumably mediate the tilt illusion (see
section 6.4.1). The only difference should be that the aftereffect eventually decreases with
time, while the illusion would persist.

However, several of these same researchers then go on to present evidence that a
number of psychoactive substances modify one effect but not the other (Gelbtuch et al.
1986; Masini et al. 1990). This prompts them to propose explanations of this apparent
paradox that tend to be rather complex and speculative. This thesis suggests a much
simpler interpretation which is also supported by clear physiological evidence. When an
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aftereffect occurs in the model, it is always a result of changes in the connection strength
between neurons, not a nonspecific change in the neuron itself (cf. Barlow 1990). The model
does not contain any representation of the state of the neuron, whose response changes only
when its inputs or connection weights change.

Under these assumptions, there is no difficulty in explaining the differences between
the effects of various drugs on the TAE and TI. Both effects would arise from lateral
inhibitory interactions, accounting for the substantial similarities seen between them (see
section 6.4.1). But there would be distinct differences in the biochemical mechanisms for the
effects — the TI requires only that the lateral inhibitory connections be functional, while
the TAE requires that their strength be modifiable. Many substances have been shown to
affect plasticity without otherwise altering function (Daw 1995,ch.12). Similarly, since the
inhibitory connections are polysynaptic, other substances could interfere with the effect of
lateral inhibition on the target cell without disrupting adaptation occurring earlier in the
pathway.

Furthermore, Vidyasagar (1990) has demonstrated that at least some types of orien-
tation adaptation do not appear to be a result of changes within a single cell. Vidyasagar
activated and inhibited single cells directly (using electrical and/or chemical stimulation),
and was unable to find any adaptation effects in their responses. However, there was clear
adaptation evident in the contrast-sensitivity threshold for the same cells when they were ac-
tivated by a visual pattern that also activated other nearby cells. These results suggest that
the effects occur somewhere along the connections between neurons (as in RF-LISSOM),
rather than as a non-specific change within the individual neurons themselves.

6.2.2 Contribution of afferent and excitatory plasticity

In the RF-LISSOM model, modification of the lateral inhibitory connection weights was
found to be sufficient for the model to exhibit realistic tilt aftereffects. However, the results
do not provide a way to determine if afferent or lateral excitatory plasticity is also occurring,
because similar results were found whether or not these connection types were modifiable.
As long as the lateral inhibitory connections had plasticity at least comparable to that of the
excitatory weight types, they dominated the adaptation because there are so many lateral
inhibitory connections in the model.

If the afferent weights are modifiable in RF-LISSOM, the layout of the orientation
map itself can undergo substantial reorganization. Areas representing the orientation used
during adaptation increase in size, while those representing other orientations decrease.
Such changes are known to occur in response to ordinary visual experience during develop-
ment (Movshon and van Sluyters 1981). In the adult, however, they are thought to require
cortical lesions or very long-term changes in visual input (Gilbert et al. 1996; Kapadia et al.
1994; Sugita 1996; see also Miikkulainen et al. 1997; Sirosh et al. 1996). On the other
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hand, substantial plasticity has been demonstrated for neurons in the adult visual cortex in
vitro (Artola and Singer 1987; Hirsch and Gilbert 1993; Kirkwood and Bear 1994). It has
been proposed that such plasticity is controlled by a plasticity gate ordinarily held closed
by the inhibitory connections from other active neurons (Kirkwood and Bear 1994; von der
Malsburg 1987). It is not yet firmly established what circumstances cause such a gate to
open.

If afferent plasticity is possible over periods less than one hour, it may be responsible
for the saturation of the tilt aftereffect found by Greenlee and Magnussen (1987). The
results computed in chapter 5 for the RF-LISSOM model assume that the neurons in the
model encode a fixed orientation. After a marathon adaptation session with plastic afferent
connections, this assumption would become invalid: the neurons in the map would develop
substantially different orientation preferences. It is possible that higher levels in the cortex
may begin to rearrange in the same way, resulting in a perceived orientation based upon the
new map instead. Such higher-level adaptation would counteract the effects of adaptation
in V1, because it would change the interpretation of activity on the map. The result could
be that the perceived TAE levels off at a maximum, i.e. that it saturates.

A psychophysical test might be conducted to determine if hierarchical reorganization
is occurring in this way. Adaptation to a grating of a particular orientation, spatial fre-
quency, and contrast increases the ability to detect that similar stimuli actually differ very
slightly from it along any of those dimensions (Albrecht et al. 1984; Greenlee and Heitger
1987). The decrease in the incremental threshold for detection of difference is ordinarily
considered to be just another way of expressing what occurs in the TAE, and is presumed
to result from the same mechanism. If it does, then it may provide a way to detect the
phenomena causing the TAE even when the changes in perceived orientation have reached
saturation. If reorganization is occurring, the lower level would continue becoming more
sensitive to neighboring orientations, but the higher level would begin to cancel out the
changes in the orientation map in order to restore veridical perception. It is not clear how
the higher-level system would gauge the veridicality of the orientations in the map; it might
compare responses in different parts of the map (likely receiving different levels of adap-
tation) and make appropriate corrections at local areas to ensure the map is consistent.
If a process of this nature is occurring, it could be detected by testing if improved incre-
mental sensitivity continues increasing past where the perceived orientation changes have
saturated. If it does, then the saturation effect may be due to this reorganization at higher
levels.

Alternatively, saturation may result from limits on the plasticity of the inhibitory
connections, as proposed in the next section. Whether or not afferent and lateral excitatory
connections are plastic in ordinary circumstances in the adult, the results from this thesis
suggest that at least the inhibitory connections must retain some degree of plasticity. The
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next section will examine what type of inhibitory plasticity would be required to account
for the evidence.

6.2.3 Biophysical mechanisms of inhibitory plasticity in development and

in adulthood

The mechanisms underlying adaptation of the lateral connections are not yet known in
detail, although it is clear that long-term inhibitory adaptation does occur during develop-
ment. The lateral connections are initially quite widespread and as modeled in RF-LISSOM
only become selective between columns as a result of visual experience (Callaway and Katz
1990; Luhmann et al. 1986). This thesis shows that the same principles that can account
for such development in infants could also be causing perceptual artifacts in the adult.
However, since RF-LISSOM models neural processes at an abstract level, this result with
the TAE does not depend upon an assumption that the biophysical processes are identical
in each case. Although recent work suggests that there are a number of synaptic plastic-
ity mechanisms which operate the same way in adults and infants (Artola and Singer 1987;
Kandel and O’Dell 1992; Kirkwood and Bear 1994; Kirkwood et al. 1993), in general cortical
plasticity appears much more limited in the adult (Daw 1995).

The steady decay of the tilt aftereffect in complete darkness may be a manifestation
of differences between adult and developmental plasticity. For humans, it has been found
that the TAE decays in darkness with approximately the same curve as when it increases
in figure 5.10 (Greenlee and Magnussen 1987; Magnussen and Johnsen 1986). Other ex-
periments, however, have found that small residual tilt aftereffects can be detected as long
as two weeks after a four-minute adaptation (Wolfe and O’Connell 1986). In any case, the
decay does not appear to rely on visual input, since it has the same time course whether the
subject is in complete darkness, or if test patterns are presented at intervals during decay
(Magnussen and Johnsen 1986).

In the RF-LISSOM model, decay will occur in the same way as adaptation occurs
— subsequent inputs will cause the organization to return to equilibrium as long as they
include orientations different from the fixation stimulus (cf. Wolfe 1984). However, if no
inputs are presented (or, equivalently, blank inputs are presented), no weight changes will
occur, and the tilt aftereffects will remain indefinitely. Random spontaneous retinal activity
present in darkness is not expected to be sufficient to cause a return to equilibrium, since it
is unlikely to contain oriented components at the spatial scale of the adaptation stimulus.

One quite speculative explanation of decay consistent with the present RF-LISSOM
model is that it results from the same process of higher-level reorganization proposed in
section 6.2.2. Reorganization that occurs while the adaptation stimulus is being presented
would result in saturation, while reorganization that occurs after the map in V1 has stopped
being modified would result in a steady decay in the perceived orientation difference. Thus
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neither saturation nor decay would have been found in the experiments in chapter 5, as
observed. From this perspective, there is no reason to suppose that the mechanisms of plas-
ticity differ in the adult and the infant. However, this is unlikely to be the full explanation,
since even single cells in V1 demonstrate decay of adaptation effects (Albrecht et al. 1984);
though of course the single-cellular decay could be caused by feedback from higher levels as
they reorganize.

Another less extravagant explanation may be that changes in synaptic effectiveness
are merely a side-effect of limits on synaptic transmission at particular excitatory con-
nections. This would act as a form of connection-specific fatigue (Geisler 1997). During
presentation of an adaptation pattern, the ability of the connection to carry action poten-
tials would decrease, resulting in a direct TAE. As resources are replenished, the effects of
adaptation would decrease, thus explaining why decay occurs. This mechanism does not
readily account for the saturation effect, since it is not obvious why there should be a limit
to the amount of depletion possible.

Finally, a more compelling explanation for decay and saturation might be that adult
and infant plasticity are two different (but possibly related) cellular mechanisms. This
explanation would not depend upon reorganization of the orientation map in V1 or at higher
levels. In this view, the mechanism underlying the TAE in the adult may be a separate
fast, limited, and temporary version of the self-organizing process that captures longer-
term correlations. The connection weights in this process would act as a small additive
or multiplicative term on top of a larger long-term weight. For example, each inhibitory
weight w could be represented as wo + ∆w. The wo portion would be comparatively static,
keeping its value indefinitely in darkness and changing only with a long time constant, or
perhaps not at all in the absence of cortical or retinal trauma. The ∆w term, on the other
hand, would adapt and decay very quickly, perhaps representing the short-term correlations
between image elements.

Having this set of temporary, highly-plastic, strength-limited weights might be a
quite deliberate feature of the cortex. Such a mechanism has been proposed by von der
Malsburg (1987) as an explanation of visual object segmentation. He proposed that tempo-
rary plasticity allows the cortex to group elements of a visual scene into coherent objects,
each composed of neurons firing in synchrony. The synchronization would be achieved by
rapidly modulating lateral connection strength to temporarily strengthen connections be-
tween active units and weaken other connections. The amount of strengthening possible
over this time scale would be quite limited, which would result in eventual saturation of the
effects. Similarly, changes would be expected to decay after the visual input is removed,
so that subsequent inputs are not affected if they are sufficiently far removed in time. But
over short time scales, the interactions between subsequent inputs (e.g., the tilt aftereffect)
could actually be beneficial: they would facilitate the segmentation of other similar collec-
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tions of features. Analogous synchronization and segmentation effects have been modeled
in RF-LISSOM already (Choe and Miikkulainen 1996; Miikkulainen et al. 1997).

Permanent changes in synaptic strength would require repeated presentation of in-
puts grouping on the short time scale, and the opening of some form of plasticity gate
(Kirkwood and Bear 1994; von der Malsburg 1987). The long-term changes would thus
represent long-term persistence of short-term correlations. The short-term and long-term
processes might share some of the same biochemical pathways, or they might be entirely
different processes that both implement the same function over different time scales. The
TAE itself may be merely a minor consequence of this complex architecture for representing
a wide range of correlations. The details of these mechanisms are abstracted in the current
model, where only one type of reorganization mechanism is present. Future versions of
RF-LISSOM may be extended to explore these issues in more detail.

6.2.4 Biophysical mechanisms of the indirect effect

The lateral inhibition theory for direct tilt aftereffects is widely accepted in one form or
another. However, as described in section 2.3.4, no consensus has emerged about the cause
of the indirect TAE. Over the years, it has been proposed to result from a “linkage” between
the vertical and horizontal axes (Gibson and Radner 1937), adaptation of cells with multiple
preferred orientations (Coltheart 1971), a three-lobed lateral interaction profile (O’Toole
and Wenderoth 1977), and direct effects arising from an invisible “virtual axis” of symmetry
(Wenderoth et al. 1989).

The linkage explanation was disproved by the finding that indirect and direct ef-
fects are similar at all absolute orientations (Mitchell and Muir 1976). The O’Toole and
Wenderoth (1977) theory (i.e., inhibition at intermediate distances, but excitation at near
and far distances) was abandoned by at least some of its original proponents when they
found that the indirect effect arises significantly later than the direct effect (Wenderoth and
Johnstone 1988; Wenderoth et al. 1989). If both effects result from very similar processes
of lateral interactions, differing only in sign, one would have expected them to have a fairly
similar time course as well.

Spivey-Knowlton (1993) has proposed that Coltheart’s explanation in terms of cross-
neurons may represent a possible neural substrate for the virtual axis theory, as described
in section 2.3.3. Spivey-Knowlton’s formulation of the virtual axis theory helps make it less
abstract and more testable, but it does not provide any functional justification for indirect
effects. Nevertheless, the virtual axis theory appears to be the working hypothesis for the
indirect effect at present, if only because of the lack of competing theories compatible with
the lateral inhibition theory of direct effects.

This thesis demonstrates, however, that a possibly quite simple, local mechanism in
V1 is sufficient to produce the indirect effect. If the total synaptic resources at each neuron

77



are limited, for whatever reason, the strengthening of the lateral inhibitory connections
between active neurons must also decrease the effectiveness of inactive connections to those
neurons. Such a limit appears biologically plausible on the face of it, since a neuron has only
a fixed surface area to which connections can made unless the neuron expands in size, and
the neuron cannot become indefinitely large because the volume of the brain is fixed. Miller
and MacKay (1994) note that there is widespread evidence of competition for a limited
number of synaptic sites (Bourgeois et al. 1989; Hayes and Meyer 1988a,b; Murray et al.
1982; Pallas and Finlay 1991; Purves 1988; Purves and Lichtman 1985).

There is also extensive computational justification for synaptic resource conserva-
tion. One of the first computational models of Hebbian adaptation (Rochester et al. 1956)
discovered that without such normalization, connection weights governed by a Hebbian rule
will increase to infinity. Each time an input is presented, some connections will be strength-
ened, and the others will remain as they were. If each weight has a maximum strength,
then each will eventually increase to its maximum value. Thus all connections will end up
identical and will be unable to perform any useful function (Miller and MacKay 1994).

To prevent such unwanted behavior in a model, von der Malsburg (1973) proposed
keeping the total synaptic strength constant. Thus when a connection strengthens, the other
connections must be weakened. Such normalization could be accomplished by subtracting
the weight change equally from each of the other connections. Miller and MacKay (1994)
showed that doing so would result in a set of strictly binary connections, each either at full
strength or zero strength. Such subtractive normalization seems implausible given that a
variety of lateral connection strengths are found in the cortex (Hirsch and Gilbert 1991,
1993).

The multiplicative normalization used in RF-LISSOM (equation 3.4) results in each
of the other connections being scaled down in proportion to its current strength. Multiplica-
tive normalization preserves a variety of connection strengths. Other forms of normalization
are possible, however, and the demonstration of indirect tilt effects with multiplicative nor-
malization does not in itself rule out other possibilities for keeping the sum of connection
strengths constant.

One must bear in mind that short-term strengthening might temporarily violate
the above longer-term constraints. For instance, the total synaptic resources might not
all be in use initially, so there could conceivably be a small delay before synaptic resource
conservation would cause indirect effects. This delay could account for the findings that
the indirect effect has a later onset than the direct effect (Wenderoth and Johnstone 1988;
Wenderoth et al. 1989). In contrast, the direct and indirect effects in RF-LISSOM always
occur simultaneously, since normalization is enforced as soon as any weights change. (Note
the small error bars for the model over the range 45◦ to 90◦ in figure 5.2, indicating that
most runs showed similar indirect effects.)
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Variations in the utilization of synaptic resources in different individuals and under
different circumstances may help explain why the indirect TAE varies greatly in magnitude
between different studies, between different individuals in the same study, and for the same
individual over different trials. (Note the large error bars for the human subject over the
range 45◦ to 90◦ in figure 5.2.) Since the synaptic modifications are apparently temporary
in adults (i.e., since the TAE decays in darkness), at any point in time some synaptic
resources may be unused. The equilibrium state of some individuals may represent nearly
full utilization of resources, and they would show relatively large indirect effects in general.
For any individual, adaptation resulting from recent visual experience might change the
amount of undedicated resources, causing wide variations in the indirect TAE depending
upon the circumstances. But regardless of the state of resource utilization, the direct effect
should show a consistent magnitude due to simple Hebbian adaptation, as is seen in the
model and in humans.

The RF-LISSOM account of indirect effects is also consistent with many other pos-
sible explanations of the late onset and variation of the indirect effect. If the TAE is
occurring in the cortex as in RF-LISSOM, the process of synaptic resource conservation
could be mediated by entirely different cellular mechanisms from that of the direct effect.
These mechanisms could easily have different time courses, be influenced differently by var-
ious drugs, etc. The dissociation between the mechanisms is strongly supported by the
experiments of Wenderoth and Johnstone (1988).

In the absence of evidence to the contrary, one would assume that these mecha-
nisms are operating within each neuron in V1 or in the neuron’s lateral connections. No
higher-level process is needed to explain the differences found in the model. This contrasts
strongly with the explanation from Wenderoth and Johnstone (1988), who argued that their
evidence indicated that the indirect effect arises beyond V1. In summary, the indirect TAE
explanation supported by RF-LISSOM is biologically plausible, computationally justified,
and requires only local mechanisms.

6.3 Specific predictions for experimental verification

If tilt aftereffects occur in the human visual system based on the same mechanisms as in
the LISSOM orientation map model, then there are certain features we would expect to
see in the human data. Many of these have already been discussed here and in chapter 5.
However, several other consequences of the model have not yet been investigated specifically
in humans, and RF-LISSOM has provided much more detailed information than that so far
available for humans or animals.

The RF-LISSOM model predicts that for the indirect effect, the number of V1 neu-
rons responding to a test pattern should increase as adaptation progresses. The net response
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level should also increase. Other models such as satiation, fatigue, and the lateral axis the-
ory (described in chapter 2 and section 6.2.4) would predict a decrease or no change in
activity levels in V1 for that stimulus. In particular, the lateral axis theory would predict
that changes would occur only at higher levels than V1. The RF-LISSOM prediction could
be verified or refuted in humans by visualizing activity levels using optical imaging, visual-
evoked-potential (VEP), or similar techniques. One would simply compare the response to
a stimulus before and after adaptation. If cortical activity does indeed decrease for such a
pattern, as it does in RF-LISSOM, it would be difficult to explain how this could arise from
fatigued neurons or neurons with a buildup of some inhibitory substance.

If sufficient temporal and spatial resolution is available from the imaging process,
plots like those presented for RF-LISSOM in section 5.4 could be computed in monkeys for
comparison with the model. First, an orientation map would be computed using standard
means (Blasdel and Salama 1986; Ts’o et al. 1990; Blasdel 1992a; Grinvald et al. 1994;
Weliky et al. 1995). Next, the response of the cortex would be measured for test patterns
at orientations typical of direct and indirect effects, (e.g. 10◦ and 60◦ from the adapta-
tion angle). The imaging technique would need very high temporal resolution to make this
measurement without prompting significant adaptation to the test pattern. Test pattern
presentations vary in different psychophysical experiments, but they are typically on the
order of a few seconds, so an image with the required spatial resolution (see below) would
need to be obtainable within that time. Methods like PET (positron emission tomogra-
phy) which require integration over long time periods would be unsuitable (Sejnowski and
Churchland 1989).

Next, the cortex would be adapted to a stimulus of a particular orientation. Finally,
the test patterns would be presented again, measuring the cortical response once more. The
before-and-after activity plots could then be matched with the orientation map, showing
exactly which areas change activity as a result of adaptation. In order to determine how
the activity changes modify the overall orientation, the activity plots would need spatial
resolution at least sufficient to resolve individual orientation columns, i.e. down to at least
0.1mm. When such a before plot is subtracted from an after plot, there should be a net
decrease in activity for orientation detectors near the orientation used during adaptation,
a net increase in activity of those with more distant orientations, and no change for very
distant orientations.

If this type of spatial resolution is available, one would also be able to calculate
perceived orientations as in section 4.5. The difference between the perceived orientations
before and after should be within the range of TAE seen for human subjects. If this is found
to be the case, it would represent strong support for the lateral inhibition theory of direct
and indirect tilt aftereffects.

A further test of the model could be made by blocking intracortical inhibition me-
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diated by GABAB receptors with bicuculline (Sillito 1979) and that mediated by GABAA

receptors with phaclofen (Pfleger and Bonds 1995). Without inhibition, the sign of the TAE
should be reversed and it should have a smaller magnitude (perhaps not even being measur-
able, if afferent plasticity is insignificant). Adaptation under those conditions should result
in the afferent-only effects shown in figure 5.3. Note that blocking the inhibitory receptors
does not necessarily prevent inhibitory adaptation (Vidyasagar 1990), since changes could
still occur in the excitatory connections to inhibitory interneurons. However, the functional
consequences of inhibitory adaptation would no longer be apparent. It is not possible to
perform such tests in humans, since the chemicals disrupt brain function. It may be possible
to devise suitable protocols for testing the TAE in animals, at which point such tests could
be performed. If similar effects are found in these animals as in the model, it would also
represent strong support for the lateral inhibition theory of tilt aftereffects.

6.4 Future work

Besides the specific topics for future study discussed so far (including ocular transfer, satu-
ration, and dark decay), this research has opened up several areas that can now be studied
computationally. These areas include running simulations that more closely parallel psy-
chophysical experiments, testing low-level phenomena closely related to the tilt aftereffect,
and examining illusions and aftereffects in other modalities. This section will sketch possible
avenues for investigation of these topics.

6.4.1 Tilt illusions

In addition to the tilt aftereffects studied in this thesis, the RF-LISSOM model should
exhibit direct tilt illusions between simultaneous spatially-separated stimuli (Calvert and
Harris 1988; Carpenter and Blakemore 1973; Gilbert and Wiesel 1990; O’Toole 1979; Smith
and Over 1977; Wenderoth and Johnstone 1988; Westheimer 1990). The stimuli would
interact with each other as the lateral interactions settle, inhibiting the feature detectors
tuned to orientations between those of the two patterns. This would drive the perceived
orientation of each pattern away from that of the other.

However, this effect cannot yet be tested with the orientation map used for the other
experiments in this thesis. The training inputs to the map were single oriented Gaussians,
so correlations occurred only between local areas along the orientation of the Gaussian.
Thus lateral connections develop along a single orientation: the orientation preference of
that neuron (section 4.3). So tilt illusions would only occur for overlapping stimuli centered
around the same location on the retina, because only those stimuli would have significant
activation of feature-detectors linked by lateral connections.
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Because the retinal representations of such lines overlap, the cortical responses will
overlap as well, so it would not be possible to quantify the effect using the techniques in
section 4.5. That is, the vector averaging procedure only allows a single perceived orientation
to be calculated per local area of the retina. In contrast, the cortex appears to be able to
perceive multiple overlapping orientations separately (as observed in humans, Blakemore
et al. 1970; Carpenter and Blakemore 1973).

The segmentation mechanisms of the spiking neuron version of RF-LISSOM (Choe
and Miikkulainen 1996; Miikkulainen et al. 1997) may provide a way to separate the rep-
resentation of each line (Blakemore et al. 1970; Carpenter and Blakemore 1973). In this
model, the set of activated units can divide itself into overlapping populations of neurons,
each population firing out of phase with the others (von der Malsburg 1973). For two
overlapping lines, the active units will form into two groups consisting of neurons firing in
synchrony (as mentioned in section 6.2.3. The perceived orientation calculation from sec-
tion 4.5 could then be performed on each group separately to yield a perceived orientation
of each line. These perceived orientations could be compared to the orientation perceived
when only one line is present, to determine how large a tilt illusion is present.

A simpler test procedure would be to self-organize an orientation map using inputs
such as sinusoidal gratings that have longer-range correlations between similar orientations.
Such patterns would represent objects with parallel lines or edges, which are very common
in the visual environment. Long-range connections would then develop between widely
separated orientation detectors in parallel directions, in addition to the relatively local
connections now present. A version of the RF-LISSOM model trained on such patterns
should demonstrate direct tilt illusions through lateral inhibition between two separated
stimuli, as described above. Although such experiments require at least twice as large a
cortex and retina as that used for this thesis, they should become practical in the near
future.

Although indirect effects have been found for the TI much like those for the TAE,
it is not yet known whether they will be found in the RF-LISSOM model. The simulta-
neous indirect effect may depend upon facilitation of weakly activated units by units at
distant orientations. This facilitation would be mediated by lateral connections whose ef-
fective sign would depend upon local contrast, the extension to RF-LISSOM proposed in
section 3.6. The indirect TI may also depend upon factors not yet considered, so it should
be an interesting topic for research.

6.4.2 Effect of test grating

The RF-LISSOM model can be used to explore limitations of the psychophysical exper-
iments, and thus it may help explain some results as artifacts of those experiments. As
described in section 5.1, the protocol used in this thesis measured the effect of a fixed
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adaptation stimulus on test lines of each different orientation. Psychophysical experiments
generally measure the effect on a fixed test stimulus of adapting to test lines at each ori-
entation. These two protocols will give identical results if two assumptions are met: (1)
the angular function of the effect does not depend upon the absolute orientation on the
retina, and (2) the change in perceived orientation can be measured without affecting later
measurements. Assumption 1 appears to be valid for humans, who show similar effects at
all angles (Mitchell and Muir 1976). It must be true in the RF-LISSOM as well, because the
model has no preferred direction. That is, the choice of which orientation to call “vertical”
in the model is arbitrary.

Assumption 2 is clearly true for the model, since learning can be turned off entirely
so that presentation of test patterns does not have any lasting effect. However, it is clearly
not true in general for humans, because adaptation cannot be measured psychophysically
without presenting a test pattern. The cortex will adapt to all patterns presented, not just
those the experimenter has labeled “adaptation” stimuli. Only in a computational model
such as RF-LISSOM can the TAE be evaluated without any side effects, although various
presentation techniques have been devised to limit the residual effects of the test pattern in
psychophysical experiments.

The contribution of those side effects could be evaluated in RF-LISSOM by dupli-
cating the psychophysical experiments in greater detail. The RF-LISSOM learning rate
would remain at the same level throughout the experiment, thus causing adaptation to
every stimulus presented. A particular experiment would be chosen for replication, e.g.
Mitchell and Muir (1976). The reports of this experiment would need to indicate how long
the test stimulus was presented, relative to how long the training stimulus was presented,
so that these parameters could be duplicated in the model. The experiment would then be
recreated as follows.

First, a fixed testing stimulus would be chosen and presented for the period of time
used in the psychophysical experiment, in order to compute a baseline for the perceived
orientation of the test line. Next, the model would adapt for a fixed amount of time to
another line at a particular orientation. The testing stimulus would then be presented
again, with learning still on, and the magnitude of the TAE would be measured. Finally,
the cortex would be returned to equilibrium in order to account for the decay of the TAE,
either by resetting all weights to their initial values, or by presenting randomly oriented
stimuli long enough to erase the effects of adaptation. This procedure would be repeated
for each point on the angular function of the TAE from figure 5.2.

The curve from this procedure could then be compared to one where learning is
turned off for the testing pattern, in order to show the effect of the presentation of the test
pattern. In humans, large aftereffects (greater than 5◦) have been found for very short test
presentations (Wolfe 1984). With the tests above it might be possible to decide whether
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different mechanisms are operating over these short time scales (Harris and Calvert 1989;
Wolfe 1984), or whether the effect of the test pattern is sufficient to explain the larger
aftereffect found in those circumstances. Computing a single point on the TAE curve with
the above procedure takes more computing time than it took to create the entire set of
curves in figure 5.9, but limited tests of this nature should be computationally feasible.

6.4.3 Contrast effects

When both the adapting and test gratings have the same contrast, and test stimuli are
presented for a relatively long period, the magnitude of the TAE does not depend upon
the contrast (Parker 1972). However, in any other circumstance, the absolute and rela-
tive contrasts systematically affect the magnitude of the TAE (Harris and Calvert 1989;
Parker 1972; Ross et al. 1993; Ross and Speed 1996). For instance, with long presentation
times, a larger TAE will be seen for a low-contrast test grating than for one which has
high contrast. Similarly, a low-contrast adaptation pattern will cause a smaller TAE for
a high-contrast test-grating (Parker 1972). Such effects may be a straightforward conse-
quence of the activity-dependent adaptation modeled in RF-LISSOM. Larger adaptation
will occur for higher-contrast inputs, but adaptation will also occur if the test inputs have
high contrast, so the effects may cancel out. These effects are expected to be seen in the
current RF-LISSOM model, if learning is left on for testing using the protocol proposed in
section 6.4.2.

However, some of the effects noted by Harris and Calvert (1989) appear to suggest
influences of the contrast-dependent lateral connections proposed in section 3.6. For some
combinations of inputs, the TAE appears much weaker at low adapting contrasts than at
high contrasts. This could be a result of having long-range lateral connections that are
excitatory at very low contrasts. For low-contrast inputs, the inhibitory lateral interactions
would be negligible, which should result in a much smaller TAE as observed. Experiments
with a version of RF-LISSOM extended with such connections may help determine which
mechanisms can account for these effects.

6.4.4 Masking phenomena

Most studies of the tilt aftereffect are performed using stimuli at a fixed contrast, and require
the subject to judge the orientation of the stimuli by some means. An alternative way to
study the effects of adaptation is to measure the detection threshold for each orientation
before and after adaptation to a particular stimulus. The results from such procedures are
generally similar to the results for the TAE measurements: adapting to one orientation
masks stimuli at nearby orientations, effectively raising the detection threshold for those
orientations and lowering them for somewhat more distant orientations (Blakemore and
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Nachmias 1971; Over et al. 1972; Ross et al. 1993; Smith and Over 1977; Vidyasagar 1990;
Virsu and Taskinen 1974; Waugh et al. 1993).

However, there are numerous differences between masking and the TAE. For in-
stance, there doesn’t appear to be any facilitation observed for very distant orientations,
yet the TAE shows an indirect effect for those orientations (Over et al. 1972). In addition,
masking persists in the presence of inhibitory receptor blockade (Vidyasagar 1990) that
would be expected to prevent the TAE (see section 6.3). The differences may provide clues
about how the contrast-dependent lateral interactions are implemented. In the masking
paradigm, the stimulus used during adaptation is high-contrast, while that used to test the
detection threshold is at a very low contrast, by definition. Thus this test condition should
show how the adaptation of the lateral inhibitory connections affects the long-range lateral
excitatory connections. The evidence suggests that the excitatory connections decrease in
strength with adaptation, but further study would be needed to explain how or why that
occurs.

6.4.5 Aftereffects in visual hierarchies

If higher levels such as V2 have an organization similar to that of V1 as modeled by RF-
LISSOM, they should also show tilt aftereffects in much the same way. This may account
for tilt aftereffects that have been demonstrated for purely subjective contours. Such con-
tours contain orientations perceived by an observer but not physically present in the image
(Berkley et al. 1993; Paradiso et al. 1989; van der Zwan and Wenderoth 1994, 1995). Sub-
jective contour perception is generally thought to arise at levels higher than V1 (van der
Zwan and Wenderoth 1995), and is thus not addressed by the current RF-LISSOM model.
If each level has the same structure, the patterns produced by a given level could interact
in that level and later levels (Berkley et al. 1993), conceivably causing tilt illusions and
tilt aftereffects between features not present in the original image. Hierarchical levels of
RF-LISSOM models have been proposed by Sirosh (1995) as a possible implementation of
the visual processing hierarchy described by Van Essen et al. (1992). Future simulations
with such models may allow studies of the tilt aftereffect between illusory and real contours.

6.4.6 Hyperacuity

Besides experiments with tilt adaptation, certain other psychophysical tests also appear to
give information about learning processes within the primary visual cortex. For instance,
Fahle et al. (1995) and Weiss et al. (1993) found that performance in hyperacuity tasks,
such as deciding whether two lines of same orientation are separated by a small perpendic-
ular offset, improves with practice. The improvement occurs even without verbal or other
feedback indicating whether each judgment is correct. The effect is specific to position and
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orientation, but transfers between eyes to some degree. This is thought to indicate that at
least some part of the effect arises in V1, since V1 is the first stage in the visual pathway
where binocular inputs are combined.

Shiu and Pashler (1992) reported similar results for orientation discrimination tasks,
although they found that the effect also depends on cognitive factors. The ability to dis-
tinguish the orientations of two similarly oriented lines only improved with practice if the
subjects were directed to pay attention to the orientation. However, the effect was specific
to the location on the retina on which examples had been presented, so it did not consist of
some more effective deliberate strategy that the subject learns during the experiment. This
suggests that attentional mechanisms may activate circuitry in V1 (or other early visual
areas) that regulates plasticity.

The RF-LISSOM model should be able to account for such psychophysical learning
phenomena. The active feature detectors and lateral connections between them would adapt
during repeated presentations. Over time, this would expand the area of the cortical feature
map responding to those features. This would result in representation and discrimination
of smaller differences. Since the orientation discrimination testing paradigm is simple yet
shows clear attentional effects, it might also form a good testbed for extensions of RF-
LISSOM that include feedback from higher cortical levels. Such studies might help clarify
how and when adaptation occurs in the early visual system.

6.4.7 Other visual aftereffects

Aftereffects appear to be a nearly universal feature of cortical sensory processing (Barlow
1990). Many visual aftereffects similar to the TAE have been documented in humans, in-
cluding aftereffects of curvature, motion, spatial frequency, size, position, and color (Barlow
1990; Howard and Templeton 1966; Wolfe 1984). In all of these, the cortex appears to adapt
to a long-lasting stimulus, changing the perceived value of subsequent stimuli. For instance,
after prolonged viewing of a moving stimulus, stationary stimuli appear to be moving in
the opposite direction (the movement aftereffect, also known as the waterfall illusion.)

Since topographically-organized detectors for most of these features have been found,
RF-LISSOM is expected to be able to account for their aftereffects by the same process of
decorrelation mediated by self-organizing lateral connections. The current RF-LISSOM
model is clearly suitable for investigating some of these aftereffects, such as those of spatial
frequency, size, and position. Cortical maps for these dimensions have already been demon-
strated in RF-LISSOM, so these maps can be tested for aftereffects using techniques similar
to those used in this thesis. Development of maps for the other visual dimensions has not
yet been modeled in RF-LISSOM, so testing their aftereffects will have to wait until the
maps have been studied.

Analogous aftereffects have also been found for other modalities such as hearing,
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touch, muscle positioning, and posture (Howard and Templeton 1966,p.84–85,p.162–163).
For instance, hearing a sound in one location can influence the perceived location of later
sounds. After adaptation, sounds presented in nearby locations appear to be farther away
than they actually are, and the effect appears to peak at a certain distance, much like the
direct TAE. Aftereffects might also be present for taste and smell, though these parameters
are relatively difficult to control in an experimental setting, and they have not been tested
as extensively as vision, hearing, or touch.

If development in these areas can be modeled with RF-LISSOM, as is expected,
aftereffects will be present in the behavior of the organized maps. Finding that the after-
effects found in the model match those observed for each modality would indicate that the
same decorrelating processes studied for vision in RF-LISSOM also apply to other types
of perception, both during development and in the adult. It would thus strongly suggest
that similar computations are being performed in areas of the cortex performing very dif-
ferent tasks. Combined with studies of the tilt aftereffect at different levels in the visual
hierarchies, it would represent evidence that processes like those in RF-LISSOM are a ubiq-
uitous feature of the cortex. Thus these simple decorrelating principles may account for
a large part of the apparent complexity of the cortex. Achieving a unified explanation of
such disparate phenomena would represent a significant advance in our understanding of
the functioning of the brain.

6.5 Conclusion

In addition to providing a simple computational model of the development of many struc-
tures in the visual cortex, RF-LISSOM exhibits tilt aftereffects that are very similar to
those measured in humans using psychophysical methods. The model is detailed enough
to support specific, testable predictions about cortical function. The model is expected to
account for a variety of other phenomena in its current formulation. Future computational
studies may show how the model should be extended to account for other phenomena.
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Chapter 7

Conclusion

7.1 Summary of the thesis

This thesis presents the first detailed explanation for the entire angular function of the tilt
aftereffect.

Chapter 1 explained the basic effect, including a simple demonstration. After adapt-
ing to an oriented pattern, subsequent patterns of slightly different orientation appear to
have a much larger orientation difference (the direct effect). Subsequent patterns nearly
perpendicular to the adaptation pattern instead appear to be tilted towards the adaptation
orientation (the indirect effect).

Chapter 2 surveyed previous research on the TAE, including other computational
models of the TAE. It was argued that the lateral inhibitory theory is the only viable
explanation proposed so far for the direct tilt aftereffect. It was also argued that previous
models have not convincingly explained the presence of the indirect tilt aftereffect.

Chapter 3 explained the RF-LISSOM system of Sirosh and Miikkulainen (1994a,
1997) in detail, including the network architecture, activity calculation, and connection
weight learning mechanisms. It also explored the biological plausibility of the model, sug-
gesting that the current model is valid for the typical case of high-contrast inputs only.
It also suggested possibilities for the role of a self-organizing model in the explanation of
environmental and genetic factors observed in development.

Chapter 4 described how a realistic cortical orientation map was trained using pa-
rameters set by Sirosh (1995). It also examined possible algorithms for estimating the
orientation perceived using such a map. It was shown that taking the vector average of the
orientation preferences of activated neurons represents a sufficiently accurate estimate of
the actual orientation.

Chapter 5 described the aftereffect experiments and results using the self-organized
orientation map, and demonstrated that the results from the model are nearly identical to
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the psychophysical data for the tilt aftereffect in humans. It presented a quite detailed anal-
ysis of the mechanism of the TAE in RF-LISSOM, and this analysis represents predictions
of phenomena that may be seen in human or monkey cortex.

Chapter 6 related psychophysical and biophysical evidence with the results found
for the TAE in the RF-LISSOM model. It explored possible cortical implementations of the
self-organizing processes in the model, and presented specific experimental predictions that
could be used to verify or refute these proposed mechanisms. Many directions for future
work were suggested, including an examination of tilt illusions and studies of aftereffects in
other modalities.

7.2 Conclusion

The experiments reported in this thesis lend strong computational support to the theory
that tilt aftereffects result from Hebbian learning of the strengths of lateral connections
between neurons. Furthermore, the aftereffects occur as a result of the same decorrelating
process that is responsible for the initial development of the orientation map. This process
tends to deemphasize constant features of the input, resulting in short-term perceptual
anomalies such as aftereffects. The same model should also apply to other aftereffects and
to simultaneous tilt illusions.

Because RF-LISSOM is a computational model, it can demonstrate many phenom-
ena in high detail that are difficult to measure experimentally, thus presenting a view of
the cortex that is otherwise not available. For instance, this thesis showed direct visualiza-
tions of aftereffects as they were occurring in the simulated cortex, making it clear exactly
which processes contributed to the effect. This type of analysis can provide an essential
complement to experimental work with humans and animals.

RF-LISSOM is the first model to provide a comprehensive and fundamental account
of how both cortical structure and function emerge by Hebbian self-organization in the
primary visual cortex. It is also the first to show how both indirect and direct tilt aftereffects
could arise from simple, biologically plausible mechanisms in the primary visual cortex.
Thus a single simple model may explain an unprecedented number and scope of cortical
phenomena, which contributes substantially to our understanding of the cortex.
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