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Abstract

Although environment-driven learning can explain much of postnatal neural development, substan-
tial organization and functional ability is present even at birth. Recent experimental discoveries of
widespread spontaneous neural activity suggest that prenatal development may utilize very similar
mechanisms and principles as postnatal learning, driven by internally generated sources instead of
the environment. This chapter shows how this idea can explain features of the organization and
function of the primary visual cortex (V1) and higher level face-processing areas. Specifically, we
simulate how neural preferences for contour orientation and human faces can develop prenatally
from internally generated activity and postnatally from natural image stimuli. These simulations
are based on HLISSOM, a hierarchical self-organizing model of the development of topographic
neural maps. The results match experimental neuroimaging and psychophysical data from newborn
and older animals and humans, and provide concrete predictions about infant behavior and neural
activity for future experiments. They also suggest that combining internally generated activity with
a learning algorithm is an efficient way to develop complex neural machinery.

1 Introduction

Specific regions in the visual cortex of adult humans and other adult mammals selectively re-
spond to different visual features. For instance, the primary visual cortex (V1) is arranged into
an orientation map, consisting of an array of neurons that respond to visual contours with certain
orientations, but not to others (Figure 1; Blasdel 1992; Hubel and Wiesel 1962, 1968). Similarly,
visual areas in the fusiform gyrus respond more strongly to human faces than to other complex
stimuli (Kanwisher, McDermott, and Chun 1997).

How these selective responses develop is not yet clear. On the one hand, experimental and
computational results (reviewed later) suggest that much of the structure and function of the visual
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Figure 1:Newborn and adult animal orientation maps.Plot (a) shows a1.9× 1.9 mm area of newborn
cat V1, and (b) shows a5× 5 mm area of adult monkey V1, both measured by optical imaging techniques.
(a reprinted with permission from Crair et al. (1998),Science, 279:566–70, copyright 1998 American As-
sociation for the Advancement of Science;b reprinted with permission from Blasdel (1992),J. Neurosci.,
12:3139–61, copyright 1992 by the Society for Neuroscience). Each neuron in the maps is colored in
grayscale according to the orientation it prefers, using the key adjacent to it. Nearby neurons in the map
generally prefer similar orientations, forming groups of the same color. Other qualitative features are also
found, such as pinwheels, i.e. points around which orientation preference changes continuously. Newborn
maps have similar qualitative features, although they are noisier. (c) The distribution of orientation pref-
erences has been measured in ferrets, and has a bias towards vertical (90◦) and horizontal (0◦and 180◦)
contours, which reflects the statistics of the environment. (c reprinted with permission from Coppola et al.
1998,PNAS95:2621–3, copyright 1998 National Academy of Sciences, U.S.A.).

system is constructed by a general-purpose learning process, driven by inputs from the environ-
ment. On the other hand, there is also considerable evidence that many aspects of the visual system
are hardwired, i.e., constructed from a specific blueprint encoded in the genome. The conflict be-
tween these two positions is generally known as the Nature–Nurture debate, which has been raging
for centuries in various forms (Diamond 1974).

The idea of a specific blueprint does seem to apply to the largest scale organization of the
visual system, at the level of visual areas and their interconnections. These patterns are largely
similar across individuals of the same species, and their development does not generally depend
on neural activity, visually evoked or otherwise (Miyashita-Lin, Hevner, Wassarman, Martinez, and
Rubenstein 1999; Rakic 1988; Shatz 1996). But at smaller scales, i.e., neurons and connections
within visual areas, there is considerable evidence for both environmental and internally controlled
development. Thus, debates center on how this seemingly conflicting evidence can be reconciled.

In this chapter, we will briefly give an overview of the relevant areas of the visual system, and
summarize the evidence for environmental and genetic influences on orientation and face process-
ing. We will then propose a simple hypothesis about how the cortex can combine both influences,
through prenatal learning of spontaneous activity patterns followed by postnatal learning of visual
stimuli. Using a computational model of orientation and face processing, we will show that this
hypothesis can explain a large body of data on how low-level (i.e. orientation) and higher level (i.e.
face) perception develop. The orientation map simulations are strongly constrained by existing ex-
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perimental data, providing a rigorous way to test and calibrate the model, while the face-processing
simulations will provide a set of concrete predictions for future experiments.

2 Biological and psychological background

The human visual system, like that of most mammals, consists of a series of topographically or-
ganized visual areas (for review, see e.g. Kandel, Schwartz, and Jessell 1991). When light falls
on the retina, photoreceptor cells convert the light patterns into patterns of electrical activity. Neu-
rons in the retina called retinal ganglion cells have receptive fields (RFs) covering a local patch of
photoreceptors, and are active when the light patterns are a good match to their RFs. The retinal
ganglion RFs tend to have a center–surround organization, responding to light dots surrounded by
dark (ON retinal ganglion cells), or dark patches surrounded by light (OFF retinal ganglion cells).
Retinal ganglion cell activity is relayed through the optic nerve to ON and OFF neurons in the
LGN (lateral geniculate nucleus of the thalamus), which have RFs very similar to retinal ganglion
cells. The LGN cells relay the activity patterns to the primary visual cortex (V1), which in the
adult has RFs selective for oriented patterns, instead of the circular RFs typical of earlier regions.
As mentioned earlier, these RFs form a topographically organized orientation map, representing
the orientation of each small patch of the input image. The activity levels of neurons in the ori-
entation map are relayed to neurons elsewhere in the visual cortex, which have RFs selective for
more complex objects such as human faces.

The development of the eye, LGN, and V1 have been studied extensively, in part because
these areas are very similar across many species. However, relatively little is known about how
higher cortical areas develop. As described in the next subsection, experiments with V1 suggest
that orientation maps develop from both environmental (i.e., external) and internal cues. Face
processing is much more difficult to study, requiring higher primate or human subjects. Thus
most of the available face-processing data is from behavioral studies of human infants, rather
than detailed measurements of individual neurons and neural regions. These data suggest that
face processing may develop similarly to orientation processing, driven by both environmental
and internal sources (as described in the second subsection). A third subsection describes how
internally generated activity could contribute to the development of these capabilities, based on
recent experimental discoveries of widespread spontaneous activity.

2.1 Orientation map development

Experiments in monkeys, ferrets, and cats suggest that orientation-selective responses in adults
could be learned from exposure to oriented patterns (as reviewed by Movshon and van Sluyters
1981). For instance, Blakemore and Cooper (1970) found that if kittens are raised in environ-
ments consisting of only vertical contours, most of their V1 neurons become responsive to vertical
orientations. Similarly, orientation maps from kittens with such rearing devote a larger area to
the orientation that was overrepresented during development (Sengpiel, Stawinski, and Bonhoeffer
1999). Conversely, kittens raised without patterned visual experience at all, e.g. by suturing their
eyelids shut, have few orientation-selective neurons in V1 as an adult (Blakemore and van Sluyters
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1975; Crair et al. 1998). Even in normal adult animals, the distribution of orientation preferences is
slightly biased towards horizontal and vertical contours (Chapman and Bonhoeffer 1998; Coppola
et al. 1998). Such a bias would be expected if the neurons learned orientation selectivity from typ-
ical environments, which have more horizontal and vertical contours than oblique ones (e.g. trees
and horizons; Switkes, Mayer, and Sloan 1978).

In ferrets, it is even possible to reroute the connections from the eye that normally go to V1,
so that instead they reach the auditory cortex (as reviewed in Sur, Angelucci, and Sharma 1999;
Sur and Leamey 2001). As a result, the auditory cortex develops orientation-selective neurons and
orientation maps, although these structures are not as pronounced as in normal maps. Furthermore,
the ferret can use the rewired neurons to make visual distinctions, such as discriminating between
two grating stimuli (von Melchner, Pallas, and Sur 2000). These experiments show that the input
to a cortical area can profoundly affect its structure and function.

However, there is also significant evidence suggesting that V1’s structure is genetically de-
termined. For example, it has long been known that individual orientation-selective cells exist
in newborn kittens and ferrets even before they open their eyes (Blakemore and van Sluyters
1975; Chapman and Stryker 1993). Psychological studies further suggest that human newborns
can already discriminate between patterns based on orientation (Slater and Johnson 1998; Slater,
Morison, and Somers 1988). Recent advances in experimental imaging technologies have made it
possible to measure the full map of orientation preferences in young animals. Such experiments
show that large-scale orientation maps exist prior to visual experience, and that these maps have
many of the same features as found in adults (Chapman, Stryker, and Bonhoeffer 1996; Crair
et al. 1998; G̈odecke, Kim, Bonhoeffer, and Singer 1997). Furthermore, the global patterns of
orientation-selective patches in the maps appear to change very little with normal visual experi-
ence, even as the individual neurons gradually become more selective for orientation (Chapman
and Stryker 1993; Crair et al. 1998; Gödecke et al. 1997). Thus, despite the clear influence of envi-
ronmental input on visual cortex structure, normal visual experience appears primarily to preserve
and fine-tune the existing structures, rather than drive their development.

Taken together, the evidence indicates that both genetic and environmental influences interact
to produce the adult orientation map. However, important questions remain. How does this inter-
action actually occur? Could adult-like maps develop from environmental or genetic cues alone,
or are both necessary? These questions are difficult to answer through biological experiments.
Computational modeling, however, can lead to valuable insights, because it is easy to separate en-
vironmental and genetic influences in computational experiments. Existing models have been used
to simulate how orientation maps can develop from visual input alone (e.g. natural images; Burger
and Lang 1999) or genetic factors alone, such as spontaneous neural activity (e.g. noise; Linsker
1986; for review of existing models of each type, see Swindale 1996.) However, prior models have
not shown how V1 can have an initial map at birth that becomes smoother and more selective due
to postnatal visual experience, while retaining the original map shape. Previous models driven by
visual or internal activity alone also differ in many ways besides the source of activity, and thus
it has been difficult to determine whether the activity patterns alone account for any differences
between the results. This chapter will present results that show clearly how orientation maps can
develop both before and after birth in the same model.

4



2.2 Development of face detection

Face perception appears to develop similarly to orientation perception, with evidence for both post-
natal learning and function at birth. A number of studies have found that newborns prefer face-
like patterns (Goren, Sarty, and Wu 1975; Johnson, Dziurawiec, Ellis, and Morton 1991; Simion,
Valenza, and Umilt̀a 1998), and others show that newborns can discriminate between specific faces
and learn to prefer a particular face within the first few hours and days after birth (Bushnell 2001;
Pascalis, de Schonen, Morton, Deruelle, and Fabre-Grenet 1995). When shown moving schematic
faces in the visual periphery, newborns and one-month-olds will follow them further than other
similar patterns (Goren et al. 1975; Johnson et al. 1991; see example schematics in Figure 6b-e).
However, these abilities change significantly over early development. Older infants do not signif-
icantly prefer schematic faces in the visual periphery (Johnson et al. 1991), but between one and
two months they begin to respond to facial features in central vision (Maurer and Barrera 1981).
Full face-processing abilities take several years to develop (de Haan 2001). Thus, face perception
appears to be substantially organized at birth, yet only develops fully through postnatal experience.

Low-level image processing in V1 appears to be able to explain some of the newborn face
preferences that have been found, as shown recently in a computational model (Acerra, Burnod,
and de Schonen 2002), but many of them appear to require more face-specific circuitry (Bednar
2002). To explain these more specific face preferences, previous theoretical models invoke separate
visual processing mechanisms in newborn and older infants. For instance, Johnson and Morton
(1991) proposed that infants are born with a basic subcortical system (CONSPEC) that serves
only to detect and direct attention to face-like patterns in the periphery, perhaps using a simple
three-dot template (two dots for the eyes and a third for the nose and mouth). A separate cortical
system (CONLERN) begins to control behavior after one month, and gradually develops more
sophisticated face processing, through learning in central vision.

However, models like CONSPEC/CONLERN and that of Acerra et al. (2002) do not account
for neonatal face learning. For example, an infant only a few days old prefers to look at its mother’s
face, relative to the face of a stranger (Bushnell 2001; Pascalis et al. 1995). Presumably this
preference results from postnatal visual experience of the mother’s face (Bushnell 2001). Unlike
the facial feature learning of CONLERN, this early learning has been thought to rely only on the
external outline of the face, because the preference disappears when the face outline is masked
(Pascalis et al. 1995).

Accordingly, Johnson and Morton (1991) and subsequent authors have proposed adding face-
outline learning to CONSPEC, or adding a third, separate subsystem for learning face outlines
at birth (de Schonen, Mancini, and Liegeois 1998; Simion et al. 1998). However, recent studies
suggest that newborns can also learn internal features (Slater, Bremner, Johnson, Sherwood, Hayes,
and Brown 2000). Such learning would seem to require a fourth subsystem, i.e. a learning system
similar to CONLERN, but for the periphery, and operational at birth. Alternatively, CONLERN
itself might be functional at birth, but in that case the model would need an additional mechanism
to explain why schematic faces are no longer preferred in the periphery by two months of age.

Our computational results will show that such increasingly complex models of early face pro-
cessing are unnecessary. A single cortical learning system present at birth is sufficient to explain
the experimental data, if the system is exposed to internally generated patterns broadly similar to
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faces.

2.3 Internally generated patterns

Our approach relies on the learning of internally generated patterns. Such spontaneous neural ac-
tivity has recently been documented in many cortical and subcortical areas as they develop, includ-
ing the retina, the visual cortex, the auditory system, and the spinal cord (reviewed in O’Donovan
1999; Wong 1999). In this work, we focus on two common types of spontaneous activity: reti-
nal waves and ponto-geniculo-occipital (PGO) waves. Retinal waves are found in the developing
retina before the eyes first open, and consist of large patches of coherent activity traveling across
the retina, surrounded by inactive areas (Feller, Wellis, Stellwagen, Werblin, and Shatz 1996; Maf-
fei and Galli-Resta 1990; Meister, Wong, Baylor, and Shatz 1991). Retinal waves have been shown
to be responsible for segregating the LGN into eye-specific layers before birth, indicating that in-
ternally generated activity patterns are crucial for the visual system to develop normally (Shatz
1996; Stellwagen and Shatz 2002).

PGO waves are activity patterns that are generated during rapid-eye-movement (REM) sleep.
Developing embryos spend a large percentage of their time in a primitive form of REM sleep,
which suggests that this state has a major role in development (Roffwarg, Muzio, and Dement
1966). During REM sleep, PGO waves originate in the brain stem, then travel to the LGN, visual
cortex, and many other brain areas (see Callaway, Lydic, Baghdoyan, and Hobson 1987 for a
review). PGO waves are strongly correlated with eye movements and with vivid visual imagery
in dreams, suggesting that they activate the visual system as if they were visual inputs (Marks,
Shaffery, Oksenberg, Speciale, and Roffwarg 1995). PGO waves also elicit different distributions
of activity in different species, and interrupting them has been shown to increase the influence of
the environment on visual system development (Marks et al. 1995).

Together, these findings suggest that spontaneous activity like retinal waves and PGO waves
may act as training patterns for development (Jouvet 1998). Retinal waves have been measured
directly using optical imaging techniques, but it is not yet known what spatial patterns the PGO
waves form (Rector, Poe, Redgrave, and Harper 1997). How closely neonatal REM sleep and
PGO waves are related to those of adults is also controversial (Dugovic and Turek 2001; Jouvet
1999). In any case, it is clear that there is substantial activity in the visual areas of newborns during
sleep, and that it comes both from the eyes and from the brainstem. These assumptions about the
spontaneous activity will be crucial for the experiments in this chapter.

Specifically, the orientation simulations model the effect of retinal waves on the primary visual
cortex, based on the hypothesis that such patterns could drive the orientation selectivity and maps
seen at birth. The face detection simulations explore how brainstem-generated patterns with higher
level structure, such as groups of three similar dots, could drive the development of face detection
and face preferences. The simulations show that much of what is known about how orientation
maps develop and how newborns detect and learn faces can be explained by a single, general-
purpose learning system, which learns from both internally generated patterns of activity and from
the visual environment. We propose that this mechanism may be an efficient way to develop a
robust system from a small amount of genetic information.
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3 HLISSOM model

The simulations are based on the HLISSOM model (Bednar 2002). HLISSOM is a version of
the LISSOM architecture (Sirosh and Miikkulainen 1994) extended to process spontaneous activ-
ity, natural images, and faces. As shown in Figure 2, the model consists of a hierarchy of two-
dimensional sheets of neural units modeling different areas of the visual system: a sheet of retinal
photoreceptors, a sheet representing internally generated sources of activity (the PGO sheet), a
pair of sheets of LGN units (ON-center and OFF-center), and a sheet of cortical units (“neurons”).
As in the cortex, the overall arrangement of areas is fixed in HLISSOM, but the smaller scale
organization of cortical maps and connections is learned from input activity.

The photoreceptor and PGO input sheets act like grayscale bitmap images, i.e., arrays of nu-
meric values (as shown in Figure 2). The ON-center LGN units respond to patches on the input
sheets that are brighter than their surrounds, and the OFF-center units respond to patches darker
than their surrounds. Thus the LGN sheets model the edge detection performed by the LGN and
the retinal ganglia, highlighting boundaries and edges in the input. The cortical area corresponds
to human V1 for the orientation simulations and a higher level area called the face-selective area
(FSA) for the face-processing simulations. The FSA represents the first region in the ventral pro-
cessing pathway that has receptive fields large enough to span a human face at close range. For
simplicity, the simulations in this paper use only a single cortical area, either V1 or the FSA, but
results are similar with a more complex model where the FSA receives input through a lower level
V1 region (Bednar 2002). Each cortical neuron in V1 or the FSA corresponds to a vertical col-
umn of cells through the six anatomical layers of the cortex. These neurons learn to represent the
important features of the LGN input, based on experience with a series of input patterns. After
such self-organization, the cortical neurons respond to particular orientations (for the orientation
simulations) or objects (for the face simulations).

The rest of this section reviews the process of self-organization in more detail; see Bednar and
Miikkulainen 2003 for a complete description. Each LGN unit computes its response as a prod-
uct between its weight vector and its receptive fields on the photoreceptors and PGO layers (see
Equation 1 in Box 1). The LGN weight vectors are fixed radial Difference-of-Gaussian (DoG)
functions. These sombrero-shaped RFs ensure that the ON LGN units respond to light areas sur-
rounded by dark (by subtracting a broad Gaussian from a narrow one) and that OFF LGN units
respond to dark areas surrounded by light (by subtracting a narrow Gaussian from a broad one).

Each cortical neuron computes its initial response from its weight vector and its input like an
LGN unit does, except that the cortical RFs are on the ON and OFF LGN sheets. After the initial
response, the cortical activity settles through short-range excitatory and long-range inhibitory lat-
eral interaction (Equation 2 in Box 1). The contribution from the lateral connections is computed
as a similar product between a weight vector and a receptive field, except that the activity of the
units in the RF is taken from the preceding settling step. The cortical activity pattern starts out dif-
fuse, but within a few settling iterations, it converges into a small number of stable focused patches
of activity, or activity bubbles (as in Figure 2).

After the activity has settled, the connection weights of each cortical neuron are modified. All
cortical weights (including the lateral weights) adapt according to the Hebb rule, normalized so
that the sum of the weights from each sheet is constant for each neuron (Equation 3 in Box 1). The
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Figure 2: HLISSOM model. The model consists of a hierarchy of sheets of neural units, modeling the
infant visual pathway. Input such as grayscale images or spontaneous activity patterns is drawn on the
photoreceptor array or the PGO array, which represents sources of spontaneous activity. Each higher level
unit computes its response from the activity in its receptive fields (RFs); the RFs of one unit in each map
are shown. The cortical area corresponds to either V1, for orientation map simulations, or the FSA, for face
processing simulations. Cortical units have receptive fields both on previous levels (afferent connections)
and on the same level (lateral connections). V1 simulations use a cortical area with small receptive fields
to model low-level orientation-selective cells, while FSA simulations use large receptive fields to model
face-selective cells. V1 and the FSA can also be arranged hierarchically into the same model, which gives
similar results but is more complex to simulate and analyze (Bednar 2002). Photograph copyright 1998,
James A. Bednar.
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Box 1: HLISSOM Model Equations

LGN activation:

ηij = σ

(∑
ρ

γρ

∑
ab

Xρabwij,ρab

)
, (1)

where:
(i, j) specify an LGN unit
ηij is the response of that unit
ρ iterates over the RFs on the input sheets (the photoreceptors and the PGO layer)
σ is a piecewise linear sigmoid activation function
γρ is a constant scaling factor
Xρab is the activation of input unit(a, b) on sheetρ
wij,ρab is the corresponding weight value

The initial (afferent) response of cortical (V1 or FSA) units is computed using the
same equation, but withρ iterating over the ON and OFF LGN sheets.

Cortical activation:

ηij(s) = σ

(∑
ρ

γρ

∑
ab

Xρab(s− 1)wij,ρab

)
, (2)

where:
ρ iterates over the four RFs to cortical unit(i, j)

(the ON and OFF LGN RFs and the lateral excitatory and inhibitory weights)
γρ is a constant scaling factor for eachρ (negative for inhibitory lateral weights)
Xρab(s− 1) is the activation of input unit(a, b) during the previous settling step.

Cortical learning:

wij,ρab(f + 1) =
wij,ρab(f) + αρηijXρab∑

ab [wij,ρab(f) + αρηijXρab]
, (3)

where:
ηij is the activity of neuron(i, j) in the final activity bubble
wij,ρab(f) is the connection weight from the previous iteration
α is the learning rate for each type of connection
Xρab is the presynaptic activity.
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larger the product of the pre- and post-synaptic activity, the larger the weight change. The normal-
ization ensures that weights do not grow without bound, and approximates homeostatic regulation
processes that keep the overall excitability of a neuron constant (reviewed in Turrigiano 1999).
At long distances, few neurons have correlated activity and therefore most long-range connections
eventually become weak. The weakest connections are eliminated periodically, resulting in patchy
lateral connectivity similar to that observed in the visual cortex.

For the orientation map experiments reported in this paper, the ON-center and OFF-center
LGN sheets had36 × 36 units, and received input from a54 × 54 array. For the face-processing
experiments, the ON and OFF sheets were74× 74, and the input array was170× 170 units. The
V1 orientation map contained96× 96 neurons, and the FSA contained24× 24 neurons. Initially,
the afferent weights of the cortical neurons were random, and the lateral weights had a smooth
circular Gaussian profile. The afferent RFs were 13 units wide in V1, and 25 units wide in the
FSA (larger because higher level cortical areas have larger RFs). The rest of the parameters are
described in Bednar (2002).

4 Orientation map experiments

To study how prenatal and postnatal learning together produce the adult orientation map, develop-
ment was simulated in two phases. In the prenatal phase of 1000 input presentations, input patterns
consisted of uniform random noise combined with a large “disk” of activity representing a local
patch of highly responding neurons. Figure 3b shows an example of this type of pattern. These
patterns were chosen to match retinal waves, which are the best-characterized source of spon-
taneous activity in early development. However, they can also represent any other spontaneous
activity that includes large patches that are spatially coherent. The 9000 iterations constituting
the postnatal phase used images of natural objects and scenes, modeling visual experience (see
Figures 3d-f ).

This network first develops an orientation map through spontaneous activity, then gradually
refines the map based on experience with natural images, without changing the overall shape of
the map (Figure 4). The final orientation preference distribution is also biased towards horizontal
and vertical, as seen in ferret visual cortex (Coppola et al. 1998). These results are the main novel
component of the orientation map simulations. To our knowledge, only one other computational
model has been tested in this way (Burger and Lang 1999). Unlike in animals or in HLISSOM,
postnatal training in that model entirely rearranged the map, perhaps because their prenatal training
patterns did not contain oriented edges like their postnatal patterns did. If the Burger and Lang
model is tested with patterns like retinal waves, it may also show the smooth progression from
prenatal to postnatal organizations seen in HLISSOM.

Further HLISSOM experiments explored how different pattern types can change the map or-
ganization (Bednar 2002). These three experiments act as controls for the main results, helping to
determine what features of the model are crucial. First, different postnatal training conditions were
tested, to see how different environments can change the outcome. The maps indeed reflected the
skewed data sets. For the Landscapes dataset (Figure 3e), containing many horizontal contours,
the orientation map and histogram became biased towards horizontal (Figure 5b). For the Faces
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(a) Retinal waves (b) Noisy disks (c) Noise (d) Natural objects

(e) Landscapes (f ) Human faces (g) Three-dot patterns (h) Faces and objects in
environments

Figure 3:Training patterns. Plot (a) shows an example of a retinal wave in the ferret, with active areas
appearing dark. (a reprinted with permission from Feller et al. (1996),Science, 272:1182–7, copyright 1996
American Association for the Advancement of Science.) The prenatal orientation map simulations are based
on an approximation to these patterns (b). As a control, we also tested whether initial orientation maps can
develop from uniform random noise alone (c). Postnatal orientation map simulations use natural images
(d) or specific types of stimuli, such as natural landscapes (e) or closeups of human faces (f ). Prenatal
face processing simulations are similar but use more structured inputs, usually without noise to reduce
computational requirements (g). Postnatal face processing simulations use photographs of people or objects
presented at random locations in front of photographs of natural scenes.

dataset (Figure 3f ), more neurons became tuned to vertical orientations (Figure 5c). These find-
ings replicate experimental results from animals raised in biased environments (e.g. Sengpiel et al.
1999), and suggest that the postnatal component of training is important because it allows the map
to adapt to the actual environment of the animal (Bednar 2002).

Second, different patterns of prenatal training activity were tested, to determine what features
of the noisy disks were crucial. Both the disks alone and random noise alone (Figure 3c) resulted
in orientation maps with locally coherent patches of orientation-selective neurons. However, the
receptive fields in the disks case were much more selective than in typical newborn neurons. Thus
including noise was crucial for obtaining realistic receptive fields. Yet for uniform random noise
alone, the receptive fields were poorly selective, and primarily included receptive field types rarely
reported in experimental studies of V1 (e.g. crosses; Bednar 2002). The orientation map was
also less well organized than typical newborn maps. These results suggest that both spatially
uncorrelated noise and spatially correlated activity are necessary to develop a normal prenatal
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(a) Prenatal map detail (b) Adult map

0◦ 45◦ 90◦ 135◦ 180◦

(c) HLISSOM model

Figure 4:HLISSOM model orientation maps. By iteration 1000, the end of prenatal training, the HLIS-
SOM map was a good match to newborn maps (compare the central area plotted ina with Figure 1a). Further
training on 9000 natural image patches results in an adult-like orientation map (compareb with Figure 1b).
The statistics of the orientation preferences of the adult map reflect the horizontal and vertical biases of the
training images, causing the map to devote more area to horizontal and vertical (comparec with Figure 1c).

0o 45o 90o 135o 180o

(a) Natural images

0o 45o 90o 135o 180o

(b) Landscapes
0o 45o 90o 135o 180o

(c) Faces

Figure 5:Effect of different postnatal training environments. Three copies of the same prenatally orga-
nized map were trained postnatally with different image datasets:Nature (as shown in Figure 4c), Land-
scapes(a collection of nature scenes including many strong horizontal contours), andFaces(a collection of
frontal views of faces). Although the resulting maps all have similar large-scale organization determined by
the prenatal training, the number of neurons selective for each orientation reflects the distribution of post-
natal training patterns. Thus prenatal training provides the basic structure, and postnatal training helps the
map represent the most common patterns in the environment.
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map.

Third, an initially random map was trained on natural images alone, to test whether the prenatal
training was crucial for developing orientation maps and selectivity. Although the details of the
final map organization differed from the normal case, the overall properties were very similar (Bed-
nar 2002). Thus prenatal training is not required for a functional orientation map to develop from
natural image input. Overall, these simulations show how internally generated patterns can explain
orientation map function at birth, while the same system later learns from real visual images.

5 Face preference experiments

The face preference simulations were similar to the orientation map simulations, but with more
structured training patterns. For simplicity, the simulations bypassed V1, but including it leads
to similar results (Bednar 2002; Bednar and Miikkulainen 2003). As for orientation, a variety of
prenatal training conditions were simulated, to determine how different training patterns can lead
to face preferences. Most simulations used the three-dot patterns shown in Figure 3g, presented at
randomly chosen positions and random near-vertical orientations. For control purposes, networks
were also trained using other internally generated patterns, and an untrained (naı̈ve) network was
also tested. Postnatally, the training regime represented gradual learning of specific individuals and
objects seen against a variety of different backgrounds. For each postnatal iteration, one of six face
images or six object images was chosen randomly, and presented in front of a randomly chosen
natural scene background (Bednar 2002; see Figure 3h). The main goals of these simulations were
to test whether prenatal learning could account for human performance at birth, and whether this
learning shapes postnatal learning and the final self-organized architecture.

After prenatal training, and at intervals throughout postnatal training, the network was tested
using schematic images previously tested with newborns, and with photographs of faces. In order
to compare the neural activity levels in the model to the patterns preferred by babies, we assumed
that an infant pays more attention to the stimuli that are most effective at activating its visual
processing system, focusing on the highest level activated (Bednar 2002). Patterns activating the
FSA will be preferred over those activating only lower areas, and two patterns that both activate the
FSA will be ranked by their total FSA activity. Under these assumptions, it is possible to compare
the model results with psychological data from human infants.

When trained on three-dot patterns at various locations and orientations, FSA neurons devel-
oped receptive fields preferring upright, triangular arrangements of three dots (Figure 6a, row RF
10000). These RFs cause the network to respond to facelike schematic images (Figure 6), with
total activity levels that rank the patterns in the order preferred by infants (Goren et al. 1975; John-
son and Morton 1991). When tested on 18 schematic patterns from newborn studies (Goren et al.
1975; Johnson and Morton 1991; Simion et al. 1998; Valenza, Simion, Cassia, and Umiltà 1996),
the full version of the model (including both V1 and the FSA) ranked them in the same preference
order for all 22 of the statistically significant preferences found in newborns (Bednar 2002; Bednar
and Miikkulainen 2003). These results demonstrate that a network exposed to three-dot patterns is
sufficient to explain the experimental results with newborns tested with schematic stimuli.

Although schematic patterns are usually used in newborn studies for practical reasons, it is

13



RF 0

RF 10000

RF 20000

RF 40000

(a)

R
et

in
a

LG
N

F
S

A
-1

00
00

F
S

A
-1

10
00

(b) (c) (d) (e) (f ) (g) (h)

Figure 6:Model RFs and responses.The plots in (a) show the RF for a typical neuron in the FSA at differ-
ent stages of training; the pattern shown is the LGN activity that would most excite this neuron. At first the
neuron is unselective (RF 0), but after prenatal exposure to many three-dot patterns it comes to prefer them
(RF 10000). The RF then gradually becomes more selective for real faces through postnatal experience
(RF 20000 andRF 40000). The remaining plots show how such neurons respond to test images. The top
row shows four schematic patterns (Johnson and Morton 1991) and two photographic stimuli (Rowley et al.
1998). Below each is the LGN response to that image (second row), the FSA response after prenatal training
on three-dot patterns (third row), and the FSA response after postnatal training on real faces (bottom row).
The “neonatal” FSA (rowFSA-10000) responds in the location of face-like schematic and real stimuli,
and rarely responds to other images. As in two-month-olds, the response to schematic patterns eventually
disappears when the network is trained on real images (rowFSA-11000), but the responses to real faces
remain (f-g). For images without faces, such as the training pattern shown in (h), the network responds only
when there are accidental three-dot patterns.

important to show that the HLISSOM model also exhibits preferences for real faces compared to
other photographs. Given a database of 150 top-lit images of adult males, the model responded
in the correct location (the center of the face) to 88% of the images (Bednar and Miikkulainen
2003). Conversely, it responded to only 4% of the images in a database of natural scenes. Overall,
the FSA responded to most top-lit human faces, signaling their location in the visual field. It did
not respond to most other stimuli, except when they contained accidental three-dot patterns. The
model predicts that human newborns will have a similar pattern of responses in the face-selective
cortical regions.

How crucial is the specific training pattern for the prenatal preferences? In addition to the
three-dot pattern proposed by Johnson and Morton (1991), we tested a variety of other prenatal
training pattern shapes (Bednar 2002; Bednar and Miikkulainen 2003). For all training patterns,
test faces that matched the training pattern size gave higher responses than did other natural im-
ages. However, responses to the schematic patterns were very different for networks trained with
different patterns. Of all training patterns tested, the three-dot pattern provided the best selectivity
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for faces, and a better fit to the experimental data with schematics.

Importantly, not all patterns result in face preferences. For example, if only a single low-level
feature like eye size is matched between the training and testing images, the HLISSOM model
does not prefer faces. These results show that the pattern shape is important, but that a variety of
shapes lead to qualitatively similar results.

What effect does the prenatal training have on postnatal learning? Trained with real faces in
real images, most units in both the prenatally trained and naı̈ve networks developed RFs that are
averages (i.e. prototypes) of faces and hair outlines (Bednar and Miikkulainen 2002). However,
the time course of learning and the final result differed. RFs in the prenatally trained network
become gradually more selective for faces. Postnatal self-organization in the naı̈ve network is
less regular, and the final RFs are usually less selective. Overall, prenatal training appears to bias
postnatal learning towards biologically relevant stimuli, i.e. faces (as suggested by Johnson and
Morton 1991).

The bottom row of Figure 6 shows that HLISSOM gradually responds less to schematic faces,
just as infants no longer prefer such faces in the periphery after one month (Johnson et al. 1991).
In HLISSOM, the loss of face preferences is caused by afferent weight normalization. As the
FSA neurons in HLISSOM learn the hair and face outlines typically associated with real faces,
the connections to the internal features necessarily become weaker. As a result, the response to
face-like schematic patterns decreases, because those patterns match only the internal features.
Eventually, the response to the schematic patterns drops below the fixed activation threshold. At
that point, the model does not respond more strongly to schematic faces than to other schematics.
In a sense, the FSA has learned that real faces typically have both innerand outer features, and
does not respond when either type of feature is absent or a poor match to real faces.

Interestingly, the FSA neurons continue to respond to real faces (as opposed to schematics)
throughout postnatal learning (Figure 6f-g). Thus the model provides a clear prediction that even
if infants lose their preference for schematics over time, they will continue to prefer realistic faces
compared with other similar images.

When one face (i.e. the mother) appears most often, the FSA response to that face becomes
stronger than to a similar stranger (Figure 7; Bednar and Miikkulainen (2002)). This result repli-
cates the mother preference found in infants a few days old (Bushnell 2001; Pascalis et al. 1995).
Interestingly, the model no longer prefers the mother when her hair outline is masked, which is
consistent with Pascalis et al.’s claim that newborns learn outlines only. However, Pascalis et al.
(1995) did not test the crucial converse condition, i.e. whether newborns respond when the facial
features are masked, leaving only the outlines. As for the internal features alone, the model does
not respond to the head and hair outline alone. Thus the HLISSOM model’s learning of faces is
clearlynot restricted to the outline.

In the model, the response is lower with either type of masking because of holistic learning of
all of the features of real faces. As real faces are learned, the afferent weight normalization ensures
that neurons respond only to patterns that are a good overall match to all of the weights, not simply
matching on a few features. Many authors have argued that adults learn faces holistically (e.g.
Farah, Wilson, Drain, and Tanaka 1998). The simulation results suggest that newborns may learn
faces in the same way, and thus that they will not prefer their mother when her internal facial
features are masked. Overall, the face preference experiments provide a detailed computational
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Figure 7:Mother preferences depend on both internal and external features.Initially, the prenatally
trained FSA responds well to both women above (a-b; FSA-0), with no significant difference (p = 0.28).
The response is primarily due to the internal facial features (c-d; FSA-0), although there are some spurious
three-dot responses due to alignment of the hair with the eyes (a-b; top of FSA-0). Designating image (a)
as the mother, we presented it in 25% of the postnatal learning iterations. (This ratio is taken from Bushnell
2001, who found that newborns look at their mother’s face for an average of about one-fourth their time
awake over the first few days.) Image (b), the stranger, was not presented at all during training. After 500
postnatal iterations, the response to the mother is significantly greater than to face (b) (p = 0.001). This
result replicates the mother preference found by Pascalis et al. (1995) in infants 3–9 days old. The same
results are found in the counterbalancing condition — when trained on face (b) as the mother, (b) becomes
preferred (p = 0.002; not shown). After training with real faces, there is no longer any FSA response to the
facial features alone (c-d), which replicates Pascalis et al.’s (1995) finding that newborns no longer preferred
their mother when her face outline was covered. Yet contra Pascalis et al. (1995), we cannot conclude that
what has been learned “has to do with the outer rather than the inner features of the face”, because no
preference is found for the face outline alone either (e-f). These results suggest that newborn face learning
is holistic, and includes all features associated with faces.

simulation of how preferences can be constructed prenatally and refined postnatally, and provide
concrete predictions for future experiments.

6 Discussion and future work

The results presented in this chapter show how environmental and genetic factors can interact
to produce selectivity for both high-level and low-level visual features. Both environmental and
genetic factors are crucial for explaining the experimental data, and both are incorporated using
the same general-purpose learning algorithm. In each case, the prenatal organization provides
structure at birth, while postnatal learning allows these initial preferences to be refined to match
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the actual visual patterns in the environment.

The orientation simulations show that the development of low-level features like orientation
maps is robust, i.e. maps can develop from a wide range of possible input patterns. Spontaneous
activity with actual oriented edges, like retinal waves, may help ensure that maps develop normally
in a wider range of possible environments. Prenatal training may also allow V1 to mature more
quickly, which could be important for organizing higher levels of the visual system.

The face preference simulations show that prenatal learning of spontaneous activity and postna-
tal learning of real faces can together account for newborn face preferences, neonatal face learning,
and longer term development of face detection. The results suggest simple but novel explanations
for why newborns prefer schematic faces, why newborn learning appears to depend on the face
outline, and why the response to schematic faces decreases over time. They also suggest that in-
ternally generated patterns allow the genome to steer development towards biologically relevant
processing, making subsequent learning more robust.

The orientation and face preference results depend primarily on having a model that learns
representations for common patterns on the input, plus having prenatal patterns that share some
structure with those experienced postnatally. Thus we expect that similar results could be found
with other realistic models of visual processing, such as those of Burger and Lang (1999; for orien-
tation) and Rolls and Milward (2000; for face recognition). In each case, the crucial assumptions
are (1) the type of patterns that are present before visual experience, (2) the overall arrangement of
visual areas, and (3) the “hardwired” processing in the early visual areas.

In future work, it will be important to measure the actual activity patterns in developing an-
imals and humans, and understand how these patterns are generated in the brainstem and other
areas. Brain imaging in young infants can help determine whether face-selective responses in
newborns are subcortical, as in the CONSPEC/CONLERN model, or cortical, as in the HLISSOM
model. Even before newborn imaging is practical, the predictions of the face processing model
can be tested behaviorally with infant experiments. For example, HLISSOM predicts that over the
first two months the response to real faces in the periphery should continue, even as response to
schematics diminishes, and the mother preference of newborns should disappear when the facial
features are masked. These experiments will help clarify the roles of internally generated activity
in the development of the cortex.

7 Conclusion

The HLISSOM model shows how the interaction between environmental and genetic factors can
explain many features of orientation map and face processing develoment. In the model, the genetic
factors take several forms: (1) constraints on the overall arrangement of visual areas and connectiv-
ity between areas, (2) prespecification of processing in early visual areas such as the retina and the
LGN, and (3) genetically determined activity patterns generated during early development. Given
these constraints and initial patterns, the model shows how a functional visual system can develop
reliably, even without detailed genetic specification of neural connectivity patterns or of specific
cortical representations.

At the same time, the specific representations that do develop depend strongly on interaction
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with the environment. Without environmental input, the model representations remain crude and
relatively unselective, unlike neurons in adult cortical areas. Moreover, the specific properties of
the environmental input are crucial: a preponderance of certain orientations or objects will result in
representations biased towards common stimuli, such as horizontal contours or the mother’s face.
This adaptation helps ensure that appropriate representations will develop.

In the model, the environmental interactions were simulated using static photographic images,
but in general an organism will develop through interaction with a much richer environment, in-
cluding moving patterns, associations between different sensory and motor modalities, and associ-
ations between sensory patterns and rewards or pain. We expect that these additional consequences
of embodiment or situatedness will be crucial for explaining the full range of cortical development.
For instance, experience with faces from a wide range of orientations, in different lighting condi-
tions, and with different hairstyles is likely to be necessary for the development of adult-like face
recognition that is invariant to these factors. Future work will explore how these more realistic
types of embodiment can be studied computationally.

In summary, the specific simulations described above demonstrate how environmental and ge-
netic factors can together explain much of how orientation and face processing develop. In both
cases, the overall approach is the same, with initial orientation and face selectivity developing
prenatally and being refined postnatally to match the visual environment. The modeling results
provide clear predictions for future animal and infant experiments, and they act as examples of a
new way of understanding how sensory systems can be constructed.
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Glossary

Piecewise-linear sigmoid activation function:A neural network unit generates a real-valued out-
put (itsactivation) as a function of the values of its inputs. A sigmoid function is an S-shaped
curve that produces little activation for weak inputs, nearly linear activation for intermediate
values, and saturates quickly for high values. A piecewise-linear sigmoid is an approxi-
mation to the smooth sigmoid curve, using linear functions for the low, medium, and high
regimes, which is more computationally efficient to simulate.

topographic neural maps: Cortical sensory areas are organized in terms of topographic maps
of neurons. For instance, most visual areas are retinotopic, mapping from input organized
spatially in two dimensions like the retina, into another retinotopic representation. Other
sensory and motor areas also have two-dimensional topographic organization.
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ventral processing pathway: Ungerleider and Mishkin (1982) proposed that the organization of
the visual system could be understood in terms of aventral streamand adorsal stream, also
called thewhatand thewherepathways. Areas in the ventral stream, such as IT (inferotem-
poral cortex), are thought to be concerned with object identity. Those in the dorsal stream,
such as posterior parietal cortex, are thought to be concerned primarily with precise object
location and the detection of motion. The two streams share early cortical areas such as V1
and V2.

Hebb rule: Donald Hebb (1949) proposed a neural network learning rule that is now called the
Hebb rule or the Hebbian rule. He suggested that neurons that often activate at the same
time should become more strongly connected, an idea that has since received wide experi-
mental and theoretical support. A variety of mathematical equations can be characterized as
Hebbian, as long as they result in connections being strengthened between coactive neurons.
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Valenza E, Simion F, Cassia VM, and Umiltà C (1996). Face preference at birth.Journal of
Experimental Psychology: Human Perception and Performance, 22(4), 892–903.

von Melchner L, Pallas SL, and Sur M (2000). Visual behaviour mediated by retinal projections
directed to the auditory pathway.Nature, 404(6780), 871–876.

Wong ROL (1999). Retinal waves and visual system development.Annual Review of Neuroscience,
22, 29–47.

22

http://nn.cs.utexas.edu/keyword?sirosh:bc94
http://nn.cs.utexas.edu/keyword?sirosh:bc94
http://operatix.catchword.com/vl=3474455/cl=21/nw=1/rpsv/cw/erlbaum/15250008/v1n2/s8/p265
http://operatix.catchword.com/vl=3474455/cl=21/nw=1/rpsv/cw/erlbaum/15250008/v1n2/s8/p265
http://www.neuron.org/cgi/content/abstract/33/3/357
http://www.neuron.org/cgi/content/abstract/33/3/357
http://dx.doi.org/10.1002/(SICI)1097-4695(199910)41:1<33::AID-NEU6>3.0.CO;2-1
http://dx.doi.org/10.1002/(SICI)1097-4695(199910)41:1<33::AID-NEU6>3.0.CO;2-1
http://dx.doi.org/10.1038/35067562
http://www.iop.org/EJ/S/3/251/kxtGlJZKth350bhDwPkibw/article/0954-898X/7/2/002/ne62r2.pdf
http://dx.doi.org/10.1038/35009102
http://dx.doi.org/10.1038/35009102

	Introduction
	Biological and psychological background
	Orientation map development
	Development of face detection
	Internally generated patterns

	HLISSOM model
	Orientation map experiments
	Face preference experiments
	Discussion and future work
	Conclusion

