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Abstract

Newborn face perception is controversial, but the current ev-
idence suggests that (a) newborns follow face-like schematic
patterns further than similar patterns, (b) infants can learn in-
dividual faces soon after birth, and (c) full face processing
abilities develop through months or years of experience with
faces. Previous models have not adequately accounted for all
three types of results. In prior work, we showed how a biolog-
ically based self-organizing system and spontaneous activity
patterns can explain newborn face preferences. In this paper
we show that this general-purpose learning system can explain
both neonatal and later learning. Using computational simula-
tions, we demonstrate that newborn learning need not be based
on the external outline, as has been supposed, and that postna-
tal decreases in response to schematic faces need not represent
a decrease in response to real faces. These simulations provide
concrete predictions to guide future experiments with infants,
while suggesting new techniques for designing complex adap-
tive systems in general.

Introduction
Specific regions in the adult visual cortex respond preferen-
tially to human faces. How this face processing capability
develops is not yet clear. Many researchers have argued that
infants process only general visual properties like size and
spatial frequency until after weeks or months of experience
(Maurer & Barrera, 1981). Others have found a preference for
faces at birth (Goren, Sarty, & Wu, 1975; Johnson, Dziuraw-
iec, Ellis, & Morton, 1991; Simion, Valenza, & Umiltà, 1998)
and that infants can learn and discriminate between specific
faces even in the first few hours and days after birth (Bush-
nell, 2001; Pascalis, de Schonen, Morton, Deruelle, & Fabre-
Grenet, 1995). Full face processing abilities clearly take sev-
eral years to develop.

In this paper we show that a single learning system can
account for all three types of results, i.e. face preferences at
birth, face learning in the first few days after birth, and the
gradual development of full face processing abilities. Us-
ing the HLISSOM self-organizing model (Hierarchical Lat-
erally Interconnected Synergetically Self-Organizing Map),
we have previously shown how prenatal learning of sponta-
neous neural activity can lead to newborn face preferences
(Bednar & Miikkulainen, 2000). In this paper we show that
the same self-organizing system can learn from faces in real
images, and that the learning process can explain postna-
tal changes in infant face detection abilities. Together these
simulations show how genetic information can be expressed
within a highly adaptive system, and provide concrete predic-
tions for future experiments with infants.

Development of face detection
Face detection abilities change significantly between birth
and two months of age. When shown moving schematic faces

in the visual periphery, newborns and one month olds will
follow them further than other similar patterns (Goren et al.,
1975; Johnson et al., 1991; see example schematics in fig-
ure 5a-d). Older infants do not show a peripheral schematic
face preference (Johnson et al., 1991) but between one and
two months they begin to respond to facial features in central
vision (Maurer & Barrera, 1981).

Previous models invoke separate visual processing mech-
anisms for these newborn and later face preferences. For
instance, Johnson and Morton (1991) proposed that infants
are born with a simple subcortical system they termed CON-
SPEC. CONSPEC serves only to detect and direct attention
to face-like patterns in the periphery, perhaps using a sim-
ple three-dot template (two dots for the eyes and a third for
the nose and mouth). A separate cortical system CONLERN
would begin to control behavior after one month, and would
gradually develop more sophisticated face processing through
learning in central vision.

However, the CONSPEC/CONLERN model does not ac-
count for neonatal face learning. For instance, an infant only
a few days old will prefer to look at its mother’s face, relative
to the face of a stranger (Pascalis et al., 1995). This mother
preference has been thought to involve the external outline of
the face only, in contrast to the internal facial feature learn-
ing of CONLERN, because the preference disappears when
internal features are masked (Pascalis et al., 1995).

Accordingly, Johnson and Morton (1991) and subsequent
authors have proposed extending the CONSPEC/CONLERN
model to include face-outline learning in CONSPEC, or a
third, separate subsystem for learning face outlines at birth
(de Schonen, Mancini, & Leigeois, 1998; Simion et al.,
1998). However, recent studies suggest that newborns can
also learn internal features (Slater, Bremner, Johnson, Sher-
wood, Hayes, & Brown, 2000). Such learning could require a
fourth subsystem, like CONLERN but for the periphery and
operational at birth. (CONLERN itself cannot explain new-
born learning of internal features, because were it present at
birth, it would no longer explain the shift from peripheral to
central face preferences after one month.)

We will show that such increasingly complex models are
unnecessary. A single, CONLERN-like system processing
the entire visual field is sufficient to explain the experimen-
tal data, if CONSPEC is replaced by a system that generates
training patterns before birth. We have previously shown that
a system trained on such spontaneous activity can account for
the measured face preferences of newborns (Bednar, 2002;
Bednar & Miikkulainen, 2000). The 3 hypotheses of the
present paper are that: (1) networks trained on spontaneous
activity learn more robustly after birth, compared to systems
exposed only to environmental stimuli, (2) the decline in re-
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Figure 1: HLISSOM model of face detection. The model is a
hierarchy of sheets of neural units, modeling the infant visual path-
way. The model learns in two phases, each driven by input from
a different source. During prenatal learning (a), activity originates
internally in the PGO pattern generator. In postnatal learning (b),
visual images are drawn on the photoreceptor sheet. For either type
of input, the LGN is strongly activated by high-contrast edges and
borders. The FSA is activated by the strongly responding units in
the LGN, and activity then spreads laterally within the FSA. FSA
weights are adapted when the activity settles. The FSA weights are
initially uniform and unselective, but through self-organization they
become selective for facelike patterns at the corresponding location
on the retina. Their response is then information that an organism
can use directly to control behaviors like visual fixation.

sponse to schematic patterns after one month results from
learning of real faces and their outlines, not from a shift to
a separate system, and (3) learning of both facial features and
outlines can explain the development of a mother preference,
including why it disappears when the outline is masked. Each
of these hypotheses will be tested in a computational exper-
iment with the HLISSOM model. Together the experiments
will show that infant face learning and face preferences can
be explained by a single, general-purpose learning system,
which learns from both internally generated patterns of activ-
ity and from the visual environment.

HLISSOM Model
The architecture for the HLISSOM model is shown in fig-
ure 1, and will be briefly reviewed below. (For more details,
see Bednar, 2002.) The model consists of a hierarchy of two-
dimensional sheets of neural units modeling different areas
of the nervous system: two sheets of input units (the retinal
photoreceptors and the ponto-geniculo-occipital (PGO) pat-
tern generator, described underPrenatal learningbelow), two
sheets of LGN units (ON-center and OFF-center), and a sheet
of cortical units (“neurons”) representing a high-level area,
the face-selective area (FSA)1. Each FSA neuron corresponds
to a vertical column of cells through the six anatomical layers
of the cortex.

1The FSA represents the first region in the ventral processing
pathway that has receptive fields spanning approximately 45◦ of vi-
sual arc, i.e. large enough to span a human face at close range. Ar-
eas V4v and LO are likely FSA candidates based on adult patterns
of connectivity, but the infant connectivity patterns are not known
(Rolls, 1990). The generic term “face-selective area” is used rather
than V4v or LO to emphasize that the model results do not depend on
the region’s precise location or architecture, only on the fact that the
region has receptive fields large enough to allow face-selective re-
sponses. Cortical areas between the LGN and the FSA have been by-
passed for simplicity; see Bednar (2002) for a more complex model
including the primary visual cortex (V1).

The input to the model is an activity pattern on a sheet of
photoreceptors or the PGO generator (see examples in fig-
ure 1). Each cell(i, j) in the ON- and OFF-center layers
of the LGN computes its responseηij as a scalar product of
a fixed weight vector and its receptive fields on each input
sheet:

ηij = σ
(∑

ρab γρXρabwij,ρab

)
, (1)

whereσ is a piecewise linear sigmoid activation function,ρ
specifies the input sheet (either photoreceptors or PGO),γρ

is a constant scaling factor,Xρab is the activation of input
unit (a, b) on sheetρ, andwij,ρab is the corresponding weight
value. The lower boundδ of the sigmoid acts as an activation
threshold; there is no response for activation belowδ. Each
FSA neuron computes its initial response like that of an LGN
cell, except thatρ is either the ON or OFF LGN layer. After
the initial response, the FSA activity evolves through short-
range excitatory and long-range inhibitory lateral interaction:

ηij(t) = σ
(∑

ρab γρXρab(t− 1)wij,ρab

)
, (2)

whereρ specifies the weight type (either ON channel afferent,
OFF channel afferent, lateral excitatory, or lateral inhibitory),
γρ is a constant scaling factor for each weight type (negative
for inhibitory lateral weights), andXρab(t− 1) is the activa-
tion of target unit(a, b) during the previous time step. The
FSA activity pattern starts out diffuse, but within a few iter-
ations of equation 2, converges into a small number of stable
focused patches of activity, or activity bubbles (as in figure 1).
After the activity has settled, the connection weights of each
FSA neuron are modified. All FSA weights adapt according
to the Hebb rule, normalized so that the sum of the weights
of each typeρ is constant for each neuron(i, j):

wij,ρab(t + ∆t) =
wij,ρab(t) + αρηijXρab∑

ab [wij,ρab(t) + αρηijXρab]
, (3)

whereηij stands for the activity of neuron(i, j) in the fi-
nal activity bubble,wij,ρab is the connection weight,α is the
learning rate for each type of connection, andXρab is the
presynaptic activity. The larger the product of the pre- and
post-synaptic activityηijXρab, the larger the weight change.

For these experiments, a pair of74 × 74 ON-center and
OFF-center cell layers received input from a170× 170 pho-
toreceptor sheet and an85 × 85 PGO sheet. Each ON/OFF
cell had a fixed Difference of Gaussians receptive field (RF)
within the photoreceptor array (centerσ = 0.75, surround
σ = 1.2). The 24 × 24 FSA neurons each had a circular
afferent receptive field of size 25, centered on the location
in the central24 × 24 portion of the ON/OFF cell layer cor-
responding the neuron’s location in the FSA. This mapping
ensures that every neuron has a complete set of circular af-
ferent connections. Initially, the afferent and lateral weights
in the FSA had a smooth circular Gaussian profile, and all
weights of each type were identical. Other parameters were
from Bednar and Miikkulainen (2000), scaled for this cortex
size using the equations from Bednar (2002).

Prenatal learning
The simulations in this paper focus on postnatal learning,
but they continue from our earlier results on prenatal learn-
ing (Bednar & Miikkulainen, 2000), which we summarize
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Figure 2: Starting points for postnatal learning. These plots
show the RFs for every third neuron from the24× 24 array of neu-
rons in the FSA. For the prenatally trained network (a), the RFs
were visualized by subtracting the OFF weights from the ON. The
result is a plot of the retinal stimulus that would most excite that
neuron. Like CONSPEC, the prenatally trained network consists of
an array of roughly facelike RFs. In contrast, the neurons in the
näıve network are initially uniformly Gaussian. The ON and OFF
weights were identical, so only the ON weights are shown in (b).
Later figures will compare the postnatal learning of each network.

here. We hypothesize that before birth, training patterns arise
from ponto-geniculo-occipital (PGO) waves generated dur-
ing rapid-eye-movement (REM) sleep. Developing embryos
spend a large percentage of their time in a precursor of REM
sleep, which suggests that this state has a major role in de-
velopment (Roffwarg, Muzio, & Dement, 1966). During and
just before REM sleep, PGO waves originate in the brain stem
and travel to the LGN, visual cortex, and many other brain ar-
eas (see Callaway, Lydic, Baghdoyan, & Hobson, 1987 for a
review). PGO waves are strongly correlated with eye move-
ments and with vivid visual imagery in dreams, suggesting
that they activate the visual system as if they were visual
inputs (Marks, Shaffery, Oksenberg, Speciale, & Roffwarg,
1995). PGO waves elicit different distributions of activity
in different species, and interrupting them has been shown
to increase the influence of the environment on development
(Marks et al., 1995).

All of these characteristics suggest that PGO waves may be
providing species-specific training patterns for development
(see Bednar, 2002 for more details). However, due to limita-
tions in experimental imaging equipment and techniques, the
spatial shape of the PGO wave activity patterns has not yet
been measured. Based on the CONSPEC model, we chose
the three-dot patterns illustrated in the PGO area of figure 1a.
Other patterns are also possible, and will provide greater or
lesser face selectivity (Bednar, 2002).

As described in previous work (Bednar & Miikkulainen,
2000), FSA neurons exposed to prenatal patterns developed
receptive fields (RFs) preferring upright, triangular arrange-
ments of three dots (figure 2a). The resulting map responds
to most frontal face images, and not to most objects or back-
grounds. At this stage, the trained map can be considered an
implementation of CONSPEC, except that it was constructed
by learning and will continue to learn after birth.

To determine whether the prenatal training biases subse-
quent learning (hypothesis 1 above), we also simulated a con-
trol condition called thenäıve network. The näıve network
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Figure 3: Sample postnatal learning iterations. The top row
shows six randomly generated images drawn on the retinal photore-
ceptors at different iterations. Each image contains a foreground
item chosen randomly from a set of three men and three women
(adapted from Rowley et al., 1998) and six object images (from pub-
lic domain clip art collections). Each foreground item was overlaid
onto a random portion of an image from a database of 58 natural
scenes (National Park Service, 1995), at a random location and at a
nearly vertical orientation (drawn from a normal distribution around
vertical, withσ = π/36). The second row shows the LGN response
to each of these sample patterns, visualized by subtracting the OFF
cell responses from the ON cell responses. Dark areas indicate high
OFF cell response, light indicate high ON cell response, and medium
gray indicates no response. The bottom row shows the prenatally
trained FSA response to each pattern, at the start of postnatal train-
ing. For the FSA, only neurons with complete receptive fields (those
in the unshaded inner box) were simulated, because those in the gray
area would have RFs cut off by the edge of the retina. The gray area
shows the FSA area that corresponds to the same portion of the vi-
sual field as in the LGN and retina plots, to facilitate comparison.
The FSA responds to groups of dark spots on the retina, such as the
eyes and mouths in (b-c,f) and the horse’s markings in (d); the loca-
tion of the FSA activity corresponds to the position of the group of
retinal patterns that caused the response.

is so called because it models neurons that have not had ex-
perience with coherent activity patterns until after birth. So
that the näıve and prenatally organized networks would match
on as many parameters as possible, we constructed the naı̈ve
network from the prenatally trained networkpost hocby ex-
plicitly resetting afferent receptive fields to their uniform-
Gaussian starting point (figure 2b). This procedure removed
the prenatally developed face selectivity, but kept the lateral
weights and all of the associated parameters the same. The
activation thresholdδ for the näıve FSA network was then ad-
justed so that for a given training pattern both networks would
have similar activation levels; otherwise the parameters were
the same for each network. This procedure ensures that the
comparison between the two networks will be as fair as pos-
sible, because besides the thresholds the networks differ only
by whether the neurons have face-selective weights at birth.

Postnatal testing and learning

The postnatal learning experiments reported in this paper sim-
ulate gradual learning of specific individuals and objects seen
against a variety of different backgrounds. Figure 3 shows
samples of the images we used and describes how they were
generated. The prenatally trained and naı̈ve networks were
each exposed to the same pseudorandom sequence of 30,000
of these images.
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Figure 4:Prenatal patterns bias postnatal learning in the FSA.
Plots (a) and (b) show the final RFs for every third neuron from the
24 × 24 array of neurons in the FSA, visualized as in figure 2a.
As the prenatally trained network learns from real images, the RFs
morph smoothly into prototypes, i.e. representations of average fa-
cial features and hair outlines (c). By postnatal iteration 30,000,
nearly all neurons have learned face-like RFs, with very little ef-
fect from the background patterns or non-face objects (a). Postnatal
learning is less uniform for the naı̈ve network, as can be seen in
the RF snapshots in (d). In the end, many of the naı̈ve neurons do
learn face-like RFs, but others become selective for general texture
patterns, and some become selective for objects like the clock (b).
Overall, the prenatally trained network is biased towards learning
faces, while the initially uniform network more faithfully represents
the environment. Thus prenatal learning can allow the genome to
guide development in a biologically relevant direction.

At the beginning of the postnatal phase, and at intervals
throughout, we tested the network using schematic images
previously tested with newborns, and with photographs of
faces. In order to compare the neural activity in the model to
babies’ attentional preferences, we assume that newborns pay
more attention to the stimuli that are most effective at activat-
ing their visual processing system, focusing on the highest
level activated. Patterns activating the FSA will be preferred
over those activating only lower areas, and patterns that both
activate the FSA will be ranked by their FSA activity. We
quantify these comparisons by presenting each stimulus 25
times at different retinal locations, and averaging the sum
of the FSA activity. As in the psychological studies we are
modeling, differences between patterns will be tested with
the two-tailed Student’s t-test, treatingp values below 0.05 as
significant.

Results
Experiment 1: Bias from prenatal learning

Figure 4 shows that with postnatal exposure to real images,
both the näıve and prenatally trained networks develop RFs
that are averages (i.e. prototypes) of faces and hair outlines.
RFs in the prenatally trained network smoothly increase in
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Figure 5:Decline in response to schematic faces.Before postna-
tal training, the prenatally trained FSA (third row from top) responds
significantly more to the facelike stimulus (a) than to the three-dot
stimulus (b; p = 0.05) or the scrambled faces (c-d; p = 10−8).
Assuming that infants attend most strongly to the stimuli that cause
the greatest neural response, these responses replicate the schematic
face preferences found by Johnson and Morton (1991) in infants up
to one month of age. Some of the Johnson & Morton, 1991 exper-
iments found no significant difference between (a) and (b), which
is unsurprising given that they are only barely significantly different
here. As the FSA neurons learn from real faces postnatally, they re-
spond less and less to schematic faces. The bottom row shows the
FSA response after 1000 postnatal iterations. The FSA now rarely
responds to (a) and (b), and the average difference between them
is no longer significant (p = 0.25). Thus no preference would be
expected for the facelike schematic after postnatal learning, which
is what Johnson and Morton (1991) found for older infants, i.e. 6
weeks to 5 months old. The response to real faces also decreases
slightly through learning, but to a much lesser extent (e-f). The
response to real faces declines because the newly learned average
face and hair outline RFs are a weaker match to any particular face
than were the original three dot RFs. That is, the external features
vary more between individuals than do the internal features, and
thus their average is not a close match to any particular face. Even
so, there is only a comparatively small decrease in response to real
faces, because real faces are still more similar to each other than to
the schematic faces. Thus HLISSOM predicts that older infants will
still show a face preference if tested with more-realistic stimuli, such
as photographs.

face selectivity, and eventually nearly all become highly se-
lective for faces (figure 4b). Postnatal self-organization in the
näıve network is less regular, and the final result is less face
selective. Thus prenatal training biases postnatal learning to-
wards biologically relevant stimuli, i.e. faces (hypothesis 1).

Experiment 2: Decline in response to schematics

Figure 5 shows that the HLISSOM model replicates the dis-
appearance of peripheral schematic face preferences after one
month (hypothesis 2; Johnson et al., 1991). In HLISSOM,
the decrease results from the afferent weight normalization
(equation 3). As the FSA neurons in HLISSOM learn the hair
and face outlines typically associated with real faces, the con-
nections to the internal features necessarily become weaker.
Unlike real faces, the facelike schematic patterns match only
on these internal features, not the outlines. As a result, the re-
sponse to schematic facelike patterns decreases as real faces



are learned. Eventually, the response to the schematic pat-
terns approaches and drops below the fixed activation thresh-
old δ. At that point, the model response is no longer higher
for schematic faces (because there is no FSA response, and
V1 responses are similar). In a sense, the FSA has learned
that real faces typically have both innerand outer features,
and does not respond when either type of feature is absent or
a poor match to real faces.

Yet the FSA neurons continue to respond to real faces (as
opposed to schematics) throughout postnatal learning (fig-
ure 5e-f). Thus the model provides a clear prediction that the
decline in peripheral face preferences is limited to schemat-
ics, and that if infants are tested with sufficiently realistic face
stimuli, no decline in preferences will be found.

Experiment 3: Mother preferences

Figure 6a-b shows that when one face (i.e. the mother) ap-
pears most often, the FSA response to that face becomes
stronger than to a similar stranger. This result replicates the
mother preference found in infants a few days old (hypothe-
sis 3; Bushnell, 2001; Pascalis et al., 1995). Interestingly, fig-
ure 6c-d shows that the mother preference disappears when
the hair outline is masked, which is consistent with Pascalis
et al.’s claim that newborns learn outlines only. However,
Pascalis et al. (1995) did not test the crucial converse condi-
tion, i.e. whether newborns respond when the facial features
are masked, leaving only the outlines. Figure 6(e-f) shows
that there is no response to the head and hair outline alone
either, and thus that this face learning is clearlynot outline-
only.

In the model, the decreased response with either type of
masking results from holistic learning ofall of the features
typically present in real faces. As real faces are learned, the
afferent weight normalization ensures that neurons respond
only to patterns that are a good overall match to all of the
weights, not simply matching on a few features. Many au-
thors have argued that adults also learn faces holistically (e.g.
Farah et al., 1998). These results suggest that newborns may
learn faces in the same way, and predict that newborns will
no prefer their mother when her hair outline is visible but her
facial features are masked.

Discussion and future work
The HLISSOM simulations show that internally generated
patterns and a self-organizing system can together account
for newborn face preferences, neonatal face learning, and
longer term development of face detection. The results sug-
gest simple but novel explanations for why newborn learning
appears to depend on the face outline, and why the response to
schematic faces decreases over time. These explanations lead
to concrete predictions for future infant experiments. Over
the first two months the response to real faces in the periph-
ery should continue even as response to schematics dimin-
ishes, and the mother preference of newborns should disap-
pear when the facial features are masked. The results also
show that internally generated patterns allow the genome to
steer development towards biologically relevant processing,
making learning of more sophisticated abilities quicker and
more robust.

The results above do not address one interesting phe-
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Figure 6:Mother preferences depend on both internal and ex-
ternal features. Initially, the prenatally trained FSA responds well
to both women above (a-b; FSA-0), with no significant difference
(p = 0.28). The response is primarily due to the internal facial
features (c-d; FSA-0), although there are some spurious three-dot re-
sponses due to alignment of the hair with the eyes (a-b; top of FSA-

0). Designating image (a) as the mother, we presented it in 25% of
the postnatal learning iterations. (This ratio is taken from Bushnell,
2001, who found that newborns look at their mother’s face for an av-
erage of about one-fourth their time awake over the first few days.)
Image (b), the stranger, was not presented at all during training. Af-
ter 500 postnatal iterations, the response to the mother is signifi-
cantly greater than to face (b) (p = 0.001). This result replicates the
mother preference found by Pascalis et al. (1995) in infants 3–9 days
old. The same results are found in the counterbalancing condition
— when trained on face (b) as the mother, (b) becomes preferred
(p = 0.002; not shown). After training with real faces, there is no
longer any FSA response to the facial features alone (c-d), which
replicates Pascalis et al.’s (1995) finding that newborns no longer
preferred their mother when her face outline was covered. Yet con-
tra Pascalis et al. (1995), we cannot conclude that what has been
learned “has to do with the outer rather than the inner features of the
face”, because no preference is found for the face outline alone ei-
ther (e-f). Thus face learning in HLISSOM is holistic. Face learning
in adults is also thought to be holistic (Farah et al., 1998), and these
results show that we do not need to assume that newborns are using
a different type of face learning than adults.

nomenon: in central vision, preference for schematic faces
is not measurable until 2 months of age (Maurer & Barrera,
1981), and is gone by 5 months (Johnson et al., 1991). This
time course is delayed relative to peripheral vision, where
preferences are present at birth but disappear by 2 months.

Johnson and Morton (1991) originally proposed that in the
periphery the preferences disappear because CONLERN ma-
tures and inhibits CONSPEC, while in central vision they
disappear because CONLERN learns properties of real faces.
HLISSOM provides a unified explanation for both phenom-
ena: a single learning system stops responding to schematic
faces because it has learned from real faces.

Why, then, would the time course differ between peripheral
and central vision? As Johnson and Morton acknowledged,
the retina changes significantly over the first few months. In
particular, at birth the fovea is much less mature than the pe-
riphery, and may not even be functional yet (Abramov, Gor-
don, Hendrickson, Hainline, Dobson, & LaBossiere, 1982;
Kiorpes & Kiper, 1996). Thus schematic face preferences



in central vision may be delayed relative to those in periph-
eral vision simply because the fovea matures later. A sin-
gle cortical learning system like HLISSOM is thus sufficient
to account for the time course of both central and peripheral
schematic face preferences.

The development of the fovea may also affect mother pref-
erences. Consistent with our results, Bartrip, Morton, and
de Schonen (2001) found that infants 19–25 days old do not
significantly prefer their mothers when either her internal fea-
tures or external features are covered. Interestingly, Bartrip
et al. found that older infants, 35–40 days old, do prefer their
mothers even when the external features are covered. The
gradual maturation of the fovea may again explain these later-
developing capabilities. Unlike the periphery, the fovea con-
tains many ganglia with small RFs, and which connect to cor-
tical cells with small RFs. These neurons can learn smaller
regions of the mother’s face, and their responses will allow
the infant to recognize the mother even when other regions
of the face are covered. Thus simple, documented changes in
the retina can explain why mother preferences would differ
over time.

In general, the idea that artificially generated training pat-
terns can influence the development of learning systems is
powerful, and could be used to construct artificial systems
as well. Simple, engineered training patterns can provide an
initial or ongoing bias, while learning algorithms incorporate
the full complexity of the environment. This approach can
allow more complex adaptive systems to be designed and im-
plemented.

Conclusion
A single learning system can explain the seemingly complex
postnatal time course of face processing, if that system is ex-
posed to internally generated patterns. Initial face selectivity
develops from these non-visual inputs, and postnatal experi-
ence interacts with these genetic factors to develop full face
processing abilities. These results provide clear predictions
for future infant experiments, and provide new tools for con-
structing complex artificial systems.
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