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Abstract

Infant face perception is controversial, but the current evidence suggests that (a) newborns orient
to and follow face-like schematic patterns more than similar patterns, (b) infants can learn individ-
ual faces soon after birth, and (c) full face-processing abilities develop through months or years of
experience with faces. Together, these capabilities have proved difficult to explain in terms of ei-
ther environment-driven learning or genetically hardwired abilities. Accordingly, researchers have
proposed that multiple visual processing areas may be involved, some hardwired and some plastic.
New discoveries of widespread spontaneous neural activity during development suggest an alter-
native explanation: a single plastic visual processing system may learn from both spontaneous and
visually evoked activity. In simulations with a biologically based computational model, we show
that such internally generated patterns and a learning system can account for a wide range of these
seemingly contradictory experimental results. The results suggest that learning of both internally
generated and environmentally evoked activity may be a general feature of brain development.

INTRODUCTION

Specific regions in the adult visual cortex respond more strongly to human faces than to other simi-
lar stimuli (Kanwisher, McDermott, & Chun, 1997). How this face processing capability develops
is not yet clear. Many researchers have argued that infants process only general visual proper-
ties like size and spatial frequency until after weeks or months of experience (Maurer & Barrera,
1981). Others have found a preference for faces at birth (Goren, Sarty, & Wu, 1975; Johnson,
Dziurawiec, Ellis, & Morton, 1991; Simion, Valenza, & Umiltà, 1998) and that infants can learn
and discriminate between specific faces even in the first few hours and days after birth (Bush-
nell, 2001; Pascalis, de Schonen, Morton, Deruelle, & Fabre-Grenet, 1995). Full face-processing



abilities clearly take several years to develop. Thus, face perception appears to be substantially
organized at birth, yet only develops fully through postnatal experience.

This paper summarizes work demonstrating that a single learning system can account for all
three types of results, i.e. face preferences at birth, face learning in the first few days after birth,
and the gradual development of full face processing abilities. Further details are presented in
Bednar (2002). Using the HLISSOM self-organizing model (Hierarchical Laterally Interconnected
Synergetically Self-Organizing Map), we have shown how prenatal learning of internally generated
activity can lead to newborn face preferences (Bednar & Miikkulainen, 2000, 2002a). We have
also shown that the same self-organizing system can learn from faces in real images, and that
the learning process can explain postnatal changes in infant face detection abilities (Bednar &
Miikkulainen, 2002b). Together these simulations show how genetic information can be expressed
within a highly adaptive system, and provide concrete predictions for future experiments with
infants.

DEVELOPMENT OF FACE DETECTION

Newborns appear to have some face detection abilities, but these abilities change significantly over
early development. When shown moving schematic faces in the visual periphery, newborns and
one-month-olds will follow them further than other similar patterns (Goren et al., 1975; John-
son et al., 1991; see example schematics in figure 2b-e). Older infants do not show a peripheral
schematic face preference (Johnson et al., 1991), but between one and two months they begin to
respond to facial features in central vision (Maurer & Barrera, 1981).

Previous models invoke separate visual processing mechanisms for these newborn and later
face preferences. For instance, Johnson & Morton (1991) proposed that infants are born with
a basic subcortical system they termed CONSPEC (see also Johnson, this volume). CONSPEC
serves only to detect and direct attention to face-like patterns in the periphery, perhaps using a
simple three-dot template (two dots for the eyes and a third for the nose and mouth). A separate
cortical system CONLERN would begin to control behavior after one month, and would gradually
develop more sophisticated face processing through learning in central vision.

However, the CONSPEC/CONLERN model does not account for neonatal face learning. For
example, an infant only a few days old will prefer to look at its mother’s face, relative to the face of
a stranger (Bushnell, 2001; Pascalis et al., 1995). Presumably this preference results from postnatal
visual experience of the mother’s face (Bushnell, 2001). This mother preference has been thought
to involve the external outline of the face only, in contrast to the internal facial feature learning of
CONLERN, because the preference disappears when external features are masked (Pascalis et al.,
1995).

Accordingly, Johnson & Morton (1991) and subsequent authors have proposed extending the
CONSPEC/CONLERN model to include face-outline learning in CONSPEC, or a third, sepa-
rate subsystem for learning face outlines at birth (de Schonen, Mancini, & Leigeois, 1998; Simion
et al., 1998). However, recent studies suggest that newborns can also learn internal features (Slater,
Bremner, Johnson, Sherwood, Hayes, & Brown, 2000). Such learning could require a fourth sub-
system, i.e. a learning system similar to CONLERN, but for the periphery, and operational at birth.
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Alternatively, CONLERN itself could be present at birth, but in that case the model would need an
additional mechanism to explain why schematic faces are no longer preferred in the periphery by
two months of age.

Our computational results will show that such increasingly complex models are unnecessary.
A single cortical learning system present at birth is sufficient to explain the experimental data, if
it is exposed to internally generated patterns broadly similar to faces. That is, CONLERN alone
is sufficient, if instead of CONSPEC there is a mechanism that generates training patterns before
birth.

INTERNALLY GENERATED PATTERNS

Spontaneous neural activity has been documented in many cortical and subcortical areas as they
develop, including the visual cortex, the retina, the auditory system, and the spinal cord (reviewed
in O’Donovan, 1999; Wong, 1999). This activity has been shown to be responsible for the segre-
gation of the LGN (the lateral geniculate nucleus of the thalamus) into eye-specific layers before
birth, indicating that internally generated activity patterns are crucial for normal visual develop-
ment (Shatz, 1996; Stellwagen & Shatz, 2002).

In this work, we focus on one common type of spontaneous activity: ponto-geniculo-occipital
(PGO) waves. These activity patterns are generated during rapid-eye-movement (REM) sleep. De-
veloping embryos spend a large percentage of their time in a precursor of REM sleep, which sug-
gests that this state has a major role in development (Roffwarg, Muzio, & Dement, 1966). During
REM sleep, PGO waves originate in the brain stem, then travel to the LGN, visual cortex, and many
other brain areas (see Callaway, Lydic, Baghdoyan, & Hobson, 1987 for a review). PGO waves are
strongly correlated with eye movements and with vivid visual imagery in dreams, suggesting that
they activate the visual system as if they were visual inputs (Marks, Shaffery, Oksenberg, Speciale,
& Roffwarg, 1995). PGO waves also elicit different distributions of activity in different species,
and interrupting them has been shown to increase the influence of the environment on development
(Marks et al., 1995).

All of these characteristics suggest that PGO waves may be providing species-specific training
patterns for development (Jouvet, 1998). However, due to limitations in experimental imaging
equipment and techniques, it has not yet been possible to measure the two-dimensional shape of
the activity resulting from the PGO waves; only the temporal behavior is known (Rector, Poe,
Redgrave, & Harper, 1997). How closely neonatal REM sleep and PGO waves are related to those
of adults is also controversial (Dugovic & Turek, 2001; Jouvet, 1999). Even so, it is clear that there
is substantial brainstem-generated activity in the visual areas of newborns during sleep.

We hypothesized that if these activity patterns have a simple spatial configuration of three active
areas (or other similar patterns), they could account for the measured face-detection performance
of human newborns and for subsequent postnatal learning. We tested this hypothesis in a series of
computational experiments with the HLISSOM model. The experiments show that much of what
is known about infant face learning and face preferences can be explained by a single, general-
purpose learning system, which learns from both internally generated patterns of activity and from
the visual environment.
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Figure 1:HLISSOM model. The model is a hierarchy of sheets of neural units, modeling the infant visual
pathway. Each unit computes its response from the activity in its receptive fields (RFs); the RFs of one unit
in each map are shown. Units have receptive fields on previous levels (afferent connections) and on the same
level (lateral connections). Higher levels process more complicated visual properties, with the top-level area
(the FSA) containing units that become selective for the location of a human face. In addition to the visual
processing areas, HLISSOM includes input from internal sources of activity, represented here by the PGO
pattern generator.

HLISSOM MODEL

The architecture for the HLISSOM model is shown in figure 1, and will be briefly reviewed below.
(For more details, including parameter settings, see Bednar, 2002.) The model consists of a hier-
archy of two-dimensional sheets of neural units modeling different areas of the nervous system:
two sheets of input units (the retinal photoreceptors and the PGO pattern generator, two sheets of
LGN units (ON-center and OFF-center), a sheet of primary visual cortex (V1) units, and another
sheet of cortical units (“neurons”) called the face-selective area (FSA). The FSA represents the first
region in the ventral processing pathway that has receptive fields large enough to span a human
face at close range. Cortical areas between V1 and the FSA have been bypassed for simplicity, and
postnatal simulations also omit V1 to focus on learning in the FSA. Each cortical neuron in V1 or
the FSA corresponds to a vertical column of cells through the six anatomical layers of the cortex.

The input to the model is an activity pattern on a sheet of photoreceptors or the PGO generator
(see examples in figure 1). The cells in the ON- and OFF-center layers of the LGN compute their
responses as a scalar product of their retinal receptive fields and a weight vector. Like the ON and
OFF cells, each FSA neuron also computes its initial response as a weighted sum of activity in
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its receptive field, subject to an activation threshold. After initial activation, the neural responses
repeatedly propagate within the FSA through the excitatory and inhibitory lateral connections, and
evolve into coherent activity “bubbles” (see example FSA activity in figure 1). After the activity
stabilizes, weights of the active neurons are adapted by a normalized Hebbian rule. That is, weights
are strengthened between units that are both active, while other connections to those neurons are
weakened.

To determine the influence of internally generated activity, we simulated a variety of prenatal
training conditions. Most simulations used the three-dot patterns shown in figure 1, presented at
randomly chosen positions and random near-vertical orientations. For control purposes we also
trained networks using other internally generated patterns, as well as testing an untrained (naı̈ve)
network. Postnatally, the training regime represented gradual learning of specific individuals and
objects seen against a variety of different backgrounds. For each postnatal iteration, one of six face
images or six object images was chosen randomly, and presented in front of a randomly chosen
natural scene background (Bednar, 2002).

After prenatal training, and at intervals throughout postnatal training, we tested the network
using schematic images previously tested with newborns, and with photographs of faces. In order
to compare the resulting model neural activity to babies’ attentional preferences, we assume that
an infant pays more attention to the stimuli that are most effective at activating its visual processing
system, focusing on the highest level activated (Bednar, 2002). Patterns activating the FSA will be
preferred over those activating only lower areas, and two patterns that both activate the FSA will
be ranked by their FSA activity.

RESULTS

Each of the following subsections describes the result of a computational experiment with the
HLISSOM model.

Newborn schematic face preferences

When trained on three-dot patterns at various locations and orientations, FSA neurons developed
receptive fields (RFs) preferring upright, triangular arrangements of three dots (figure 2a, row RF
10000). The network was then tested on 18 schematic patterns used in previous experimental stud-
ies. The total response of these neurons to each pattern ranked them in the same preference order
for all 22 of the statistically significant preferences found in newborns (Bednar & Miikkulainen,
2002a). Figure 2 shows the response to four such patterns; the rest are shown in Bednar (2002).
These results demonstrate that a network exposed to three-dot patterns is sufficient to explain the
experimental results with schematic patterns. At this stage, the trained map can be considered a
testable implementation of CONSPEC, Johnson & Morton’s subcortical system, except that it was
constructed by learning and will continue to learn after birth.
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Figure 2: Model RFs and responses.The plots in (a) show the RF for a typical neuron in the FSA at
different stages of training; the pattern shown is the LGN activity that would most excite this neuron. At
first the neuron is unselective (RF 0), but after prenatal exposure to many three-dot patterns it comes to
prefer them (RF 10000). The RF then gradually becomes more selective for real faces through postnatal
experience (RF 20000 and RF 40000). The remaining plots show how such neurons respond to test
images. The top row shows four schematic patterns (Johnson & Morton, 1991) and two photographic stimuli
(Rowley et al., 1998). Below each is the LGN response to that image (second row), the FSA response after
prenatal training on three-dot patterns (third row), and the FSA response after postnatal training on real faces
(bottom row). The “neonatal” FSA (rowFSA-10000) responds in the location of face-like schematic and
real stimuli, and rarely responds to other images. As in two-month-olds, the response to schematic patterns
eventually disappears when the network is trained on real images (rowFSA-11000), but the responses to
real faces remain.

Newborn preferences for real face images

Although newborn studies usually use schematic patterns for practical reasons, it is important to
show that the HLISSOM model also exhibits preferences for real faces compared to other pho-
tographs. Given a database of 150 top-lit images of adult males, the model responded in the
correct location (the center of the face) to 88% of the images (Bednar & Miikkulainen, 2002a).
Conversely, it responded to only 4% of the images in a database of natural scenes. Overall, the
FSA responded to most top-lit human faces, signaling their location in the visual field. It does not
respond to most other stimuli, except when they contain accidental three-dot patterns. The model
predicts that human newborns will have a similar pattern of responses in the face-selective cortical
regions.
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Effect of prenatal training pattern shape

How crucial is the specific training pattern for the prenatal preferences? In addition to the three-dot
pattern proposed by Johnson & Morton (1991), we tested a variety of other training pattern shapes
(Bednar, 2002). For all training patterns, test faces matching the overall training pattern size gave
higher responses than did other natural images. Thus simply matching the size of typical faces
gives some degree of face selectivity in real images. However, different training patterns led to
large differences in responses to the schematic patterns. Of all training patterns tested, the three-
dot pattern provided the most overall face selectivity, and provided a better fit to the experimental
data with schematics.

Importantly, not all patterns result in face preferences. For example, if only a single low-level
feature like eye size is matched between the training and testing images, the HLISSOM model
shows no face preference. These results show that the pattern shape is important, but that the shape
does not need to be strictly controlled to provide face preferences.

Postnatal bias from prenatal learning

What effect does the prenatal training have on postnatal learning? When given postnatal training
of real faces in real images, most units in both the prenatally trained and naı̈ve networks developed
RFs that are averages (i.e. prototypes) of faces and hair outlines (Bednar & Miikkulainen, 2002b).
However, the postnatal time course and final result differed. RFs in the prenatally trained network
smoothly increase in face selectivity, and eventually nearly all become highly selective for faces.
Postnatal self-organization in the naı̈ve network is less regular, and the final RFs are usually less
face selective. Overall, prenatal training appears to bias postnatal learning towards biologically
relevant stimuli, i.e. faces. This result parallels one proposed effect of CONSPEC, but within a
single learning system.

Postnatal decline in response to schematics

The bottom row of figure 2 shows that the HLISSOM model replicates the disappearance of pe-
ripheral schematic face preferences after one month (Johnson et al., 1991). In HLISSOM, the de-
crease results from the afferent weight normalization. As the FSA neurons in HLISSOM learn the
hair and face outlines typically associated with real faces, the connections to the internal features
necessarily become weaker. As a result, the response to face-like schematic patterns decreases, be-
cause those patterns match only on the internal features. Eventually, the response to the schematic
patterns drops below the fixed activation threshold. At that point, the model response is no longer
higher for schematic faces than for other schematics. In a sense, the FSA has learned that real faces
typically have both innerand outer features, and does not respond when either type of feature is
absent or a poor match to real faces.

Interestingly, the FSA neurons continue to respond to real faces (as opposed to schematics)
throughout postnatal learning (figure 2f-g). Thus the model provides a clear prediction that the
decline in peripheral face preferences is limited to schematics, and that no decline will be found if
infants are tested with sufficiently realistic face stimuli.
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Mother preferences

In Bednar & Miikkulainen (2002b) we showed that when one face (i.e. the mother) appears most
often, the FSA response to that face becomes stronger than to a similar stranger. This result repli-
cates the mother preference found in infants a few days old (Bushnell, 2001; Pascalis et al., 1995).
Interestingly, the model’s mother preference disappears when the hair outline is masked, which is
consistent with Pascalis et al.’s claim that newborns learn outlines only. However, Pascalis et al.
(1995) did not test the crucial converse condition, i.e. whether newborns respond when the facial
features are masked, leaving only the outlines. As for the internal features alone, the model does
not respond to the head and hair outline alone. Thus the HLISSOM model’s learning of faces is
clearlynot restricted to the outline.

In the model, the decreased response with either type of masking results from holistic learning
of all of the features typically present in real faces. As real faces are learned, the afferent weight
normalization ensures that neurons respond only to patterns that are a good overall match to all of
the weights, not simply matching on a few features. Many authors have argued that adults learn
faces holistically (e.g. Farah, Wilson, Drain, & Tanaka, 1998). The simulation results suggest that
newborns may learn faces in the same way, and predict that newborns will not prefer their mother
when her hair outline is visible but her facial features are masked.

DISCUSSION AND FUTURE WORK

The HLISSOM simulations show that internally generated patterns and a self-organizing system
can together account for newborn face preferences, neonatal face learning, and longer term devel-
opment of face detection. The results suggest simple but novel explanations for why newborns
prefer schematic faces, why newborn learning appears to depend on the face outline, and why
the response to schematic faces decreases over time. They also suggest that internally generated
patterns allow the genome to steer development towards biologically relevant processing, making
subsequent learning more robust.

In future work, it will be important to measure the actual activity patterns present in developing
animals and humans, and understand how these patterns are generated in the brainstem and other
areas. Brain imaging in young infants can help determine whether face-selective responses in
newborns are subcortical, as in the CONSPEC/CONLERN model, or cortical, as in the HLISSOM
model. Even before newborn imaging is practical, the predictions of the model can be tested
behaviorally with infant experiments. That is, HLISSOM predicts that over the first two months the
response to real faces in the periphery should continue, even as response to schematics diminishes,
and the mother preference of newborns should disappear when the facial features are masked.
Finally, additional behavioral tests can help distinguish between HLISSOM and models predicting
less face specificity, like Simion, Macchi Cassia, Turati, and Valenza (this volume).
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CONCLUSION

A single learning system can explain the seemingly complex postnatal time course of face prefer-
ences, if that system is exposed to internally generated patterns. Initial face selectivity develops
from these non-visual inputs, and postnatal experience interacts with the initial learning to develop
full face processing abilities. These results provide clear predictions for future infant experiments,
and provide a new way of understanding how sensory systems can be constructed.
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