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How can a computing system as complex as the human visual system be specified and con-

structed? Recent discoveries of widespread spontaneous neural activity suggest a simple yet

powerful explanation: genetic information may be expressed as internally generated train-

ing patterns for a general-purpose learning system. The thesis presents an implementation

of this idea as a detailed, large-scale computational model of visual system development.

Simulations show how newborn orientation processing and face detection can be specified

in terms of training patterns, and how postnatal learning can extend these capabilities. The

results explain experimental data from laboratory animals, human newborns, and older in-

fants, and provide concrete predictions about infant behavior and neural activity for future

experiments. They also suggest that combining a pattern generator with a learning algo-

rithm is an efficient way to develop a complex adaptive system.
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Chapter 1

Introduction

Current computing systems lag far behind humans and animals at many important information-

processing tasks. One potential reason is that brains have far greater complexity (1015

synapses compared to e.g. fewer than108 transistors; Alpert and Avnon 1993; Kandel,

Schwartz, and Jessell 1991). It is unlikely that human engineers will be able to design a

specific blueprint for a system with1015 components. How does nature manage to do it?

One clue is that the genome has fewer than105 genes total, which means that any encoding

scheme for the connections must be extremely compact (Lander et al. 2001; Venter et al.

2001). This thesis will examine how the human visual system might be constructed from

such a compact specification byinput-driven self-organization.

In such a system, only the largest-scale structure is specified directly. The details

can then be determined by a learning algorithm driven by information in the environment.

Along these lines, computational studies have shown that an initially uniform artificial neu-

ral network can develop structures like those found in the visual cortex, using simple learn-

ing rules driven by visual input (as reviewed by Erwin, Obermayer, and Schulten 1995 and

Swindale 1996). However, such systems depend critically on the specific input patterns

available. The system may not develop predictably if its environment is variable; what the

learning algorithm discovers may not be the information most relevant to the system or
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Figure 1.1:Spontaneous waves in the ferret retina.Each of the frames shows calcium concen-
tration imaging of approximately 1 mm2 of newborn ferret retina; the plots are a measure of how
active the retinal cells are. Dark areas indicate increased activity. This activity is spontaneous (inter-
nally generated), because the photoreceptors have not yet developed at this time. From left to right,
the frames on the top row form a 4-second sequence showing the start and expansion of a wave
of activity. The bottom row shows a similar wave 30 seconds later. Later chapters will show that
this type of correlated activity can explain how orientation selectivity develops before eye opening.
Reprinted from Feller et al. (1996) with permission; copyright 1996, American Association for the
Advancement of Science.

organism. Such a system will also have very poor performance until learning is complete.

Thus the potentially higher complexity available in a learning system comes with a cost: the

system will take longer to develop and cannot be guaranteed to perform the desired task.

Recent experimental findings in neuroscience suggest that nature may have found a

clever way around this tradeoff. Developing sensory systems are now known to be sponta-

neously active even before birth, i.e., before they could be learning from the environment

(as reviewed by Wong 1999 and O’Donovan 1999). This spontaneous activity may actually

guide the process of cortical development, acting as genetically specified training patterns

for a learning algorithm (Constantine-Paton, Cline, and Debski 1990; Hirsch 1985; Jouvet

1998; Katz and Shatz 1996; Marks, Shaffery, Oksenberg, Speciale, and Roffwarg 1995;

Roffwarg, Muzio, and Dement 1966; Shatz 1990, 1996). Figure 1.1 shows examples of

spontaneous activity in the retina of a newborn ferret.

2



For a biological species, being able to control the training patterns can guarantee

that each organism has a rudimentary level of performance from the start. Such training

would also ensure that initial development does not depend on the details of the external

environment. In contrast, a specific, fixed genetic blueprint could also guarantee a good

starting level of performance, but performance would remain limited to that level. Thus in-

ternally generated patterns can preserve the benefits of a blueprint, within a learning system

capable of much higher system complexity and performance.

Inspired by the discoveries of widespread spontaneous activity, this dissertation will

test the hypothesis that a functioning sensory system can be constructed from a specification

of:

1. a rough initial structure,

2. internal training pattern generators, and

3. a self-organizing algorithm.

Internal patterns drive initial development, and the external environment completes the pro-

cess. The result is a compact specification of a complex, high-performance product. Using

pattern generation to guide development appears to be ubiquitous in nature, and may repre-

sent a general-purpose technique for building complex artificial systems.

1.1 Approach

The pattern generation hypothesis will be evaluated by building and testing HLISSOM, a

computational model of visual system development. The visual system is the best-studied

sensory system in mammals, and thus it offers the most comprehensive data to constrain

and validate models. The goal of the modeling is to understand how the visual cortex is

constructed, in the hope that this understanding will be useful for designing future complex

information processing systems.

3



The simulations focus on two visual capabilities where both environmental and ge-

netic influences appear to play a strong role: orientation processing and face detection.

At birth, newborns can already discriminate between two orientations (Slater and Johnson

1998; Slater, Morison, and Somers 1988), and animals have neurons and brain regions se-

lective for particular orientations even before their eyes open (Chapman and Stryker 1993;

Crair, Gillespie, and Stryker 1998; Gödecke, Kim, Bonhoeffer, and Singer 1997). Yet ori-

entation processing circuitry in these same areas can also be strongly affected by visual

experience (Blakemore and van Sluyters 1975; Sengpiel, Stawinski, and Bonhoeffer 1999).

Similarly, newborns already prefer face-like patterns soon after birth, but face processing

ability takes months or years of experience to develop fully (Goren, Sarty, and Wu 1975;

Johnson and Morton 1991; reviewed in de Haan 2001).

Because the orientation processing circuitry is simpler and has been mapped out in

much greater detail, it will be used as a well-studied test case for the pattern generation

approach. The same techniques will then be applied to face processing, in order to generate

testable predictions to drive future experiments in a more complex system. The specific

aims are to understand how internal activity can account for the structure present at birth in

each system, and how postnatal experience can complete this developmental process. For

each system, I will validate the model by comparing it to existing experimental results, and

then use it to derive predictions for future experiments that will further reveal how the visual

system is constructed.

1.2 Outline of the dissertation

This dissertation is organized into four main parts: background (chapters 1–3), model and

methods (chapters 4–5), results (chapters 6–8), and discussion (chapters 9–10).

Chapter 2 is a survey of the experimental evidence from animal and human visual

systems that forms the basis for the HLISSOM model. The chapter first describes the adult

visual system, then summarizes what is known about its development, and what remains

4



controversial.

Chapter 3 surveys previous computational and theoretical approaches to under-

standing the development of orientation and face processing.

Chapter 4 introduces the HLISSOM model architecture, specifies its operation

mathematically, and describes the procedures for running HLISSOM simulations. As a

detailed example, it gives results from a simple orientation simulation that nonetheless is a

good match to a range of experimental data.

Chapter 5 introduces a set of scaling equations for topographic map simulations,

and shows that they can generate similar orientation-processing circuitry in brain regions

of different sizes. The equations allow each simulation to trade off computational require-

ments against simulation accuracy, and allow very large networks to be simulated when

needed. This capability will be crucial for the experiments in chapters 6–8.

Chapter 6 shows that together internally generated and visually evoked activation

can explain how orientation preferences develop prenatally and postnatally. The resulting

orientation processing circuitry is a good match to experimental findings in newborn and

adult animals. These orientation simulations also provide a foundation for the face process-

ing experiments in chapter 7.

Chapter 7 presents results from a combined model of newborn orientation process-

ing and face preferences. When trained on proposed types of internally generated activity,

the model replicates the face preferences found in studies of human infants, and provides a

concrete explanation for how those face preferences occur.

Chapter 8 presents simulations of postnatal experience with real faces, objects,

and visual scenes. Visual experience gradually drives the coarse neural representations

at birth to become better tuned to real faces. The postnatal learning process replicates

several surprising findings from studies of newborn face learning, such as a decrease in

response to schematic drawings of faces, and provides novel predictions that can drive

future experiments.

5



Chapter 9 discusses implications of the results presented here, and proposes future

experimental, computational, and engineering studies based on this approach.

Chapter 10summarizes and evaluates the contributions of the thesis.

6



Chapter 2

Background

This thesis presents computational simulations of how the human visual system develops.

So that the simulations are a meaningful tool for understanding natural systems, they are

based on detailed anatomical, neurophysiological, and psychological evidence from ani-

mals and human infants. In this chapter I will review this evidence for adult humans and for

animals that have similar visual systems, focusing on the orientation and face-processing

capabilities that will be modeled in later chapters. I will then summarize what is known

about the state of these systems at birth and their prenatal and postnatal development, as

well as what remains unclear. Throughout, I will emphasize the important role that neural

activity plays in this development, and that this activity can be either visually evoked or

internally generated.

2.1 The adult visual system

The adult visual system has been studied experimentally in a number of mammalian species,

including human, monkey, cat, ferret, and tree shrew. For a variety of reasons, many of the

important results have been measured in only one or a subset of these species, but they are

expected to apply to the others as well. This thesis focuses on the human visual system, but
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Figure 2.1:Human visual sensory pathways (top view). Visual information travels in separate
pathways for each half of the visual field. For example, light entering the eye from the right hemifield
reaches the left half of the retina, on the rear surface of each eye. The right hemifield inputs from
each eye join at the optic chiasm, and travel to the left lateral geniculate nucleus (LGN) of the
thalamus, then to the primary visual cortex (V1) of the left hemisphere. Signals from each eye
are kept segregated into different neural layers in the LGN, and are combined in V1. There are
also smaller pathways from the optic chiasm and LGN to other subcortical structures, such as the
superior colliculus (not shown). For simplicity, the model in this thesis will focus on the pathway
from a single eye to the LGN and visual cortex, although it can also be expanded to include both
eyes (Miikkulainen et al. 1997; Sirosh 1995).

also relies on data from these animals where human data is not available.

Figure 2.1 shows a diagram of the main feedforward pathways in the human visual

system (see e.g. Wandell 1995, Daw 1995, or Kandel et al. 1991 for an overview). Other

mammalian species have a similar organization. During visual perception, light entering

the eye is detected by theretina, an array of photoreceptors and related cells on the inside

of the rear surface of the eye. The cells in the retina encode the light levels at a given loca-

tion as patterns of electrical activity in neurons calledretinal ganglion cells. This activity is

calledvisually evoked activity. Retinal ganglion cells are densest in a central region called

the fovea, corresponding to the center of gaze; they are much less dense in theperiphery.

Output from the ganglion cells travels through neural connections to thelateral geniculate

8



nucleus(LGN) of the thalamus, at the base of each side of the brain. From the LGN, the

signals continue to theprimary visual cortex(V1; also calledstriatecortex or area 17) at

the rear of the brain. V1 is the firstcortical site of visual processing; the previous areas are

termedsubcortical. The output from V1 goes on to many different higher cortical areas,

including areas that appear to underlie object and face processing (as reviewed by Merigan

and Maunsell 1993; Van Essen, Anderson, and Felleman 1992). Much smaller pathways

also go from the optic nerve and LGN to subcortical structures such as thesuperior col-

liculus andpulvinar, but these areas are not thought to be involved in orientation-specific

processing (see e.g. Van Essen et al. 1992).

2.1.1 Early visual processing

At the photoreceptor level, the representation of the visual field is much like an image, but

significant processing of this information occurs in the subsequent subcortical and early

cortical stages (reviewed by e.g. Daw 1995; Kandel et al. 1991). First, retinal ganglion

cells perform a type of edge detection on the input, responding most strongly to borders

between bright and dark areas. Figure 2.2a–b illustrates the two typical response patterns

of these neurons, ON-center and OFF-center. An ON-center retinal ganglion cell responds

most strongly to a spot of light located in a certain region of the photoreceptors, called

its receptive field(RF). An OFF-center ganglion instead prefers a dark area surrounded by

light. Neurons in the LGN have properties similar to retinal ganglion cells, and are also

arranged retinotopically, so that nearby LGN cells respond to nearby portions of the retina.

The ON-center cells in the retina connect to the ON cells in the LGN, and the OFF cells

in the retina connect to the OFF cells in the LGN. Because of this independence, the ON

and OFF cells are often described as separate processingchannels, the ON channel and the

OFF channel.

Like LGN neurons, nearby neurons in V1 also respond to nearby portions of the

retina. However, they prefer edges and lines of a particular range of orientations, and do not
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(a) ON cell (b) OFF cell (c) Two-lobe V1
simple cell

(d) Three-lobe V1
simple cell

Figure 2.2:Receptive field (RF) types in retina, LGN and V1.Each diagram shows an RF on
the retina for one neuron. Areas of the retina where light spots excite this neuron are plotted in
white (ON areas), areas where dark spots excite it are plotted in black (OFF areas), and areas with
little effect are plotted in gray. All RFs are spatially localized, i.e. have ON and OFF areas only
in a small portion of the retina. (a) ON cells are found in the retina and LGN, and prefer light
areas surrounded by darker areas. (b) OFF cells have the opposite preferences, responding most
strongly to a dark area surrounded by light areas. RFs for both ON and OFF cells are isotropic, i.e.
have no preferred orientation. Starting in V1, most cells in primates have orientation-selective RFs
instead. The V1 RFs can be classed into a few basic types, of which the most common are shown
here. Figure (c) shows a two-lobe arrangement, favoring a 45◦ edge with dark in the upper left and
light in the lower right. Figure (d) shows one with three lobes, favoring a 135◦ white line against
a darker background. RFs of all orientations are found in V1, but those representing the cardinal
axes (horizontal and vertical) are more common. Adapted from Hubel and Wiesel (1968); Jones
and Palmer (1987). Chapter 4 will introduce a model for the ON and OFF cells, and will show how
simple cells like those in (c–d) can develop.

respond to unoriented stimuli or orientations far from their preferred orientation (Hubel and

Wiesel 1962, 1968). Because V1 neurons are the first to have significant orientation pref-

erences, theories of orientation processing focus on areas V1 and above. See figure 2.2c–d

for examples of typical receptive fields of V1 neurons. The neurons illustrated are what is

known assimplecells, i.e. neurons whose ON and OFF patches are located at specific areas

of the retinal field. Other neurons (complexcells) respond to the same configuration of light

and dark over a range of positions (Hubel and Wiesel 1968). HLISSOM models the simple

cells only, which are thought to be the first in V1 to show orientation selectivity (Hubel and

Wiesel 1968).

V1, like the other parts of the cortex, is composed of a two-dimensional, slightly

folded sheet of neurons and other cells. If flattened, human V1 would cover an area of

nearly four square inches (Wandell 1995). It contains at least 150 million neurons, each
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making hundreds or thousands of specific connections with other neurons in the cortex and

in subcortical areas like the LGN (Wandell 1995). The neurons are arranged in six layers

with different anatomical characteristics (using Brodmann’s scheme for numbering lamina-

tions in human V1, as described by Henry 1989). Input from the thalamus goes through

afferentconnections to V1, typically terminating in layer 4 (Casagrande and Norton 1989;

Henry 1989). Neurons in the other layers form local connections within V1 or connect to

higher visual processing areas. For instance, many neurons in layers 2 and 3 have long-

rangelateral connectionsto the surrounding neurons in V1 (Gilbert, Hirsch, and Wiesel

1990; Gilbert and Wiesel 1983; Hirsch and Gilbert 1991). There are also extensive feed-

back connections from higher areas (Van Essen et al. 1992).

At a given location on the cortical sheet, the neurons in a vertical section through

the cortex generally respond most strongly to the same eye of origin, stimulus orientation,

stimulus size, etc. It is customary to refer to such a section as acolumn(Gilbert and Wiesel

1989). The HLISSOM model discussed in this thesis will treat each column as a single

unit, thus representing the cortex as a purely two-dimensional surface. This model is only

an approximation, but it is a valuable one because it greatly simplifies the analysis while

retaining the basic functional features of the cortex.

Nearby columns generally have similar, but not identical, preferences; slightly more

distant columns generally have more dissimilar preferences. Preferences repeat at regu-

lar intervals (approximately 1–2 mm) in every direction, which ensures that each type of

preference is represented for every location on the retina. For orientation preferences, this

arrangement of neurons forms a smoothly varyingorientation mapof the retinal input (Blas-

del 1992a; Blasdel and Salama 1986; Grinvald, Lieke, Frostig, and Hildesheim 1994; Ts’o,

Frostig, Lieke, and Grinvald 1990). See figure 2.3 for an explanation of how the orienta-

tion map can be measured, and figure 2.4 for an example orientation map from monkey

cortex. Each location on the retina is mapped to a region on the orientation map, with each

possible orientation at that retinal location represented by different but nearby orientation-
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Figure 2.3:Measuring orientation maps. Optical imaging techniques allow orientation prefer-
ences to be measured for large numbers of neurons at once (Blasdel and Salama 1986). In such
experiments, part of the skull of a laboratory animal is removed by surgery, exposing the surface of
the visual cortex. Visual patterns are then presented to the eyes, and a video camera records either
light absorbed by the cortex or light given off by fluorescent chemicals that have been applied to
it. Both methods allow the two-dimensional patterns of neural activity to be measured, albeit in-
directly. Measurements can then be compared between different stimulus conditions, e.g. different
orientations, determining which stimulus is most effective at activating each small patch of neurons.
Figure 2.4 and later figures in this chapter will show maps of orientation preference computed using
these techniques. Adapted from Weliky et al. (1995).

selective cells. Other mammalian species have largely similar orientation maps, although

there are differences in some of the details (Müller, Stetter, Hubener, Sengpiel, Bonhoef-

fer, Gödecke, Chapman, Löwel, and Obermayer 2000; Rao, Toth, and Sur 1997). Maps of

preferences for other stimulus features are also present, including direction of motion, spa-

tial frequency, and ocular dominance (left or right eye preference; Issa, Trepel, and Stryker

2001; Obermayer and Blasdel 1993; Shatz and Stryker 1978; Shmuel and Grinvald 1996;

Weliky, Bosking, and Fitzpatrick 1996).

Within V1, the lateral connections correlate with stimulus preferences, particularly

for orientation. For instance, the long-range lateral connections of a given neuron target

neurons in other patches that have similar orientation preferences, aligned along the pre-

ferred orientation of the neuron (Bosking, Zhang, Schofield, and Fitzpatrick 1997; Schmidt,

Kim, Singer, Bonhoeffer, and Lowel 1997; Sincich and Blasdel 2001; Weliky et al. 1995).

Figure 2.5 shows examples of these connections. Anatomically, individual long-range con-
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(a) Orientation map (b) Orientation selectivity

Figure 2.4:Adult monkey orientation map (color figure). Figures (a) and (b) show the preferred
orientation and orientation selectivity of each neuron in a7.5× 5.5mm area of adult macaque mon-
key V1, measured by optical imaging techniques (reprinted with permission from Blasdel 1992b,
copyright 1992 by the Society for Neuroscience; annotations added.) Each neuron in (a) is colored
according to the orientation it prefers, using the color key at the left. Nearby neurons in the map
generally prefer similar orientations, forming groups of the same color callediso-orientation blobs.
Other qualitative features are also found:Pinwheelsare points around which orientation preference
changes continuously; a pair of pinwheels is circled in white.Linear zonesare straight lines along
which the orientations change continuously, like a rainbow; a linear zone is marked with a long
white rectangle.Fracturesare sharp transitions from one orientation to a very different one; a frac-
ture between red and blue (without purple in between) is marked with a white square. As shown in
(b), pinwheel centers and fractures tend to have lower selectivity (dark areas) in the optical imaging
response, while linear zones tend to have high selectivity (light areas). Chapters 4 and 6 will model
the development of similar orientation and selectivity maps.

nections are usually excitatory, but for high-contrast inputs their net effects are inhibitory

due to contacts on local inhibitory neurons (Hirsch and Gilbert 1991; Weliky et al. 1995;

Hata, Tsumoto, Sato, Hagihara, and Tamura 1993; Grinvald et al. 1994; see discussion in

Bednar 1997). Thus for modeling purposes the long-range connections are usually treated

as inhibitory, as they will be in HLISSOM.

Lateral connections are thought to underlie a variety of psychophysical phenomena,

including contour integration and the effects of context on visual perception (Bednar and

Miikkulainen 2000b; Choe 2001; Choe and Miikkulainen 1998; Gilbert 1998; Gilbert et al.

1990). For computational efficiency, most models treat the lateral connections as a simple

isotropic function, but orientation-specific connections are important for several theories of
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(a) Single orientation (b) Orientation map

Figure 2.5:Lateral connections in the tree shrew align with the orientation map (color fig-
ure). Figure (a) shows the orientation preferences of a section of adult tree shrew V1 measured
using optical imaging. In the figure, vertical in the visual field (90◦) corresponds to a diagonal line
pointing towards 10 o’clock (135◦). Areas responding to vertical stimuli are plotted in black, and
horizontal in white. Overlaid on the map is a small green dot marking the site where a patch of
nearby vertical-selective neurons were injected with a tracer chemical. In red are plotted neurons
to which that chemical propagated through lateral connections. Short-range lateral connections tar-
get all orientations equally, but long-range connections target neurons that have similar orientation
preferences and are extended along the orientation preference of this neuron. Image A in figure
(b) shows a detailed view of the information in figure (a) plotted on the full orientation map. The
injected neurons are colored greenish cyan (80◦), and connect to other neurons with similar prefer-
ences. Image B in figure (b) shows similar results from a different location. These neurons prefer
reddish purple (160◦), and more densely connect to other red or purple neurons. Measurements in
monkeys show similar patchiness, but in monkey the connections do not usually extend as far along
the orientation axis of the neuron (Sincich and Blasdel 2001). These results, theoretical analysis,
and computational models suggest that the lateral connections play a significant role in orientation
processing (Bednar and Miikkulainen 2000b; Gilbert 1998; Sirosh 1995). Chapter 4 will show how
these lateral connection patterns can develop. Reprinted from Bosking et al. (1997) with permission;
copyright 1997 by the Society for Neuroscience.

orientation map development (as described in chapter 3). For this reason, HLISSOM will

simulate the development of the patchy pattern of lateral connectivity.

2.1.2 Face and object processing

Beyond V1 in primates are dozens of less-understoodextrastriatevisual areas that can be

arranged into a rough hierarchy (Van Essen et al. 1992). The relative locations of the areas

in this hierarchy are largely consistent across individuals of the same species. Non-primate
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species have fewer higher areas, and in at least one mammal (the least shrew, a tiny rodent-

like creature) V1 is the only visual area (Catania, Lyon, Mock, and Kaas 1999). Although

the higher levels have not been studied as thoroughly as V1, the basic circuitry within each

region is thought to be largely similar to V1. Even so, the functional properties differ, in

part due to differences in connectivity with other regions (Kandel et al. 1991). For instance,

neurons in higher areas tend to have larger retinal receptive fields, respond to stimuli at

a greater range of positions, and process more complex visual features (Ghose and Ts’o

1997; Haxby, Horwitz, Ungerleider, Maisog, Pietrini, and Grady 1994; Rolls 2000). In

particular, extrastriate cortical regions that respond preferentially to faces have been found

in both adult monkeys (using single-neuron studies; Gross, Rocha-Miranda, and Bender

1972; Rolls 1992) and adult humans (using imaging techniques like fMRI; Halgren, Dale,

Sereno, Tootell, Marinkovic, and Rosen 1999; Kanwisher, McDermott, and Chun 1997;

Puce, Allison, Gore, and McCarthy 1995).1

These face-selective areas receive visual input via the V1 orientation map. They

appear to be loosely segregated into different regions that process faces in different ways.

For instance, some areas appear to perform face detection, i.e. respond to unspecifically to

many face-like stimuli (de Gelder and Rouw 2000, 2001). Others selectively respond to

facial expressions, gaze directions, or prefer specific faces (i.e., perform face recognition;

Perrett 1992; Rolls 1992; Sergent 1989). Whether these regions are exclusively devoted

to face processing, or also process other common objects, remains controversial (Haxby,

Gobbini, Furey, Ishai, Schouten, and Pietrini 2001; Kanwisher 2000; Tarr and Gauthier

2000). HLISSOM will model areas involved in face detection (and not face recognition or

other types of face processing), but does not assume that the areas modeled will process

faces exclusively.

1I will use the termface selectiveto refer to any cell or region that shows a higher response to faces than to
other similar stimuli. Some studies also show more specific types of face selectivity, such as face recognition
or face detection.
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2.2 Development of early visual processing

Despite the progress made in understanding the structure and function of the adult visual

system, much less is known about how this circuitry is constructed. Two extreme alter-

native theories state that: (a) the visual system develops through general-purpose learning

of patterns seen in the environment, or (b) the visual system is constructed from a spe-

cific blueprint encoded somehow in the genome. The conflict between these two positions

is generally known as the Nature–Nurture debate, which has been raging for centuries in

various forms (Diamond 1974).

The idea of a specific blueprint does seem to apply to the largest scale organization

of the visual system, at the level of areas and their interconnections. These patterns are

largely similar across individuals of the same species, and their development does not gen-

erally depend on neural activity, visually evoked or otherwise (Miyashita-Lin, Hevner, Was-

sarman, Martinez, and Rubenstein 1999; Rakic 1988; Shatz 1996). But at smaller scales,

such as orientation maps and lateral connections within them, there is considerable evi-

dence for both environmental and internally controlled development. Thus debates center

on how this seemingly conflicting evidence can be reconciled. In the subsections below

I will summarize the evidence for environmental and genetic influences, focusing first on

orientation processing (for which the evidence of each type is substantial), and then on the

less well-studied topic of face processing.

2.2.1 Environmental influences on early visual processing

Experiments since the 1960s have shown that the environment can have a large effect on the

structure and function of the early visual areas (as reviewed by Movshon and van Sluyters

1981). For instance, Blakemore and Cooper (1970) found that if kittens are raised in en-

vironments consisting of only vertical contours during a critical period, most of their V1

neurons become responsive to vertical orientations. Similarly, orientation maps from kit-

tens with such rearing devote a larger area to the orientation that was overrepresented during
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development (Sengpiel et al. 1999). Even in normal adult animals, the distribution of ori-

entation preferences is slightly biased towards horizontal and vertical contours (Chapman

and Bonhoeffer 1998; Coppola, White, Fitzpatrick, and Purves 1998). Such a bias would

be expected if the neurons learned orientation selectivity from typical environments, which

have a similar orientation bias (Switkes, Mayer, and Sloan 1978). Conversely, kittens who

were raised without patterned visual experience at all, e.g. by suturing their eyelids shut,

have few orientation-selective neurons in V1 as an adult (Blakemore and van Sluyters 1975;

Crair et al. 1998). Thus visual experience can clearly influence how orientation selectivity

and orientation maps develop.

The lateral connectivity patterns within the map are also clearly affected by visual

experience. For instance, kittens raised without patterned visual experience in one eye

(by monocular lid suture) develop non-specific lateral interactions for that eye (Kasamatsu,

Kitano, Sutter, and Norcia 1998). Conversely, lateral connections become patchier when

inputs from each eye are decorrelated during development (by artificially inducing strabis-

mus, i.e. squint; Gilbert et al. 1990; Löwel and Singer 1992).

Finally, in ferrets it is possible to reroute the connections from the eye that normally

go to V1 via the LGN, so that instead they reach auditory cortex (as reviewed in Sur, An-

gelucci, and Sharma 1999; Sur and Leamey 2001). The result is that the auditory cortex

develops orientation-selective neurons, orientation maps, and patchy lateral connections,

although the orientation maps do show some differences from normal maps. Furthermore,

the ferret can use the rewired neurons to make visual distinctions, such as to discriminate

between two grating stimuli (von Melchner, Pallas, and Sur 2000). Thus the structure and

function of the cortex can be profoundly affected by its inputs. Together with the results

from altered environments, this evidence suggests that the structure and function of V1

could simply be learned from experience with oriented contours in the environment. More

specifically, the neural activity patterns in the LGN might be sufficient to direct the devel-

opment of V1 and other cortical areas.
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Figure 2.6: Neonatal orientation maps (color figure). A 1.9 × 1.9mm section of an orienta-
tion map from a two-week-old binocularly deprived kitten, i.e. a kitten without prior visual experi-
ence. The map is not as smooth as in the adult, and many of the neurons are not as selective (not
shown), but the map already has iso-orientation blobs, pinwheel centers, fractures, and linear zones.
Reprinted with permission from Crair et al. (1998), copyright 1998, American Association for the
Advancement of Science.

2.2.2 Genetic influences on early visual processing

Yet despite the clear environmental effects on orientation processing and the role of visual

activity, individual orientation-selective cells have long been known to exist in newborn

kittens and ferrets even before they open their eyes (Blakemore and van Sluyters 1975;

Chapman and Stryker 1993).2. Recent advances in experimental imaging technologies have

even allowed the full map of orientation preferences to be measured in young animals. Such

experiments show that large-scale orientation maps exist prior to visual experience, and

that these maps have many of the same features found in adults (Chapman, Stryker, and

Bonhoeffer 1996; Crair et al. 1998; Gödecke et al. 1997). Figure 2.6 shows an example

of such a map from a kitten. The lateral connections within the orientation map are also

already patchy before eye opening (Gödecke et al. 1997; Luhmann, Martı́nez Millán, and

2Note that although human newborns open their eyes soon after birth, visual experience begins much later
in other species. For instance, ferrets and cats open their eyes only days or weeks after birth, which makes them
convenient for developmental studies. This section focuses on eye opening as the start of visual experience,
because it discusses animal experiments. Elsewhere this thesis will simply use “prenatal” and “postnatal” to
refer to phases before and after visual experience, because the primary focus is on human infants.
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Singer 1986; Ruthazer and Stryker 1996).

Furthermore, the global patterns of blobs in the maps appear to change very little

with normal visual experience, even as the individual neurons gradually become more selec-

tive for orientation, and lateral connections become more selective (Chapman and Stryker

1993; Crair et al. 1998; G̈odecke et al. 1997). Although the actual map patterns have so far

only been measured in animals, not newborn or adult humans, psychological studies sug-

gest that human newborns can already discriminate between patterns based on orientation

(Slater and Johnson 1998; Slater et al. 1988). Thus despite the clear influence of long-term

rearing in abnormal conditions, normal visual experience appears primarily to preserve and

fine-tune the existing structure of the V1 orientation map, rather than drive its development.

2.2.3 Internally generated activity

The preceding sections show that initial cortical development does not require visual ex-

perience, yet postnatal visual experience can change how the cortex develops. Moreover,

for orientation processing it is clear that the regions that are already organized at birth are

precisely the same regions that are later affected by visual experience. (For face process-

ing it is not yet known whether the underlying circuitry is the same, but the behavioral

effects are similar to those for the well-studied case of orientation processing.) Thus one

important question is, how could the same circuitry be both genetically hardwired, yet also

capable of learning from the start? New experiments are finally starting to shed light on this

longstanding mystery: many of the structures present at birth could result from learning

of spontaneous, internally generated neural activity. The same activity-dependent learning

mechanisms that can explain postnatal learning may simply be functioning before birth,

driven by activity from internal instead of external sources. Thus the “hardwiring” may

actually be learned.

Spontaneous neural activity has recently been discovered in many cortical and sub-

cortical areas as they develop, including the visual cortex, the retina, the auditory system,
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and the spinal cord (Feller et al. 1996; Lippe 1994; Wong, Meister, and Shatz 1993; Yuste,

Nelson, Rubin, and Katz 1995; reviewed by O’Donovan 1999; Wong 1999). Figure 1.1 on

page 2 showed an example of one type of spontaneous activity, retinal waves. In several

cases, experiments have shown that interfering with spontaneous activity can change the

outcome of development. For instance, when the retinal waves are abolished, the LGN fails

to develop normally (e.g., inputs from the two eyes are no longer segregated; Chapman

2000; Shatz 1990, 1996; Stellwagen and Shatz 2002). Similarly, when activity is silenced

at the V1 level during early development, neurons in mature animals have much lower ori-

entation selectivity (Chapman and Stryker 1993).

The debate now centers on whether such spontaneous activity is merelypermissive

for development, perhaps by keeping newly formed connections alive until visual input

occurs, or whether it isinstructive, i.e. whether patterns of activity specifically determine

how the structures develop (as reviewed by Chapman, Gödecke, and Bonhoeffer 1999;

Crair 1999; Katz and Shatz 1996; Miller, Erwin, and Kayser 1999; Penn and Shatz 1999;

Sur et al. 1999; Sur and Leamey 2001; Thompson 1997). Several recent experiments have

shown that spontaneous activity can clearly be instructive. For instance, Weliky and Katz

(1997) artificially activated a large number of axons in the optic nerve of ferrets, thereby

disrupting the pattern of spontaneous activity. Even though this manipulation increased

the total amount of activity, leaving any permissive aspects of activity unchanged, the result

was a reduction in orientation selectivity in V1. Thus spontaneous activity cannot simply be

permissive. Similarly, pharmacologically increasing the number of retinal waves in one eye

has very recently been shown to disrupt LGN development (Stellwagen and Shatz 2002;

but see Crowley and Katz 2000). Yet increasing the waves inboth eyes restores normal

development, which again shows that it is not simply the presence of the activity that is

important (Stellwagen and Shatz 2002). However, it is not yet known what specific features

of the internally generated activity are instructive for development in each region, because

it has not yet been possible to manipulate the activity precisely.
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Figure 2.7:PGO waves.Each line shows an electrical recording from a cell in the indicated area
during REM sleep in the cat. Spontaneous REM sleep activation in the pons of the brain stem
is relayed to the LGN of the thalamus (top), to the primary visual cortex (bottom), and to many
other regions in the cortex. It is not yet known what spatial patterns of visual cortex activation
are associated with this temporal activity, or with other types of spontaneous activity during sleep.
Reprinted fromBehavioural Brain Research, 69, Marks et al., “A functional role for REM sleep in
brain maturation”, 1–11, copyright 1995, with permission from Elsevier Science.

Retinal waves are the most well-studied source of spontaneous activity, because

they are easily accessible to experimenters. However, other internally generated patterns

also appear to be important for visual cortex development. One example is the ponto-

geniculo-occipital (PGO) waves that are the hallmark of rapid-eye-movement (REM) sleep

(figure 2.7). During and just before REM sleep, PGO waves originate in the brainstem and

travel to the LGN, visual cortex, and a variety of subcortical areas (see Callaway, Lydic,

Baghdoyan, and Hobson 1987 for a review).

In adults, PGO waves are strongly correlated with eye movements and with vivid

visual imagery in dreams, suggesting that they activate the visual system as if they were

visual inputs (Marks et al. 1995). Studies also suggest that PGO wave activity is under ge-

netic control: PGO waves elicit different activity patterns in different species (Datta 1997),

and the eye movement patterns that are associated with PGO waves are more similar in

identical twins than in unrelated age-matched subjects (Chouvet, Blois, Debilly, and Jou-

vet 1983). Thus PGO waves are a good candidate for genetically controlled visual system

training patterns.

In 1966, Roffwarg et al. proposed that REM sleep must be important for devel-
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opment. Their reasoning was that (1) developing mammalian embryos spend a large per-

centage of their time in states that look much like adult REM sleep, and (2) the duration

of REM sleep is strongly correlated with the degree of neural plasticity, both during de-

velopment and between species (also see the more recent review by Siegel 1999, as well

as Jouvet 1980). also Consistent with Roffwarg et al.’s hypothesis, it has recently been

found that blocking REM sleep and/or the PGO waves aloneheightensthe effect of visual

experience during development (Marks et al. 1995; Oksenberg, Shaffery, Marks, Speciale,

Mihailoff, and Roffwarg 1996; Pompeiano, Pompeiano, and Corvaja 1995). In kittens with

normal REM sleep, when the visual input to one eye of a kitten is blocked for a short time

during a critical period, the cortical and LGN area devoted to signals from the other eye

increases (Blakemore and van Sluyters 1975). When REM sleep (or just the PGO waves)

is interrupted as well, the effect of blocking one eye’s visual input is even stronger (Marks

et al. 1995). This result suggests REM sleep, and PGO waves in particular, ordinarily limits

or counteracts the effects of visual experience.

All of these characteristics suggest that PGO waves and other REM-sleep activity

may be instructing development, like the retinal waves do (Jouvet 1980, 1998; Marks et al.

1995). However, due to limitations in experimental imaging equipment and techniques,

it has not yet been possible to measure the two-dimensional spatial shape of the activity

associated with the PGO waves (Rector, Poe, Redgrave, and Harper 1997). This thesis will

evaluate different candidates for internally generated activity, including retinal and PGO

waves, and show how this activity can explain how maps and their connections develop in

the visual cortex.

2.3 Development of face detection

In previous sections I have focused on the early visual processing pathways, up to V1,

because recent anatomical and physiological evidence from cats and ferrets has begun to

clarify how those areas develop. These detailed studies have been made possible by the
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fact that much of the cat and ferret visual system develops postnatally but before the eyes

open. However, face selective neurons or regions have not yet been documented in cats or

ferrets, either adult or newborn. Thus studies of the neural basis of face selectivity focus on

primates.

The youngest primates that have been tested are six week old monkeys, which do

have face selective neurons (Rodman 1994; Rodman, Skelly, and Gross 1991). Six weeks

is a significant amount of visual experience, and it has not yet been possible to measure

neurons or regions in younger monkeys. Thus it is unknown whether the cortical regions

that are face-selective in adult primates are also face-selective in newborns, or whether they

are even fully functional at birth (Bronson 1974; Rodman 1994). As a result, how these

regions develop remains highly controversial (for review see de Haan 2001; Gauthier and

Nelson 2001; Nachson 1995; Slater and Kirby 1998; Tovée 1998).

Although measurements at the neuron or region level are not available, behavioral

tests with human infants suggest that the postnatal development of face detection is similar

to the well-studied case of orientation map development. In particular, internal, geneti-

cally determined factors also appear to be important for face detection. The main evidence

for a genetic basis is a series of studies showing that human newborns turn their eyes or

head towards facelike stimuli in the visual periphery, longer or more often than they do

so for other stimuli (Goren et al. 1975; Johnson, Dziurawiec, Ellis, and Morton 1991;

Johnson and Morton 1991; Mondloch, Lewis, Budreau, Maurer, Dannemiller, Stephens,

and Kleiner-Gathercoal 1999; Simion, Valenza, Umiltà, and Dalla Barba 1998b; Valenza,

Simion, Cassia, and Umiltà 1996). These effects have been found within minutes or hours

after birth. Figure 2.8 shows how several of these studies have measured the face prefer-

ences, and figure 2.9 shows a typical set of results. Whether these preferences represent

genuine preference for faces has been very controversial, in part because of the difficulties

in measuring pattern preferences in newborns (Easterbrook, Kisilevsky, Hains, and Muir

1999; Hershenson, Kessen, and Munsinger 1967; Kleiner 1993, 1987; Maurer and Barrera
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Figure 2.8: Measuring newborn face preferences.Newborn face preferences have been mea-
sured by presenting schematic stimuli to human infants within a few minutes or hours of birth, and
measuring how far the babies’ eyes or head track the stimulus. The experimenter is blind to the
specific pattern shown, and an observer also blind to it measures the baby’s responses. Face prefer-
ences have been found even when the experimenter’s face and all other faces seen by the baby were
covered by surgical masks. Reprinted from Johnson and Morton (1991) with permission; copyright
1991 Blackwell Publishing.

1981; Simion, Macchi Cassia, Turati, and Valenza 2001; Slater 1993; Thomas 1965). New-

born preferences for additional patterns will be shown in chapter 7, which also shows that

HLISSOM exhibits similar face preferences when trained on internally generated patterns.

Early postnatal visual experience also clearly affects face preferences, as for ori-

entation map development. For instance, an infant only a few days old will prefer to look

at its mother’s face, relative to the face of a female stranger with “similar hair coloring

and length” (Bushnell 2001) or “broadly similar in terms of complexion, hair color, and

general hair style” (Pascalis, de Schonen, Morton, Deruelle, and Fabre-Grenet 1995). A

significant mother preference is found even when non-visual cues such as smell and touch

are controlled (Bushnell 2001; Bushnell, Sai, and Mullin 1989; Field, Cohen, Garcia, and

Greenberg 1984; Pascalis et al. 1995). The mother preference presumably results from

postnatal learning of the mother’s appearance. Indeed, Bushnell (2001) found that new-
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Figure 2.9:Face preferences at birth.Using the procedure from figure 2.8, Johnson et al. (1991)
measured responses to a set of head-sized schematic patterns. The graph at left gives the result of
a study of human newborns tested with two-dimensional moving patterns within one hour of birth
(Johnson et al. 1991); the one at right gives results from a separate study of newborns an average
of 21 hours old (also published in Johnson et al. 1991). Each pair of bars represents the average
newborn eye and head tracking, in degrees, for the image pictured below it; eye and head tracking
had similar trends here and thus either may be used as a measure. Because the procedures and con-
ditions differed between the two studies, only the relative magnitudes should be compared. Overall,
the study at left shows that newborns respond to face-like stimuli more strongly than to simple con-
trol conditions; all comparisons were statistically significant. This result suggests that there is some
genetic basis to face processing abilities. In the study at right, the checkerboard pattern (d) was
tracked significantly farther than the other stimuli, and pattern (g) was tracked significantly less far.
The checkerboard was chosen to be a good match to the low-level visual preferences of the newborn,
and shows that such preferences can outweigh face preferences. No significant difference was found
between the responses to (e) and (f ). The results from this second study suggest that face preferences
are broad, perhaps as simple as a preference for two dark blobs above a third one. Adapted from
Johnson et al. (1991).

borns look at their mother’s face for an average of 23% of their time awake over the first

few days, which provides ample time for learning.

Pascalis et al. (1995) found that the mother preference disappears when the external

outline of the face is masked, and argued that newborns are learning only face outlines, not

faces. They concluded that newborn mother learning might differ qualitatively from adult

face learning. However, HLISSOM simulation results in chapter 8 will show that learning

of the whole face (internal features and outlines) can also result in mother preferences.

Importantly, masking the outline can still erase these preferences, even though outlines

were not the only parts of the face that were learned. Thus whether mother preferences

are due to outlines alone remains an open question. Newborns may instead learn faces
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holistically, as in HLISSOM.

Experiments with infants as they develop over the first few months reveal a surpris-

ingly complex pattern of face preferences. Newborns up to one month of age continue to

track facelike schematic patterns in the periphery, but older infants do not (Johnson et al.

1991). Curiously, in central vision, schematic face preferences are not measurable until

about two months of age (Maurer and Barrera 1981), and they decline by five months of

age (Johnson and Morton 1991). Chapter 8 will show that in each case the decline in re-

sponse to schematic faces can be a natural result of learning real faces.

2.4 Conclusion

Both internal and environmental factors strongly influence the development of the human

visual system. For orientation, which is processed similarly by many species of experimen-

tal animals, these influences have been studied at the neural level. Recent evidence suggests

that, before eye opening, spontaneously generated activity leads to a noisy version of the

orientation map seen in adults. Subsequent normal visual experience increases orientation

selectivity, but does not dramatically change the overall shape of the map. Yet abnormal

experience can have large effects. These experimental results make orientation processing

a well-constrained test case for studying how internal and external sources of activity can

affect development.

Much less is known about the neural basis of face processing, in the adult and es-

pecially in newborns. However, behavioral experiments with human newborns and infants

suggest that there is some capacity for face detection at birth, and that it further develops

postnatally from experience with real faces. Thus the development of face-selective neurons

appears to involve both prenatal and postnatal factors, as for the neurons in the orientation

map. In each case, internally generated neural activity offers a simple explanation for how

the same system could organize before and after birth, learning from patterns of activity.
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Chapter 3

Related work

In the previous chapter I outlined the experimental evidence for how orientation and face

processing develop in infants. Later in the thesis I will use this evidence to build the HLIS-

SOM computational model of visual development. In this chapter, I review other computa-

tional models and theoretical explanations of visual development, and show how they relate

to HLISSOM. I will focus first on models of orientation processing, then on models of face

processing.

3.1 Computational models of orientation maps

As reviewed in the previous chapter, visual system development is a complex process, and

it is difficult to integrate the scattered experimental results into a specific, coherent under-

standing of how the system is constructed. Computational models provide a crucial tool

for such integration. Because each part of a model must be implemented for it to work,

computational models require that often-unstated assumptions be made explicit. The model

can then show what types of structure and behavior follow from those assumptions. In a

sense, computational models are a concrete implementation of a theory: they can be tested

just like animals or humans can, either to validate the theory or to provide predictions for
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future experimental tests.

In this section I will review computational models for how orientation selectivity

and orientation maps can develop. The discussion is roughly chronological, focusing on the

model properties that will be needed for the simulations in this thesis: developing realistic

orientation maps, receptive fields, and patchy lateral connections; self-organizing based on

internally generated activity and/or grayscale natural images, and providing output from the

orientation map suitable as input for a higher area (for the face processing experiments). As

reviewed below, no model has yet brought all these elements together, but many previous

models have had some of these properties.

3.1.1 von der Malsburg’s model

Over the years, computational models have been limited by the computational power avail-

able, but even very early models were able to show how orientation selectivity can develop

computationally (Barrow 1987; Bienenstock, Cooper, and Munro 1982; Linsker 1986a,b,c;

von der Malsburg 1973; see Swindale 1996 and Erwin et al. 1995 for critical reviews). Pi-

oneering studies by von der Malsburg (1973) using a 1MHz UNIVAC first demonstrated

that columns of orientation-selective neurons could develop from unsupervised learning of

oriented bitmap patterns (with each bit on or off). This model already had many of the

features of later ones, such as treating the retina and cortex as two-dimensional arrays of

units, using one unit for each column of neurons, using a number to represent the firing

rate of a unit, using a number to represent the strength of the connection between two neu-

rons, assuming fixed-strength isotropic lateral interactions within V1, and assuming lateral

inhibitory connections have a wider radius than lateral excitatory connections. Figure 3.1

outlines the basic architecture of models of this type.

Like HLISSOM and most other models, the von der Malsburg (1973) model was

based on incremental Hebbian learning, in which connections are strengthened between two

neurons if those neurons are activated at the same time (Hebb 1949). To prevent strengths
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V1

Figure 3.1:General architecture of orientation map models.Models of this type typically have
a two-dimensional bitmap input sheet where an abstract pattern or grayscale image is drawn. The
sheet is usually either a hexagonal or a rectangular grid; a rectangular8 × 8 bitmap grid is shown
here. Instead of a bitmap input, some models provide the orientation andx, y position directly to
input units (Durbin and Mitchison 1990). Others dispense with individual presentations of input
stimuli altogether, abstracting them into functions that describe how they correlate with each other
over time (Miller 1994). Neurons in the V1 sheet have afferent (incoming) connections from neu-
rons in a receptive field on the input sheet. Sample afferent connections are shown as thick lines for
a neuron in the center of the7 × 7 V1 sheet. In some models the RF is the entire input sheet (e.g.
von der Malsburg 1973). In addition to the afferent input, neurons in V1 generally have short-range
excitatory connections to their neighbors (short dotted lines) and long-range inhibitory connections
(long thin lines). Most models save computation time and memory by assuming that the values of
these lateral connections are fixed, isotropic, and the same for every neuron, but specific connections
are needed for many phenomena. Neurons generally compute their activation level as a scalar prod-
uct of their weights and the units in their receptive fields. Sample V1 activation levels are shown in
grayscale for each unit. Weights that are modifiable are updated after an input is presented, using an
unsupervised learning rule. In SOM models, only the most active unit and its neighbors are adapted;
others adapt all active neurons. After many input patterns are presented, the afferent weights for
each neuron become stronger to units lying along one particular line of orientation, and thus become
orientation selective.

from increasing without bound, the total connection strength to a neuron was normalized to

have a constant sum (as in Rochester, Holland, Haibt, and Duda 1956). Given a series of

input patterns, the model self-organized into iso-orientation domains, i.e. patches of neurons

preferring similar orientations. The model also exhibited pinwheels, which had not yet been

discovered in the visual cortex of animals.
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3.1.2 SOM-based models

Because of computational constraints, von der Malsburg’s (1973) model included only a

small number of neurons, all with overlapping RFs, and thus represented only orientation

and not position on the retina. Later work showed how such a topographic map of the retina

could develop, e.g. using a more abstract but computationally efficient architecture called

the Self-Organizing Map (SOM; Kohonen 1982). Durbin and Mitchison (1990) and Ober-

mayer, Ritter, and Schulten (1990) extended the SOM results to the orientation domain,

showing that realistic retinotopic, orientation, and orientation selectivity maps could de-

velop. These SOM orientation maps replicate many of the properties of experimental maps

like the one in figure 2.4, including pinwheels, fractures, and linear zones.

The SOM models are driven by oriented features in their input patterns, using a

different randomly chosen orientation and position at each iteration. Durbin and Mitchison

(1990) provided the orientation and position as numbers directly to the model, while Ober-

mayer et al. (1990) used them to draw a grayscale oriented Gaussian bitmap pattern on a

model retina. Either way, these oriented features can be seen as an abstract representation

of small parts of visual images. Later work discussed below showed how real images could

also be used as input.

3.1.3 Correlation-based learning (CBL) models

Miller (1994) used a different approach to making simulations practical from that used by

SOM. Miller showed that if the visual system is essentially linear, then the sequence of in-

put patterns can be replaced with a simple function representing its long-term correlations.

This approximation speeds up the calculations considerably compared to incremental Heb-

bian learning, and makes theoretical analysis much simpler. Miller’s approach is sometimes

called correlation-based learning (CBL; Erwin et al. 1995), but that term is confusing be-

cause most other models are also driven by some type of correlations.

Unlike most previous models, Miller’s included the ON and OFF cell layers for the
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LGN; he assumed that they would compete for total synaptic strength to each neuron in V1.

With this framework, he found that multi-lobed receptive fields like those in figure 2.2c-

d can develop, and that the neurons form orientation maps with pinwheels and fractures.

However, the orientation maps lack several key features seen in animal maps, including

linear zones and periodically repeating blobs of iso-orientation patches (Erwin et al. 1995;

Swindale 1996). The final RFs are also nearly binary in strength, with sharp edges between

ON and OFF subregions; animal RFs instead have smooth edges and transitions (Jones

and Palmer 1987). Thus the more realistic incremental Hebbian approaches appear to be

required, even though these are more difficult to simulate and analyze.

3.1.4 RF-LISSOM

Although SOM models have been more successful than CBL models at reproducing the

animal orientation maps, they too do not explain how the patchy lateral connections de-

velop along with the orientation map. Instead SOM uses a fixed “neighborhood function”

to represent lateral interactions, which requires much less computation time and memory

than storing specific, plastic connections. However, several authors have recently proposed

that prenatally organized lateral connections drive the development of the orientation map

(e.g. Adorj́an, Levitt, Lund, and Obermayer 1999; Bartsch and van Hemmen 2001; Ernst,

Pawelzik, Sahar-Pikielny, and Tsodyks 2001; Shouval, Goldberg, Jones, Beckerman, and

Cooper 2000). Thus a complete account of orientation map development needs to include

an explanation for how the patchy lateral connections develop prenatally.

The first cortical map model to include patchy lateral connections was RF-LISSOM

(the Receptive-Field Laterally Interconnected Synergetically Self-Organizing Map; Miik-

kulainen, Bednar, Choe, and Sirosh 1997; Sirosh 1995; Sirosh and Miikkulainen 1994,

1997; Sirosh, Miikkulainen, and Bednar 1996). RF-LISSOM was based on the von der

Malsburg (1973) and SOM models. In part thanks to advances in supercomputing hard-

ware, many of the approximations from the earlier models were no longer necessary in
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RF-LISSOM. Like SOM, RF-LISSOM produced orientation maps with the qualitative fea-

tures found in animal maps. At the same time, it showed how patchy connections like those

in figure 2.5 could develop, preferentially targeting neurons of similar orientation and ex-

tending along the axis of the neuron’s preferred orientation. In this model, afferent and

lateral connections develop synergetically through incremental Hebbian learning. Simula-

tions of adult visual performance have demonstrated that the specific lateral connections

allow the network to better suppress redundancy in the visual input (Sirosh 1995), and have

shown that adapting lateral connections can explain orientation-specific visual artifacts and

may underlie perceptual grouping abilities (Bednar and Miikkulainen 2000b; Choe 2001;

Choe and Miikkulainen 2000b). The HLISSOM model introduced in the next chapter is

based on RF-LISSOM, but extended to work with natural images as described below.

3.1.5 Models based on natural images

Like the SOM models before it, the RF-LISSOM orientation map develops only single-

lobed RFs, because it does not include models of the ON and OFF cell layers of the LGN. In

addition to being less realistic, chapter 4 (figure 4.9) will show that this limitation prevents

RF-LISSOM from being used with natural images. Natural images will be crucial in later

chapters for testing how visual inputs interact with the prenatally organized orientation map,

as well as for testing face perception. To make such tests possible, HLISSOM will include

models for the ON and OFF cells.

Using ON and OFF cells or filtering that approximates them, a number of previous

models have shown how orientation selectivity can develop from natural images, without

studying how they can organize into an orientation map (Barrow 1987; Barrow and Bray

1992; Blais, Shouval, and Cooper 1999; Einhauser, Kayser, Konig, and Kording 2002; Lee,

Blais, Shouval, and Cooper 2000; Olshausen and Field 1996). A few models have also

shown how orientation maps can develop from natural images (Barrow and Bray 1993;

Burger and Lang 1999; Hyvärinen and Hoyer 2001; Shouval, Intrator, and Cooper 1997;
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Weber 2001). The performance of these networks on individual natural images has not

yet been reported, so it is not known whether their output would be suitable as input for a

higher cortical level (as will be shown for HLISSOM in chapter 7). For instance, I expect

that most models will respond only to the highest-contrast contours in an image, such as

face outlines, while having no response to lower-contrast areas like the internal features of

the face.

3.1.6 Models with lateral connections

Several models with modifiable lateral connections have also been introduced very recently,

developed concurrently with HLISSOM but after RF-LISSOM (Alexander, Bourke, Sheri-

dan, Konstandatos, and Wright 1999; Bartsch and van Hemmen 2001; Bray and Barrow

1996; Burger and Lang 1999; Weber 2001). Of these, the Alexander et al. (1999) and

Burger and Lang (1999) models develop patchy long-range lateral connections, but the rest

do not. As mentioned earlier, explaining how such connections develop is a crucial part of

explaining the prenatal development of the orientation map. The Alexander et al. (1999)

model relies on abstract binary input patterns like those in von der Malsburg (1973), and it

is not clear how to extend it to support grayscale and natural image inputs, or to develop

multi-lobed receptive fields. Thus apart from Burger and Lang (1999), which will be dis-

cussed below, these other laterally connected models are not appropriate platforms for the

phenomena to be studied in this thesis.

3.1.7 The Burger and Lang model

Like HLISSOM, the Burger and Lang (1999) model includes ON and OFF cells and lateral

connections, and can organize maps using natural images and random noise. Despite having

been developed independently, the model is very similar to the first few visual processing

stages of HLISSOM (specifically, the photoreceptors, LGN, and V1). Chapter 6 will show

that HLISSOM can also develop orientation maps based on random noise, but that more
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realistic maps develop from structured noise, like retinal waves. Mathematically, the only

significant difference between their model and HLISSOM is in the activation function. The

Burger and Lang model uses a linear activation function (sum of all inputs), whereas HLIS-

SOM’s activation function is nonlinear, and also iteratively incorporates lateral influences.

The nonlinearity ensures that neurons remain orientation-selective over a wide range of

contrasts. Such contrast-invariance is crucial when using the model as input to another cor-

tical sheet, because different regions of large natural images have very different contrasts.

Although the Burger and Lang model also uses a different method for normalizing the af-

ferent weights from that used in HLISSOM (and RF-LISSOM), either of these methods

should have similar results. Thus if extended with an activation function that will work

with large natural images, the Burger and Lang model could be used for orientation map

simulations similar to those in this thesis. Previous orientation map models would need

significant extensions or modifications.

3.1.8 Models combining spontaneous activity and natural images

In part for the reasons discussed above, none of the map models have yet demonstrated

how the orientation map can smoothly integrate information from internally generated pat-

terns and from the environment. A number of the models have simulated spontaneously

generated activity (e.g. Burger and Lang 1999; Linsker 1986a,b,c; Miller 1994), and a few

models have shown self-organization based on natural images (section 3.1.5). Yet to my

knowledge, the only orientation map model to be tested on a prenatal phase with sponta-

neous patterns, followed by a postnatal phase, is Burger and Lang (1999). They found that if

a map organized based on uniformly random noise was then trained on natural images (ac-

tually, patches from a single natural image), the initial structure was soon overwritten. As

described in chapter 2, this is a curious result because animal maps instead appear to keep

the same overall structure during postnatal development. Chapter 6 will show orientation

maps learned from internally generated activity that has spatial structure, like the retinal
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Figure 3.2:Proposed model for spontaneous activity.Chapter 6 will show that orientation maps
like the neonatal cat map in figure 2.6 can develop from internally generated activity like that shown
above, which is modeled after retinal waves (figure 1.1). Unlike the purely random noise used in
previous models of spontaneous activity, this pattern contains blobs of activity with oriented edges.
The oriented edges are the crucial feature that will drive the development of realistic orientation
maps. As long as these blobs are large (relative to a V1 receptive field size), their shape and size are
not crucial for the model, nor is the background noise. HLISSOM will learn initial orientation maps
based on this type of activity, and then natural images will gradually change the prenatally organized
map structure. This process will explain how orientation maps can develop both prenatally and
postnatally.

waves do. An example is illustrated in figure 3.2. After learning an orientation map from

such activity, postnatal experience will smoothly and locally change the map to be a better

match to the statistics of the natural environment, without changing the overall structure

of the map. This way HLISSOM will show how both the spontaneous activity and natural

images can interact to construct realistic orientation maps, an important finding that has not

been explained by previous models.

3.2 Computational models of face processing

The models discussed so far have simulated visual processing only up to V1, and therefore

did not include any of the higher cortical areas that are thought to underlie face processing

abilities. A number of models do simulate face processing, but each of these either by-

passes the circuitry up to V1, or treats it as a fixed set of predefined filters (as reviewed in

Valentin, Abdi, O’Toole, and Cottrell 1994). There are also many similar systems that are

35



not intended as biological models, but are instead focused on specific engineering applica-

tions such as face detection or face recognition (e.g. Rao and Ballard 1995; Rowley, Baluja,

and Kanade 1998; Viola and Jones 2001; for review see Yang, Kriegman, and Ahuja 2002,

and Phillips, Wechsler, Huang, and Rauss 1998). Given the output of the filtering stage,

both the biological models and the engineering systems show how face-selective neurons

or responses can develop from training with real images (e.g. Acerra, Burnod, and de Scho-

nen 2002; Bartlett and Sejnowski 1997, 1998; Dailey and Cottrell 1999; Gray, Lawrence,

Golomb, and Sejnowski 1995; Wallis 1994; Wallis and Rolls 1997). HLISSOM will also

show how face-selective neurons can develop, but is the first model to use a self-organized

V1 as the input stage, and moreover to use the same algorithm to model processing in V1

and a higher face processing area. HLISSOM thus represents a unification of these higher-

level models with the V1 models discussed earlier.

Of the biological models, the Dailey and Cottrell (1999) and Acerra et al. (2002)

models are relevant to the work presented in this thesis. Acerra et al. (2002) is the only

model that simulates newborn face preferences, and it will be discussed in section 3.3

below. Although Dailey and Cottrell (1999) does not specifically address newborn face

preferences, it focuses on genetic aspects of face detection, and it forms the basis for the

remainder of this section.

Dailey and Cottrell (1999) show in an abstract model how specific face-selective

regions can arise without genetically specifying the weights of each neuron. As reviewed

in chapter 2, some of the higher visual areas of the adult human visual system respond

more to faces than objects. Others have the opposite property. Moreover, some of the

face-selective areas have been shown to occupy the same region of the brain in different

individuals (Kanwisher et al. 1997). This consistency suggests that those areas might be

genetically specified for face processing.

To show that such explicit prespecification is not necessary, Dailey and Cottrell

(1999) set up a pair of supervised networks that compete with each other to identify faces
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and to classify objects into categories. They provided one of the networks with real im-

ages filtered to preserve low–spatial-frequency information (i.e., slow changes in brightness

across a scene), and another with the images filtered to preserve high–spatial-frequency in-

formation. These differences correspond to connecting each network to a subset of the

neurons in V1, each with different preferred spatial frequencies. They found that the

low-frequency network consistently developed face-selective responses, while the high-

frequency network developed object-selective responses. Thus they concluded that different

areas may specialize for different tasks based on very simple, general differences in their

connectivity, and that specific configuration of individual neurons need not be specified

genetically to respond to faces.

Like the Dailey and Cottrell (1999) model, HLISSOM is based on the assumption

that cortical neurons are not specifically prewired for face perception. However, to make de-

tailed simulations practical, HLISSOM will model only a single higher level region, one that

has sufficient spatial frequency information available to develop face selective responses.

Other regions not modeled presumably develop similarly, but become selective for objects

or other image features instead.

3.3 Models of newborn face processing

The computational models discussed above did not specifically explain why a newborn

would show face-selective behavioral responses, as was reviewed in chapter 2. With the

exception of Acerra et al. (2002), models of newborn face preferences have all been con-

ceptual, not computational. I will review these models below, and show how they compare

to the HLISSOM model.

There are four main previous explanations for how a newborn can show an initial

face preference and later develop full face-processing abilities. (1) TheLinear systems

model(LSM) acts as a minimal baseline against which other theories can be compared.

The LSM posits that newborn preferences (including those for faces) result solely from
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the spatial frequencies in an image, filtered by the measured sensitivity of the newborn

to each frequency. These sensitivities result from general, genetically determined aspects

of the visual system, such as the poor optics of the newborn eye, the sampling density of

the retinal ganglion cells, etc. The LSM does not explicitly state how adults develop face

processing abilities, but the assumption is that those abilities are learned from postnatal

experience with real faces. (2)Sensory modelsare generalizations of the LSM, stating that

the spatial frequency response plus other general features of the sensory apparatus together

account for newborn face preferences, still without face-specific circuitry present at birth.

There are two main models in this class, the Acerra et al. (2002) computational model and

theTop-heavyconceptual model, which I will discuss separately. (3) theHaptichypothesis

posits that newborn face preferences result from the LSM plus prenatal experience with

the embryo’s own face, either through somatosensory information from the hands resting

upon it, or by direct proprioception of facial muscles. (4)Multiple systems modelspropose

that there is a hardwired face-specific visual processing system present at birth, and that

this system is later replaced or augmented by a separate, plastic system that operates into

adulthood. These four hypotheses will be reviewed below, and a simpler, more effective

alternative will be proposed: that only a single, general-purpose visual processing system is

necessary if that system is exposed tointernally generated patterns, such as those in REM

sleep.

3.3.1 Linear systems model

The Linear Systems Model (Banks and Salapatek 1981; Kleiner 1993) is a straightforward

and effective way of explaining a wide variety of newborn pattern preferences, and can eas-

ily be implemented as a computational model. It is based solely on the newborn’s measured

contrast sensitivity function (CSF). For a given spatial frequency, the value of the CSF will

be high if the early visual pathways respond strongly to that that size of pattern, and lower

otherwise. The newborn CSF is limited by the immature state of the eye and the early visual
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pathways, and thus lower frequencies are more visible than fine detail.

The assumption of the LSM is that newborns simply pay attention to those patterns

that when convolved with the CSF give the largest response. Low-contrast patterns and

patterns with only very fine detail are only faintly visible, if at all, to newborns (Banks

and Salapatek 1981). Faces might be preferred simply because they have strong spatial-

frequency components in the ranges that are most visible to newborns.

However, studies have found that the LSM fails to account for the responses to

face-like stimuli. For instance, some of the face-like patterns preferred by newborns have a

lower amplitude spectrum in the visible range (and thus lower expected LSM response) than

patterns that are less preferred (Johnson and Morton 1991). The LSM also predicts that the

newborn will respond equally well to a schematic face regardless of its orientation, because

the orientation does not affect the spatial frequency or the contrast. Instead, newborns prefer

schematic face-like stimuli oriented right-side-up. Such a preference is found even when

the inverted stimulus is a better match to the CSF (Valenza et al. 1996). Thus the CSF alone

does not explain face preferences, and a more complicated model is required.

3.3.2 Acerra et al. sensory model

The LSM is only a high-level abstraction of the properties of the early visual system. In

particular, it does not take into account that neurons have finite RFs, i.e. that neurons re-

spond to limited portions of the visual field. Incorporating such general limitations, Acerra

et al. (2002) recently developed a sensory computational model of processing in V1 that

can account for some of the face preferences found in the Valenza et al. (1996) study. Their

model consists of a fixed filter-based model of V1 (like that of Dailey and Cottrell 1999),

plus a higher level sheet of neurons with modifiable connections. They model two condi-

tions separately: newborn face preferences, and postnatal development by 4 months. The

newborn model includes only V1, because they assume that the higher level sheet is not yet

functional at birth.
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Acerra et al. showed that the newborn model responds slightly more strongly to

the upright schematic face pattern used by Valenza et al. (1996) than to the inverted one,

because of differences in the responses of a subset of the V1 neurons. This surprising

result replicates the newborn face preferences from Valenza et al. The difference in model

responses is because Valenza et al. actually inverted only the internal facial features, not the

entire pattern. In the upright case, the spacing is more regular between the internal features

and the face outline (compare figure 7.5d with 7.5g, row Retina, on page 105). As can

be inferred from the RF shape in figure 2.2d, making the spacing more regular between

alternating white and black blobs will increase the response of a neuron whose RF lobes

match the blob size. Because of this better match with a subset of V1 neurons, the V1

response was slightly larger overall to the facelike (upright) pattern than to the non-facelike

(inverted) pattern.

However, the Acerra et al. model was not tested with patterns from other studies

of newborn face preferences, such as Johnson et al. (1991). The facelike stimuli published

in Johnson et al. (1991) do not have a regular spacing between the internal features and

the outline, and so I do not expect that the Acerra et al. model will replicate preferences

for these patterns. Moreover, Johnson et al. used a white paddle against a light-colored

ceiling, and their face outlines would have a much lower contrast than the black-background

patterns used in Valenza et al. (1996). Thus although border effects may contribute to the

face preferences found by Valenza et al., they are unlikely to be explain those measured by

Johnson et al.

The Acerra et al. newborn model also does not explain newborn learning of faces,

because their V1 model is fixed and the higher level area is assumed not to be functional at

birth. Most importantly, the Acerra et al. newborn model was not tested with real images

of faces, where the spacing of the internal features from the face outline varies widely

depending on the way the hair falls. Because of these differences, I do not expect that the

Acerra et al. model will show a significantly higher response overall to photographs of real
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faces than to other similar images. The HLISSOM model will make the opposite prediction,

and will also explain how newborns can learn faces.

To explain learning of real faces in older infants, the Acerra et al. model relies on

having face images be strictly aligned on the input, having nothing but faces presented

to the model (no objects, bodies, or backgrounds), and on having the eyes in each face

artificially boosted by a factor of 10 or 100 relative to the rest of the image. Because of

these unrealistic assumptions, it is difficult to evaluate the validity of their postnatal learning

model. In contrast, the HLISSOM model learns from faces presented at random locations

on the retina, against natural image backgrounds, intermixed with images of other objects,

and without special emphasis for faces relative to the other objects.

3.3.3 Top-heavy sensory model

Simion et al. (2001) have also presented a sensory model of newborn preferences; it is

a conceptual model only. They observed that nearly all of the face-like schematic patterns

that have been tested with newborns are “top-heavy,” i.e. they have a boundary that contains

denser patterns in the upper than the lower half. Simion et al. (2001) also ran behavioral

experiments showing that newborns prefer several top-heavy (but not facelike) schematic

patterns to similar but inverted patterns. Based on these results, they proposed that newborns

prefer top-heavy patterns in general, and thus prefer facelike schematic patterns as a special

case.

This hypothesis is compatible with most of the experimental data so far collected in

newborns. However, face-like patterns have not yet been compared directly with other top-

heavy patterns in newborn studies. Thus it is not yet known whether newborns would prefer

a facelike pattern to a similarly top-heavy but not facelike pattern. Future experimental tests

with newborns can resolve this issue.

To be tested computationally, the top-heavy hypothesis would need to be made more

explicit, with a specific mechanism for locating object boundaries and the relative locations
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of patterns with them. I expect that such a test would find only a small preference (if any)

for photographs of real faces, compared to many other common stimuli. For faces with

beards, wide smiles, or wide-open mouths, many control patterns would be preferred over

the face image, because such face images will no longer be top-heavy. Because the bulk of

the current evidence suggests that instead the newborn preferences are more selective for

faces, most of the HLISSOM simulations will use training patterns that result in strongly

face-selective responses. Section 7.3.3 will show results from patterns with lower levels of

face specificity, which would be more comparable to the top-heavy model.

3.3.4 Haptic hypothesis

Bushnell (1998) proposed an explanation very different from that of the sensory models: a

newborn may recognize face-like stimuli as a result of prenatal experience with its own face,

via manual exploration of its facial features. Some support for this position comes from

findings that newborn and infant monkeys respond as strong or more strongly to pictures

of infant monkeys as to adults (Rodman 1994; Sackett 1966). However, the process by

which a newborn could make such specific connections between somatosensory and visual

stimulation, prior to visual experience, is not clear.

Moreover, the haptic explanation does not account for several aspects of newborn

face preferences. For instance, premature babies seem to develop face preferences at the

same post-conception age regardless of the age at which they were born (Ferrari, Manzotti,

Nalin, Benatti, Cavallo, Torricelli, and Cavazzutti 1986). Presumably, the patterns of hand

and arm movements would differ between the intrauterine and external environments, and

thus the haptic hypothesis would predict that gestation time should have been an important

factor. Several authors have also pointed out strong similarities between newborn face pref-

erences and imprinting in newly hatched chicks; chicks, of course, do not have hands with

which to explore, yet develop a specific preference for stimuli that resemble a (chicken’s)

head and neck (Bolhuis 1999; Horn 1985). Some of these objections are overcome in a
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variant of the haptic hypothesis by Meltzoff and Moore (1993), who propose that direct

proprioception of the infant’s own facial muscles is responsible.

However, both variants fail to account for data that suggest the newborns’ pref-

erences are specifically visual. For instance, newborns respond as well to patterns with

a single blob in the nose and mouth area as to separate patterns for the nose and mouth

(Johnson et al. 1991). This finding is easy to explain for visual images: in a blurred top-lit

visual image, shadows under the nose blend together with the mouth into a single region.

But the nose and mouth have opposite convexity, so it is difficult to see how they could

be considered a single region for touch stimulation or proprioception. Similarly, newborn

preferences have so far only been found for faces viewed from the front, and it is not clear

why manual exploration or proprioception would tend to favor that view in particular. Thus

this thesis will assume that newborn face preferences are essentially visual.

3.3.5 Multiple-systems models

The most widely known conceptual model for newborn face preferences and later learning

was proposed by Johnson and Morton (1991). Apart from tests in the HLISSOM model, it

has not yet been evaluated computationally. Johnson and Morton suggested that infant face

preferences are mediated by two hypothetical systems that they dubbed CONSPEC and

CONLERN. CONSPEC is a hardwired face-processing system, assumed to be located in

the subcortical superior-colliculus–pulvinar pathway. Johnson and Morton proposed that a

CONSPEC responding to three blobs in a triangular configuration, one each for the eyes

and one for the nose/mouth region, would account for the newborn face preferences (for

examples see figure 7.3a, page 101 and theRetina row of 7.4c, page 104). CONLERN is a

separate plastic cortical system, presumably the face-processing areas that have been found

in adults. The CONLERN system would assume control only after about 6 weeks of age,

and would account for the face preferences seen in older infants. Finally, as it learns from

real faces, CONLERN would gradually stop responding to static schematic faces, which
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would explain why face preferences can no longer be measured with schematic patterns

(unless their features are moving realistically) by five months (Johnson and Morton 1991).

The CONSPEC/CONLERN model is plausible, given that the superior colliculus

is fairly mature in newborn monkeys and does seem to be controlling attention and other

functions, although no face selectivity has yet been found experimentally in that pathway

in young animals (Wallace, McHaffie, and Stein 1997). The model also helps explain why

infants after month of age show a reduced interest in faces in the periphery, which could

occur as attentional control shifts to the not-quite-mature cortical system (Johnson et al.

1991; Johnson and Morton 1991).

However, subsequent studies showed that even newborns are capable of learning

individual faces (Slater 1993; Slater and Kirby 1998). Thus if there are two systems, either

both are plastic or both are functioning at birth, and thus there is noa priori reason why a

single face-selective system would be insufficient. On the other hand, de Schonen, Mancini,

and Leigeois (1998) argue forthreesystems: a subcortical one responsible for facial feature

preferences at birth, another one responsible for newborn learning (of objects and head/hair

outlines; Slater 1993), and a cortical system responsible for older infant and adult learning

of facial features. And Simion, Valenza, and Umiltà (1998a) proposed that face selectivity

instead relies on multiple systemswithin the cortex, maturing first in the dorsal stream but

later supplanted by the ventral stream (which is where most of the face-selective regions

have been found in adult humans).

In contrast to the increasing complexity of these explanations, I propose that a single

general-purpose plastic visual processing system is sufficient, if that system is first exposed

to internally generated face-like patterns of neural activity. As reviewed in section 2.2.2,

PGO activity waves during REM sleep represent a likely candidate for such activity pat-

terns. This thesis predicts that if the PGO activity patterns have the simple configuration il-

lustrated in figure 3.3 (or similar patterns), they can account for the measured face-detection

performance of human newborns. These three-dot training patterns are similar to the hard-
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Figure 3.3:Proposed face training pattern. Based on the experiments of Johnson and Morton
(1991), a training pattern consisting of two blobs of activity above a third might account for the
newborn face preferences. This configuration will be used for most face processing experiments in
this thesis; figure 7.9 will test other possible patterns.

wired preferences proposed by Johnson and Morton (1991). However, instead of templates

implemented in a hard-wired subcortical face-detecting region, in the HLISSOM model

they are simply training patterns for a general-purpose cortical system, the same system

that later develops adult face perception abilities through training with real faces (as de-

scribed in chapter 8). In some sense HLISSOM is also a multiple systems model, like

CONSPEC/CONLERN, but HLISSOM shows how the genetically specified components

can be separated from the visual processing hardware. The specification for the patterns

can then evolve separately from the actual visual hardware, which allows the genetic infor-

mation to be expressed within a large, complex adaptive system. Moreover, the resulting

single learning system is plastic throughout, and can thus explain how infants at all ages

can learn faces.

3.4 Conclusion

Previous orientation map models have not yet shown how the prenatal and postnatal phases

of orientation map development can be integrated smoothly, as appears to happen in ani-

mals. They have also not shown how a self-organized V1 network can extract orientations

from natural images in a form that can be used by a higher level network, as V1 does in ani-
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mals. The HLISSOM model will overcome these limitations to show how Hebbian learning

can account for orientation maps at birth and their postnatal development.

Previous face processing models have not yet shown how newborns could have a

significant preference for real faces at birth, or how newborns could learn from real faces.

They have also not accounted for the full range of patterns with which newborns have been

tested. Using the self-organized orientation map, the HLISSOM model of face detection

will show how face-selective neurons can develop through spontaneous activity, explaining

face preferences at birth and later face learning. As will be shown in later chapters, the over-

all method represents a new approach to designing complex adaptive systems, combining

the strengths of evolution and learning.
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Chapter 4

The HLISSOM model

This thesis presents a series of simulations with HLISSOM (Hierarchical LISSOM; Bed-

nar and Miikkulainen 2001). HLISSOM is a biologically motivated model of the human

visual pathways, focusing on development at the cortical level. It is based on RF-LISSOM

(section 3.1.4), extended to handle real images (such as human faces), multiple sources of

input activity (from the eyes and brainstem), and multiple levels of cortical processing (V1

and a face selective area). HLISSOM is the first model to bring all of these components and

capabilities together, which makes it possible to make detailed predictions and comparisons

with experimental data. This chapter describes the HLISSOM architecture and learning al-

gorithm in detail. To make the model concrete and to relate it to previous work, I will also

present results from a basic simulation of orientation map development.

4.1 Architecture

I will first give an overview of the model at a high level, then describe the initial state of

the network, before learning. Later sections will show how the response to input patterns is

computed, how the activity patterns change the components of the model, and how orienta-

tion maps can arise through self-organization.
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4.1.1 Overview

As reviewed in chapter 2, HLISSOM consists of the key areas of the visual system that

are necessary to model how orientation and face processing develop. The architecture is

illustrated in figure 4.1. The model is a hierarchy of two-dimensional sheets of neural units

representing different brain regions: two sheets of input units (the retinal photoreceptors

and the PGO generator), two sheets of LGN units (ON-center and OFF-center), and two

sheets of cortical units: the primary visual cortex (V1), and a higher level area here called

the face-selective area (FSA) and explained below. This overall division into brain regions

is assumed to be specified genetically, as is thought to be the case in animals and humans

(Miyashita-Lin et al. 1999; Rakic 1988).

Within the LGN and the cortical sheets, units receive afferent connections from

broad overlapping circular patches of units (i.e., RFs) in the previous sheets in the hierarchy.

Units in the cortical sheets also have reciprocal connections to units within the same sheet,

modeling lateral interactions between neurons. The strengths of these afferent and lateral

connections in the model cortex are set by unsupervised learning.

The learning process is driven by input patterns drawn on the input sheets, either

the photoreceptors or PGO generator. Both input sheets are represented by an array of

numerical values, as in a grayscale bitmap image. Unfortunately, the PGO pathway has

not yet been mapped in detail in animals, but the activity that results from the PGO waves

appears to be similar to that from visual input (Marks et al. 1995). Thus for simplicity the

PGO pathway is modeled with an area like the photoreceptor sheet, connecting to the LGN

in the same way.

Activity on the input sheets propagates successively to the higher levels, each of

which transforms the activity pattern into a more biologically relevant representation. The

ON and OFF layers of the LGN are arrays of units with fixed RFs that filter out large,

uniformly bright or dark areas, leaving only edges and lines. The cortical sheets, in V1 and

the FSA, consist of initially unselective units that become selective through learning. Each

48



Photoreceptors generator
PGO pattern

OFF−cells

Face−selective area (FSA)

LGN

ON−cells

V1

Figure 4.1:Architecture of the HLISSOM model. Each sheet of units in the model visual path-
way is shown with a sample activation pattern and the connections to one example unit. Grayscale
visual inputs are presented on the photoreceptors, and the resulting activity propagates through affer-
ent connections to each of the higher levels. Internally generated PGO input propagates similarly to
visual input. Activity is generated either in the PGO area or the photoreceptors, but not both at once.
In the cortical levels (V1 and FSA), activity is focused by lateral connections, which are initially
excitatory between nearby neurons (dotted circles) and inhibitory between more distant neurons
(dashed circles). The final patterns of lateral and afferent connections in the cortical areas develop
through an unsupervised self-organizing process. After self-organization is complete, each stage in
the hierarchy represents a different level of abstraction. The LGN responds best to edges and lines,
suppressing areas with no information. The V1 response is further selective for the orientation of
each contour; the response is patchy because neurons preferring other orientations do not respond.
The FSA represents the highest level of abstraction — an FSA neuron responds when there is a high
probability of a face being at the corresponding location on the retina.
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unit in V1 or the FSA corresponds to a vertical column of cells through the six anatomical

layers of that area of the cortex (as described in section 2.1.1). As in most models, these

units will be called “neurons” even though they strictly correspond to groups of neurons

in the cortex. Through self-organization, neurons in V1 become selective for particular

orientations of the edges and lines in the LGN activity.

The FSA represents the first region in the ventral processing pathway above V1 that

has receptive fields spanning approximately 45◦ of visual arc, i.e. large enough to span a

human face at close range. Areas V4v and LO are likely FSA candidates based on adult

patterns of connectivity, but the infant connectivity patterns are not known (Rolls 1990;

Rodman 1994; Kanwisher et al. 1997; Haxby et al. 1994). The generic term “face-selective

area” is used rather than V4v or LO to emphasize that the model results do not depend on

the region’s precise location or architecture, only on the fact that the region has receptive

fields large enough to allow face-selective responses. Through self-organization, neurons

in the FSA become selective for patterns similar to faces, and do not respond to most other

objects and scenes.

The following subsections describe the specific components of the HLISSOM model

in more detail.

4.1.2 Connections to the LGN

Previous models have explained how the connections from the retina to the LGN could

develop from internally generated activity in the retina (Eglen 1997; Haith 1998; Keesing,

Stork, and Shatz 1992). HLISSOM instead focuses on learning at the cortical level, so all

connections to neurons in the ON and OFF channels of the LGN are set to fixed strengths.

The strengths were chosen to approximate the receptive fields that have been mea-

sured in adult LGN cells, using a standard Difference-of-Gaussians model (Rodieck 1965;

see also Cai, DeAngelis, and Freeman 1997; Tavazoie and Reid 2000). First, the center

of each LGN receptive field is mapped to the location in the input sheet corresponding to
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Figure 4.2:ON and OFF cell RFs. The ON and OFF cells in HLISSOM are each modeled as a
Difference of two Gaussians (DoG), the center and the surround. The Gaussians are normalized to
have the same total strength, but the center Gaussian concentrates that strength in a much smaller
region. ON cells have an excitatory center and an inhibitory surround (a), and OFF cells have an
inhibitory center and an excitatory surround (b). These RFs perform edge detection at a spatial
frequency determined by the center width; they highlight areas of the input image that have edges
and lines, and do not respond to large areas of constant illumination.

the location of the LGN unit. This mapping ensures that the LGN will have the same two-

dimensional topographic organization as the retina. Using the location of each center, the

receptor weights are then calculated from the difference of two normalized Gaussians with

widthsσc (center) andσs (surround). More precisely, for ON-center cell(a, b) with center

(xo, yo), the weightµab,xy from each receptor(x, y) in the receptive field is given by the

difference of two normalized Gaussians:

µab,xy =
exp(− (x−xo)2−(y−yo)2

σ2
c

)

Σxy[exp(− (x−xo)2−(y−yo)2

σ2
c

)]
−

exp(− (x−xo)2−(y−yo)2

σ2
s

)

Σxy[exp(− (x−xo)2−(y−yo)2

σ2
s

)]
(4.1)

whereσc determines the width of the central Gaussian andσs determines the width of

the surround Gaussian. The weights for an OFF-center cell are the negative of the ON-

center weights; i.e., they are the surround minus the center instead of the center minus the

surround. Figure 4.2 shows examples of these ON and OFF receptive fields.

Note that even though the OFF cells have the same weights as ON cells (differ-

ing only by the sign), their activity will not be redundant. Each cell will be thresholded

to have only positive activations, so ON and OFF cells will never be active at the same

51



cortical location. This thresholding is described in more detail below, and models the fact

that firing rates in biological systems cannot be negative. The result is that OFF and OFF

channels provide complementary information, both in the model and in the visual system.

Separating the ON and OFF channels in this way makes it simpler to compare the model to

experimental results.

4.1.3 Initial connections in the cortex

In contrast to the fixed connection weights in the LGN, all connections in cortical regions

in HLISSOM are modifiable by neural activity. The connections are initially unselective,

either Gaussian or random. As will be shown in chapter 5, the specific initial values of these

weights have little effect on subsequent self-organization. To maintain consistency with

previous publications, the simulations in this thesis generally use random afferent weights

and Gaussian lateral weights. Random lateral weights can be used instead, as long as their

radial extent is about the same as the extent of the Gaussians.

Lateral excitatory connections are short range, connecting each neuron with itself

and its close neighbors in a circular radius. Lateral inhibitory connections extend in a

larger radius, and also include connections to the neuron itself and to its neighbors. This

overall center-surround pattern is crucial for self-organization, and approximates the lateral

interactions present at high contrasts (section 2.1.1; Sirosh 1995). Long-range excitatory

connections can also be included when simulating perceptual grouping and completion phe-

nomena (Choe 2001; Choe and Miikkulainen 2000a, 2002, 1997, 1998, 1996). Figure 4.3

shows examples of the initial weight patterns for one V1 neuron in HLISSOM.

4.2 Activation

Self-organization of the connection weights is driven by a series of input iterations, usu-

ally 5,000–20,000. Each iteration consists of presenting an input image, computing the

corresponding activation patterns in each sheet, and modifying the weights. Before each
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(a) V1 Afferent RF (b) V1 Excitatory (c) V1 Inhibitory

Figure 4.3:Initial RFs and lateral weights (color figure). These plots show the weights for one
V1 neuron before self-organization. Each set of weights is outlined in white, and is plotted on the
neural region to which the weights connect. This particular neuron is located at 28 units from the top
and 28 units from the left of a142 × 142 V1 that will later be used as an orientation map example.
The initial afferent RFs (a) were random. The weights are plotted on the LGN ON cell sheet, with
each weight shown as a brightness level from black to white. The weights to the ON and OFF LGN
sheets were initially identical, so only the ON weights are shown. Plots (b) and (c) show the lateral
excitatory weights of this neuron, plotted on V1. The brightness of each neuron in the plot indicates
the strength of the connection to that neuron, from black to white. The connections were initially
Gaussian here, but can also be random or any other roughly isotropic distribution. The color of each
neuron within the lateral connection outlines represents the orientation preference of that neuron,
according to the color key along the top. The strength of the color (its saturation) represents the
degree of orientation selectivity. Because these random RFs have low selectivity for any particular
orientation, the neurons appear nearly white. Later figures will show that selectivity and patchy
connectivity will develop through self-organization.

input presentation, the activities of all units are initialized to zero, and a grayscale pattern

is drawn on the input sheet. The activation of each area is then computed in turn.

Figure 4.4a shows an example input pattern consisting of oriented Gaussians, like

those used in the RF-LISSOM and SOM models of orientation map development (Bednar

1997; Bednar and Miikkulainen 2000b; Obermayer, Ritter, and Schulten 1990; Sirosh 1995;

Sirosh, Miikkulainen, and Bednar 1996). To generate such input patterns, the activityξ for

every retinal ganglion cell(x, y) is calculated according to the equation

ξxy = exp( −((x− xi)cos(θ)− (y − yi)sin(θ))2

a2
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(a) Input
pattern

(b) LGN
response

(c) 0: V1
afferent
response

(d) 0: V1
settled response

(e) 10,000: V1
afferent
response

(f ) 10,000: V1
settled response

Figure 4.4:Training pattern activation example. At each self-organization iteration in HLIS-
SOM, input patterns are drawn on the photoreceptor layer. For this example, multiple oriented
Gaussians were drawn with random orientations and at random spatially separated locations on a
54 × 54 array of receptors (a). The36 × 36 ON and OFF cell responses are plotted in (b) by sub-
tracting the OFF cell responses from the ON. The LGN responds to edges and lines in the input, with
high ON cell activations (white inb) where the input is brighter than the surround, and high OFF
cell activations (black inb) where the input is darker than the surround. Before self-organization
(i.e., iteration 0), the142 × 142 V1 map responds broadly and unspecifically to the input patterns
(c). The lateral connections focus the response into discrete activity “bubbles”d, and connections
are then modified. After 10,000 input presentations and learning steps, the V1 response is focused
and patchy, extending along the orientation of the stimulus (e-f ). As will be clear in later figures,
the response is patchy because neurons that prefer similar positions but different orientations do not
respond.

−((x− xi)sin(θ) + (y − yi)cos(θ))2

b2
) (4.2)

wherea2 andb2 specify the length along the major and minor axes of the Gaussian,(xi, yi)

specifies its center, andθ its orientation. At each iteration, thex andy coordinates of the

centers are each chosen randomly within the retinal area, and the orientationθ is chosen

randomly from the uniform distribution 0◦ ≤ θ < 180◦. Other artificial patterns can be

generated similarly, or natural images can be rendered directly on the input layer.

4.2.1 LGN activation

The cells in the ON and OFF channels of the LGN compute their responses as a scalar

product of their fixed weight vector and the activity of input units in their receptive fields

(as in figure 4.4b). More precisely, the responseηab of ON or OFF-center cell(a, b) is
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Figure 4.5:The HLISSOM neuron activation function σ. The neuron requires an input as large
as the thresholdδ before responding, and saturates at the ceilingβ. The output activation values
are limited to[0, 1]. The activation function is an easy-to-compute approximation of the sigmoid
function.

calculated from the weighted sum of the retinal activations in its receptive field as

ηab = σ

(
γA

∑
ρxy

ξρxyµab,ρxy

)
, (4.3)

whereρ specifies the receptive field (either on the photoreceptors or the PGO),ξρxy is the

activation of cell(x, y) in the receptive field,µab,ρxy is the afferent weight from(x, y) to

(a, b), γA is a constant afferent scaling factor, andσ is a piecewise linear approximation of

the sigmoid activation function (figure 4.5):

σ(x) =


0 x ≤ δ

(x− δ)/(β − δ) δ < x < β

1 x ≥ β

(4.4)

As in RF-LISSOM and other models, this approximation is used because it can be com-

puted more quickly than a smooth sigmoid function, while retaining its key threshold and

saturation properties. ChangingγA in equation 4.3 by a factorm is mathematically equiv-

alent to dividingβ andδ by m. Even so,γA is treated as a separate parameter to make

it simpler to use the same values ofβ andδ for different networks. The specific value of

γA is set manually so that the LGN outputs approach 1.0 in the highest-contrast regions of

typical input patterns. This allows each subsequent level to use similar parameter values in

general, other thanγA.
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Because of its Difference-of-Gaussians RF, an LGN neuron will respond whenever

the input pattern is a better match to the central portion of the RF than to the surrounding

portion. The positive and negative portions of the RF thus have apush–pulleffect (Hirsch,

Alonso, Reid, and Martinez 1998a; Hubel and Wiesel 1962). That is, even if an input pattern

activates the ON portion of the LGN RF, the neuron will not fire unless the OFF portion is

not activated. This balance ensures that the neurons will remain selective for edges over a

wide range of brightness levels. Section 4.5 will show that this push–pull effect is crucial

when using natural images in the model. Overall, the LGN neurons respond to image

contrast, subject to the minimum and maximum activity values enforced by the sigmoid.

4.2.2 Cortical activation

The cortical activation is similar to the LGN, but extended to support self-organization

and to include lateral interactions. The total activation is computed from both afferent and

lateral responses, which will be discussed separately here. First, the afferent responseζij

of V1 neuron(i, j) is calculated like the retinal sum in equation 4.3, with an additional

divisive (shunting) normalization:

ζij =
γA
∑

ρab ξρabµij,ρab

1 + γN
∑

ρab ξρab
, (4.5)

whereξρab is the activation of unit(a, b) in receptive fieldρ (on either the ON channel or

the OFF channel1), andµij,ρab is the corresponding afferent weight.

TheγN normalization is an approximation of push–pull afferent weights that allows

all afferent weights to be excitatory, so that each can use simple Hebbian learning as in RF-

LISSOM. Mathematically, it represents dividing the response from the excitatory weights

by the response from a uniform disc of inhibitory weights over the RF. Similar to the LGN

activation, the net result is that activity in input locations where there are weak or no afferent

1Afferent inputs from additional ON and OFF channels with different peak spatial frequencies (i.e. different
σc andσs) can be included in the same way. For simplicity and computational efficiency, only a single channel
of each type (ON or OFF) was used in the simulations in this thesis.
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weights suppresses the overall activation. Activity in locations to which the neuron has a

strong connection increases the neuron’s activation. As shown below, the push–pull effects

in the LGN are the most crucial addition to RF-LISSOM, but this additional normalization

in the cortex helps to preserve orientation selectivity with the wide ranges of contrast found

across natural images. Simulations with artificial input patterns or covering only a small

area of the visual field, such as those in most models and in RF-LISSOM, can omit this

normalization and leaveγN at zero.

HLISSOM simulations with large natural images generally use an initial normal-

ization strengthγN of zero, but gradually increase it over training as neurons become more

selective. To prevent the net responses from decreasing, the scaling factorγA is set manu-

ally to compensate for each change toγN. The goal is to ensure that the afferent response

ζ will continue to have values in the full range 0 to 1.0 for typical input patterns, regardless

of theγN value.

The FSA computes its afferent response just as V1 does, except thatρ in equa-

tion 4.5 is an RF on V1, instead of an ON or OFF channel of the LGN. Whether in V1 or

the FSA, the afferent response forms the initial response of the neuron, after being passed

through the sigmoid activation function:

ηij(0) = σ (ζij) , (4.6)

whereσ is as shown in equation 4.4. After the initial response, lateral interaction sharpens

and strengthens the cortical activity over a very short time scale. At each of these subse-

quent time steps, the neuron combines the afferent responseζ with lateral excitation and

inhibition:

ηij(t) = σ

(
ζij + γE

∑
kl

Eij,klηkl(t− 1)− γI

∑
kl

Iij,klηkl(t− 1)

)
, (4.7)

whereEij,kl is the excitatory lateral connection weight on the connection from neuron(k, l)

to neuron(i, j), Iij,kl is the inhibitory connection weight, andηkl(t − 1) is the activity of

neuron(k, l) during the previous time step. The scaling factorsγE andγI determine the
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relative strengths of excitatory and inhibitory lateral interactions, which determine how

easily the neuron reaches full activation.

While the cortical response in V1 and the FSA is settling, the afferent response re-

mains constant. The cortical activity pattern in both areas starts out diffuse, but within a few

iterations of equation 4.7, converges into stable focused patches of activity, or activity bub-

bles (as in figure 4.4d). Mathematically, the settling increases the sparsity of the response,

which Field (1994) proposed is a fundamental goal of cortical processing (cf. Sirosh 1995).

The practical outcome is that neurons will develop similar properties, as seen in the cortex,

because settling ensures that nearby neurons have similar patterns of activity.

4.3 Learning

The learning process is driven by the settled activity patterns. Modifying the weights of

each cortical neuron gradually makes them come to represent the correlation patterns seen

in the input. Afferent and lateral weights in both V1 and the FSA adapt according to the

same biologically motivated mechanism: the Hebb rule (Hebb 1949), normalized so that

the sum of the weights is constant:

wij,mn(t + δt) =
wij,mn(t) + αηijXmn∑

mn [wij,mn(t) + αηijXmn]
, (4.8)

whereηij stands for the activity of neuron(i, j) in the final activity bubble,wij,mn is the

afferent or lateral connection weight (µ, E or I), α is the learning rate for each type of

connection (αA for afferent weights,αE for excitatory, andαI for inhibitory) andXmn is

the presynaptic activity (ξ for afferent,η for lateral). The larger the product of the pre- and

post-synaptic activityηijXmn, the larger the weight change. The normalization prevents

the weight values from increasing without bound as new patterns are learned, and is an

abstraction of the neuronal regulatory processes reviewed by Turrigiano (1999).

At long distances, very few neurons have correlated activity and therefore most

long-range connections eventually become weak. The weak connections are eliminated
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periodically to increase the strength to the remaining connections, resulting in patchy lateral

connectivity similar to that observed in the visual cortex.

The radius of the lateral excitatory interactions usually starts out large, but as self-

organization progresses, it is decreased until it covers only the nearest neighbors. Such a

decrease is a convenient way of varying the balance between excitation and inhibition to

ensure that both global topographic order and well-tuned receptive fields develop (Miikku-

lainen et al. 1997; Sirosh 1995). With sufficient initial order, a more biologically realistic

fixed-sized lateral excitatory radius may be used instead.

The following section will show that the architecture, activation procedure, and

learning algorithm described here leads to realistic orientation maps, receptive fields, and

lateral connections. Because the only explicit representation of orientation is in the input

patterns, HLISSOM is also a general model for cortical function, and later chapters will

show that it can develop face-selective responses as well as orientation maps. HLISSOM

thus represents a unified model of processing in multiple areas of the cortex.

4.4 Orientation map example

This section presents a detailed example of self-organization in HLISSOM. The starting

point was a network with the initial weights set as shown in figure 4.3; these parameters

were chosen based on earlier RF-LISSOM simulations (Bednar and Miikkulainen 2000b).

To this network was presented a series of 10,000 random oriented Gaussian input patterns

like the one in figure 4.4. After each presentation, HLISSOM adjusted the weights to each

cortical neuron. This incremental learning process required 2.2 hours of computer time

on a 1 GHz Athlon-processor machine, and required 457 megabytes of memory for the

connections.

Figure 4.6 shows that through activity-dependent self-organization, the V1 neurons

have learned realistic multi-lobed oriented RFs and lateral connections (Bosking et al. 1997;

Hubel and Wiesel 1965, 1968; Sincich and Blasdel 2001). The lateral connections extend
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(a) V1 Afferent RF (b) V1 Excitatory (c) V1 Inhibitory

Figure 4.6:Self-organized receptive fields and lateral weights (color figure). These plots show
the weights for the neuron in figure 4.3 after self-organization. In (a), the OFF weights were sub-
tracted from the ON weights. Net ON regions are colored red, orange, and yellow, and net OFF
regions are colored blue and cyan. This neuron prefers a line oriented at 10◦, i.e. nearly horizontal,
and will respond most strongly to a white line overlapping the red/yellow portion of its RF, sur-
rounded by black areas overlapping the blue portions of its RF. Other neurons developed similar
RFs with different preferred orientations. This type of RF structure is commonly seen in V1 neurons
of laboratory animals (Hubel and Wiesel 1962, 1968). Plot (b) shows the lateral excitatory weights
of this neuron. All connected neurons are strongly colored red, magenta, or purple, i.e. orientations
similar to the orientation preference of this neuron. Plot (c) shows the lateral inhibitory weights. Af-
ter self-organization and connection pruning, only connections to neurons with similar orientations
remain, and they are extended along the preferred orientation of the neuron. The connection pattern
is patchy, because connections to neurons with opposite preferences are weaker or have been pruned
away. These patchy, orientation-specific connection patterns are also seen in laboratory animals
(figure 2.5; Bosking et al. 1997; Sincich and Blasdel 2001). Thus the HLISSOM model develops
realistic receptive fields and intracortical connectivity.

along the orientation of the neuron, and are patchy because they target orientations similar

to this neuron’s preferred orientation. The orientation preferences of this and the other

neurons in the network form the orientation map shown in figure 4.7. Even with such

abstract inputs, the map is a good match to those measured in adult animals (e.g. compare

figure 4.7 with figure 2.4 on page 13). This simulation demonstrates that HLISSOM can

develop realistic cortical structures.

Even though this simulation is primarily an example, it contains two important

advances over the earlier RF-LISSOM simulations with oriented Gaussian inputs (Sirosh
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Figure 4.7:Map trained with oriented Gaussians (color figure). The orientation preference of
each neuron in the map from figure 4.4 was computed before (top row, iteration 0) and after self-
organization (bottom row, iteration 10,000). Each neuron in the map is colored according to the
orientation it prefers, using color key (e). (a) The preferences are initially random (top). Through
self-organization, the network developed a smoothly varying orientation map (bottom). The map
contains features found in maps from experimental animals (figure 2.4 on page 13), such as pin-
wheels (two are circled in white ina and black inb), linear zones (one is marked with a long white
or black rectangle), and fractures (one between green and blue/purple is marked with a white or
black square). (b) Before self-organization, the selectivity of each neuron for its (random) preferred
orientation is very low (black inb, top). In contrast, nearly all of the self-organized neurons are
highly selective for orientation (white inb, bottom). (c) Overlaying the orientation and selectivity
plots shows that regions of lower selectivity in the self-organized map tend to occur near pinwheel
centers and along fractures. Histograms of the number of neurons preferring each orientation are
shown in (d), and are essentially flat because the initial weight patterns were unbiased and sub-
sequent training inputs represented all orientations equally. These plots show that HLISSOM can
develop realistic orientation maps through self-organization based on abstract input patterns.
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1995; Sirosh et al. 1996). First, HLISSOM explains how multi-lobed RFs can develop.

RF-LISSOM contained only ON-type connections, and did not model the LGN. Second,

HLISSOM neurons have random initial orientation preferences, and the orientation his-

togram is flat. Because of square connection radii and receptive fields clipped by region

borders, most neurons in RF-LISSOM were biased in orientation at the start of training.

Such unintentional architectural biases would make it difficult to study how particular types

of input patterns can influence development, as in later chapters. The next section will

show that the multi-lobed receptive fields introduced in HLISSOM are crucial for modeling

natural images, as required by most of the later simulations.

4.5 Role of ON and OFF cells

One of the most important differences between HLISSOM and the previous RF-LISSOM

architecture is that HLISSOM includes models of the LGN ON and OFF cells. How does

making the model more realistic in this way affect the development of maps, and the func-

tional behavior? Interestingly, when the training patterns are matched exactly, both models

develop very similar maps, with many of the orientation blobs in the same relative locations

(figure 4.8). This somewhat surprising result explains why models with and without ON

and OFF cells have both been able to develop realistic orientation maps. As will be shown

in section 5.2, the map shape is determined by the locations of V1 activity blobs evoked by

the stream of inputs. With the same stream of oriented patterns, the V1 activity patterns are

the same with or without ON and OFF channels. Thus similar final map shapes develop.

Even the orientations of the RFs of individual neurons are usually very similar be-

tween the two maps (figure 4.8f ). Yet the shapes of the RFs are very different. They differ

because RF shapes are determined by both the V1 and LGN activities, and the LGN activi-

ties for the OFF channel differ greatly from those for the ON channel.

In part because of the different RF shapes, these two models can have very different

functional behavior. In particular, figure 4.9 shows that the ON and OFF cells are necessary
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Figure 4.8:Matching maps develop with or without the ON and OFF channels (color figure).
Each row shows the results for a different network trained with the same stream of Gaussian inputs.
The networks had similar architectures except that for the network in the bottom row, the ON and
OFF LGN units were replaced with a single set of direct connections to the photoreceptor layer.
Such an architecture matches previous models without the LGN (e.g. Bednar and Miikkulainen
2000b; Sirosh, Miikkulainen, and Bednar 1996). Column (b) shows the LGN response to the sample
grayscale input pattern from (a); regions with high ON region response are colored red and yellow,
and those with high OFF response are colored blue and cyan. Column (c) shows the self-organized
orientation map for each network. Very similar maps develop with or without the LGN, because
the stream of V1 activations caused by the inputs was similar. Column (d) shows the map masked
by the orientation selectivity. Unselective neurons are colored black, and brighter colors represent
more selective neurons. Without the ON and OFF cells, fewer neurons are highly selective, but the
improvement in selectivity is relatively small. Column (e) shows the histogram of each orientation
map, which is nearly flat for both networks. Column (f ) shows sample RFs for 36 neurons in each
map, arranged according to the position of the neuron in the cortex. In the top set of RFs, regions
with high ON weights are shown in red and yellow, and those with high OFF weights are in blue
and cyan. In the bottom set, regions with high weight values are shown in red and yellow. The
orientations of the corresponding RFs in each map are often similar. However, when the ON and
OFF cells are included the RFs become more strongly oriented, and have multiple ON and OFF
lobes. These results show that similar V1 maps can be developed without modeling the LGN and
multi-lobed RFs, but figure 4.9 will show that the functional behavior of these similar-seeming maps
is very different.
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Figure 4.9:The ON and OFF channels preserve orientation selectivity (color figure). Each row
shows the response to the pattern in column (a). Columns (b-d) show the response of theGaussians
network from figure 4.8, and (e-f) show the response of theNo ON/OFF network, where the ON
and OFF channels of the LGN are omitted. Both networks respond very similarly to an oriented
Gaussian input like those used during training (top row), which is why very similar orientation maps
developed in figure 4.8. For both networks, only neurons with orientation preferences matching
the input line’s orientation respond (histogramsd,f, top row). However, the networks behave very
differently for other types of inputs (remaining rows). The ON and OFF channels filter out smooth,
gradual changes in brightness, which ensures that V1 responds only to oriented patterns and sharp
edges (c-d). Without the LGN, any large enough input pattern causes a correspondingly large and
unselective response in V1, activating nearly all neurons regardless of their orientation preferences
(e-f). Similarly, a constant mean level of illumination will activateall of the V1 neurons in the
model without ON and OFF cells, regardless of their orientation preferences, while it will activate
none of the neurons in the full HLISSOM model (rowNo Edge or Line). Thus the ON and OFF
channels are crucial for preserving orientation selectivity for large objects, large, gradual changes in
brightness, and non-zero mean levels of illumination, all of which are common in natural images.
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for neurons to preserve orientation selectivity when given large patterns of input activity

or nonzero mean levels of illumination. Natural scenes and retinal waves contain many

such features, and thus extending RF-LISSOM with ON and OFF cells was crucial for the

experiments in this thesis.

4.6 Conclusion

The HLISSOM model includes the LGN (both ON and OFF channels), V1, and a higher

level face-selective region. The model focuses on explaining capabilities that develop at

V1 and higher cortical levels, such as orientation and face processing. Connection weights

in the LGN were chosen to be a good match to the known properties of the LGN in ani-

mals, and then connections at the higher levels develop via incremental Hebbian learning

of bitmap images. The level of detail in the model was chosen so that the model could be

validated against the experimental data available in each domain, and so that it can provide

specific predictions for future experiments. HLISSOM develops realistic receptive fields,

lateral weights, and map patterns, all of which have been validated against experimental

data.
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Chapter 5

Scaling HLISSOM simulations

In the previous chapter I introduced HLISSOM and showed how it can develop realistic

maps of orientation preferences. So that the simulations would be practical to run, the

maps covered only about a 25mm2 area out of the full 2500mm2 area of human V1 (Wan-

dell 1995). Yet despite the small area, each simulation required several hours of computer

time and hundreds of megabytes of memory. Experiments with faces will require a much

larger area of V1 and the visual field, because most tests with newborns use head-sized

face patterns presented at a very close range. Such patterns fill up most of the newborn’s

visual field. Other important phenomena also require large networks, including long-range

contour integration, object recognition, and optic flow.

In this chapter I will introduce a set of scaling equations that I developed to make

such simulations practical. Given a small-scale simulation, the equations make it possi-

ble to calculate the parameter settings necessary to perform an equivalent but larger scale

simulation. I will show that the original and scaled simulations have similar function and

map-level organization; the larger map just has more detail or a greater area, and takes more

time and memory to simulate. Although the equations are included here primarily because

they will be used in later chapters, they are also an independent contribution that can be

used with other incremental Hebbian models with architectures similar to RF-LISSOM or

66



HLISSOM. As will be discussed below, the equations can also be applied to biological

systems, calculating how these systems differ in structure and thus how their functions are

likely to differ. Finally, the equations allow parameters for a model to be calculated from

measurements in animals of a particular species.

5.1 Background

Any particular HLISSOM or RF-LISSOM simulation models a fixed area of the visual field

at a fixed retinal density (receptors per visual field area) and a fixed cortical density (neurons

per unit of cortical area). Modeling new phenomena often requires using a different area

or density. Changing the area corresponds to modeling a larger portion of the visual space,

e.g. a larger part of V1 and of the eye. Changing the density corresponds to modeling a

given area at a finer resolution (of either cortical neurons or retinal receptors), as well as

modeling a species, individual, or brain area that devotes more neurons or ganglia to the

representation of a fixed amount of visual space.

Varying the area or density over a wide range is difficult in a complex nonlinear sys-

tem like HLISSOM. Parameter settings that work for one size will need to be very different

to work properly with other sizes. Furthermore, it is not always clear which parameters need

to be adjusted at each size. To eliminate the search for appropriate parameters, I derived

equations to compute the values needed for each type of transformation. The equations treat

any specific cortical network as a finite approximation to a continuous map composed of

an infinite number of units. Similar continuous networks have been studied theoretically by

Amari (1980) and Roque Da Silva Filho (1992). Under such an assumption, networks of

different sizes represent coarser or denser approximations to the continuous map, and any

given approximation can be transformed into another by (conceptually) reconstructing the

continuous map and then resampling it. Given an existing retina and cortex of some fixed

size, the scaling equations provide the parameter values needed for a smaller or larger retina

and cortex to form a functionally equivalent map.
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The following subsections will present the scaling equations for area, retinal gan-

glion density, and cortical density, along with results from simulations of each type. The

equations are all linear, so they can also be applied together to change both area and den-

sity simultaneously. In each case, what the equations provide is a set of parameters for a

new simulation that, when run, will develop similar results to the existing simulation. The

equations are first derived on theoretical grounds, and then I verify experimentally that no

other parameters need to be scaled, i.e. that these particular equations are sufficient.

5.2 Prerequisite: Insensitivity to initial conditions

One desirable property of a scaling algorithm is that it results in nearly identical final maps

even some parts of the network are changed, such as the retina size. Therefore, it is crucial

that the map organization not depend on the random initial weights, since those will vary

between networks of different sizes. In this section I will show that the HLISSOM algorithm

has exactly this property.

In HLISSOM, there are two types of variability between runs with different random

numbers: the random order, location, and position of the individual input patterns at each

iteration, and the random initial values of the connection weights. Figure 5.1 demonstrates

that the orientation map shape does not depend on the random initial values of the weights,

as long as the initial weights are drawn from the same random distribution. This result

is surprising and significant, because in many commonly used neural networks, the initial

weights do play an important role (see e.g. Kolen and Pollack 1990).

Instead, the self-organized orientation map pattern in HLISSOM depends crucially

on the stream of inputs, with two streams giving different orientation map patterns even if

the streams are drawn from the same distribution. The overall properties of the maps are

very similar (number of pinwheel centers, distance between them, etc.), but different input

streams lead to different arrangements of blobs and pinwheel centers. In animals, maps are

also similar between members of the same species, but differ in the specific arrangements
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Figure 5.1: Input stream determines map pattern in HLISSOM (color figure). This figure
shows that the self-organized orientation map patterns (e.g. in figure 4.7) do not depend on the ran-
dom initial values of the weights. They are instead driven by the stream of input patterns presented
during training. Using a different stream of random numbers for the weights results in different ini-
tial orientation maps (a andb), but has almost no effect on the final self-organized maps (compare
g to h). In (g-i), the lateral inhibitory connections of one sample neuron are outlined in white, and
are not affected by changing the weight stream. The final result is the same because lateral excita-
tion smooths out differences in the initial weight values, and leads to similar large-scale patterns of
activation at each iteration. (Compare mapsd ande measured at iteration 100; the same large-scale
features are emerging in both maps despite locally different patterns of noise caused by the different
initial weights.) In contrast, changing the input stream produces very different early and final map
patterns (comparee to f andh to i), even when the initial weight patterns (and therefore the initial
orientation maps) are identical (b andc). Thus the input patterns are the crucial source of variation,
not the initial weights.

69



of blobs and pinwheel centers (Blasdel 1992b). Thus the HLISSOM model predicts that

the specific orientation map pattern in the adult animal depends primarily on the order and

type of activity seen by the cortex in early development, and not on the details of the initial

connectivity.

HLISSOM is insensitive to initial weights because of three features common to

most other incremental Hebbian models: (1) the scalar product input response function,

(2) lateral excitation between neurons, and (3) the initial period with high learning rates.

First, a neuron’s initial response to an input pattern is determined by the sum of the product

of each retinal receptor with its corresponding weight value (equation 4.6). For smoothly

varying input patterns and large enough afferent RF size, this sum will have a very similar

value regardless of the specific values of the weights to each receptor. Thus, until the

weights have self-organized into a smooth, spatially non-uniform distribution, the input

response of each neuron will be largely insensitive to the specific weight values. Second,

settling due to lateral excitation (equation 4.7) causes nearby neurons to have similar final

activity levels, which further reduces the contribution of each random afferent weight value.

Third, Hebbian learning depends on the final settled activity levels resulting from an input

(equation 4.8), and with a high enough learning rate, the initial weight values are soon

overwritten by the responses to the input patterns. As is clear in figure 5.1d,e, the large-scale

map features develop similarly even before the initial weight values have been overcome.

Thus the Hebbian process of self-organization is driven by the input patterns, not the initial

weights.

The net result is that as long as the initial weights are generated from the same

distribution, their precise values do not significantly affect map organization. Similar in-

variance to the initial weights should be found in other Hebbian models that compute the

scalar product of the input and a weight vector, particularly if they include lateral excitation

and use a high learning rate in the beginning of self-organization. If a model does not have

such invariance, scaling equations can still generate functionally equivalent maps, but they
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will not be visually identical like the density-scaled maps presented below.

5.3 Scaling equations

The following subsections will present the scaling equations for area, retinal ganglion den-

sity, and cortical density, along with results from simulations of each type.

5.3.1 Scaling the area

In this section I will consider the simplest case, changing the area of the visual space sim-

ulated. Scaling up the area allows a model to be developed quickly with a small area, then

enlarged to eliminate border effects and to simulate the full area from a biological experi-

ment. To change the area, both the cortex widthN and the retina widthR must be scaled by

the same proportionk relative to their initial valuesNo andRo. (The ON and OFF channels

of the LGN change just as the retina does, so their scaling equations are omitted below.)

What is perhaps less obvious is that, to ensure that the resulting network has the

same amount of learning per neuron per iteration, the average activity per input receptor

needs to remain constant. Otherwise a larger network would need to train for more it-

erations. Even if such longer learning were not computationally expensive, changing the

total number of iterations in HLISSOM has non-linear effects on the outcome, because of

the non-linear thresholding performed at each iteration (equation 4.3). Thus when using

discrete input patterns (rather than natural images), the average number of patternsı̄ per

iteration must be scaled with the retinal area. Consequently, the equations for scaling the

area by a factork are:

N = kNo, R = kRo, ı̄ = k2ı̄o (5.1)

See figure 5.2 for an example of scaling the retinal and cortical area.
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(a) Original cortex
N = 54

0.4 hours, 8MB

(b) Cortex area scaled
N = 4No = 4 · 54 = 216

9 hours, 148MB

(c) Original retina
R = 24

(d) Retina area scaled
R = 4Ro = 4 · 24 = 96

Figure 5.2:Scaling the total area (color figure). Equations 5.1 can be used to scale the total area
simulated, in order to simulate a larger portion of the cortex, retina, and visual field. For largeN the
number of connections and the simulation time scale approximately linearly with the area, and thus
a network four times as wide and four times as tall (above) takes about sixteen times the memory and
sixteen times as long to simulate. For discrete input patterns like these oriented Gaussians, larger
areas require more input patterns to keep the total learning per neuron and per iteration constant.
Because the inputs are generated randomly across the active surface of the retina, each map sees an
entirely different stream of inputs, and so the final map patterns always differ when the area differs.
The area scaling equations are most useful for testing a model with a small area and then scaling up
to eliminate border effects and to simulate the full area of a corresponding biological preparation.

5.3.2 Scaling retinal density

In this section I consider changing the number of retinal units per degree of visual field (the

retinal density), e.g. to model species with larger eyes, or parts of the eye that have more

ganglia per unit area. This type of change also allows the cortical magnification factor, i.e.,

the ratioN :R between the V1 and retina densitiesN andR, to be matched to the values

measured in a particular species. I will show that scaling equations allowR to be increased

to any desired value, but that in most cases (especially when modeling newborns) a low

density suffices.

The parameter changes required to change density are a bit more complicated than

those for area. The key to making such changes without disrupting how maps develop is to

keep the visual field area processed by each neuron the same. For this to be possible, the

ratio between the afferent connection radius andR must be constant, i.e.rA must scale with
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R.

But when the connection radius increases, the total number of afferent connections

per neuron also increases dramatically. Because the learning rateαA specifies the amount of

change per connection and not per neuron (equation 4.8), the learning rate must be scaled

down to compensate so that the average total weight change per neuron per iteration re-

mains constant. Otherwise, a given input pattern would cause more total change in the

weight vectors of each neuron in the scaled network than in the original. Such a difference

would significantly change how the two networks develop. So the afferent learning rateαA

must scale inversely with the number of afferent connections to each neuron, which in the

continuous plane corresponds to the area enclosed by the afferent radius. Thus,αA scales

by the ratiorAo
2

rA
2 .

To keep the average activity per iteration constant, the size of the input features

must also scale withR, keeping the ratio between the feature width andR constant. For

e.g. Gaussian inputs this means keeping the ratio between the Gaussian widthσ andR

constant; other input types scale similarly. Thus the retinal density scaling equations are:

rA = R
Ro

rAo αA = rAo
2

rA
2 αAo , σx = R

Ro
σxo ,

σy = R
Ro

σyo

(5.2)

Figure 5.3 shows how this set of equations can be used to generate functionally equivalent

orientation maps using different retinal receptor densities.

This result may seem surprising, because several authors have argued that the cor-

tical magnification factorN :R is a crucial variable for map formation (e.g. Sirosh 1995,

p. 138, 164). As is clear in figure 5.3, nearly identical maps can develop regardless of

R (and thusN :R). Instead, the crucial parameters are those scaled by the retinal density

equations, specificallyrA andσ. The value ofR is unimportant as long as it is large enough

to faithfully represent input patterns of widthσ, i.e., as long as the minimum sampling

limits imposed by the Nyquist theorem are not reached (see e.g. Cover and Thomas 1991).

Strictly speaking, evenσ is important only if it is larger than the center size of the LGN
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(a) Original retina
R = 24, σx = 7, σy = 1.5

(b) V1 map forR = 24

(c) Retina scaled by 2.0
R = 24 · 2 = 48, σx = 14,

σy = 3

(d) V1 map forR = 48

(e) (e) Retina scaled by 3.0
R = 24 · 3 = 72, σx = 21,

σy = 4.5

(f ) V1 map forR = 72

Figure 5.3:Scaling retinal density (color figure). Equations (5.2) can be used to scale the density
of retinal receptors simulated per unit visual area, while keeping the area and the cortex density
constant. This is useful for matching the cortical magnification factor in a simulation, i.e., the ratio
between the V1 and retina densities, to the values from a particular species. Here each column
shows an HLISSOM orientation map from one of three matched 96×96 networks that have retinas
of different densities. The parameters for each network were calculated using equations (5.2), and
then each network was trained independently on the same random stream of input patterns. The
size of the input pattern in retinal units increases as the retinal density is increased, but its size as a
proportion of the retina remains constant. All of the resulting maps are similar as long asR is large
enough to represent the input faithfully, with almost no change aboveR = 48. Thus a low value can
be used forR in practice.
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cells, i.e., only if it is large enough to be passed through to V1. As a result, when using

natural images or other stimuli with high-frequency information, the LGN cell RF size may

instead be the limiting factor for map development. In practice, these results show that a

modeler can simply use the smallestR that faithfully samples the input patterns, thereby

saving computation time without significantly affecting map development.

5.3.3 Scaling cortical neuron density

Scaling the cortical density allows a small density to be used for most simulations, while

making it possible to scale up to the full density of the cortex to see details in the orientation

maps. Scaling up is also important when simulating joint maps, such as combined ocular

dominance, orientation, and direction maps. Because of the numerous lateral connections

within the cortex, the cortical density has the most effect on the computation time and

memory, and thus it is important to choose the appropriate value needed for each simulation.

The equations for changing cortical density are analogous to those for retinal re-

ceptor density, with the additional requirement that the intracortical connection sizes and

associated learning rates must be scaled. The lateral connection radiirE andrI should be

scaled withN so that the ratio between each radius andN remains constant. For simula-

tions that shrink the lateral excitatory radius, the final radiusrEf
must also be scaled. Like

αA in retinal density scaling,αE andαI must be scaled so that the average total weight

change per neuron per iteration remains constant despite changes in the number of con-

nections. Finally, the absolute weight levelDI below which lateral inhibitory connections

are killed at a given iteration must be scaled when the total number of lateral connections

changes. The absolute value varies because the weight normalization in equation 4.8 en-

sures that when there are fewer weights each one is stronger. The value of each weight is

proportional to the number of connections, soDI should scale with the number of lateral

inhibitory connections. In the continuous plane, that number is the area enclosed by the

lateral inhibitory radius. Thus, the cortical density scaling equations are:
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(a) 36×36
0.17 hours,

2.0MB

(b) 48×48
0.32 hours,

5.2MB

(c) 72×72
0.77 hours,

22MB

(d) 96×96
1.73 hours,

65MB

(e) 144×144
5.13 hours,

317MB

Figure 5.4:Scaling the cortical density (color figure). Five HLISSOM orientation maps from
networks of different sizes are shown; the parameters for each network were calculated using equa-
tions (5.3), and then each network was trained independently on the same random stream of input
patterns. The size of the network in the number of connections ranged from2 × 106 to 3 × 108 (2
megabytes to 317 megabytes of memory), and the simulation time ranged from ten minutes to five
hours on the same machine, a single-processor 600MHz Pentium III. Simulations of 2048-megabyte
192 × 192 networks on the massively parallel Cray T3E supercomputer perform similarly. Despite
this wide range of simulation scales, the final organized maps are both qualitatively and quantita-
tively similar, as long as their size is above a certain minimum (here about 64×64). Larger networks
take significantly more memory and simulation time, but offer greater detail and will allow other
dimensions such as ocular dominance and direction to be simulated in the same map.

rE = N
No

rEo , αE = rEo
2

rE
2 αEo , DI = rIo

2

rI
2 DIo

rI = N
No

rIo , αI = rIo
2

rI
2 αIo ,

(5.3)

Figure 5.4 shows how these equations can be used to generate closely matching orientation

maps of different cortical densities. In the larger maps, more details are evident, but the

overall structure is very similar beyond a minimum size scale.

Although the Nyquist theorem puts limits on the minimumN necessary to faithfully

represent a given orientation map pattern, in practice the limiting parameter is the minimum

excitatory radius (rEf
). For instance, the map pattern from figure 5.4(e) can be reduced

using image manipulation software to18 × 18 without changing the largest-scale pattern

of oriented blobs. Yet when simulated in HLISSOM even a36 × 36 map differs from

the larger ones, and (to a lesser extent) so does the48 × 48 pattern. These differences

result from quantization effects onrEf
. Because units are laid out on a rectangular grid,

the smallest neuron-centered radius that includes at least one other neuron center is 1.0.

Yet for small enoughN , the scaledrEf
will be less than 1.0, and thus must either be
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fixed at 1.0 or truncated to zero. If the radius goes to zero, the map will no longer have

any local topographic ordering, because there will be no local excitation between neurons.

Conversely, if the radius is held at 1.0 while the map size continues to be reduced, the

lateral spread of excitation will take over a larger and larger portion of the map, causing the

orientation blob width of the resulting map to increase. Thus in practice,N should not be

reduced so far thatrEf
approaches 1.0.1 Above the minimum bound, adding more cortical

density adds more detail to the orientation map, without changing the overall organization.

Thus the cortical density equations can be used to select a good tradeoff between simulation

detail and computational requirements, and make it easy to scale up to larger densities to

simulate more complex phenomena like joint maps of orientation and direction preferences

(as in Bednar and Miikkulainen 2003, to appear).

Together, the area and density scaling equations allow essentially any desired cortex

and retina size to be simulated without a search for the appropriate parameters. Given fixed

resources (such as a computer of a certain speed with a certain amount of memory), they

make it simple to trade off density for area, depending on the phenomena being studied.

They also make it simple to scale up to larger simulations on supercomputers when both

area and density are needed.

5.4 Discussion

Apart from their application to simulations, the scaling equations give insight into how the

corresponding quantities differ between individuals, between species, and during develop-

ment. In essence, the equations predict how the biophysical correlates of the parameters

will differ between any two similar cortical regions that differ in size. The discrepancy

between the actual parameter values and those predicted by the scaling equations can help

1If working with very small maps is necessary, radius values smaller than 1.0 could be approximated using
a technique similar to antialiasing in computer graphics. Before a weight value is used in equation 4.7 at each
iteration, it would be scaled by the proportion of its corresponding pixel’s area that is included in the radius.
This technique should permit smaller networks to be simulated faithfully even with a discrete grid, but has not
yet been tested empirically.
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explain why different brain regions, individuals and species will have different functions

and performance levels.

For instance, equations (5.3) and the simulation results suggest that learning rates

per connection should scale with the total number of connections per neuron. Otherwise

neurons from a more densely connected brain area would have significantly greater total

plasticity, which (to my knowledge) has not been demonstrated. Consequently, unless the

number of synapses per neuron is constant, the learning rate must be regulated at the whole-

neuron level rather than being a property of individual synapses. This principle conflicts

with assumptions implicit in most incremental Hebbian models that specify learning rates

for individual connections directly. Future experimental work will be needed to determine

whether such whole-neuron regulation of plasticity does occur, and if not, whether more

densely connected regions do have a greater level of overall plasticity.

Similarly, equations (5.3) suggest that the pruning thresholdDI depends on the to-

tal number of connections to the neuron, rather than being an arbitrary fixed value. With

the divisive weight normalization used in HLISSOM, increasing the number of connec-

tions decreases the strength of each one; this procedure is motivated byin vitro findings

of whole-cell regulation of excitability (Turrigiano, Leslie, Desai, Rutherford, and Nelson

1998). A consequence is that a fixedDI that prunes e.g. 1% of the connections for a small

cortex would prune all of the connections for a larger cortex. This finding provides inde-

pendent computational and theoretical support for experimental evidence that pruning is a

competitive, not absolute, process (Purves 1988).

The scaling equations also provide an effective tool for making cross-species com-

parisons, particularly between species with different brain sizes. In effect, the equations

specify the parameter values that a networkshoulduse if it is to have similar behavior as a

network of a different size. As pointed out by Kaas (2000), different species donot usually

scale faithfully, probably due to geometrical, metabolic, and other restrictions. As a result,

as V1 size increases, the lateral connection radii do not increase as specified in the cortical
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density scaling equations, and processing becomes more and more topographically local.

Kaas (2000) proposes that such limitations on connection length may explain why larger

brains such as human and macaque are composed of so many visual areas, instead of just

expanding the area of V1 to support greater functionality (see also Catania et al. 1999). The

scaling equations combined with HLISSOM provide a concrete platform on which to test

these ideas in future multi-region simulations.

5.5 Conclusion

The scaling equations allow an HLISSOM simulation to scale up in area or density to match

a biological system for which experimental data is available, and to scale down to save

computation time and memory. The scaled-up maps have similar structure and function,

but represent a greater portion of the visual field or represent it with finer detail. The larger

simulations can then be used to model large-scale phenomena that cannot be addressed in

smaller models, such as joint maps of multiple stimulus features. Later chapters will use

these equations to develop large-scale models of V1 and show how they can be used as the

first stage of a hierarchy of cortical regions.
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Chapter 6

Development of Orientation

Perception

This chapter will use the HLISSOM model and scaling equations introduced in the previous

chapters to model orientation map development in detail, using realistic inputs. The results

show that both internally generated and environmental stimuli are needed to explain the

experimentally measured orientation maps. Together these sources of activity can account

for the complex process of orientation map development in V1. The simulations also act as

a well-grounded test case for the methods used in the face perception experiments in later

chapters.

6.1 Goals

In a series of simulations below, I will show that:

1. Orientation maps can develop from either random or structured (blob-like) internally

generated activity, but that structured activity is necessary for the maps to match

experimental measurements from newborn animals (section 6.2).

2. Orientation maps can also develop from natural images alone, and the distribution
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of orientation preferences matches the distribution of orientations in those images

(section 6.3).

3. Training on internally activity first, then natural images, shows how the orientation

map can exist at birth, and then smoothly become a better match to the environment

(section 6.4).

Thus either spontaneous activity or natural images alone would be sufficient to drive the

development of orientation maps, but both together are required to explain the experimental

data.

6.2 Internally generated activity

The simulations in chapter 4 used two-dimensional Gaussians as an idealized representation

of oriented features in the input. This representation consists only of single short lines,

uncorrelated with each other or with the edges of larger objects. This section and the next

will show how making the input patterns match more closely either to spontaneous activity

or to natural images affects the final maps and RFs. So that these separate simulations can

be compared to each other and to results from other models, all of them will use the same

type of input pattern throughout training, and all will use nearly identical conditions except

for the specific input patterns. The goal of these simulations is to determine individually

how each type of input affects development, so that it will be clear how each contributes to

the full model of prenatal and postnatal development that I will present in section 6.4.

First, I consider internally generated activity alone. As is clear from figure 1.1, a

realistic model of patterns like the retinal waves would include large, coherent patterns of

activity, as well as background noise. Miller (1994) has argued that such patterns of activity

are too large and too weakly oriented to drive the development of orientation preferences

in V1. The results in this section show that orientation selectivity and realistic maps can

develop in HLISSOM even from large, unoriented patterns of activity, and even with back-
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ground noise. These results demonstrate that the known properties of retinal waves are

sufficient for the development of orientation maps and selectivity. Of course, many sources

of internally generated activity other than retinal waves may also share these features, in-

cluding PGO activity; the retinal waves are simply the best known example of such activity.

Besides being sufficient, the results will show that training on the oriented blobs seen in

retinal waves actually results in more realistic maps than generated by models that do not

include such blobs, such as Miller’s.

6.2.1 Discs

To ensure that the internally generated blob patterns have no orientation bias, they were

rendered from the following equations for a circular disc with smooth Gaussian falloff in

brightness around the edges. (The real patterns often do have orientation biases, but omit-

ting them here shows that the elongated edges are not a necessary feature for orientation

map development.) Each disc pattern is specified by the location of the disc center(xi, yi),

the widthw of the full-intensity central portion of the disc, and the half-widthσ for Gaus-

sian smoothing of the outer border. To calculate the activity for each photoreceptor(x, y),

the Euclidean distanced of that photoreceptor from the disc center is calculated:

d =
√

(x− xi)2 + (y − yi)2. (6.1)

The activityξ for receptor(x, y) is then

ξx,y =

 1.0 d < w
2

exp(− (d−w
2

)2

σ2 ) d >= w
2 .

(6.2)

The x andy coordinates of the centers are each chosen randomly, and the orientation is

chosen randomly from the uniform distribution in the range 0◦ ≤ θ < 180◦. The brightness

of each pattern was either positive or negative relative to the mean brightness, and was

chosen randomly.

The Discsrow of figure 6.1 shows that even with input patterns that do not favor

any particular orientation, HLISSOM can develop oriented receptive fields with ON and
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OFF subregions, as well as a realistic orientation map. As far as I am aware, this finding

is the first demonstration that orientation maps can develop from large, unoriented activity

patterns. The development is driven by the orientations of small patches around the edge

of the circular discs. These oriented edges are visible in the LGN response to the disc

pattern in figure 6.1b. Because the input patterns had only edges and no lines or bars, most

neurons develop two-lobed receptive fields, not three-lobed. Both two-lobed and three-

lobed receptive fields are common RF types for simple cells in adult V1 (Hubel and Wiesel

1968), but it is not known what RF types are present in newborns. These results suggest

that if orientation map development is driven by large, spatially coherent blobs of activity,

newborns will primarily have two-lobed receptive fields in V1.

6.2.2 Noisy Discs

The retinal waves in figure 1.1 contain spatially uncorrelated background noise in addition

to the retinal waves. This noise is most likely a combination of measurement noise plus

uncorrelated neural activity. It is not clear how much noise is due to either source, but

assuming at least some is due to genuine neural activity is reasonable.

Here, I model the noise as a random additive value for each pixel, drawn from the

uniform distribution in the range±0.5. TheNoisy Discsrow in figure 6.1 shows that re-

alistic maps develop even with substantial noise. However, the final map has fewer highly

selective neurons. This result suggests that including the spatially uncorrelated noise may

be important for faithfully modeling newborn maps, which also tend to have lower selec-

tivity.

6.2.3 Random noise

As a control, theRandom Noiserow in figure 6.1 shows that orientation maps can even

develop from uniformly random noise, where each input pixel is a random number between

0 and 1.0. Such a simulation is in many respects similar to the simpler model of Linsker
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Figure 6.1: Self-organization based on internally generated activity (color figure). See fig-
ure 4.8 on page 63 for the legend for each column. The parameters for the networks plotted on each
row were similar except for the training inputs, of which samples are given in (a). Spontaneously
generated retinal waves are spatially coherent with an oriented edge, like the pattern in the top left.
HLISSOM can develop a realistic orientation map from such inputs presented at random locations
(c-f). Thus even patterns without any dominant orientation can result in the development of orien-
tation selective neurons and orientation maps. Nearly all of the resulting receptive fields have two
lobes (edge-selective) rather than three (line-selective); both RF types are found in the visual cor-
tex of adult animals (Hubel and Wiesel 1968). Other sources of spontaneous activity may be better
modeled as spatially uncorrelated random noise (bottom row). HLISSOM can also develop an orien-
tation map from such noise. However, the selectivity is significantly lower (d), the orientation blob
spacing is less regular than in typical animal maps, and most neurons develop less-selective RFs (f ),
unlike those typically found in adult V1. More realistic orientation maps develop when HLISSOM
is trained on both random noise and spatially coherent patterns together (middle row). This type of
pattern is a close match to the measured retinal waves; compare (a) with figure 1.1. Even when the
noise is quite strong relative to the coherent patterns (see LGN response inb), the resulting map is
still significantly more selective than for maps trained on random noise alone (compared, middle
with the other two). The selectivity is also visible in the RFs (f ), which are only mildly affected
by the uncorrelated noise. Thus the spatially coherent blobs dominate self organization, even when
there is also uncorrelated noise. The combined patterns (Noisy Discs) will be used as a model of
internally generated activity in later figures, because they are a more realistic model of the known
internally generated patterns.
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(1986a,b,c), who also showed that orientation-selective neurons can develop from uncorre-

lated noise. Even such fully random patterns have local clusters that are brighter or darker

than their surround. These clusters lead to patches of activity in the ON channel adjacent to

patches in the OFF channel (figure 6.1(b)). The result is that orientation-selective neurons

develop even from uncorrelated noise. However, the resulting V1 map is less well orga-

nized than typically seen in animals, even at birth, and most neurons develop much lower

orientation selectivity than for the other patterns above. The lower selectivity is particularly

evident in the sample RFs, most of which would be a good match to many different oriented

lines.

These results show that even fully random activity can produce orientation maps,

but suggest that the inputs need to be spatially coherent for realistic RFs and maps to de-

velop. Thus noise alone is insufficient. Of these simulations, theNoisy Discspatterns are

both more realistic and develop maps that more closely match experimental results from

newborn animals. I will therefore use these patterns to model the prenatal phase of orienta-

tion map training in the combined prenatal and postnatal model in section 6.4.

6.3 Natural images

Even though orientation maps are present at birth, how they develop postnatally depends on

experience with real images of the visual environment. This section and figure 6.2 show that

HLISSOM can realistic orientation maps and receptive fields from natural images, which

has only been shown for a few other models so far. Moreover, the distribution of orientation

preferences that develops in HLISSOM depends on the statistical distribution of features in

different sets of images. Such dependence on the environment has been found for animal

maps (Sengpiel et al. 1999), but to my knowledge has not yet been demonstrated in models.

To be comparable with the previous simulations of spontaneous activity and with

other models using natural images, these simulations use natural images throughout the

course of self-organization, and do not include a prenatal phase with spontaneous activity.
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Although the results will show that natural images alone would be sufficient to drive the

development of orientation maps, the simulations are not a close match to biology because

they do not explain how the maps could be present at birth. In section 6.4 I will combine

natural images with internally generated inputs to model the full process of prenatal and

postnatal orientation map development, based on these results from simpler conditions.

6.3.1 Image dataset: Nature

TheNature row of figure 6.2 shows the result from training an HLISSOM map on randomly

selected36 × 36 patches of256 × 256-pixel natural images. The set of 25 images of nat-

urally occurring objects was taken by Shouval et al. (1997, 1996). The authors specifically

excluded images with prominent straight lines, to show that such lines were not required

for orientation selectivity to develop. Nearly all of these images are short-range closeups,

although there are a few wide-angle landscapes showing the horizon.

When trained on these images, the self-organized HLISSOM orientation map is

quite similar to theDiscsandNoisy Discsmaps (compare theNature row of figure 6.2

with figure 6.1). Many of the neurons have lower orientation selectivity than for the artificial

stimuli, which is expected because the natural images contain many patterns other than pure

edges. Even so, most of the RFs are orientation selective, as found in V1 of animals.

Unlike in the networks trained on artificially generated stimuli, the distribution of

orientation preferences in the HLISSOMNature map is slightly biased towards horizontal

and vertical orientations. This result suggests that the distribution of orientation preferences

in both the model and in animals reflects the over-representation of vertical and horizontal

contours in the natural environment (Switkes et al. 1978). The subsection below explores

this dependence in more detail, because it illustrates why postnatal learning is important.
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Figure 6.2: Orientation maps develop with natural images (color figure). See figure 4.8 for
the legend for each column. The networks plotted on each row were similar except for the set of
training images used. The network in the top row was trained on images of natural objects and
(primarily) close-range natural scenes, from Shouval et al. (1997, 1996). It develops a realistic
orientation map, albeit with a lower selectivity than for the artificial stimuli. The lower selectivity
is unsurprising, because the natural stimuli have many unoriented features. The map is slightly
biased towards horizontal and vertical orientations (e), as is the natural environment (Switkes et al.
1978). Other image databases with different distributions of oriented patterns can have very different
results. The second row shows results for a set of stock photographs from the National Park Service
(1995), which are primarily landscapes with abundant horizontal contours. The resulting map is
dominated by neurons with horizontal orientation preferences (red), with a lesser peak for vertical
orientations (cyan). Results with a database of upright human faces have the opposite pattern, with
a strong peak at vertical and a lesser peak at horizontal (bottom row). Thus HLISSOM can self-
organize orientation maps and receptive fields from natural images, and the resulting maps reflect the
statistics of the image dataset. Later simulations combining natural inputs with internally generated
patterns will show that this natural image learning can account for postnatal learning of contours in
the environment.
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6.3.2 Effect of strongly biased image datasets: Landscapes and Faces

Raising animals in artificial environments that are biased towards certain orientations leads

leads to a bias in the distribution of orientation-selective cells in V1 (Blakemore and Cooper

1970; Sengpiel et al. 1999). To model being raised in different environments, albeit ones

less extreme than in those studies, two networks similar to theNature map were trained on

images of landscapes and faces, respectively. The landscapes images were a set of 58 stock

photos from the National Park Service (1995). Nearly half of the images in this set are wide-

angle photos showing the horizon or other strong horizontal contours; a few also include

man-made objects such as fences. The face images are a set of 30 frontal photographs of

upright human faces (Achermann 1995). The HLISSOM map resulting from each image

set is shown in theLandscapesandFacesrows of figure 6.2.

The Landscapesmap is strongly biased toward horizontal contours, with a much

weaker bias for vertical. These biases are visible in the orientation map, which is dominated

by red (horizontal) and, to a lesser extent, cyan (vertical). The opposite pattern of biases is

found for theFacesmap, which is dominated by cyan (vertical), and to a lesser extent, red

(horizontal). These divergent results replicate the single-unit results found in cats raised in

skewed environments (Blakemore and Cooper 1970). They also replicate the recent finding

that such animals have orientation maps with enlarged orientation domains for the orienta-

tions overrepresented in the environment (Sengpiel et al. 1999). Thus the HLISSOM model

shows how different environments can influence the development of orientation maps. The

result is that the most common contours in the environment are the most well-represented

in visual cortex.

6.4 Prenatal and postnatal development

The preceding simulations use only a single type of inputs (either artificial or images)

throughout training, to show how each type of input affects development. This section
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shows that presenting the most realistic internally generated pattern model (theNoisy Discs),

followed by natural images representing postnatal experience, can account for much of the

prenatal and postnatal development of orientation selectivity.

Figure 6.3 demonstrates that (1) an initial map can be self-organized using prenatal

patterns, (2) it can smoothly self-organize postnatally with natural images to improve se-

lectivity, and (3) the postnatal learning will closely match the properties of the map to the

statistical properties of the natural images. Interestingly, the early postnatal development of

the HLISSOM map after iteration 1000 was similar whether internally generated patterns

or typical natural images were used. This result replicates Crair et al.’s (1998) finding that

normal visual experience typically has only a small effect on map development in kittens,

and that similar maps developed whether the eyes were open or closed. Yet atypical col-

lections of natural images can cause readily visible changes in the map, which replicates

findings from kittens raised with abnormal visual experience (Blakemore and Cooper 1970;

Sengpiel et al. 1999).

Figure 6.4 specifically compares the maps after prenatal and postnatal training to

maps measured at birth and adulthood in animals. The self-organized map is very similar

to that found in newborn ferrets and binocularly deprived cats (Chapman et al. 1996; Crair

et al. 1998), showing that even simple internally generated inputs can account for the initial

orientation map. The individual receptive fields that develop are also good approximations

to simple cells in monkey and cat visual cortex (Hubel and Wiesel 1962, 1968). Finally,

figure 6.5 shows that postnatal training on natural images causes the HLISSOM map to

develop a bias for horizontal and vertical contours, and that the bias matches that found

in orientation maps of adult ferrets (Chapman and Bonhoeffer 1998; Coppola et al. 1998).

Thus HLISSOM can explain the animal results, and both phases are necessary to account

for the experimental data: internally generated patterns before birth, and experience with

natural images after birth.
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(a) 0: Initial map (b) 1000: End of
prenatal training

(c) 2500: During
postnatal training

(d) 10,000: End of
postnatal training

Figure 6.3: Postnatal training makes orientation map match statistics of the environment
(color figure). Each row shows results from a network trained for 1000 iterations on theNoisy
Discs patterns from figure 6.1 as a model of internally generated activity, then trained for 9000
further iterations using natural images to model postnatal visual experience. The orientation map
plots (b-d) show selectivity as a brightness level, so that the postnatal improvement in selectivity
will be visible. (a) and (b) are the same in each row. The top row shows the effect of postnatal
training on theNature dataset. With these images, more neurons become sensitive to horizontal
and vertical contours, and the overall selectivity increases. However, the overall map shape remains
similar, as found in laboratory animals (Chapman et al. 1996; compare individual blobs between
maps right to left or left to right). The postnatal changes when trained on theLandscapesdataset
are similar but much more pronounced. With these images the network smoothly develops strong
biases for vertical and horizontal contours, within the pre-determined map shape. These results show
that postnatal learning can gradually adapt the prenatally developed map to match the statistics of
an animal’s natural environment, while explaining how a genetically specified orientation map can
be present at birth.

6.5 Discussion

The results in this chapter show that prenatal training on internally generated activity, fol-

lowed by postnatal training on natural images, can account for much of the development

of orientation maps, orientation selectivity, receptive fields, and lateral connections in V1.
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(a) Prenatal map detail (b) Neonatal cat (1.9 × 1.9mm)

(c) Adult map (d) Adult monkey (5 × 5mm)

Figure 6.4:Prenatal and postnatal maps match animal data (color figure). After 1000 iterations
of prenatal training, theNature network from figure 6.3 has developed a rudimentary orientation
map. Plot (a) shows the central30×30 region of this map, and plot (b) shows a map measured from
a cat without prior visual experience. (Reprinted with permission from Crair et al. (1998), copyright
1998, American Association for the Advancement of Science.) After postnatal training on natural
images, the full96× 96 map is quite similar to measurements from experimental animals, including
the monkey cortex shown here. (Reprinted with permission from Blasdel 1992b, copyright 1992
by the Society for Neuroscience). Thus the HLISSOM model explains both the prenatal and adult
orientation maps found in experimental animals, as self-organization from internally generated and
environmental stimuli.
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0◦ 45◦ 90◦ 135◦ 180◦

(a) HLISSOM model

0◦ 45◦ 90◦ 135◦ 180◦

(b) Adult ferret

Figure 6.5: Orientation histogram matches experimental data. (a) Histogram of orientation
preferences for theNature network from figure 6.4 and the top row of figure 6.3, which was trained
first onNoisy Discsand then on theNature dataset. (b) Corresponding histogram for a typical adult
ferret visual cortex (reprinted from Coppola et al. 1998; copyright National Academy of Sciences,
U.S.A.; used with permission.) Both adult ferrets and the HLISSOM model trained on natural im-
ages have more neurons representing horizontal or vertical than oblique contours, which reflects the
statistics of the natural environment. HLISSOM maps trained on internally generated patterns alone
show an approximately flat distribution instead, because they were shown an unbiased distribution
of input patterns (round discs and/or random noise).

The same activity-dependent learning rules can explain development based on both types

of neural activity, internally and externally generated.

Both types of activity appear to serve important roles in this developmental process,

and in particular both are crucial for replicating the experimental data. Postnatal experi-

ence with environmental stimuli ensures that the map faithfully represents the environment,

while prenatal development ensures that the map is functional even at eye opening. Prena-

tal development may also be important for the development of higher areas connected to

V1 (e.g. V2 and V4), because it ensures that the map organization in V1 is approximately

constant after birth (figure 6.3). As a result, the higher areas can begin learning appropriate

connection patterns with V1 even before eye opening.

Comparing orientation maps and RFs trained on random noise versus those trained

on images, discs, or Gaussians suggests that oriented features are needed for realistic RFs.

Even though maps can develop without such features, the RFs do not match those typi-

cally measured in animals. A similar result was recently found independently by Mayer,
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Herrmann, and Geisel (2001) using single RF simulations. However, Mayer et al. (2001)

conclude that natural images are required for realistic RFs, because they did not consider

patterns like theNoisy Discs. The results here suggest that any pattern with large, coherent

blobs of activity will suffice, and thus that natural images are not strictly required for RF

development.

In animals, the map present at eye opening is more noisy and and has fewer selective

neurons than the prenatally trained maps shown in figures 6.3 and 6.4 (Chapman et al.

1996; Crair et al. 1998). As a result, in animals the postnatal improvement in selectivity is

larger than that shown here for HLISSOM. The difference may result from the immature

receptive fields in the developing LGN (Tavazoie and Reid 2000). Using a more realistic

model of the developing LGN would result in a larger postnatal improvement, but would

make the model significantly more complex to analyze. Other factors that could contribute

to the lower selectivity at birth include the greater variability of cortical responses in infants,

which will cause a lower apparent selectivity. Such behavior could be modeled by adding

internal noise to the prenatal neurons, which again would make the model more complex to

analyze but could provide a closer match to the biological case.

A recent study has also reported that the distribution of orientation selective cells

matches the environment even in very young ferrets, i.e. that horizontal and vertical orien-

tations are over-represented in orientation maps at eye opening (Chapman and Bonhoeffer

1998). One possible explanation for these surprising results is the non-uniform distribution

of retinal ganglia along the horizontal and vertical meridians in the retina (Coppola et al.

1998), which could bias the statistics of internally generated patterns. Regardless of such a

prenatal bias, HLISSOM shows how visual experience will also drive the map to develop

preferences that match the visual environment.

93



6.6 Conclusion

Overall, the HLISSOM results show that internally generated activity and postnatal learn-

ing can together explain much of the development of orientation preferences. Either type

of activity alone can lead to orientation maps, but only with realistic prenatal activity and

postnatal learning with real images could the model account for the full range of experi-

mental results. These studies also allowed the HLISSOM model to be tested and tuned in a

domain that has abundant experimental data for validation, so that it can later be applied to

other domains.
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Chapter 7

Prenatal Development of Face

Detection

In the previous chapter, I showed how internally generated patterns and visual experience

can explain prenatal and postnatal development of orientation preferences in V1, a relatively

well-studied area. In this chapter and the next I will apply the same ideas to the development

of face detection. I focus first on prenatal development, showing how internally generated

activity can explain newborn face preferences. Chapter 8 will then model postnatal experi-

ence with real faces, and show that such learning can account for experimental results with

older infants.

7.1 Goals

The prenatal face detection simulations in this chapter will demonstrate that:

1. A scaled-up HLISSOM model of V1 can extract the local orientations in large natural

images, which means that it can be used as the first cortical stage in a hierarchical

model of the visual system (section 7.2.1).

2. With this V1 map and internally generated activity, a higher level map can develop
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three-dot preferences. This result shows that a hierarchy of brain areas can self-

organize and function at a detailed, realistic neural level (section 7.2.2).

3. Specific feature preferences at the different levels of the hierarchy can replicate the

the reported newborn schematic pattern preferences, facelike and non-facelike (sec-

tion 7.3.1).

4. Preferences for three-dot patterns result in significant preference for faces in natural

images (section 7.3.2).

5. The shape of the internally generated patterns is important, but it does not need to be

precisely controlled to result in face preferences (section 7.3.3).

Together, these results show that a system like the CONSPEC three-dot conceptual

model of face detection from Johnson and Morton (1991; described in section 3.3.5) can be

implemented and tested computationally. Moreover, they provide a specific, plausible way

that such a system for face detection could be constructed in the developing brain.

7.2 Experimental setup

As illustrated in figure 4.1 on page 49, newborn face detection experiments used multiple

cortical levels, including both V1 and the FSA (face-selective area). They also included

multiple input regions, the photoreceptors and the PGO generating area.

Previous developmental models have been tested only for the small areas typical of

the networks in chapters 4–6. However, the newborn face experiments that will be modeled

in this chapter presented head-sized stimuli at a distance of about 20cm from the baby’s

eyes. As a result, the stimuli filled a substantial portion of the visual field (about 45◦).

To model behavior at this scale, the scaling equations were used to scale up theDiscs

simulation from figure 6.1 to model a very large V1 area (approximately 1600 mm2 total)

at a relatively low sampling density per mm2 (approximately 50 neurons/mm2). The cortical
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density was first reduced to the minimum value that would show an orientation map that

matches animal maps (36× 36), and then the visual area was scaled to be just large enough

to cover the visual images to be tested (288× 288, i.e. width×8 and height×8). The FSA

size was less crucial, and was set arbitrarily at36× 36. The FSA RF size was scaled to be

large enough to span the central portion of a face.

The resulting network consisted of438 × 438 photoreceptors,220 × 220 PGO

generator units,204× 204 ON-center LGN units,204× 204 OFF-center LGN units,288×

288 V1 units, and36 × 36 FSA units, for a total of 408,000 distinct units. There were

80 million connections total in the two cortical sheets, which required 300 megabytes of

physical memory.

The RF centers of neurons in the FSA were mapped to the central160× 160 region

of V1 such that even the units near the borders of the FSA had a complete set of afferent

connections on V1, with no FSA RF extending over the outside edges of V1. V1 was simi-

larly mapped to the central192 × 192 region of the LGN channels, and the LGN channels

to the central384 × 384 region of the photoreceptors and the central192 × 192 region of

the PGO generators.1 In the figures in this chapter, only the area mapped directly to V1

will be shown, to ensure that all plots have the same size scale. The input pattern size on

the retina was based on measurements of the preferred spatial frequency of newborns, as

cited by Valenza et al. (1996). That is, inputs were presented at the spatial scale where the

frequency most visible to newborns produced the largest V1 response in the model.

7.2.1 Development of V1

V1 was self-organized for10, 000 iterations on 11 randomly located circular discs per iter-

ation, each 50 units wide (figure 7.1a). These patterns were used for simplicity rather than

Noisy discsor a combination of discs and images, because the focus of these simulations

is on the development of the higher-level FSA region. The background activity level was

1Note that the photoreceptors are modeled as having uniform density for simplicity; there is no increase in
sampling density in the fovea.
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(a) Generated pattern (b) LGN activity (c) V1 activity after training

(d) Afferent weights of one V1
neuron

(e) Final V1 orientation map (f ) Detail of orientation map (e)

Figure 7.1:Large-scale orientation map training (color figure). These figures show a scaled-
up version of theDiscssimulation from figure 6.1, 8 times wider and 8 times taller. At this scale,
the afferent weights of each neuron span only a small portion of the retina (d), and the orientation
map has many more oriented blobs total (e). Zooming in on the central36 × 36 portion (f ) of the
288 × 288 map (e) shows that the underlying structure of the orientation map is similar to those
in the previous chapter. The plot appears blockier, because the neuron density was reduced to the
smallest acceptable value, so that the network would be practical to simulate. Plot (c) shows that the
orientation of each neuron that responds to the input is still a good match to the orientation present
at that retinal location, and thus that this network is a reasonable approximation to a large area of
V1 and the retina. Figure 7.2 will show similar results for this network using natural images.

0.5, and the brightness of each disc relative to this surround (either +0.3 or -0.3) was chosen

randomly. The borders of each disc were smoothed into the background level following a

Gaussian of half-widthσ = 1.5. After 10, 000 iterations (10 hours on a 600MHz Pentium

III workstation), the scaled-up map shown in figure 7.1e emerged. Figure 7.2 shows that
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(a) Sample visual image (b) LGN response (c) V1 response

Figure 7.2:Large-area orientation map activation (color figure). The scaled-up orientation map
works well with natural images; each V1 neuron responds if there is a line or edge of its preferred
orientation at the corresponding location in the retina. Because the V1 activations preserve the
important features of the input, the output from V1 can be used as the input to a higher-level map.
As suggested by figure 4.9, earlier models like RF-LISSOM will instead have a broad, unspecific
response to natural images, even if they have realistic orientation maps.

this scaled-up model will extract the salient local orientations in large images, which has

not yet been demonstrated for other models of V1 development.

7.2.2 Development of the FSA

After the V1 training, its weights were fixed to their self-organized values, and the FSA

was allowed to activate and learn from the V1 responses. The FSA was self-organized

for 10, 000 iterations using two triples of circular dots per iteration, each arranged in a

triangular face-like configuration (figure 7.3a). Each dot was 20 PGO units wide, and was

0.3 units darker than the surround, which itself was 0.5 on a scale of 0 to 1.0. Each triple

was placed at a random location whose center was at least 118 PGO units away from the

centers of others (to avoid overlap), with a random angle drawn from a narrow (σ = π/36

radians) normal distribution around vertical.

Because the face preferences found in newborns have all been for faces of approx-

imately the same size (life-sized at a distance of around 20 cm), only a single training

pattern size was used. As a result, the model will only be able to detect face-like patterns

99



at one particular size scale. If response to multiple face sizes (i.e., distances) is desired,

the spatial scale of the training patterns can be varied during self-organization (Sirosh and

Miikkulainen 1996). However, the FSA in such a simulation would need to be much larger

to represent the different sizes, and the resulting patchy FSA responses would require more

complex methods of analysis.

Using these three-dot patterns, the FSA was self-organized for10, 000 iterations

(13 hours on a 600MHz Pentium III workstation). The result was the face-selective map

shown in figure 7.3h, consisting of an array of neurons that respond most strongly to pat-

terns similar to the training patterns. Despite the overall similarities between neurons, the

individual weight patterns are unique because each neuron targets specific orientation blobs

in V1. Such complicated patterns would be difficult to specify and hardwire, but they arise

naturally from internally generated activity.

As FSA training completed, the activation threshold (i.e.β in figure 4.5) was specif-

ically set to a high value, which ensures that only patterns that are a strong match to an FSA

neuron’s weights will activate it. This way, the presence of FSA activity can be interpreted

unambiguously as an indication that there is a face at the corresponding location in the

retina, which will be important for measuring the face detection ability of the network.

The cortical maps were then tested on natural images and with the same schematic

stimuli on which human newborns have been tested (Goren et al. 1975; Johnson and Mor-

ton 1991; Simion et al. 1998b; Valenza et al. 1996). Schematic images were scaled to a

brightness range (difference between the darkest and lightest pixels in the image) of 1.0.

Natural images were scaled to a brightness range of 2.5, so that facial features in images

with faces would have a contrast comparable to that of the schematic images. The different

scales model different states of contrast adaptation mechanisms in the retina that have not

been implemented explicitly in this model.
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(a) Generated pattern (b) LGN activity (c) V1 activity before
FSA training

(d) Afferent weights of
one FSA neuron

(e) FSA response before
training

(f ) FSA response after
training

(g) Initial map (h) Trained map

Figure 7.3: Training the FSA face map. (a) For training, the input consisted of simple three-
dot configurations with random nearly vertical orientations presented at random locations in the
PGO layer. These patterns were chosen based on the experiments of Johnson and Morton (1991).
(b-c) The LGN and V1 sheets compute their responses based on this input. Initially, FSA neurons
will respond to any activity in their receptive fields (e), but after training only neurons with closely
matching RFs respond (f ). Through self-organization, the FSA neurons develop RFs (d) that are
selective for a range of V1 activity patterns like those resulting from the three-dot stimuli. The
RFs are patchy because the weights target specific orientation blobs in V1. This match between
the FSA and the local self-organized pattern in V1 would be difficult to ensure without training on
internally generated patterns. Plots (g) and (h) show the afferent weights for every third neuron in
the FSA. All neurons develop roughly similar weight profiles, differing primarily by the position of
their preferred stimuli on the retina and by the specific orientation blobs targeted in V1. The largest
differences between RFs are along the outside border, where the neurons are less selective for three
dot patterns. Overall, the FSA develops into a face detection map, signaling the location of face-like
stimuli.

7.2.3 Predicting behavioral responses

The HLISSOM model provides detailed neural responses for each neural region. These

responses constitute predictions for future electrophysiological and imaging measurements

in animals and humans. However, the data currently available for infant face perception is
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behavioral. Specifically, it consists of newborn attention preferences measured from visual

tracking distance and looking time. Thus, validating the model on this data will require

predicting a behavioral response based on the simulated neural responses.

As a general principle, I hypothesize that newborns pay attention to the stimulus

whose overall neural response most clearly differs from typical stimuli. This idea can be

quantified as

a(t) =
F (t)
F

+
V (t)
V

,+
L(t)
L

, (7.1)

wherea(t) is the attention level at timet, X(t) is the total activity in regionX at that time,

X is the average (or median) activity of regionX over recent history, andF , V , andL

represent the FSA, V1, and LGN regions, respectively. Because most stimuli activate the

LGN and V1 but not the FSA, when a pattern evokes activity in the FSA newborns would

attend to it more strongly. Yet stimuli evoking only V1 activity could still be preferred over

facelike patterns if their V1 activity is much higher than typical.

Unfortunately, such a formula is difficult to calculate in practice, because the order

of presentation of the stimuli in newborn experiments is not generally known. As a result,

the average or median value of patterns in recent history is not available. Furthermore, the

numerical preference values computed in this way will differ depending on the specific set

of patterns chosen, and thus will be different for each study.

Instead, for the simulations below I will use a categorical approach inspired by

Cohen (1998) that should yield similar results. Specifically, I will assume that when two

stimuli both activate the model FSA, the one with the higher total FSA activation will be

preferred. Similarly, with two stimuli activating only V1, the higher total V1 activation

will be preferred. When one stimulus activates only V1 and another activates both V1

and the FSA, I will assume that the newborn will prefer the pattern that produces FSA

activity, unless the V1 activity is vastly greater than for typical patterns (as it is e.g. for

a checkerboard pattern). Using these guidelines, the computed model preferences can be

validated against the newborn’s looking preferences, to determine if the model shows the
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same behavior as the newborn.

7.3 Face preferences after prenatal learning

This section presents the model’s response to schematic patterns and real images after it has

completed training on the internally generated patterns. The response to each schematic

pattern is compared to behavioral results in infants, and the responses to real images con-

stitute predictions for future experiments.

7.3.1 Schematic patterns

Figures 7.4 and 7.5 show that the model responses match the measured stimulus preference

of newborns remarkably well, with the same relative ranking in each case where infants

have shown a significant preference between schematic patterns. These figures and the

rankings are the main result from this simulation. I will next analyze each of the categories

of preference rankings, to show what parts of the model underlie the pattern preferences.

Most non-facelike patterns activate only V1, and thus the preferences between those

patterns are based only on the V1 activity values (figure 7.4a,e-i; 7.5f -i). Patterns with

numerous high-contrast edges have greater V1 response, which explains why newborns

would prefer them. These preferences are in accord with the simple LSM model, because

they are based only on the early visual processing (section 3.3.1).

Face-like schematic patterns activate the FSA, whether they are realistic or simply

patterns of three dots (figure 7.4c-d; 7.5d,c,a,b). The different FSA activation levels reflect

the level of V1 response to each pattern, not the precise shape of the face pattern. Again the

responses explain why newborns would prefer patterns like the three-square-blob face over

the oval-blob face, which has a lower edge length. The preferences between these patterns

are also compatible with the LSM, because in each case the V1 responses in the model

match newborn preferences.

The comparisons between facelike and non-facelike patterns show how HLISSOM

103



R
et

in
a

LG
N

V
1

F
S

A

2728

0.0

(a)

927

5.8

(b)

836

5.5

(c)

664

4.0

(d)

1094

0.0

(e)

994

0.0

(f )

931

0.0

(g)

807

0.0

(h)

275

0.0

(i)

Figure 7.4: Human newborn and model response to Goren et al.’s (1975) and Johnson et
al.’s (1991) schematic images.The Retina row along the top shows a set of patterns as they are
drawn on the photoreceptor sheet. These patterns have been presented to newborn human infants
on head-shaped paddles moving at a short distance (about 20cm) from the newborn’s eyes, against
a light-colored ceiling. In the experimental studies, the newborn’s preference was determined by
measuring the average distance his or her eyes or head tracked each pattern, compared to other
patterns. Below,x>y indicates that imagex was preferred over imagey under those conditions.
Goren et al. (1975) measured infants between 3 and 27 minutes after birth. They found thatb>f>i
and b>e>i. Similarly, Johnson et al. (1991), in one experiment measuring within one hour of
birth, foundb>e>i. In another, measuring at an average of 43 minutes, they foundb>e, andb>h.
Finally, Johnson and Morton (1991), measuring newborns an average of 21 hours old, found that
a>(b,c,d), c>d, andb>d. The HLISSOM model has the same preference for each of these patterns,
as shown in the images above. The second row shows the model LGN activations (ON minus
OFF) resulting from the patterns in the top row. The third row shows the V1 activations, with the
numerical sum of the activities shown underneath. If one unit were fully active, the sum would be
1.0; higher values indicate that more units are active. The bottom row shows the settled response of
the FSA. Activity at a given location in the FSA corresponds to a face-like stimulus at that location
on the retina, and the sum of this activity is shown underneath. The images are sorted left to right
according to the preferences of the model. The strongest V1 response by nearly a factor of three
is to the checkerboard pattern (a), which explains why the newborn would prefer that pattern over
the others. The face-like patterns (c-d) are preferred over patterns (e-i) because of activation in the
FSA. The details of the face-like patterns do not significantly affect the results — all of the facelike
patterns (c)–(d) lead to FSA activation, generally in proportion to their V1 activation levels. The
remaining patterns are ranked by their V1 activity alone, because they do not activate the FSA. In all
conditions tested, the HLISSOM model shows behavior remarkably similar to that of the newborns,
and provides a detailed computational explanation for why these behaviors occur.
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Figure 7.5:Response to schematic images from Valenza et al. (1996) and Simion et al. (1998a).
Valenza et al. measured preference between static, projected versions of pairs of the schematic im-
ages in the top row, using newborns ranging from 24 to 155 hours after birth. They found the
following preferences:d>f , d>g, f>g, andh>i. Simion et al. similarly found a preference ford>g
andb>e. The LGN, V1, and FSA responses of the model to these images are displayed here as in
figure 7.4, and are again sorted by the model’s preference. In all cases where the newborn showed a
preference, the model preference matched it. For instance, the model FSA responds to the face-like
pattern (d) but not to the inverted version (g). Patterns that closely match the newborn’s preferred
spatial frequencies (f ,h) caused a greater V1 response than their corresponding lower-frequency
patterns (g,i). Some non-face-like patterns with high-contrast borders can cause spurious FSA acti-
vation (e), because part of the border completes a three-dot pattern. Such spurious responses did not
affect the predicted preferences, because they are smaller than the genuine responses. See figure 7.6
for more details on how spurious responses typically arise. Interestingly, Simion et al. found no
preference between (a) and (i) in 1–6-day-old infants. The model predicts that (a) would be pre-
ferred at birth, due to the FSA response, and that the lack of preference in older infants is due to
postnatal learning of face outlines.

predictions differ from the LSM. HLISSOM predicts that the patterns that activate the FSA

would be preferred over those activating only V1, except when the V1 response is highly

anomalous. Most V1 responses are very similar, and so the patterns with FSA activity

should be preferred over most of the other patterns, as found in infants. However, the

checkerboard pattern (7.4a) has nearly three times as much V1 activity as any other similar

pattern. Thus HLISSOM explains why the checkerboard would be preferred over other
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patterns, even ones that activate the FSA.

Because the RFs in the model are only a rough match to the schematic patterns,

the FSA can have spurious responses to patterns that do not look like faces. For instance,

the inverted three-dot pattern in Figure 7.5e activated the FSA, because part of the square

outline filled in for the missing third dot of an upright pattern. Figure 7.6 shows that such

spurious responses should be expected with inverted patterns, even if neurons prefer upright

patterns. This result may explain why some studies have not found a significant difference

between upright and inverted three-dot patterns (e.g. Johnson and Morton 1991). Because

of the possibility of such spurious effects, future studies should include additional controls

besides inverted three-dot patterns.

Interestingly, the model also showed a clear preference in one case where no sig-

nificant preference was found in newborns (Simion et al. 1998a): for the upright 3-blob

pattern with no face outline (figure 7.5a), over the similar but inverted pattern (7.5i). The

V1 responses to both patterns are similar, but only the upright pattern has an FSA response,

and thus the model predicts that the upright pattern would be preferred.

This potentially conflicting result may be due to postnatal learning rather than ca-

pabilities at birth. As will be shown in the next chapter, postnatal learning of face outlines

can have a strong effect on FSA responses. The newborns in the Simion et al. study were

already 1–6 days old, and e.g. Pascalis et al. (1995) showed that newborns within this age

range have already learned some of the features of their mother’s face outline. Thus the

HLISSOM model predicts that if younger newborns are tested, they will show a prefer-

ence for upright patterns even without a border. Alternatively, the border may satisfy some

minimum requirement on size or complexity for patterns to attract a newborn’s interest. If

so, the HLISSOM procedure for deriving a behavioral response from the model response

(section 7.2.3) would need to be modified to include such a constraint.

Overall, these results provide strong computational support for the speculation of

Johnson and Morton (1991) that the newborn could simply be responding to a three-dot
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Figure 7.6:Spurious responses with inverted three-dot patterns.Several studies have used an
inverted three-dot pattern as a non-facelike control for an upright three-dot pattern (e.g. Johnson and
Morton 1991; Simion et al. 1998a; Valenza et al. 1996). However, the results here show that this
pattern does not make a good control, because of the many axes of symmetry of a three-dot pattern.
These symmetries may explain why Johnson and Morton (1991) found no significant difference
between the upright and inverted patterns, while Simion et al. (1998a) and Valenza et al. (1996)
found that the upright pattern was preferred. TheFSA row above is the same as in figure 7.5, and
shows that HLISSOM prefers the facelike upright pattern to the control. However, the preference
is sensitive to the value of the FSA thresholdδ and the FSA input scaleγA. For instance, ifγA is
increased by 30%, the model FSA will respond more strongly to the inverted pattern (rowFSA-Hi).
As expected, the inverted pattern is not as good a match for any single neuron’s weights, so the blobs
of FSA activity are always smaller for the inverted pattern. However, with a high enoughγA, the
FSA responds in three different places (b), compared to only one for the upright pattern (a). These
FSA responses resemble an upright face pattern, but the resemblance is merely coincidental because
the retinal stimulus was inverted. Together the three small responses outweigh the single larger
response, assuming that the total sum (and not the peak) activity is what determines preferences.
Figure (e) shows that the three smaller responses are due to matching any two out of the three
possible blobs. In (e) I have marked the FSA responses on top of the retinal pattern as three small
dots. I have also drawn an outline around each of the possible upright three-dot patterns that these
responses represent. That is, each response represents one of the three overlapping upright patterns
that share two dots with the inverted pattern. As shown in later figures, similar spurious responses
can occur in real images when only one or two facial features are matched, if other image features
(such as parts of the face or hair outline) form a partial match for the missing features. For the
other HLISSOM results with schematics, I setγA to a value low enough to prevent such spurious
responses, which ensures that FSA neurons respond only to patterns that are a good match to their
(upright) RFs. For humans, theγA value represents the state of contrast adaptation at a given time,
which will vary depending on the recent history of patterns seen (cf. Albrecht et al. 1984; Turrigiano
1999). Thus these results suggest that infants will have no preference (or will prefer the inverted
pattern) if they are tested on the high-contrast schematic patterns while being adapted to the lower
contrast levels typical of the environment. For instance, an experimental protocol where there is a
long time between schematic presentations could have such an effect. Because such adaptation is
difficult to control in practice, the inverted pattern is a problematic comparison pattern – negative
results like those of Johnson and Morton (1991) may be due to temporary contrast adaptation instead
of genuine, long-term pattern preferences.
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face-like configuration, rather than performing sophisticated face detection. Internally gen-

erated patterns provide an account for how such “innate” machinery can be constructed

during prenatal development.

7.3.2 Real face images

Most researchers testing newborns with schematic patterns assume that the responses to

schematics are representative of responses to real faces. However no experiment has yet

tested that assumption by comparing real faces to similar but non-facelike controls. HLIS-

SOM makes testing real faces practical, which is an important way to determine the sig-

nificance of the behavioral data. The other model for newborn face preferences has not

yet been tested with natural images (Acerra et al. 2002), but the results reported here can

be compared with future tests of that model. The examples in figure 7.7 show that the

prenatally trained HLISSOM model works remarkably well as a face detector for natural

images. The response is similar across a range of size scales and viewpoints, as shown in

figure 7.8. This range is sufficient to account for typical newborn experiments, which have

used a small range of size scales and only frontal views.

The face detection performance of the map was tested quantitatively using two im-

age databases: a set of 150 images of 15 adult males without glasses, photographed at the

same distance against blank backgrounds (Achermann 1995), and a set of 58 non-face im-

ages of various natural scenes (National Park Service 1995). The face image set contained

two views of each person facing forwards, upwards, downwards, left, and right; figure 7.7a

shows an example of a frontal view, and other views are shown in figure 7.8. Each natu-

ral scene was presented at 6 different size scales, for a total of 348 non-face presentations.

Overall, the results indicated very high face detection performance: the FSA responded to

91% (137/150) of the face images, but to only 4.3% (15/348) of the natural scenes.

Because the two sets of real images were not closely matched in terms of lighting,

backgrounds, and distances, it is important to analyze the actual response patterns to be sure
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Figure 7.7:Model response to natural images.The top row shows a sample set of photographic
images. The LGN, V1, and FSA responses of the model to these images are displayed as in fig-
ures 7.4 and 7.5. The FSA is indeed activated at the correct location for most top-lit faces of the
correct size and orientation (e.g.a-d). Image (a) is an example of one frontal view from the the
Achermann (1995) database, which also included the other viewpoints shown in figure 7.8. For this
database, 88% of the faces resulted in FSA activity in the correct location. Just as important, the
network is not activated for most natural scenes (f -g) and man-made objects (h). For example, the
FSA responded to only 4.3% of 348 presentations of landscapes and other natural scenes from the
National Park Service (1995). Besides human faces, the FSA responds to patterns causing a V1
response similar to that of a three-dot arrangement of contours (d,i), including related patterns such
as dog and monkey faces (not shown). Response is low to images where hair or glasses obscures
the borders of the eyes, nose, or mouth, and to front-lit downward-looking faces, which have low
V1 responses from nose and mouth contours (e). The model predicts that newborns would show
similar responses if tested. Credits: (a) copyright 1995 Bernard Achermann, (b-e) public domain;
(f -i) copyright 1999-2001, James A. Bednar.

that the differences in the overall totals are genuine. The FSA responded with activation in

the location corresponding to the center of the face in 88% (132/150) of the face images.

At the same time, the FSA had spurious responses in 27% (40/150) of the face images,

i.e. responses in locations other than the center of the face. Nearly half of the spurious

responses were from the less-selective neurons that line the outer border of the model FSA

(see figure 7.3h); these responses can be ignored because they would be absent in a model of

the entire visual field. Most of the remaining spurious responses resulted from a genuine V1
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Figure 7.8: Variation in response with size and viewpoint. The three-dot training pattern of
HLISSOM matches most closely to a single size scale and an upright frontal view. However, it
also responds to a range of other sizes (a-e). Here the responses of the model are again displayed
as in figures 7.4-7.7. Newborns have only been tested with a small range of sizes, and the range
of patterns to which HLISSOM responds is sufficient to explain those, even using a single-sized
training pattern. The network is also insensitive to moderate changes in viewpoint (f -i), responding
in the correct FSA location to 88% of this set of 150 images consisting equally of front, left, right, up,
and down views. Most of these viewpoints give similar responses, with the biggest difference being
that 100% of the faces looking upwards were detected correctly, but only 80% of those looking
downward were. Overall, HLISSOM predicts that newborns will respond to real faces even with
moderate variation of sizes and viewpoints, as long as they are lit from above like these images.

eye or mouth response plus V1 responses to the hair or jaw outlines. If present in humans,

such responses would actually serve to direct attention to the general region of the face, and

thus contribute to face preferences, although they would not pinpoint the precise center.

For the natural scenes, most of the responses were from the less-selective neurons along

the border of the FSA, and those responses can again be ignored. The remainder were in

image regions that coincidentally had a triangular arrangement of three contour-rich areas,

surrounded by smooth shading.

In summary, the FSA responds to most top-lit human faces of about the right size,

signaling their location in the visual field. It does not respond to most other stimuli, except
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when they contain accidental three-dot patterns. The model predicts that human newborns

will have a similar pattern of responses in the face-selective cortical regions.

7.3.3 Effect of training pattern shape

The preceding sections show that a model trained on a triangular arrangement of three

dots can account for face preferences at birth. This pattern was chosen based on Johnson

and Morton’s hypothesis that a hard-wired region responding to this pattern might explain

newborn preferences. However, the actual shape of most internally generated activity in

humans is unknown, and like retinal waves, the shape may not be very precisely controlled

in general. Thus it is important to test other possible training pattern shapes, to see what

range of patterns can produce similar results.

Accordingly, I ran a series of simulations using a set of nine patterns that I chose

to be similar in overall size and shape to the three-dot patterns. The specific patterns are

shown in theRetina row of figure 7.9. Matching the size is crucial to make the networks

comparable, because only a single sized training pattern is used in each network.

To make training and testing so many networks practical, I developed a simpler

model without V1 that requires much less time and memory for each simulation (13 megabytes

of memory and 40 minutes of training time for self-organization). Without V1, the model

does not provide numerical preferences between the non-facelike patterns (i.e., those that

activate V1 but not the FSA), but activity in the FSA allows facelike patterns to be distin-

guished from other types, which is sufficient to measure the face selectivity of each network.

Specifically, the face selectivitySF was defined as the proportion of the average

responseηF to a set of facelike patterns, out of the response to those patterns and the average

responsesηN to a set of non-facelike control patterns:

SF =
∑

ηF∑
ηF +

∑
ηN

. (7.2)

A value of 1.0 indicates a strong preference for facelike patterns. It means that of the

patterns tested, only the facelike patterns caused any FSA response. Values less than 0.5
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Figure 7.9:Effect of the training pattern on face preferences.This figure shows results from nine
matched face detection simulations using easier-to-simulate networks without V1 (photoreceptors,
LGN, and FSA only). TheRetina row shows examples of the training patterns as they were drawn
on the photoreceptors in the first iteration of each simulation. At a given iteration, each simulation
presented a different pattern at the same locations and orientations. All other training parameters
were also the same except for the FSA’sγA, which was set manually so that each simulation would
have the same amount of activity per iteration of training, despite differences in the pattern sizes and
shapes. TheLGN row shows the LGN response to the retinal input, which forms the input to the
FSA. TheRF row shows a sample FSA receptive field after self-organization; other neurons learned
similar RFs. In each case the HLISSOM network learns FSA RFs similar to the LGN representation
of the input patterns. Of course, the FSA RFs are no longer patchy, because they no longer represent
the patchy V1 activities. The two numerical rows quantify the face selectivity of each network.
TheSchematics row shows the selectivity for facelike schematics (figure 7.4b-d) relative to non-
facelike schematics (figure 7.4e-i). The Images row shows the selectivity for the six face images
from figure 8.2 on page 120, relative to the six comparable object images in the same figure. The
results show that different training patterns gave rise to different selectivities. Pattern (g) leads to
equal responses for both facelike and non-facelike schematics (selectivity of 0.5), and (h-i) have a
greater overall response to thenon-facelike schematics (selectivity lower than 0.5). Thus not all
training patterns are sufficient to explain preferences for schematic faces, even if they match some
parts of the face. Similarly, the single dot pattern (g) has a selectivity below 0.5 for real faces,
indicating a stronger response for the objects than for real faces. The other training patterns are all
matched either for size with the real faces, or match at least two parts of the face, and thus have
face selectivities larger than 0.5 for real images. Overall, the shape of the training pattern is clearly
important for face selectivity, both for schematics and real faces, but it need not be controlled very
tightly to result in face-selective responses.
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indicate preference for non-facelike schematics. To ensure that the comparisons between

networks were fair, the sigmoid activity threshold (δ in equation 4.4 on page 55) was set

to maximize the face selectivity of each network. That is,δ was set to the minimum value

for each network at which the FSA would respond to every facelike pattern. The upper

threshold was then set toβ = δ + 0.48, for consistency. If there was no response to

any non-facelike pattern with these settings,SF would be 1.0, the maximum.δ was set

separately for schematics and real images, again to maximize the reported selectivity of

each type.

Figure 7.9 shows that even with such a liberal definition of face selectivity, not all

patterns result in preferences for facelike schematics and real faces. Furthermore, several

different patterns result in high face selectivity. As expected, the results vary most strongly

for schematic test images (rowSchematics). The schematics are all closely matched for

size, differing only by the patterns within the face, and thus the results depend strongly on

the specific training pattern. Of those resulting in face selectivity, training patterns 7.9a-e

(three dots, dots and bars, bars, and open triangles) have nearly equivalent selectivity, al-

though the three dot pattern 7.9a has the highest.

The results were less variable on real test images, because real faces differ more

from objects than the schematic faces differ from other schematic patterns. All training

patterns that matched either the overall size of the test faces (7.9a-f ), or at least the eye

spacing (7.9h-i), led to face selectivity. In contrast, the single dot pattern (7.9g) does not

lead to face preferences. Although it is a good match to the eyes and mouth regions in

the real faces, it is also a good match to many features in object images. Thus even though

most patterns that are matched for size will provide face preferences under these conditions,

general patterns like a single eye-sized dot are not sufficient.

Overall, these results show that matching the large-scale pattern size provides selec-

tivity for faces. Further matching the pattern shape provides further selectivity, which can

be tested with the schematic patterns. Of all training patterns tested, the three-dot pattern
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provides the most selectivity, while simply matching a single low-level feature like eye size

is not enough to provide face preferences. Because of its high face selectivity, the three-dot

pattern is a good default choice for pattern generation simulations, so that the predictions

will most clearly differ from those of other models.

7.4 Discussion

The HLISSOM simulations show that internally generated patterns and self-organization

can together account for newborn face detection. Importantly, predictions from the HLIS-

SOM model differ from those of other recent models of newborn face preferences. These

predictions can be tested by future experiments.

One easily tested prediction of HLISSOM is that newborn face preferences should

not depend on the precise shape of the face outline. The Acerra et al. (2002) model (sec-

tion 3.3.2) makes the opposite prediction, because in that model preferences arise from

precise spacing differences between the external border and the internal facial features.

HLISSOM also predicts that newborns will have a strong preference for real faces (e.g. in

photographs), while I argue that the Acerra et al. model predicts only a weak preference for

real faces, if any.

Experimental evidence to date cannot yet decide between the predictions of these

two models. For instance, Simion et al. (1998a) did not find a significant schematic face

preference in newborns 1–6 days old without a contour surrounding the internal features,

which is consistent with the Acerra et al. model. However, the same study concluded that

the shape of the contour “did not seem to affect the preference” for the patterns, which

would not be consistent with the Acerra et al. model. As discussed earlier, younger new-

borns may not require any external contour, as HLISSOM predicts, until they have had

postnatal experience with faces. Future experiments with younger newborns should com-

pare model and newborn preferences between schematic patterns with a variety of border

shapes and spacings. These experiments will either show that the border shape is crucial,
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as predicted by Acerra et al., or that it is unimportant, as predicted by HLISSOM.

The HLISSOM model also makes predictions that differ from those of the Simion

et al. (2001) “top-heavy” model (reviewed in section 3.3.3). The top-heavy model predicts

that any face-sized border that encloses objects denser at the top than the bottom will be

preferred over similar schematic patterns. HLISSOM predicts instead that a pattern with

three dots in the typical symmetrical arrangement would be preferred over the same pattern

with both eye dots pushed to one side, despite both patterns being equally top-heavy. These

two models represent very different explanations of the existing data, and thus testing such

patterns should offer clear support for one model over the other.

On the other hand, many of the predictions of the fully trained HLISSOM model

are similar to those of the hardwired CONSPEC model proposed by Johnson and Morton

(1991). In fact, the reduced HLISSOM face preference network in section 7.3.3 (which does

not include V1) can be seen as the first CONSPEC system to be implemented computation-

ally, along with a concrete proposal for how such a system could be constructed during

prenatal development (Bednar and Miikkulainen 2000a). The primary functional differ-

ence between the trained HLISSOM network and CONSPEC is that only cortical regions

contain face-selective neurons in HLISSOM. Whether newborn face detection is mediated

cortically or subcortically has been debated extensively, yet no clear consensus has emerged

from behavioral studies (Simion et al. 1998a). If future brain imaging studies do discover

face-selective neurons in subcortical areas in newborns, HLISSOM will need to be modified

to include such areas. Yet the key principles would remain the same, because the subcor-

tical regions may also be organized from internally generated activity. Thus experimental

tests of HLISSOM vs. CONSPEC should focus on how the initial system is constructed,

and not where it is located.
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7.5 Conclusion

Internally generated patterns explain how genetic influences can interact with general adap-

tation mechanisms to specify and develop newborn face processing circuitry. The HLIS-

SOM model of the visual system incorporates this idea, and is the first to self-organize both

low-level and high-level cortical regions at the scale and detail needed to model such be-

havior realistically. The results match experimental data from newborns remarkably well,

and for the first time demonstrate preferences for faces in real images. Chapter 8 will show

that the prenatally trained map can learn from real images after birth, and that such learning

can explain how face processing develops postnatally.
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Chapter 8

Postnatal Development of Face

Detection

As shown in the previous chapter, prenatal learning of internally generated patterns can

lead to face preferences at birth. In this chapter I show that the prenatally trained system

can learn from faces in real images. This learning process suggests novel explanations for

experimental phenomena, such as the disappearance of schematic face preferences, and pro-

vides concrete predictions for future behavioral experiments. Together, the face processing

simulations show that learning of activity patterns can explain how face preferences develop

prenatally and postnatally in young infants.

8.1 Goals

The postnatal face detection simulations in this chapter will demonstrate that:

1. Prenatal training leads to faster and more robust learning after birth, compared to a

system exposed only to environmental stimuli (section 8.3.1).

2. The decline in infants’ response to schematic patterns in the periphery after one
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month may simply result from learning real faces, not from a shift to a separate

system (section 8.3.2).

3. Learning of both facial features and outlines, holistically, can explain the develop-

ment of a mother preference, including why it disappears when the outline is masked

(section 8.3.3).

These simulations focus on peripheral vision, which is what most tests of newborn and

young infant face preferences measure (Johnson and Morton 1991). However, as discussed

in section 8.4, similar mechanisms can also explain the later development of face prefer-

ences in central vision. The results suggest that the delay in central vision is simply due to

postnatal development of the retina, again without a shift to a separate cortical subsystem.

8.2 Experimental setup

Postnatal experiments in newborns have tested only basic face selectivity, not detailed pref-

erences between patterns of different spatial frequencies like in the newborn tests. As a

result, the reduced HLISSOM model (without V1) is sufficient to model postnatal learning.

Using the reduced model makes it practical to simulate much larger FSA RFs, which will

be crucial for simulating postnatal face outline learning. For these experiments, the model

was trained as shown in figure 7.9a on page 112.

8.2.1 Control condition for prenatal learning

To determine whether the prenatal patterns bias subsequent learning (goal 1 above), a con-

trol network was also simulated, without prenatally organized receptive fields. This control

will be called thenäıve network, because it models neurons that have not had experience

with coherent activity patterns until after birth. The intent is to see if neurons that are

initially face selective, due to prenatal training on internally generated patterns, will learn
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faces more robustly than neurons that are initially unselective and learn only from the envi-

ronment postnatally.

So that the näıve and prenatally organized networks would match on as many pa-

rameters as possible, I constructed the naı̈ve network from the prenatally trained network

post hocby explicitly resetting afferent receptive fields to their uniform-Gaussian starting

point. This procedure removed the prenatally developed face selectivity, but kept the lateral

weights and all of the associated parameters the same. The activation thresholdδ for the

näıve FSA network was then adjusted so that both networks would have similar activation

levels in response to the training patterns; otherwise the parameters were the same for each

network. This procedure ensures that the comparison between the two networks will be as

fair as possible, because the networks differ only by whether the neurons have face-selective

weights at birth. Figure 8.1 shows the state of each network just before postnatal learning.

8.2.2 Postnatal learning

The experiments in this chapter simulate gradual learning from repeated encounters of spe-

cific individuals and objects against different backgrounds, over the first few months of

life. Figure 8.2 shows the people and objects that were used and figure 8.3 describes how

the training images were generated. The prenatally trained and naı̈ve networks were each

exposed to the same random sequence of 30,000 images, so that the influence of prenatal

training on postnatal learning will be clear.

The RF changes in these simulations over time were larger than in the postnatal

learning experiments in chapter 6, because the weights were initially concentrated only in

the center (figure 8.1). As the weights spread out over the receptive field, the strength of

the neural responses to typical training inputs varied significantly. To compensate for these

changes, I periodically adjusted the sigmoid thresholdδ from equation 4.4 for each net-

work. Without such compensation, the networks eventually fail to respond to any training

input, because the fixed total amount of weights has become spread out over a much larger
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(a) Prenatally trained network (b) Näıve network

Figure 8.1: Starting points for postnatal learning. These plots show the RFs for every third
neuron from the24 × 24 array of neurons in the FSA. For the prenatally trained network (a), the
RFs were visualized by subtracting the OFF weights from the ON. The result is a plot of the retinal
stimulus that would most excite that neuron. As in chapter 7, the prenatally trained network consists
of an array of roughly facelike RFs. In contrast, the neurons in the naı̈ve network are initially
uniformly Gaussian. The ON and OFF weights were identical, so only the ON weights are shown
in (b). Later figures will compare the postnatal learning of each network.

Figure 8.2:Postnatal learning source images.Simulations of postnatal learning used the above
person and object images (person images adapted from Rowley et al. 1998; objects are from public
domain clip art and image collections.) As shown in figure 8.3, each of these items was presented at
random locations in front of randomly chosen natural scenes.
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Figure 8.3:Sample postnatal learning iterations. The top row shows six randomly generated
images drawn on the retinal photoreceptors at different iterations. Each image contains a foreground
item chosen randomly from the images in figure 8.2. The foreground item was overlaid onto a
random portion of an image from a database of 58 natural scenes (National Park Service 1995),
at a random location and at a nearly vertical orientation (drawn from a normal distribution around
vertical, withσ = π/36). The second row shows the LGN response to each of these sample patterns.
The bottom row shows the FSA response to each pattern at the start of postnatal training. For the
FSA, only neurons with complete receptive fields (those in the unshaded inner box) were simulated,
because those in the gray area would have RFs cut off by the edge of the retina. The gray area
shows the FSA area that corresponds to the same portion of the visual field as in the LGN and
retina plots; with this representation, points in the FSA are mapped directly to the corresponding
location in the LGN and retina. At the start of postnatal training, the FSA responds to groups of
dark spots on the retina, such as the eyes and mouths in (b-c,f) and the horse’s dark markings in
(d); the location of the FSA activity corresponds to the position of the group of retinal patterns that
caused the response. Subsequent learning in the FSA will be driven by these patterns of activity.
The prenatal training biases the activity patterns towards faces, and so postnatal self-organization
will also be biased towards faces.

area than initially. Chapter 9 will discuss how this process can be simplified by extending

HLISSOM with automatic mechanisms for setting the threshold based on the recent history

of inputs and responses, as found in many biological systems (Turrigiano 1999).
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8.2.3 Testing preferences

In the previous chapter, pattern preferences were measured in a fully organized network that

had similar RFs across the visual field. With such a uniform architecture, image presenta-

tions generally obtained similar responses at different retinal locations. In this chapter, the

network pattern preferences will be measured periodically during early postnatal learning,

before the network has become fully uniform.

To allow clear comparisons in this more-variable case, preferences will be measured

here by presenting input stimuli at 25 different retinal locations, averaging the results, and

computing the statistical significance of the difference between the two distributions. All

comparisons will use the Student’s t-test, with the null hypothesis being that the network

responds equally strongly to both stimuli. To match the psychological experiments, I will

consider a calculatedp ≤ 0.05 to be evidence of a significant difference between responses

to the two stimuli.

8.3 Results

8.3.1 Bias from prenatal learning

Figure 8.4 shows that with postnatal exposure to real images, both the naı̈ve and prenatally

trained networks develop RFs that are averages (i.e. prototypes) of faces and hair outlines.

RFs in the prenatally trained network gradually become more face-selective, and eventually

nearly all neurons become highly selective (figure 8.4b).

Postnatal self-organization in the naı̈ve network is less regular, and the final result

is often less face selective. For example, the postnatal network often develops neurons

selective for the clock. The clock has a high-contrast border that is a reasonably close

match to real face outlines, and thus the same naı̈ve network neurons tend to respond to

both the clock and to real faces during training. But the clock is a very weak match to

the three-dot training pattern in the prenatally trained network, and so that network rarely

122



(a) Prenatally trained network

0 6,000 10,000 12,000 16,000 20,000 30,000

(b) Snapshots of typical prenatally trained RFs

(c) Näıve network

0 6,000 10,000 12,000 16,000 20,000 30,000

(d) Snapshots of naı̈ve network RFs

Figure 8.4:Prenatal patterns bias postnatal learning in the FSA.Plots (a) andc show the RFs
for every third neuron from the24 × 24 array of neurons in the FSA, visualized as in figure 8.1(a).
As the prenatally trained network learns from real images, the RFs morph smoothly into prototypes,
i.e. representations of average facial features and hair outlines (b). By postnatal iteration 30,000,
nearly all neurons have learned face-like RFs, with very little effect from the background patterns
or non-face objects (a). Postnatal learning is less uniform for the naı̈ve network, as can be seen in
the RF snapshots in (d). In the end, many of the naı̈ve neurons do learn face-like RFs, but others
become selective for general texture patterns, and some become selective for objects like the clock
(c). Overall, the prenatally trained network is biased towards learning faces, while the initially
uniform network more faithfully represents the environment. Thus prenatal learning can allow the
genome to guide development in a biologically relevant direction.
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develops clock-selective neurons. These results suggest that the prenatal training biases

postnatal learning towards biologically relevant stimuli, i.e. faces.

8.3.2 Decline in response to schematics

Figure 8.5 shows that the HLISSOM model replicates the disappearance of peripheral

schematic face preferences after one month (Johnson et al. 1991). In HLISSOM, the de-

crease results from the afferent weight normalization (equation 4.8). As the FSA neurons

in HLISSOM learn the hair and face outlines typically associated with real faces, the con-

nections to the internal features necessarily become weaker. Unlike real faces, the facelike

schematic patterns match only on these internal features, not the outlines. As a result, the

response to schematic facelike patterns decreases as real faces are learned. Eventually, the

response to the schematic patterns approaches and drops below the fixed activation thresh-

old (δ in equation 4.4). At that point, the model response is no longer higher for schematic

faces (because there is no FSA response, and V1 responses are similar). In a sense, the

FSA has learned that real faces typically have both innerand outer features, and does not

respond when either type of feature is absent or a poor match to real faces.

Yet the FSA neurons continue to respond to real faces (as opposed to schematics)

throughout postnatal learning (figure 8.5e-f). Thus the model provides a clear prediction

that the decline in peripheral face preferences is limited to schematics, and that if infants

are tested with sufficiently realistic face stimuli, no decline in preferences will be found.

This prediction is an important difference from the CONSPEC/CONLERN model,

where the decline was explained as an effect of CONLERN maturing and beginning to

inhibit CONSPEC. CONSPEC/CONLERN predicts that the decline in preferences for

schematic faces also represents a decline in preference for real faces. HLISSOM predicts

instead that an initially CONSPEC-like system is also like CONLERN, in that it will grad-

ually learn from real faces. These divergent predictions can be tested by presenting real

faces in the periphery to infants older than one month; HLISSOM predicts that the infant

124



R
et

in
a

LG
N

F
S

A
-0

F
S

A
-1

00
0

(a) (b) (c) (d) (e) (f )

Figure 8.5: Decline in response to schematic faces.Before postnatal training, the prenatally
trained FSA (third row from top) responds significantly more to the facelike stimulus (a) than to the
three-dot stimulus (b; p = 0.05) or the scrambled faces (c-d; p = 10−8). Assuming that infants
attend most strongly to the stimuli that cause the greatest neural response, these responses replicate
the schematic face preferences found by Johnson and Morton (1991) in infants up to one month of
age. Some of the Johnson and Morton 1991 experiments found no significant difference between
(a) and (b), which is unsurprising given that they are only barely significantly different here. As the
FSA neurons learn from real faces postnatally, they respond less and less to schematic faces. The
bottom row shows the FSA response after 1000 postnatal iterations. The FSA now rarely responds
to (a) and (b), and the average difference between them is no longer significant (p = 0.25). Thus
no preference would be expected for the facelike schematic after postnatal learning, which is what
Johnson and Morton (1991) found for older infants, i.e. 6 weeks to 5 months old. The response to
real faces also decreases slightly through learning, but to a much lesser extent (e-f). The response to
real faces declines because the newly learned average face and hair outline RFs are a weaker match
to any particular face than were the original three dot RFs. That is, the external features vary more
between individuals than do the internal features, as can be seen in figure 8.2, and thus their average
is not a close match to any particular face. Even so, there is only a comparatively small decrease in
response to real faces, because real faces are still more similar to each other than to the schematic
faces. Thus HLISSOM predicts that older infants will still show a face preference if tested with
more-realistic stimuli, such as photographs.
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will prefer the real face to other non-facelike stimuli.

8.3.3 Mother preferences

Figure 8.6a-b shows that when one face (i.e. the mother) appears most often, the FSA

response to that face becomes significantly stronger than to a similar stranger. This result

replicates the mother preference found in infants a few days old (Bushnell 2001; Pascalis

et al. 1995; Walton and Bower 1993; Walton, Armstrong, and Bower 1997; Bushnell et al.

1989).

Interestingly, figure 8.6c-d shows that the mother preference disappears when the

hair outline is masked, which is consistent with Pascalis et al.’s claim that newborns learn

outlines only. However, Pascalis et al. (1995) did not test the crucial converse condition, i.e.

whether newborns respond when the facial features are masked, leaving only the outlines.

Figure 8.6e-f shows that there is no response to the head and hair outline alone either. Thus

this face learning is clearlynot outline-only.

In the model, the decreased response with either type of masking results from holis-

tic learning ofall of the features typically present in real faces. As real faces are learned, the

afferent weight normalization ensures that neurons respond only to patterns that are a good

overall match to all of the weights, not simply matching on a few features. Many authors

have argued that adults also learn faces holistically (e.g. Farah et al. 1998). These results

suggest that newborns may learn faces in the same way, and predict that newborns will no

prefer their mother when her hair outline is visible but her facial features are masked.

8.4 Discussion

The results in this chapter show that a prenatally trained map can explain how schematic

face preferences will gradually decay, due to the learning of real faces. However, they

do not address one interesting phenomenon: in central vision, preference for schematic

faces is not measurable until 2 months of age (Maurer and Barrera 1981), and is gone by
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Figure 8.6:Mother preferences depend on both internal and external features.Initially, the
prenatally trained FSA responds well to both women above (a-b; FSA-0), with no significant differ-
ence (p = 0.28). The response is primarily due to the internal facial features (c-d; FSA-0), although
there are some spurious three-dot responses due to alignment of the hair with the eyes (a-b; top of
FSA-0). Designating image (a) as the mother, I presented it in 25% of the postnatal learning itera-
tions. (This ratio is taken from Bushnell 2001, who found that newborns look at their mother’s face
for an average of about one-fourth their time awake over the first few days.) Image (b), the stranger,
was not presented at all during training. After 500 postnatal iterations, the response to the mother is
significantly greater than to face (b) (p = 0.001). This result replicates the mother preference found
by Pascalis et al. (1995) in infants 3–9 days old. The same results are found in the counterbalancing
condition — when trained on face (b) as the mother, (b) becomes preferred (p = 0.002; not shown).
After training with real faces, there is no longer any FSA response to the facial features alone (c-d),
which replicates Pascalis et al.’s (1995) finding that newborns no longer preferred their mother when
her face outline was covered. Yet contra Pascalis et al. (1995), we cannot conclude that what has
been learned “has to do with the outer rather than the inner features of the face”, because no pref-
erence is found for the face outline alone either (e-f). Thus face learning in HLISSOM is holistic.
Face learning in adults is also thought to be holistic (Farah et al. 1998), and these results show that
we do not need to assume that newborns are using a different type of face learning than adults.
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5 months (Johnson et al. 1991) This time course is delayed relative to peripheral vision,

where preferences are present at birth but disappear by 2 months.

As reviewed in section 3.3.5, Johnson and Morton (1991) propose two separate

explanations for the peripheral and central declines in face preferences. That is, in the

periphery the preferences disappear because CONLERN matures and inhibits CONSPEC,

while in central vision they disappear because CONLERN learns properties of real faces and

no longer responds to static schematic patterns. HLISSOM provides a unified explanation

for both phenomena: a single learning system stops responding to schematic faces because

it has learned from real faces.

Why, then, would the time course differ between peripheral and central vision?

As Johnson and Morton acknowledged, the retina changes significantly over the first few

months. In particular, at birth the fovea is much less mature than the periphery, and may not

even be functional yet (Abramov, Gordon, Hendrickson, Hainline, Dobson, and LaBossiere

1982; Kiorpes and Kiper 1996). Thus schematic face preferences in central vision may

be delayed relative to those in peripheral vision simply because the fovea matures later.

A single cortical learning system like HLISSOM is thus sufficient to account for the time

course of both central and peripheral schematic face preferences.

Central and peripheral differences may also have a role in mother preferences. In a

recent study, Bartrip, Morton, and de Schonen (2001) found that infants 19–25 days old do

not exhibit a significant preference for their mothers when either the internal features or ex-

ternal features are covered. This result partially confirms the predictions from section 8.3.3,

although full confirmation will require tests with newborns only a few days old, as in Pas-

calis et al. (1995). Interestingly, Bartrip et al. also found that older infants, 35–40 days

old, do show a mother preference, even when the external outline is covered. The gradual

maturation of the fovea may again explain these later-developing capabilities. Unlike the

periphery, the fovea contains many ganglia with small RFs, and which connect to corti-

cal cells with small RFs (see e.g. Merigan and Maunsell 1993). These neurons can learn
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smaller regions of the mother’s face, and their responses will allow the infant to recognize

the mother even when other regions of the face are covered. Thus simple, documented

changes in the retina can explain why mother preferences would differ over time.

8.5 Conclusion

The HLISSOM face detection simulations in this chapter and in chapter 7 show that inter-

nally generated patterns and a self-organizing system can together account for newborn face

preferences, neonatal face learning, and longer term development of face detection. The re-

sults suggest simple but novel explanations for why newborn learning appears to depend

on the face outline, and why the response to schematic faces decreases over time. Unlike

other models, the same principles apply to both central and peripheral vision, and the results

differ only because the development of the retina is not uniform.

These explanations and simulation results lead to concrete predictions for future

infant experiments. Over the first two months, the response to real faces in the periphery

should continue even as response to schematics diminishes, and the mother preference of

newborns should disappear when the facial features are masked. The results also suggest

that internally generated patterns allow the genome to steer development towards biologi-

cally relevant domains, making learning quicker and more robust.
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Chapter 9

Discussion and Future Research

The results in the previous chapters focused specifically on biological and psychological

studies, but they open up future investigations in a number of basic and applied research

fields. Most immediately, they suggest specific psychological experiments that can be run

on human infants, to validate or refute the model. I summarize these experiments below.

The model also suggests experiments with animals, which I will also describe. Next, I

outline some extensions to the HLISSOM model that will allow new phenomena to be

explained and make the model more useful in new domains. Finally, I will describe ap-

plications of the pattern generation approach to other fields, focusing on how it can be a

general-purpose problem-solving method.

9.1 Proposed psychological experiments

Chapters 7 and 8 listed a number of concrete predictions derived from HLISSOM that can

be tested in psychological experiments with human infants:

• Newborns will prefer real faces and face images over other similar stimuli that do not

have three-dot patterns.

• Newborns will still prefer the facelike patterns from Valenza et al. (1996), even if
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they have an enclosing border that does not have the spacing assumed by the Acerra

et al. (2002) model.

• Newborns will prefer a facelike pattern to one where the eyes have been shifted over

to one side, contrary to the “top-heavy” explanation for face preferences.

• Newborns will no longer prefer their mother when her facial features are covered,

just as when her hair outline is covered.

• Even though infants stop preferring schematic faces in the periphery by 2 months of

age, they will continue to prefer sufficiently realistic stimuli, such as photographs or

video of faces.

Nearly all of these experiments can be run using the same techniques already used in

previous experiments with newborns. They will help determine how specific the newborn

face preferences are, and clarify what types of learning are involved in newborn mother

preferences.

9.2 Proposed experiments in animals

In addition to behavioral tests in infants, the HLISSOM results suggest a number of specific

experiments to be run with laboratory animals.

9.2.1 Measuring internally generated patterns

The key to the pattern generation explanation of how sensory systems develop is the pat-

terns themselves. HLISSOM shows that pattern shapes that are known, such as retinal

waves, are sufficient to develop the types of circuitry seen in V1 before animals open their

eyes. Other sources of internally generated activity would also suffice, if they consist of

coherent patterns of activity, but none of these patterns have been measured in detail so

far. Similarly, in the HLISSOM simulations a number of different patterns resulted in a

131



preference for schematic faces and images of real faces. To understand how these patterns

affect development, it will be crucial to measure in detail what kinds of spontaneous visual

system activity are present in developing animals and during REM sleep. Recent advances

in imaging equipment may make measurements of this type possible (Rector et al. 1997),

which would allow the assumptions and predictions of the HLISSOM model to be tested

directly.

Experimental studies with animals should also clarify how internally generated pat-

terns differ across species, and whether these differences correspond to differences in their

cognitive and sensory-processing abilities. One of the most important tests will be to mod-

ify the internal patterns in animals, testing to see if their brains develop differently in a

systematic way. In the long term, detailed analysis of the pattern-generating mechanisms in

the brainstem could provide clues to how the pattern generator is specified in the genome.

These studies would also suggest ways for representing the generator effectively in a com-

putational genetic algorithm, which is currently an open question. Higher level studies of

genetics and phylogeny could also determine whether pattern generation was instrumental

in the emergence of complex organisms with postnatal flexibility.

9.2.2 Measuring receptive fields in young animals

The results in chapter 6 show that different types of internally generated activity patterns

will result in different types of V1 receptive fields. For instance, uniformly random noise

tends to lead to four-lobed RFs, while discs alone lead to two-lobed RFs. Although orien-

tation maps have been measured in young animals, very little data is available about what

receptive fields these neurons might have.

Future experiments should try measure to measure the RFs in the same newborn

animals where orientation maps are measured, so that it will be clear what types of RFs are

present at each stage of orientation map development. This data will help to narrow down

the range of plausible orientation map models, e.g. by rejecting either uniformly random
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noise or retinal waves as the source of the initial orientation preferences.

9.3 Proposed extensions to HLISSOM

The HLISSOM model introduces a number of significant extensions to earlier self-organizing

models, which will be refined in future work. This section describes the future extensions

expected to be the most productive.

9.3.1 Push-pull afferent connections

HLISSOM includes a divisive normalization term not present in simpler models (see equa-

tion 4.5). This change allows neurons to respond selectively to a wide range of contrasts in

natural images. However, as a side-effect it also attenuates the response to closely spaced

stimuli. That is, V1 can respond less to a high-frequency square-wave grating than to

the same pattern with every other bar removed, because the normalization term penalizes

any activity in the anatomically circular receptive fields that does not match the neuron’s

weights. In future work, it may be possible remove this unrealistic limitation by using

a push-pull arrangement of weights rather than full-RF normalization (see Ferster 1994;

Hirsch, Gallagher, Alonso, and Martinez 1998b; Troyer, Krukowski, Priebe, and Miller

1998). With a push-pull RF, cortical neurons receive both excitatory and inhibitory afferent

input from different parts of the retina, rather than the purely excitatory input in HLISSOM

and most other incremental Hebbian models. One difficulty with using push-pull weights

is that the inhibitory weights need to connect to anti-correlated regions of the retina, rather

than to the correlated regions that Hebbian learning connects. Thus either a new learning

rule or a more complicated local circuit in the cortex will need to be developed so that

push-pull weights can self-organize.
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9.3.2 Threshold adaptation

One of the most important components of any detection or recognition system, and for

neural network models in general, is the threshold or criterion used. For HLISSOM and

RF-LISSOM, the parameterδ of the sigmoid function acts as a threshold for each neuron’s

response: if the inputs in a neuron’s receptive field sum to a value belowδ, the neuron does

not activate. Aboveδ, the neuron activates linearly, until an upper threshold.

If set properly, the lower threshold allows the system to respond to appropriate

inputs while ignoring low-level noise or other nonspecific activation. For instance, the

threshold can allow an orientation-selective neuron to respond to stimuli near its preferred

orientation, and not to other orientations. If the threshold is set too high, the system will

never respond to any input presented, and if the threshold is too low, the system will re-

spond indiscriminately to all inputs. In terms of signal detection theory, the threshold is a

balance between the false alarm rate and the false positive rate; in general this tradeoff is

unavoidable (see e.g. Egan 1975 for more details). Thus it is important to make this tradeoff

appropriately.

In HLISSOM and RF-LISSOM, the thresholds are set by hand through a process

of trial and error. This procedure corresponds to adaptation over evolutionary timescales,

which could presumably result in animals that are born with appropriate threshold settings.

However, an automatic method of setting thresholds may be more realistic, and for at least

four reasons such a mechanism would be very desirable : (1) it is time consuming for the

modeler to find a good threshold value, (2) the threshold setting process is subjective, which

often prevents rigorous comparison between different experimental conditions (e.g. to deter-

mine what features of the model are required for a certain behavior), (3) different threshold

settings are needed even for different types of input patterns, depending on how strongly

each activates the network (e.g. high-contrast schematic patterns vs. low-contrast real im-

ages), and (4) the optimal threshold value changes over the course of self-organization,

because weights become concentrated into configurations that match typical inputs, increas-
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ing the likelihood of a response. The underlying difficulty is that the self-organizing weight

pattern of a neuron interacts nonlinearly with the likelihood of seeing similar patterns in

the input. Neither the weight pattern nor the environment is entirely predictable, and thus

setting the threshold appropriately is not always a trivial task.

Adding automatic mechanisms for setting the thresholds would make the model

significantly more complex mathematically. Even so, it may make the model much simpler

to use in practice, particularly with real images. As reviewed by Turrigiano (1999), such

“homeostatic regulation” mechanisms have recently been discovered in a variety of biolog-

ical systems. Some of these regulatory mechanisms are similar to the weight normalization

already used in HLISSOM (equation 4.8). Others more directly adjust how excitable a neu-

ron is, so that its responses will cover a useful range (i.e., neither always on nor always off).

Extending HLISSOM with additional homeostatic mechanisms will make it easier to use

with different input pattern types, and will make it simpler to compare different experimen-

tal conditions rigorously.

9.4 Maintaining genetically specified function

The simulations in this thesis used two separate learning phases, prenatal and postnatal.

This way, the influence of the internally generated and environmentally driven stimuli

would be perfectly clear. Such a separation is a good model of spontaneous activity in

the developing sensory areas, such as retinal waves, because the waves disappear at eye

opening. But other activity, such as that during REM sleep, continues throughout devel-

opment and adulthood. Thus internally generated patterns may also have a significant role

beyond prenatal development.

Specifically, I propose that postnatal spontaneous activity is interleaved with wak-

ing experience to ensure that environment-driven postnatal development does not entirely

overwrite the prenatal organization. These postnatal patterns may explain why there are

limits to the learning of altered environments (as found by Sengpiel et al. 1999), and why
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the duration of REM sleep correlates so strongly with the degree of neural plasticity during

development (Roffwarg et al. 1966).

A system that does not adapt would not require such postnatal maintenance; the

weights of each neuron could simply be fixed to their prenatally developed values. But

if the adult system remains plastic and learns by Hebbian rules, it can eventually drift far

from its starting state. Being fully adaptable like this may be desirable for some brain areas

and tasks, particularly for those that change significantly over the course of a lifetime. For

others, i.e. tasks that remain unchanged for millennia, adaptability may be irrelevant or even

detrimental. Postnatal patterns may provide a simple way for specific types of processing

to trade off between adaptability and explicit specification of function. Future models can

study how this interleaving interacts with experience, perhaps using the Sengpiel et al.

(1999) results as a starting point.

9.5 Embodied/situated perception

The HLISSOM simulations focused only on explaining face detection at a particular size

scale, and did not address how full face processing and object processing abilities develop

in children older than a few months. To fully model this development, simulations would re-

quire a training regimen that includes sequences of images of people from different angles,

in different lighting, with hairstyles and clothing that change over time, against different

background scenes, and over the course of months or years. Unless the visual experiences

vary along such dimensions, we would not expect to see neurons develop that respond to

the same individual regardless of hairstyle or clothing.

Einhauser et al. (2002) have recently taken first steps in collecting such realistic

training data by attaching a camera to an adult housecat’s head, and collecting video while

it freely roams the environment. Einhauser et al. argue that this approach is a good ap-

proximation to the visual experience of the adult cat, because cats tend to move their heads

(and not just their eyes) when scanning a visual scene. However, the visual experience of
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a kitten may be quite different from an adult’s. For instance, very young kittens probably

move around their environment much less than adult cats do, particularly during the earliest

times after eye opening while their visual systems are first developing.

Moreover, it seems impractical to extend this approach to human infants, or even

to closely related primates. It is true that video cameras have become small enough to

be mounted unobtrusively on a headband. But apart from any ethical considerations, the

video thus recorded would not necessarily be a good approximation to the infant’s visual

experience. In humans, eye movements can show significantly different trends from head

movements. Humans have larger heads that often remain still while we scan a scene or

fixate on different parts of an object. Eye-tracking equipment exists, but not in a form that

could be attached to an infant or animal unobtrusively for several months.

Finally, even if a realistic set of training data were obtained, several researchers

have argued that video alone will not capture the crucial features of vision, particularly

at higher, cross-modal areas of the nervous system. These authors argue that vision is

an active process of interaction with the environment, driven by attention (as reviewed in

Findlay 1998). The video data can record the pattern of light falling on the eye, but it

cannot capture the causal link between visual system activity, visual attention, and the eye

movements that determine the specific images seen, and thus future activity patterns. Given

the difficulty in replicating this feedback loop, it will be impractical to approach human

levels of visual system performance by simply making training patterns more realistic.

For these reasons, an “embodied” or “situated” approach may be a good next step

towards understanding postnatal learning (as reviewed in Markman and Dietrich 2000;

Pfeifer and Scheier 1998; Pylyshyn 2000; Thompson and Varela 2001). For instance, it

may be useful to study a relatively simple robot as an example of an individual interacting

with its environment. Such a system may provide insights that could not be obtained from

a detailed computational study of human development, because it can preserve the causal

link between visual system activity, eye and head movements, and the changes in activity
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patterns that result from such movements.

9.6 Engineering complex systems

This dissertation focused on modeling orientation and face processing, because those two

biological capabilities show the clearest evidence of how genetic and environmental in-

fluences interact. Beyond these domains, the simulations can be seen as an example of a

general-purpose problem-solving approach that could be applied to a variety of fields, per-

haps making it practical to develop much larger computing systems than we use today. Such

work can use either (a) specifically designed pattern generators, as in the simulations in this

thesis, or (b) patterns that are generated by an evolved mechanism, via a genetic algorithm

(GA; Holland 1975).

(a) Specifically designing a pattern generator allows an engineer to express a desired

goal, within an architecture capable of learning. That is, the engineer can bias the patterns

that will be learned by the system, without hard-coding a particular, inflexible architecture.

Similarly, the engineer can also bootstrap a learning system with hand-coded patterns, al-

lowing it to solve problems that are difficult for learning algorithms alone. For instance,

the designer can feed in simpler patterns before real data, which could make subsequent

learning easier by avoiding local minima in the search space of solutions (cf. Elman, Bates,

Johnson, Karmiloff-Smith, Parisi, and Plunkett 1996; Gomez and Miikkulainen 1997; Nolfi

and Parisi 1994). Such bootstrapping may also allow a designer to avoid expensive and la-

borious manual collection and/or tagging of training datasets, as in tasks like handwriting

recognition and face detection. For instance, a three-dot training pattern could be used to

detect most faces, and only the patterns that were not detected would need to be tagged

manually (cf. Viola and Jones 2001).

(b) Evolving a pattern generator with a genetic algorithm may also be an important

technique. Evolving the generator eliminates the need for the domain-specific knowledge

that is necessary to design one explicitly. For instance, studying real faces may lead one
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to suggest that a three-dot pattern would be a good training pattern to use to bootstrap a

face detector, but it would be good to have an algorithm to choose such patterns automat-

ically. Indeed, a learning system, pattern generator, and genetic algorithm together can be

considered a single, general-purpose adaptive algorithm. What benefits would such a sys-

tem have over other adaptive systems, such as genetic algorithms and learning networks

alone? Essentially, the combination of learning and genetic algorithms represents a bal-

ance between adaptation at widely different time scales: in the short term, those particular

circumstances that an individual network encounters, and in the long term, the cumulative

fitness evaluations of all such networks evaluated by the genetic algorithm.

Adaptation at both time scales can be vitally important. Short-term adaptation al-

lows an individual network to become particularly well-suited to the particular tasks it is

tested on. Long-term adaptation (selection in the genetic algorithm) can ensure that short-

term learning does not reduce generality. For instance, the GA can select training patterns

that ensure that a system remains able to handle events that occur very rarely, yet are vi-

tally important over the long term. As described for specifically designed generators above,

the GA can also select pattern generators that get the system “in the ballpark”, to increase

the chance that learning will succeed. Thus by combining GAs and learning using pattern

generators, it should be possible to evolve systems that perform better than using either

approach alone.

9.7 Conclusion

This chapter outlined a variety of research areas opened up by the work in this thesis. Future

experiments should measure more internally generated patterns to get clues to how brain

systems are being constructed, and to inspire new approaches to building complex systems

in general. The predictions of the HLISSOM model can also be tested in experiments with

newborns and animals, to validate the model and to increase our understanding of the visual

system.
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Chapter 10

Conclusions

The results in this thesis showed that internally generated activity and postnatal learning can

together explain much of how orientation maps and face preferences develop in animals and

humans. Spontaneous activity ensures that the system develops robustly from the start, and

learning from the environment ensures that the system is well-tuned to its actual surround-

ings. Together, a pattern generator, a learning algorithm, and the environment can construct

a complex adaptive system. Below I summarize the contributions from each results chapter.

In chapter 4, I introduced HLISSOM, a new model of how the visual system de-

velops. HLISSOM is the first model that shows in detail how genetic and environmental

influences interact in multiple cortical areas. This level of detail is crucial for validating

the model on experimental data, and for making specific predictions for future experiments

in biology and psychology. As an example of how HLISSOM works, I used it to develop

an orientation map simulation using abstract inputs. Results with this map showed that the

ON and OFF channels introduced in HLISSOM are crucial for the model to be used with

natural images in the later experiments. They also provide multi-lobed receptive fields that

are a good match to those from biological experiments.

In chapter 5, I derived a set of size scaling equations and showed how they can be

used to develop quantitatively equivalent orientation maps over a wide range of simulation
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sizes. I first showed that orientation maps depend on the stream of input patterns seen

during development, not on the initial connection weight values. As a result, it is possible

to develop nearly identical maps with different retina and cortex sizes. This capability is

very useful for running simulations, and makes the results with large-scale orientation maps

in later chapters possible.

In chapter 6, I showed how V1 neurons could develop biologically realistic, multi-

lobed receptive fields and patterned intracortical connections, through unsupervised learn-

ing of spontaneous and visually evoked activity. I also showed how these neurons organize

into biologically realistic topographic maps, matching those found at birth and in older an-

imals. Postnatal experience gradually modifies the orientation map into a precise match to

the distribution of orientations present in the environment. This smooth transition has been

measured in animals, but not yet demonstrated computationally.

In chapter 7, I showed how newborn human preferences for facelike patterns can

result from learning of spontaneous activity, and that the self-organized face-selective map

detects faces in real images. The hypothesis that newborn face preferences result from

spontaneous activity follows naturally from experimental studies in early vision, but had

not previously been proposed or tested.

In chapter 8, I showed that postnatal learning with real faces can explain how new-

borns learn to prefer their mothers, and why preferences for schematic faces disappear over

time. Independently of the pattern generation hypothesis, the results show that researchers

will need to reinterpret psychological studies that claim newborns learn face outlines, and

that responses to faces in the periphery decrease over the first month of age. Instead, new-

borns may learn all parts of the face, and any decline might be specific to schematic stimuli

alone.

Together, these results demonstrate a comprehensive approach to understanding the

development and function of the visual system. They suggest that a simple but powerful

set of self-organizing principles can account for a wide range of experimental results from
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animals and infants. These principles lead to concrete experimental predictions. The same

principles can be applied to the development of future complex adaptive systems, allow-

ing them to integrate prior information with environment-driven development and ongoing

adaptation.
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