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Abstract

Long-range lateral connections in the primary visual cortex (V1) are known to link neurons with similar
orientation preferences, but it is not yet known how color-selective cells are connected. Using a self-
organizing model of V1 with natural color image input, we show that realistic color-selective receptive
fields, color maps, and orientation maps develop. Connections between orientation-selective cells match
previous experimental results, and the model predicts that color-selective cells will primarily connect
to other cells with similar chromatic preferences. These findings suggest that a single self-organizing
system may underlie the development of orientation selectivity, color selectivity, and lateral connectivity.

Key words: Color maps, Orientation maps, Color blobs, Red-green receptive fields, Opponent cells

1 Introduction

Most simple cells in the primary visual cortex (V1) are selective for the orientation of a stimulus,
but many are also selective for particular colors [12]. Recent experimental results have shown
for the first time how these color-selective cells are organized at the map level, and how they
relate to other visual maps such as orientation or ocular dominance [11].

In addition to their afferent input from the LGN, the neurons in these maps are connected in-
tracortically through specific long-range lateral connections [10]. The lateral connections have
been found to link cells with similar orientation preferences [6, 10], which allows suppressing
redundancy in the input and improves the cells’ ability to detect changes in a stimulus [4, 14].
However, the role of these connections in the development and adult function of color selec-
tivity is not yet clear. The model presented here suggests that color blobs found in V1 connect
laterally to other color selective regions.

Although a number of computational models have shown that orientation maps can develop
through activity-dependent self-organization (reviewed in [15]), to our knowledge only one pre-
vious model has shown how color-selective blobs can develop [1]. In that model, lateral con-
nections were treated as fixed, isotropic interaction functions. Thus previous modeling work
has not yet been able to make predictions about how the color-selective cells will be connected
laterally, and what roles these connections could play in color and object perception.

In prior work with the LISSOM self-organizing model (Laterally Interconnected Synergetically
Self-Organizing Map), we have shown how a Hebbian learning process can develop topographic
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Fig. 1. HLISSOM model of orientation and red-green
color selectivity. The model is a hierarchy of sheets of neu-
ral units, modeling the visual pathway from the retinal pho-
toreceptors to V1. For training and activation, color natu-
ral images are first separated into red and green channels,
which become the bitmap activation patterns of the red and
green photoreceptor sheets. Each LGN unit receives input
from photoreceptor units in circular receptive fields (RFs).
Connections to photoreceptor RFs are plotted for two exam-
ple Red/Green LGN units. All units at the same position in
the other four LGN sheets also receive input from the same
location on the photoreceptors. Units in each LGN sheet have
difference-of-Gaussian (DoG) shaped connections to the pho-
toreceptors, with a small central region and a larger surround.
ON units receive excitation in the center of the RF, and inhibi-
tion in the surround. OFF units receive inhibition in the center,
and excitation in the surround. For Red/Green units, the center input comes from the Red channel, and the
surround from the Green channel, and vice versa for Green/Red units. Neurons in V1 have circular RFs
on all six LGN sheets; connections to two of the RFs are shown. V1 neurons also have lateral excitatory
(small dotted circle) and lateral inhibitory (large dashed circle) connections to their neighbors. Once all
LGN cells have been activated, initial V1 activity is computed from the LGN responses, and the activity
then spreads laterally within V1. Both afferent and lateral V1 weights are adapted when the activity set-
tles and eventually organizes into a map of regular orientation and color preferences with patchy lateral
connections. (Natural image from Visual Delights, all rights reserved, www.visualdelights.net.)

maps, ocular dominance, orientation, and motion direction columns, and patterned lateral con-
nections between them [3, 13, 14]. The model suggests that these self-organized maps and
lateral connections function in adult visual perception to segment and bind coherent objects
and reduce redundancy in the input, and that visual illusions and aftereffects arise through this
process [4, 7, 14]. In this paper the model is extended further to develop dichromatic color
preferences through the self-organization of red-green opponent cell receptive fields. Together,
these results show that activity-dependent self-organization can explain many of the anatomical
and functional characteristics of the cortex.

2 HLISSOM model

These simulations are based on the HLISSOM model [2], which extends LISSOM to include
the ON and OFF channels of the LGN. HLISSOM is extended further to include dichromatic
(red and green) color processing in the retina and LGN, to allow V1 to develop blobs of laterally
connected color-selective cells within the orientation map. The architecture for the HLISSOM
model is shown in figure 1, and will be briefly reviewed below (See [2] for more details.)

The model consists of two-dimensional sheets of neural units modeling different areas of the
visual system: two sheets of retinal photoreceptors representing different cone types, several
paired sheets of ON-center/OFF-surround and OFF-center/ON-surround LGN units (each with
a different color channel combination described below), and a sheet of cortical units (“neurons”)
representing V1. Because the focus is on the two-dimensional organization of V1, each cortical
neuron corresponds to a vertical column of cells through the six anatomical layers of the cortex.
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The input to the model is a series of color bitmap images separated into red, green, and blue
color channels. In the retina, the majority of photoreceptor cones are sensitive to medium (anal-
ogous to the green channel) or long (red) wavelengths [12], and so for simplicity the short-
wavelength (blue) channel was omitted from this version of the model. The model simulates
three common types of ganglion cell receptive fields: luminosity, red-center/green-surround,
and green-center/red-surround.

For each image, the activity levels of all LGN cells are calculated. Each cell(i, j) computes its
responseηij as a scalar product of a fixed weight vector and its RFs on the photoreceptor sheets:

ηij = σ
(∑

ρ γρ
∑

ab Xρabwij,ρab

)
, (1)

whereρ identifies the input sheet (either the red or green photoreceptors in the retina),σ is a
piecewise linear sigmoid activation function,γρ is a constant scaling factor,Xρab is the activation
of input unit (a, b) on sheetρ, andwij,ρab is the corresponding weight value. Each V1 neuron
computes its initial response like an LGN cell, then the V1 activity then settles through short-
range excitatory and long-range inhibitory lateral interaction:

ηij(t) = σ
(∑

ρ γρ
∑

ab Xρab(t− 1)wij,ρab

)
, (2)

whereρ identifies one of the six LGN sheets or the lateral excitatory or lateral inhibitory weights
to V1, γρ is a constant scaling factor for eachρ (negative for inhibitory lateral weights), and
Xρab(t−1) is the activation of input unit(a, b) during the previous settling step. The V1 activity
pattern starts out diffuse, but within a few iterations of equation 2, converges into a small number
of stable focused patches of activity, or activity bubbles.

After the activity has settled, the connection weights of each V1 neuron are modified. All V1
weights adapt according to the Hebb rule, normalized so that the sum of the weights from each
sheetρ is constant for each neuron(i, j):

w′
ij,ρab =

wij,ρab + αρηijXρab∑
uv [wij,ρuv + αρηijXρuv]

, (3)

whereηij stands for the activity of neuron(i, j) in the final activity bubble,w′
ij,ρab is the new

connection weight, andwij,ρab the current connection weight,α is the learning rate for each
type of connection, andXρab is the presynaptic activity. The larger the product of the pre-
and post-synaptic activityηijXρab, the larger the weight change. At long distances, few neurons
have correlated activity and most long-range connections eventually become weak. The weakest
connections are eliminated periodically, resulting in patchy lateral connectivity similar to that
observed in the visual cortex.

For the experiments reported in this paper, three36 × 36 ON-center/OFF-surround and three
36× 36 OFF-center/ON-surround cell sheets received input from two110× 110 photoreceptor
sheets. Each ON/OFF cell had fixed Difference of Gaussians receptive fields (RFs) within the
photoreceptor arrays. Initially, the afferent weights of the64 × 64 V1 neurons were random,
and the lateral weights had a smooth circular Gaussian profile. The learning parameters were
similar to those in our earlier V1 orientation model [4], scaled for this cortex size using the
model scaling methodology presented in [2].
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Fig. 2.Self-organized color- and orientation-selective receptive fields.These images show the affer-
ent weights for typical orientation selective, red selective, and green selective neurons. White indicates
a net ON subregion of the RF, i.e. an area that will excite the neuron if it is brighter than its surround.
Black indicates OFF subregions. The top row of afferent weight plots shows that the most effective
stimulus for this orientation-selective neuron would be a diagonal bar or grating that is angled from
upper-left to lower-right. Either monochrome or color stimuli would be effective, because the neuron
has similar-strength connections to ON or OFF LGN sheet of each color. The middle row of weights
show a neuron that is selective to red colors. Response is strongest when there is activity from the ON
red-center/green-surround LGN sheet (R/-G) and OFF green-center/red-surround LGN sheet (-G/R). It
is less responsive to the LGN sheets that respond to green light (-R/G and G/-R), or to monochromatic
stimuli. The color preferences are reversed for the green-selective neuron (bottom row), which is acti-
vated most strongly when its OFF red-center/green-surround (-R/G) and ON green-center/red-surround
(G/-R) RFs are activated. The dark regions in the far right column represent the self-organized lateral
weights to each neuron from other neurons in the V1 sheet. The darkest blob consists of short-range con-
nections from nearby neurons that have a variety of preferences. The lighter blobs consist of long-range
connections from distant patches of neurons with similar orientation and color preferences. Orientation
selective neurons contact many other patches of orientation-selective neurons, while color-selective neu-
rons contact a few, larger blobs of green or red-selective neurons. Such lateral color blob connections
have not been measured experimentally in animals but constitute predictions of the model.

3 Results

Figure 2 shows the self-organized afferent weights for three representative neurons after 20,000
image fixations. Nearly all neurons developed receptive fields selective for orientation or for
color, while some neurons were partially selective for both. These RFs are similar to those
found experimentally in the cortex [8, 9, 11].

Figure 3 shows that the self-organized global orientation and color maps are also similar to those
found in animals [5, 11]. Most neurons are selective for orientation, while neurons selective for
color and not orientation group into regularly spaced blobs within the orientation map. Neurons
surrounding the color-selective blobs tend to be selective for both color and orientation.

Long-range lateral connections between neurons follow the global organization of the orienta-
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(a) Orientation map (b) Orientation+color map (c) Color map

Fig. 3.Self-organized orientation and color maps.Through self-organization, smoothly varying maps
of orientation and color preferences emerged in V1. Each of the64 × 64 neurons is colored with its
preferred orientation, according to the key at left. The orientation map (a) is similar to those found
experimentally in animals, containing features such as pinwheels, linear zones, and fractures [5]. There
are small regions of unselective neurons scattered through the map that are colored white in the plot.
These non–orientation-selective regions match the color selective regions shown as black blobs in (c).
Plot (b) outlines the color sensitive regions on the orientation map to make this relationship clear. These
orientation and color maps are similar to those found experimentally in the macaque monkey[11]. (Color
figures available at http://www.nn.cs.utexas.edu/keyword?neurocomputing05)

tion and color maps, connecting neurons with similar color or orientation preference (figure 2).
For instance, as shown in biological experiments vertical-preferring cells tend to connect to
other vertical-preferring cells [5], while the computational model predicts that experiments will
show green-preferring cells tend to connect to other green-preferring cells. These connection
patterns represent the correlations between units over the course of self-organization. As will
be described below, the self-organized lateral weight patterns are likely to play a crucial role in
adult visual perception as well as development.

4 Discussion and Future Work

The results demonstrate that a single Hebbian learning algorithm can explain how topographic
maps, color sensitive receptive fields, and lateral connections self-organize together from color
image stimuli. The model predicts that long-range lateral connections in V1 will be found to
connect neurons with similar color preference as well as orientation preference.

In future work the model will be extended to include tri-chromatic receptive fields, with an ad-
ditional sheet of blue photoreceptors and additional LGN sheets of blue-yellow opponent units.
It will also include input from two eyes, so that the interaction between color blobs and ocular
dominance columns can be analyzed. In addition, we will calibrate the RGB color channel sep-
arations based on the response properties of the macaque S, M, and L cones. This model can
then be validated against experimental results from particular species.

Other future studies will investigate how the color map and its connections operate in the adult.
The self-organized connection patterns should improve object discrimination based upon color,
which would help the visual system quickly separate salient objects in an otherwise uniform
visual field. The connections may also be important for detecting color borders and achieving
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color constancy, i.e. recognizing colors as similar in different visual contexts. These studies will
help clarify how the visual system develops to process color stimuli.

5 Conclusion

Hebbian learning of color images of natural scenes can explain how orientation selectivity, color
selectivity, and lateral connectivity develop in V1. The model provides specific predictions for
the role of the lateral connections in the development and function of the color and orientation
maps. This work helps strengthen our understanding of the developing and the adult visual
cortex as a continuously adaptive input-driven system.
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